JP4623786B2 - Non-aqueous secondary battery - Google Patents
Non-aqueous secondary battery Download PDFInfo
- Publication number
- JP4623786B2 JP4623786B2 JP32022799A JP32022799A JP4623786B2 JP 4623786 B2 JP4623786 B2 JP 4623786B2 JP 32022799 A JP32022799 A JP 32022799A JP 32022799 A JP32022799 A JP 32022799A JP 4623786 B2 JP4623786 B2 JP 4623786B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- battery
- average particle
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、たとえば電気自動車、ハイブリッド自動車などの電源用として、あるいは一般家庭や商店、小工場などにおける小規模な電力貯蔵用として、さらには宇宙航空用電源として好適な大型の、新規な非水二次電池に関するものである。
【0002】
【従来の技術】
非水二次電池はエネルギー密度およびエネルギー効率が高く、単セルで、他の方式の電池に比べて高い電圧が得られることから、主として電子機器の小型化、コードレス化に対応した小型ないし超小型の電源として、たとえば携帯電話やノートパソコンなどに搭載すべく研究がなされてきたが近時、電気自動車、ハイブリッド自動車などの電源用として、あるいは一般家庭や商店、小工場などにおける小規模な電力貯蔵用として、その容量が10Ah以上、とくに50Ah以上といった大型の電池への応用が期待されている。
【0003】
かかる大型の非水二次電池としては従来、たとえばコークス、樹脂焼成体、炭素繊維、熱分解炭素、天然黒鉛、メソフェーズ小球体などの、多孔質状の炭素材料を負極活物質とする負極と、リチウムを含む、または含まない遷移金属の酸化物などを正極活物質とする正極と、そして非水性の有機溶媒に、電解質としてリチウム塩を溶解した非水性の有機電解液とを組み合わせたものなどについて、実用化に向けての検討が行われてきた。
【0004】
上記電池の充放電反応は、充電時には、正極側で、正極活物質に保持されたリチウムイオンが脱インターカレートして電解液中に放出されるとともに、負極側で、負極活物質である多孔質の炭素材料に、電解液中のリチウムイオンが吸蔵されることによって進行する。また放電時には、負極側で、上記炭素材料に吸蔵されていたリチウムイオンが電解液中に放出されるとともに、正極側で、電解液中のリチウムイオンが正極活物質にインターカレートすることによって進行する。
【0005】
上記の非水二次電池は、通常の非水二次電池が持つ本来の特性である、前述した高いエネルギー密度、および高いエネルギー効率を有する上、負極活物質として金属リチウムを使用する場合に比べて安全性が高く、しかも金属リチウムと電解液との反応や、いわゆるデンドライトの析出などを生じないために、電池のサイクル寿命を長くできるものと期待されている。
【0006】
【発明が解決しようとする課題】
しかし、上記従来の非水二次電池は、その容量を大型化するほど、期待に反して、サイクル寿命の延長効果が十分に得られない傾向を示すという問題があった。
この原因としては、容量大型化のための、電極の大面積化や積層化にともなう不均一性の増大があげられ、かかる不均一性の増大の一因としては、電池の充放電にともなう電極の膨張−収縮の繰り返しによる、電極内部での構造的な緩みと、それにともなう抵抗上昇などがあげられる。
【0007】
そこで小型電池においては、負極活物質として、炭素材料よりも充放電による電極の膨張−収縮量が小さい、一般式(1):
LiaTi3-aO4 (1)
〔式中aは0<a<3の数を示す〕
で表されるチタン酸リチウム化合物を使用してサイクル寿命を延長することが提案されている(たとえば特開平7―335261号公報、特開平9―199179号公報)。
【0008】
しかしチタン酸リチウム化合物を、その容量が10Ah以上といった大型の非水二次電池に使用した場合には、下記の新たな問題を生じることが、発明者らの検討によって明らかとなった。
すなわちチタン酸リチウム化合物は、炭素材料に比べて全体的に電気容量密度が低いので、電池のエネルギー密度(Wh/kg)を向上することを考慮すると、当該チタン酸リチウム化合物の中でもできるだけ電気容量密度が高い状態のものを使用するのが望ましい。
【0009】
ところが、小型の電池などに一般に使用されているチタン酸リチウム化合物の粉末は、図2に△と実線で示すように放電の電気容量密度(mAh/g)が高いものほど、その平均粒径(μm)が小さくなる傾向を示し、かかる平均粒径が小さいものほど取り扱いが難しく、凝集などを発生しやすいために、とくに大型電池用の、大面積の電極を、凝集などのない均一な状態に形成するのが容易でなく、製造の歩留まりが低下してしまうという問題がある。
【0010】
すなわち大型、小型いずれの電池用の電極も、さらに大面積の、集電体の元になる金属箔上に、チタン酸リチウム化合物を含むペーストを連続的に塗布し、乾燥させたのち、金属箔ごと所定の面積に切り出して製造されるが、切り出しの面積が大きいほど、つまり大型電池用の大面積の電極ほど、ランダムに発生する凝集が入り込む確率が高くなり、かかる凝集のない良品の割合が少なくなって、製造の歩留まりが低下するのである。
【0011】
本発明の目的は、負極活物質としてチタン酸リチウム化合物を使用しており、これまでよりも充放電時の電極の膨張−収縮量が小さいためにサイクル寿命が長く、また上記チタン酸リチウム化合物の電気容量密度が高いために、電池のエネルギー密度が高い上、凝集などを生じないために製造が容易で歩留まりにもすぐれた、大型の非水二次電池を提供することにある。
【0012】
【課題を解決するための手段および発明の効果】
上記課題を解決するために、発明者らは、負極活物質として使用するチタン酸リチウム化合物の形状について検討を行った。
その結果、負極活物質として、チタン酸リチウム化合物の、平均粒径1μm未満の一次粒子を、平均粒径5〜100μmの粒状に凝集させた二次粒子を使用するとともに、負極集電体としての金属箔の片面または両面に、前記二次粒子と、導電助剤としての平均粒径30nm〜1μmのグラファイトと、結着剤との混合物の層を積層して負極を形成すると、当該二次粒子は、図2に●で示すように通常の、チタン酸リチウム化合物における電気容量密度(mAh/g)−平均粒径(μm)の対比関係から離れて、凝集などを生じにくい取り扱いの容易な粒径範囲でありながら、なおかつチタン酸リチウム化合物の電気容量密度の理論的な上限に近い、およそ160mAh/g以上という高い電気容量密度を有するため、これまでよりもサイクル寿命が長く、かつエネルギー密度が高い上、製造が容易で歩留まりにもすぐれた大型の非水二次電池を製造できることを見出し、本発明を完成するに至った。
【0013】
すなわち本発明の非水二次電池は、負極活物質として、一般式(1):
LiaTi3−aO4 (1)
〔式中aは0<a<3の数を示す〕
で表されるチタン酸リチウム化合物の、平均粒径0.01μm以上、1μm未満の一次粒子を、平均粒径5〜100μmの粒状に凝集させた二次粒子を用い、負極集電体としての金属箔の片面または両面に、前記二次粒子と、導電助剤としての平均粒径30nm〜1μmのグラファイトと、結着剤との混合物の層を積層して負極を形成したことを特徴とするものである。
【0014】
【発明の実施の形態】
以下に、本発明の非水二次電池を説明する。
負極活物質であるチタン酸リチウム化合物としては、一般式(1):
LiaTi3-aO4 (1)
〔式中aは0<a<3の数を示す〕
を満足する種々の化合物を1種単独で、あるいは2種以上混合して使用できるが、中でもとくに式(1-1):
Li4/3Ti5/3O4 (1-1)
で表される化合物が、充放電時の膨張―収縮量が小さく、電池のサイクル寿命を延長する効果にすぐれるため、好適に使用される。
【0015】
チタン酸リチウム化合物の二次粒子は、たとえば下記の製造方法によって製造される。
すなわちまずLiOHの飽和水溶液中に、アナターゼ型のTiO2を、Li/Ti=0.8となるように加えて十分に混合したのち、この液を、スプレードライヤーを用いて、出口温度110℃で2万rpm以上の回転をかけながら噴霧、乾燥させて、溶媒である水分を揮散させる。
【0016】
ついで、窒素などの負活性ガス雰囲気中、800℃程度の温度下でおよそ6時間、高温合成させたのち徐冷すると、本発明で使用する、チタン酸リチウム化合物の二次粒子が製造される。
上記二次粒子を形成する一次粒子の平均粒径は、前記のように0.01μm以上、1μm未満である必要がある。すなわち一次粒子の平均粒径が1μmを超える場合には凝集性が低下して、上記の製造方法によって、平均粒径5〜100μmの二次粒子を製造するのが容易でなくなる上、製造された二次粒子の電気容量密度が、前述した160mAh/g以上の範囲を下回って、電池のエネルギー密度が低下してしまう。
【0017】
なお一次粒子の平均粒径は、上記の範囲内でもとくに0.05〜0.5μm程度であるのがさらに好ましい。
また二次粒子の平均粒径は、前記のように5〜100μmの範囲内である必要がある。
二次粒子の平均粒径が5μm未満では、当該二次粒子自体が凝集を生じやすくなって、電極形成時の取り扱い性が低下する結果、製造の歩留まりが低下する。すなわち二次粒子を使用したことの効果が得られない。
【0018】
また逆に、二次粒子の平均粒径が100μmを超えた場合には、電池の構造にもよるが、電極を形成する活物質層の厚みが最大でおよそ200μm程度であるため、電極の表面粗度が高くなって、均一な電池反応が阻害されるという問題を生じる。
なお二次粒子の平均粒径は、上記の範囲内でもとくに10〜80μm程度であるのが好ましく、20〜50μm程度であるのがさらに好ましい。
【0019】
本発明の非水二次電池は、負極活物質として上記チタン酸リチウム化合物の二次粒子を使用するとともに、負極集電体としての金属箔の片面または両面に、前記二次粒子と、導電助剤としての平均粒径30nm〜1μmのグラファイトと、結着剤との混合物の層を積層して負極を形成すること以外は、従来同様に製造される。
すなわちセル積層型の非水二次電池は、上記負極と、正極活物質を含む層状の正極とを、ポリエチレン、ポリプロピレンの微多孔膜などをセパレータとして介装しつつ複数枚ずつ交互に積層して電極積層体を構成し、それをリチウム系の非水性有機電解液とともに電池容器内に封入するなどして製造される。
【0021】
上記負極側の混合物に含まれるグラファイトの平均粒径は、上記のように30nm〜1μmに限定される。
平均粒径がこの範囲内のグラファイトは、導電助剤として電気伝導を補助する効果が十分に高い上、凝集などを生じにくいため、前記粒径を有する二次粒子との混合物中に均一に分散させるのが容易で、均一な混合物を形成できるという利点がある。
【0022】
またグラファイトは電気伝導にもすぐれている。
また結着剤としては、これも電解液に対する耐性を有する、ポリフッ化ビニリデン(PVdF)、ポリ4フッ化エチレン(PTFE)、フッ素ゴム(FKM)などの、種々の樹脂材料が使用可能である。
【0023】
負極を形成する混合物における、上記各成分の配合割合は、電池の容量やエネルギー密度、エネルギー効率、あるいは混合物の、充放電時の膨張−収縮に対する耐性などを考慮すると、混合物の総量に対して、チタン酸リチウム化合物の二次粒子が50〜95重量%程度、とくに75〜90重量%程度、導電助剤としての平均粒径30nm〜1μmのグラファイトが2.5〜25重量%程度、とくに5〜12.5重量%程度、結着剤が2.5〜25重量%程度、とくに5〜12.5重量%程度であるのが好ましい。
【0024】
負極は、上記混合物にさらに、たとえばN−メチル−2−ピロリドンなどの溶剤を加えてペースト状としたものを、負極集電体としての金属箔の片面または両面に塗布して乾燥させることによって、層状に形成される。
また正極は、チタン酸リチウム化合物の二次粒子に代えて正極活物質を使用すること以外は上記と同様にして、層状に形成される。
正極活物質としては、リチウムイオンのインターカレーション、脱インターカレーションが可能な遷移金属のカルコゲン化物(酸化物、硫化物、セレン化物など)や、これらとリチウムとの複合化合物などがあげられる。
【0025】
とくに好適な正極活物質としては、たとえば一般式(2):
LiCobNi1-bO2 (2)
〔式中、bは0≦b≦1の数を示す〕、
一般式(3):
LiAlcCodNi1-c-dO2 (3)
〔式中、cおよびdは0≦c≦1、0≦d≦1で、かつ0≦c+d≦1の数を示す〕、
および一般式(4):
LiMn2-eMeO4 (4)
〔式中、eは0≦e≦0.1の数を示し、MはAl、Ni、Cr、Co、FeおよびMgから選ばれた少なくとも1種の金属元素を示す〕
で表される各種の化合物からなる群より選ばれた、少なくとも1種があげられる。
【0026】
上記正負両極の集電体となる金属箔としては、導電性にすぐれ、かつ電解液に対する耐性にすぐれた種々の金属製の箔がいずれも使用可能であり、たとえばアルミニウム、スズ、ニッケル、銅、ステンレス鋼、チタンなどの箔があげられる。
中でも、非水二次電池の性能やエネルギー密度などを考慮すると、軽量なアルミニウム箔やスズ箔がとくに好適に使用される。
【0027】
金属箔の寸法、形状は、非水二次電池の形状、構造および寸法に合わせて適宜、設定される。
電極積層体は、上記正負両極を、前述したようにポリエチレン、ポリプロピレンの微多孔膜などをセパレータとして介装しつつ、交互に積層して形成される。
リチウム系の有機電解液としては、たとえばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、テトラヒドロフランなどの、高い比誘電率を有する非水系の有機溶媒に、LiClO4、LiBF4、LiPF6、LiAsF6などのリチウム塩や、あるいはリチウムイオン伝導性を有する固体電解質など、とくに好ましくはLiBF4、LiPF6などを溶解または分散した液が使用される。
【0028】
上記電極積層体と有機電解液とを封入する電池容器としては、従来同様に金属製の函体などが使用でき、その際には、前記のように充放電時の膨張−収縮量をこれまでよりも小さくできるため、電池容器の構造を簡略化して、非水二次電池のエネルギー密度(Wh/kg)を向上することができる。
たとえば従来の、負極活物質として天然黒鉛、正極活物質としてLiCoO2を用いた、容量400Ah級の大型電池では、充電の際に電極積層体が膨らむことによって、電池容器に、およそ0.49MPa以上という高圧が加わることから、電池容器の強度を高める必要があり、結果として容量10Ah以上の大型電池では、電池容器の、強度向上のための重量増が、電池の単位重量あたりのエネルギー密度(Wh/kg)に及ぼす影響が無視できないほど大きくなって、小型電池よりもエネルギー密度が低下してしまう〔J. Power Source, 81-82 (1999) 877-881〕。
【0029】
これに対し本発明によれば、たとえば負極活物質として、前記チタン酸リチウム化合物の二次粒子を使用したこと以外は上記と同様にして容量400Ah級の大型電池を形成した場合、この電池の充電の際に、電極積層体が膨らむことによって電池容器に加わる圧力は、上記従来のもののおよそ1/10以下である、0.04MPa程度まで低減することができ、電池容器の構造を簡略化できる。
また電池容器としては、発明者のうち真嶋、矢ケ崎らが先に提案した、函状の電池容器の内面と電極積層体との間に、当該電極積層体の電極積層方向に一定圧力が加わるように、板ばねなどの加圧部材を挿入した構造のものを使用してもよい(特開平10−334879号公報)。
【0030】
この電池容器によれば、加圧部材の加圧力によって、電極積層体の膨張をさらに抑制することができる。また、加圧部材が緩衝体として機能するために、電池容器の構造をさらに簡略化することもできる。
さらに電池容器としては、電解液に対する耐性にすぐれるとともに、電解液中の有機溶媒の外部への透過、および容器外部から内部への水分の透過を防止しうる柔軟な袋型容器を使用してもよい。
【0031】
上記袋型容器は、金属製の函体よりも著しく軽量であるため、非水二次電池の、単位重量あたりのエネルギー密度(Wh/kg)を大幅に向上することができる。
上記袋型容器を形成する素材としては、これに限定されないがたとえば、有機溶媒の透過防止性にすぐれたオレフィン系樹脂の層と、水の透過防止性にすぐれた金属層とを含む、2層以上の積層体が好適に使用される。
【0032】
上記のうちオレフィン系樹脂の層としては、たとえばポリエチレン、ポリプロピレンなどのオレフィン系樹脂のフィルムがあげられる。また金属層との熱接着性の観点から、たとえばポリエチレンテレフタレートなどの、金属に対する熱接着性にすぐれた層との複合フィルムを使用してもよい。
また金属層を形成する金属としては、上記のように水の透過防止性にすぐれるとともに、電解液に対する耐性にもすぐれたアルミニウム、ニッケル、ステンレス鋼、チタンなどがあげられ、とくに非水二次電池の軽量化を考慮するとアルミニウムが好適に使用される。
【0033】
また上記袋型容器を形成するオレフィン系樹脂のフィルム中などに、電池寿命の向上のために、水分やルイス酸の捕捉剤として、ハイドロタルサイトや硫酸マグネシウムなどを含有させることもできる。
なおハイドロタルサイトや硫酸マグネシウムなどは、電極積層体や電解液とともに電池容器中に封入してもよい。この構成は袋型容器に限らず、先の函状容器にも適用することができる。
【0034】
さらに袋型容器内には、電極積層体を保護するために、たとえば前記PVdF、PTFEなどの樹脂や、あるいは金属などの、電解液に対する耐性を有する材料にて形成された枠体を、電極積層体を囲むように配置してもよい。
上記袋型容器を使用した非水二次電池は、たとえば
▲1▼ 従来の電池容器に類似した独立したハードケース内、
▲2▼ 一般家庭などの建造物の床下、壁面あるいは屋根裏などに電池装置設置場所として設けた、上記ハードケースに相当する穴内、あるいは
▲3▼ 電気自動車などのシャーシやボディなどの構造中に組みこんだ、上記ハードケースに相当する枠体内
などに収容して、使用時の損傷などから保護するのが好ましい。
【0035】
またこの際、充放電時の電極積層体の膨張を抑制するために、たとえば薄板ばねと平板状の押圧板とを備えた押圧手段などを、非水二次電池とともに、上記ハードケースなどの内部に収容してもよい。
また、非水二次電池を縦向けでなく、電極積層体を構成する電極が横向けとなるように、上記ハードケースなどの内部に横向けに配置して、その上に、押圧手段として錘を載置してもよい。
【0036】
あるいはまた、上記ハードケースなどの内法寸法を、非水二次電池よりも僅かに大きめとなるように設定して、それ自体が、その剛性によって、電極積層体の膨張を抑制する押圧手段として機能するように構成してもよい。
上記本発明の非水二次電池の構成は、たとえばその容量が10Ah未満といった小容量の電池に適用してもあまり効果がなく、また1つの電池でその容量が1000Ahを超えるような超大型のものは作製が容易でない上、大きくなりすぎてその取り扱いも容易でなく、実現性に乏しい。
【0037】
したがって本発明の非水二次電池2の容量は、この2つの数値の間、すなわち10〜1000Ah程度、とくに50〜1000Ah程度であるのが好ましい。
本発明の構成によってこれ以上の容量を得るためには、非水二次電池を2つ以上、組み合わせるようにすればよい。
【0038】
【実施例】
以下に本発明を、実施例、比較例に基づいて説明する。
実施例1
〈負極の作製〉
負極活物質として、式(1-1):
Li4/3Ti5/3O4 (1-1)
で表されるチタン酸リチウム化合物の、平均粒径0.5μmの一次粒子を、平均粒径20μmの粒状に凝集させた二次粒子を使用して負極を作製した。
【0039】
すなわち上記二次粒子10重量部に、平均粒径0.6μmのグラファイト1.2重量部と、PVdF1重量部とを混合し、N−メチル−2−ピロリドンを加えてペースト状としたのち、このペーストを、負極集電体としての、厚み20μmのアルミニウム箔の両面に、片面あたりの付着量が0.02g/cm2となるように塗布して乾燥させた。そしてロールプレスしたのちカットして、厚み0.2mm、縦100mm、横100mmの負極を作製した。
【0040】
作製された負極60枚を目視にて検品したところ、このいずれのものも、凝集が全く見られない均一な状態の良品であって、その製造の歩留まりは100%であった。
〈正極の作製〉
正極活物質としての、平均粒径7μmのLiCoO2粉末10重量部に、平均粒径0.6μmのグラファイト1重量部、PVdF1重量部を混合し、N−メチル−2−ピロリドンを加えてペースト状としたのち、このペーストを、正極集電体としての、厚み20μmのアルミニウム箔の両面に、片面あたりの付着量が0.03g/cm2となるように塗布して乾燥させた。そしてロールプレスしたのちカットして、厚み0.2mm、縦100mm、横100mmの正極を作製した。
【0041】
〈非水二次電池の製造〉
上記で作製した正極および負極を、厚み25μm、縦100mm、横100mmのポリプロピレン製微多孔膜をセパレータとして、正極−セパレータ−負極−セパレータ−…の順に、合計120枚積層して電極積層体を得た。
つぎに、図1に示すようにこの電極積層体1を、電極積層体を構成する電極が横向けとなるように、当該電極積層体1の側面を保護するための、断面略コ字状の、PVdF製の第1の枠体2、および電極積層体1の上面を保護するための平板状の、同じくPVdF製の第2の枠体3とともに、アルミニウム箔とポリエチレンフィルムとのラミネートフィルムにて形成された袋型容器4内に収容した。
【0042】
つぎに、エチレンカーボネートとジメチルカーボネートの体積比3:7の混合物に、電解質としてLiPF6を溶解した非水性の有機電解液(電解質濃度1M)を、袋型容器4内に収容された電極積層体1に注入して、400mmHgの減圧下で96時間、含浸させたのち、電極積層体1を構成する各負極に負極用の接続端子5を、正極に正極用の接続端子6を、それぞれ接続した。
そして、袋型容器4の口を、接続端子5、6を外部へ突出させた状態で、ヒートシールにより封止して非水二次電池を製造した。
【0043】
なお以上、一連の非水二次電池の組み立て操作は、ドライボックス中で行った。
製造された非水二次電池の定格容量は50Ahであった。
比較例1
チタン酸リチウム化合物の二次粒子に代えて、従来品である、チタン酸リチウム化合物の、平均粒径5μmの粉末を使用したこと以外は実施例1と同様にして、同サイズの負極を作製した。
【0044】
作製された負極を目視にて検品したところ、凝集が1個所でも見られたものを不良品と判定した場合、その製造の歩留まりは70%という低い値になってしまった。
比較例2
負極活物質として、チタン酸リチウム化合物の二次粒子に代えて、鱗片状天然黒鉛粉末(平均粒径12μm)を使用するとともに、当該鱗片状天然黒鉛粉末10重量部に、PVdF2重量部を混合し、N−メチル−2−ピロリドンを加えてペースト状としたのち、このペーストを、負極集電体としての、厚み20μmの銅箔の両面に、片面あたりの付着量が0.01g/cm2となるように塗布して乾燥させた。そしてロールプレスしたのちカットして、厚み0.2mm、縦100mm、横100mmの負極を作製し、この負極を使用したこと以外は実施例1と同様にして非水二次電池を製造した。
【0045】
製造された非水二次電池の定格容量は50Ahであった。
比較例3
負極活物質として、チタン酸リチウム化合物の二次粒子に代えて、球状炭素粉末(MCMB、平均粒径10μm)を使用するとともに、当該MCMB10重量部に、PVdF2重量部を混合し、N−メチル−2−ピロリドンを加えてペースト状としたのち、このペーストを、負極集電体としての、厚み20μmの銅箔の両面に、片面あたりの付着量が0.01g/cm2となるように塗布して乾燥させた。そしてロールプレスしたのちカットして、厚み0.2mm、縦100mm、横100mmの負極を作製し、この負極を使用したこと以外は実施例1と同様にして非水二次電池を製造した。
【0046】
製造された非水二次電池の定格容量は50Ahであった。
〈電池特性試験▲1▼〉
上記実施例1、および比較例2、3で製造した非水二次電池の枠体3の上に、袋型容器4の外側から、図1に示すように厚み10mmのステンレス板7を載せて、上記枠体3の下の電極積層体1に均一な荷重(0.03MPa)が加わるようにした。
【0047】
そして、上記ステンレス板7の上に30kgの錘8を載せた状態で電池を繰り返し充放電させながら、自動出力装置付きマイクロゲージを用いて、図中白矢印で示す方向への、錘8の変位量、すなわち電極積層体の膨張−収縮量を測定した。
充放電サイクル4回目までの結果を図3に示す。また充放電サイクル5回目までの最大変位量の推移を図4に示す。
【0048】
これらの図より、実施例1の電池は、比較例2、3の電池に比べて、充放電時の積層体の膨張−収縮量を小さくできることが確認された。
〈電池特性試験▲2▼〉
上記と同様にステンレス板7と30kgの錘8とを載せた状態の、実施例1、および比較例2、3の非水二次電池をオートグラフ試験機にセットして電池を繰り返し充放電させて、電極積層体の膨張−収縮による荷重の変化を測定して、電池容器などに及ぼす圧力の変化を推定した。
【0049】
充放電サイクル6回目と7回目の結果を図5に示す。
図より、実施例1の電池は、比較例2、3の電池に比べて、充放電時に発生する圧力を小さくできることが確認された。
〈サイクル寿命試験〉
実施例1で製造した非水二次電池、ならびに前記比較例1で得られた多数の陰極から、凝集のない良品を選んで使用したこと以外は実施例1と同様にして製造した定格容量50Ahの非水二次電池(以下、比較例1の非水二次電池とする)について、初期電流密度0.15mA/cm2、上限電圧3.0Vの充電条件で8〜10時間、定電流、定電圧充電したのち、電流密度0.15mA/cm2の放電条件で1.0Vまで定電流放電させるサイクルを繰り返し行い、容量が初期容量の70%となった充放電サイクル数を、電池の寿命として求めた。
【0050】
また比較例2、3で製造した非水二次電池については、初期電流密度0.15mA/cm2、上限電圧4.1Vの充電条件で8〜10時間、定電流、定電圧充電したのち、電流密度0.15mA/cm2の放電条件で3.0Vまで定電流放電させるサイクルを繰り返し行い、容量が初期容量の70%となった充放電サイクル数を、電池の寿命として求めた。
結果を表1に示す。
【0051】
【表1】
【0052】
表より、実施例1、比較例1の非水二次電池はともに高い電池寿命を有しており、とくに実施例1の非水二次電池はこれまでにない高寿命であることが確認された。
これに対し、比較例2、3は実用上必要な電池寿命を満足していないことが判明した。そこで比較例2、3については、ステンレス製のハードケース内に収容した状態で、再びサイクル寿命試験を行うこととした。
【0053】
なおハードケースとしては、前述した電池特性試験▲1▼▲2▼の結果をもとに、充放電時の電極積層体の膨張と、それにともなう圧力の発生による変形を防止しうるに足る、十分な厚みを有するステンレス板材にて形成する必要を考慮した結果、比較例2のハードケースは900g、比較例3のハードケースは600gもの重量を有するものとなった。
結果を表2に示す。
【0054】
【表2】
【0055】
表より比較例2、3の電池は、ハードケースに収容することで寿命が延長されたが、それでも実施例1に及ばない上、ハードケースを使用したことでエネルギー密度が低下することが判明した。
【図面の簡単な説明】
【図1】本発明の非水二次電池の、実施の形態の一例を示す斜視図である。
【図2】負極活物質としてのチタン酸リチウム化合物の、粒子の粒径と電気容量密度との関係を示すグラフである。
【図3】本発明の実施例1、および比較例2、3の非水二次電池における、充放電時間と、電極積層体の膨張-収縮量を表す変位量との関係を示すグラフである。
【図4】上記実施例1、比較例2、3の非水二次電池における、充放電サイクル数と、そのときの最大変位量との関係を示すグラフである。
【図5】上記実施例1、比較例2、3の非水二次電池における、充放電時間と、電池容器に加わる荷重との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a large-sized, novel non-water source suitable for use as a power source for electric vehicles, hybrid vehicles, etc., or for small-scale power storage in general households, shops, small factories, etc. The present invention relates to a secondary battery.
[0002]
[Prior art]
Non-aqueous secondary batteries have high energy density and energy efficiency, are single cells, and can produce higher voltages than other types of batteries. Therefore, they are mainly small and ultra-compact in response to downsizing and cordless electronic devices. Recently, research has been conducted to install them in mobile phones, notebook computers, etc., but recently, they have been used as power sources for electric cars, hybrid cars, etc., or in small households, stores, small factories, etc. Therefore, it is expected to be applied to a large battery having a capacity of 10 Ah or more, particularly 50 Ah or more.
[0003]
As such a large non-aqueous secondary battery, conventionally, for example, a negative electrode using a porous carbon material as a negative electrode active material, such as coke, resin fired body, carbon fiber, pyrolytic carbon, natural graphite, mesophase spherules, A combination of a positive electrode using a transition metal oxide containing or not containing lithium as a positive electrode active material and a non-aqueous organic solvent in which a lithium salt is dissolved as an electrolyte in a non-aqueous organic solvent Consideration has been made for practical use.
[0004]
The charging / discharging reaction of the battery is performed in the following manner. During charging, lithium ions held in the positive electrode active material are deintercalated on the positive electrode side and released into the electrolytic solution. It progresses when lithium ions in the electrolyte are occluded in the carbonaceous material. Further, at the time of discharging, the lithium ions occluded in the carbon material are released into the electrolytic solution on the negative electrode side, and the lithium ions in the electrolytic solution are intercalated into the positive electrode active material on the positive electrode side. To do.
[0005]
The above non-aqueous secondary battery has the original characteristics of a normal non-aqueous secondary battery, such as the high energy density and high energy efficiency described above, and compared with the case where metallic lithium is used as the negative electrode active material. Therefore, it is expected that the cycle life of the battery can be extended because the reaction between metallic lithium and the electrolytic solution and the so-called dendrite precipitation do not occur.
[0006]
[Problems to be solved by the invention]
However, as the capacity of the conventional non-aqueous secondary battery is increased, contrary to expectations, there is a problem that the effect of extending the cycle life cannot be obtained sufficiently.
The cause of this is an increase in non-uniformity due to an increase in electrode area and lamination for increasing capacity, and one cause of the increase in non-uniformity is the electrode accompanying charging / discharging of the battery. The structural looseness inside the electrode due to repeated expansion and contraction of the electrode and the accompanying increase in resistance can be given.
[0007]
Therefore, in a small battery, as the negative electrode active material, the amount of expansion / contraction of the electrode due to charge / discharge is smaller than that of the carbon material, general formula (1):
Li a Ti 3-a O Four (1)
[Wherein a represents a number of 0 <a <3]
It has been proposed to extend the cycle life using a lithium titanate compound represented by the formula (for example, JP-A-7-335261, JP-A-9-199179).
[0008]
However, when the lithium titanate compound is used for a large non-aqueous secondary battery having a capacity of 10 Ah or more, it has been clarified by the inventors that the following new problem occurs.
That is, the lithium titanate compound has a lower electric capacity density as a whole than the carbon material. Therefore, in consideration of improving the energy density (Wh / kg) of the battery, the electric capacity density of the lithium titanate compound is as much as possible. It is desirable to use one having a high state.
[0009]
However, the lithium titanate compound powder generally used in small batteries and the like has a higher average particle diameter (mAh / g) as the electric capacity density (mAh / g) of discharge increases as shown by Δ and solid line in FIG. (μm) tends to be smaller, and the smaller the average particle size, the harder it is to handle and the more likely it is to agglomerate. There is a problem that it is not easy to form and the manufacturing yield is reduced.
[0010]
That is, for both large and small battery electrodes, a paste containing a lithium titanate compound is continuously applied and dried on a metal foil that is the source of a current collector with a larger area. However, the larger the cut-out area, that is, the larger the electrode for a large battery, the higher the probability of randomly entering agglomeration, and the proportion of good products without such agglomeration. As a result, the manufacturing yield decreases.
[0011]
The object of the present invention is to use a lithium titanate compound as a negative electrode active material, and since the amount of expansion and contraction of the electrode during charging and discharging is smaller than before, the cycle life is long. An object of the present invention is to provide a large-sized non-aqueous secondary battery that has a high electric capacity density, has a high battery energy density, does not cause aggregation, and is easy to manufacture and excellent in yield.
[0012]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above problems, the inventors examined the shape of the lithium titanate compound used as the negative electrode active material.
As a result, as the negative electrode active material, secondary particles obtained by agglomerating primary particles of a lithium titanate compound having an average particle size of less than 1 μm into particles having an average particle size of 5 to 100 μm, On one or both sides of the metal foil as the negative electrode current collector, A mixture of the secondary particles, graphite having an average particle size of 30 nm to 1 μm as a conductive aid, and a binder. Laminating layers When the negative electrode is formed, the secondary particles agglomerate away from the normal relationship of capacitance density (mAh / g) -average particle diameter (μm) in the lithium titanate compound as shown by ● in FIG. It has a high electric capacity density of about 160 mAh / g or more, which is close to the theoretical upper limit of the electric capacity density of the lithium titanate compound. The inventors have found that a large non-aqueous secondary battery having a long cycle life, high energy density, easy production and excellent yield can be produced, and the present invention has been completed.
[0013]
That is, the non-aqueous secondary battery of the present invention has the general formula (1):
Li a Ti 3-a O 4 (1)
[Wherein a represents a number of 0 <a <3]
The average particle size of the lithium titanate compound represented by 0.01 μm or more, Using secondary particles obtained by aggregating primary particles of less than 1 μm into granules having an average particle size of 5 to 100 μm, On one or both sides of the metal foil as the negative electrode current collector, A mixture of the secondary particles, graphite having an average particle size of 30 nm to 1 μm as a conductive aid, and a binder. Laminating layers A negative electrode is formed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The nonaqueous secondary battery of the present invention will be described below.
As the lithium titanate compound as the negative electrode active material, the general formula (1):
Li a Ti 3-a O Four (1)
[Wherein a represents a number of 0 <a <3]
Various compounds satisfying the above can be used singly or in combination of two or more, but in particular, the formula (1-1):
Li 4/3 Ti 5/3 O Four (1-1)
Is preferably used because it has a small amount of expansion and contraction during charge and discharge and is excellent in the effect of extending the cycle life of the battery.
[0015]
Secondary particles of the lithium titanate compound are produced, for example, by the following production method.
That is, first, in a saturated aqueous solution of LiOH, anatase TiO. 2 Is added to Li / Ti = 0.8 and thoroughly mixed, and this liquid is sprayed and dried using a spray dryer at an outlet temperature of 110 ° C. while rotating at 20,000 rpm or more. , Volatilize the water that is the solvent.
[0016]
Next, when the mixture is subjected to high temperature synthesis in a negative active gas atmosphere such as nitrogen at a temperature of about 800 ° C. for about 6 hours and then slowly cooled, secondary particles of the lithium titanate compound used in the present invention are produced.
The average particle size of the primary particles forming the secondary particles is as described above. 0.01 μm or more, Must be less than 1 μm. That is, when the average particle size of the primary particles exceeds 1 μm, the cohesiveness is lowered, and it is not easy to manufacture secondary particles having an average particle size of 5 to 100 μm by the above manufacturing method. If the electric capacity density of the secondary particles falls below the above-mentioned range of 160 mAh / g or more, the energy density of the battery is lowered.
[0017]
The average particle size of the primary particles can be within the above range. 0 to . More preferably, it is about 0.5 to 0.5 μm.
The average particle size of the secondary particles needs to be in the range of 5 to 100 μm as described above.
If the average particle size of the secondary particles is less than 5 μm, the secondary particles themselves tend to aggregate, resulting in a decrease in handling at the time of electrode formation, resulting in a decrease in manufacturing yield. That is, the effect of using secondary particles cannot be obtained.
[0018]
Conversely, when the average particle size of the secondary particles exceeds 100 μm, the thickness of the active material layer forming the electrode is about 200 μm at the maximum, depending on the structure of the battery. The roughness becomes high, causing a problem that the uniform battery reaction is hindered.
The average particle size of the secondary particles is preferably about 10 to 80 μm, more preferably about 20 to 50 μm, even within the above range.
[0019]
The non-aqueous secondary battery of the present invention uses the secondary particles of the lithium titanate compound as a negative electrode active material, On one or both sides of the metal foil as the negative electrode current collector, A mixture of the secondary particles, graphite having an average particle size of 30 nm to 1 μm as a conductive aid, and a binder. Laminating layers Other than forming the negative electrode, it is produced in the same manner as in the prior art.
That is, the cell-stacked non-aqueous secondary battery is the above A negative electrode and a layered positive electrode containing a positive electrode active material are stacked alternately one by one while interposing polyethylene and polypropylene microporous membranes as separators to form an electrode laminate, which is made of lithium It is manufactured by enclosing it in a battery container together with an aqueous organic electrolyte.
[0021]
Of graphite contained in the negative electrode mixture Average particle size As above 30 nm to 1 μm Limited to Is done.
Graphite having an average particle size within this range has a sufficiently high effect of assisting electrical conduction as a conductive aid and is less likely to cause aggregation. Therefore, it is uniformly dispersed in a mixture with secondary particles having the above particle size. There is an advantage that a uniform mixture can be formed easily.
[0022]
Also Graphite Is For electrical conduction Excellent .
As the binder, various resin materials such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and fluororubber (FKM), which are also resistant to the electrolytic solution, can be used.
[0023]
In the mixture forming the negative electrode, the blending ratio of each of the above components is based on the total amount of the mixture, considering the capacity and energy density of the battery, the energy efficiency, or the resistance of the mixture to expansion and contraction during charging and discharging. The secondary particles of the lithium titanate compound are about 50 to 95% by weight, particularly about 75 to 90% by weight, and have an average particle size of 30 nm to 1 μm as a conductive assistant Graphite Is about 2.5 to 25% by weight, particularly about 5 to 12.5% by weight, and the binder is preferably about 2.5 to 25% by weight, particularly about 5 to 12.5% by weight.
[0024]
The negative electrode is obtained by further applying a solvent such as N-methyl-2-pyrrolidone to the above mixture to form a paste on one or both sides of a metal foil as a negative electrode current collector and drying, It is formed in layers.
The positive electrode is formed into a layer in the same manner as described above except that a positive electrode active material is used instead of the secondary particles of the lithium titanate compound.
Examples of the positive electrode active material include chalcogenides (oxides, sulfides, selenides, etc.) of transition metals that can intercalate and deintercalate lithium ions, and composite compounds of these with lithium.
[0025]
Particularly suitable positive electrode active materials include, for example, the general formula (2):
LiCo b Ni 1-b O 2 (2)
[Wherein b represents a number of 0 ≦ b ≦ 1],
General formula (3):
LiAl c Co d Ni 1-cd O 2 (3)
[Wherein c and d are 0 ≦ c ≦ 1, 0 ≦ d ≦ 1, and 0 ≦ c + d ≦ 1],
And general formula (4):
LiMn 2-e M e O Four (Four)
[Wherein e represents a number of 0 ≦ e ≦ 0.1, and M represents at least one metal element selected from Al, Ni, Cr, Co, Fe and Mg]
At least one selected from the group consisting of various compounds represented by the formula:
[0026]
As the metal foil serving as the positive and negative current collector, any of various metal foils having excellent conductivity and resistance to the electrolyte can be used. For example, aluminum, tin, nickel, copper, Examples of the foil include stainless steel and titanium.
Among these, in consideration of the performance and energy density of the nonaqueous secondary battery, a lightweight aluminum foil or tin foil is particularly preferably used.
[0027]
The dimensions and shape of the metal foil are appropriately set according to the shape, structure and dimensions of the non-aqueous secondary battery.
The electrode laminate is formed by alternately laminating the above positive and negative electrodes while interposing a polyethylene, polypropylene microporous film or the like as a separator as described above.
Examples of the lithium-based organic electrolyte include non-aqueous organic solvents having a high relative dielectric constant, such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran. LiClO Four , LiBF Four , LiPF 6 , LiAsF 6 Lithium salt such as, or a solid electrolyte having lithium ion conductivity, particularly preferably LiBF Four , LiPF 6 A solution in which such as is dissolved or dispersed is used.
[0028]
As a battery container for encapsulating the electrode laminate and the organic electrolyte, a metal box or the like can be used in the same manner as in the prior art. Therefore, the energy density (Wh / kg) of the nonaqueous secondary battery can be improved by simplifying the structure of the battery container.
For example, conventional natural graphite as a negative electrode active material, LiCoO as a positive electrode active material 2 In a large battery having a capacity of 400 Ah using a battery, a high voltage of about 0.49 MPa or more is applied to the battery container when the electrode laminate swells during charging, so it is necessary to increase the strength of the battery container. As a result, in a large battery with a capacity of 10 Ah or more, the influence of the weight increase for improving the strength of the battery container on the energy density (Wh / kg) per unit weight of the battery becomes so large that it cannot be ignored. However, the energy density also decreases [J. Power Source, 81-82 (1999) 877-881].
[0029]
On the other hand, according to the present invention, for example, when a large battery having a capacity of 400 Ah is formed in the same manner as described above except that the secondary particles of the lithium titanate compound are used as the negative electrode active material, the battery is charged. In this case, the pressure applied to the battery case by the expansion of the electrode laminate can be reduced to about 0.04 MPa, which is about 1/10 or less of the conventional one, and the structure of the battery case can be simplified.
In addition, as a battery container, a constant pressure is applied between the inner surface of the box-shaped battery container and the electrode stack, which was previously proposed by Mashima, Yagasaki et al. In addition, a structure in which a pressure member such as a leaf spring is inserted may be used (Japanese Patent Laid-Open No. 10-334879).
[0030]
According to this battery container, the expansion of the electrode laminate can be further suppressed by the pressure applied by the pressure member. Moreover, since the pressure member functions as a buffer, the structure of the battery container can be further simplified.
In addition, as a battery container, a flexible bag-type container that has excellent resistance to the electrolytic solution and can prevent the permeation of the organic solvent in the electrolytic solution to the outside and moisture from the outside to the inside of the container is used. Also good.
[0031]
Since the bag-type container is significantly lighter than a metal box, the energy density (Wh / kg) per unit weight of the non-aqueous secondary battery can be greatly improved.
The material forming the bag-type container is not limited to this, but includes, for example, two layers including a layer of an olefin resin excellent in permeation resistance of an organic solvent and a metal layer excellent in permeation resistance of water. The above laminate is preferably used.
[0032]
Examples of the olefin resin layer include olefin resin films such as polyethylene and polypropylene. From the viewpoint of thermal adhesiveness with the metal layer, a composite film with a layer having excellent thermal adhesiveness to metal, such as polyethylene terephthalate, may be used.
Examples of the metal that forms the metal layer include aluminum, nickel, stainless steel, and titanium, which have excellent water permeation preventive properties as described above, and excellent resistance to electrolytes. Aluminum is preferably used in consideration of weight reduction of the battery.
[0033]
In addition, hydrotalcite, magnesium sulfate, or the like can be contained as a moisture or Lewis acid scavenger in the olefin-based resin film forming the bag-shaped container in order to improve battery life.
Hydrotalcite, magnesium sulfate and the like may be enclosed in the battery container together with the electrode laminate and the electrolytic solution. This configuration can be applied not only to the bag-type container but also to the previous box-shaped container.
[0034]
Furthermore, in the bag-type container, in order to protect the electrode laminate, a frame body made of a material having resistance to an electrolyte solution, such as a resin such as PVdF or PTFE, or a metal, is used. You may arrange | position so that a body may be enclosed.
Non-aqueous secondary batteries using the above bag-type containers are, for example,
(1) In an independent hard case similar to a conventional battery case,
(2) In a hole corresponding to the above hard case provided as a battery device installation place under the floor, wall surface or attic of a building such as a general household, or
(3) A frame corresponding to the above hard case incorporated in a chassis or body of an electric vehicle or the like
It is preferable to protect it from damage during use.
[0035]
Further, at this time, in order to suppress the expansion of the electrode laminate during charging / discharging, for example, a pressing means including a thin leaf spring and a flat pressing plate, together with the non-aqueous secondary battery, the inside of the hard case etc. May be accommodated.
In addition, the non-aqueous secondary battery is placed horizontally in the hard case or the like so that the electrodes constituting the electrode stack are oriented horizontally rather than vertically, and a weight as a pressing means is provided thereon. May be placed.
[0036]
Alternatively, the internal dimensions of the hard case or the like are set to be slightly larger than the non-aqueous secondary battery, and as a pressing means that suppresses the expansion of the electrode laminate by itself. It may be configured to function.
The configuration of the non-aqueous secondary battery of the present invention is not very effective even when applied to a battery with a small capacity, for example, a capacity of less than 10 Ah, and is very large so that the capacity exceeds 1000 Ah with one battery. Products are not easy to manufacture, and are too large to handle, and are not feasible.
[0037]
Therefore, the capacity of the non-aqueous
In order to obtain a higher capacity by the configuration of the present invention, two or more non-aqueous secondary batteries may be combined.
[0038]
【Example】
Hereinafter, the present invention will be described based on examples and comparative examples.
Example 1
<Preparation of negative electrode>
As the negative electrode active material, the formula (1-1):
Li 4/3 Ti 5/3 O Four (1-1)
The negative electrode was produced using the secondary particle which aggregated the primary particle of the average particle diameter of 0.5 micrometer of the lithium titanate compound represented by these to the granule with an average particle diameter of 20 micrometers.
[0039]
That is, 10 parts by weight of the secondary particles were mixed with 1.2 parts by weight of graphite having an average particle size of 0.6 μm and 1 part by weight of PVdF, and N-methyl-2-pyrrolidone was added to form a paste. The amount of adhesion of the paste on both sides of an aluminum foil having a thickness of 20 μm as a negative electrode current collector was 0.02 g / cm. 2 It was applied and dried. Then, it was cut after roll pressing, and a negative electrode having a thickness of 0.2 mm, a length of 100 mm, and a width of 100 mm was produced.
[0040]
When 60 negative electrodes produced were visually inspected, all of these were good products in a uniform state in which no aggregation was observed, and the production yield was 100%.
<Preparation of positive electrode>
LiCoO having an average particle size of 7 μm as a positive electrode
[0041]
<Manufacture of non-aqueous secondary batteries>
A total of 120 positive electrodes and negative electrodes prepared as described above were laminated in the order of positive electrode-separator-negative electrode-separator-- using a polypropylene microporous membrane having a thickness of 25 μm, a length of 100 mm, and a width of 100 mm as a separator to obtain an electrode laminate. It was.
Next, as shown in FIG. 1, the
[0042]
Next, a mixture of ethylene carbonate and dimethyl carbonate in a volume ratio of 3: 7 was added to the LiPF as an electrolyte. 6 A non-aqueous organic electrolytic solution (electrolyte concentration of 1 M) in which the electrolyte is dissolved is injected into the
Then, the mouth of the bag-
[0043]
In addition, the assembly operation of a series of non-aqueous secondary batteries was performed in a dry box.
The rated capacity of the manufactured non-aqueous secondary battery was 50 Ah.
Comparative Example 1
A negative electrode of the same size was produced in the same manner as in Example 1 except that instead of the secondary particles of the lithium titanate compound, a conventional lithium titanate compound powder having an average particle size of 5 μm was used. .
[0044]
When the produced negative electrode was visually inspected, when it was determined that a single agglomeration was found as a defective product, the production yield was as low as 70%.
Comparative Example 2
As a negative electrode active material, instead of secondary particles of lithium titanate compound, scaly natural graphite powder (average particle size 12 μm) is used, and 10 parts by weight of scaly natural graphite powder is mixed with 2 parts by weight of PVdF. , N-methyl-2-pyrrolidone was added to form a paste, and this paste was applied to both sides of a 20 μm-thick copper foil as a negative electrode current collector with an adhesion amount of 0.01 g / cm on one side. 2 It was applied and dried. Then, it was cut after roll pressing to produce a negative electrode having a thickness of 0.2 mm, a length of 100 mm, and a width of 100 mm, and a nonaqueous secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
[0045]
The rated capacity of the manufactured non-aqueous secondary battery was 50 Ah.
Comparative Example 3
As the negative electrode active material, spherical carbon powder (MCMB,
[0046]
The rated capacity of the manufactured non-aqueous secondary battery was 50 Ah.
<Battery characteristics test (1)>
A stainless steel plate 7 having a thickness of 10 mm is placed on the
[0047]
Then, while repeatedly charging and discharging the battery with the weight 8 of 30 kg placed on the stainless steel plate 7, the weight 8 is displaced in the direction indicated by the white arrow in the figure using a micro gauge with an automatic output device. The amount, that is, the amount of expansion / contraction of the electrode laminate was measured.
The results up to the fourth charge / discharge cycle are shown in FIG. FIG. 4 shows the transition of the maximum displacement amount up to the fifth charge / discharge cycle.
[0048]
From these figures, it was confirmed that the battery of Example 1 can reduce the expansion-contraction amount of the laminate during charge / discharge compared to the batteries of Comparative Examples 2 and 3.
<Battery characteristics test (2)>
In the same manner as above, the non-aqueous secondary battery of Example 1 and Comparative Examples 2 and 3 with the stainless steel plate 7 and the 30 kg weight 8 placed thereon was set in an autograph tester, and the battery was repeatedly charged and discharged. Then, a change in load due to expansion and contraction of the electrode laminate was measured, and a change in pressure exerted on the battery container or the like was estimated.
[0049]
The results of the sixth and seventh charge / discharge cycles are shown in FIG.
From the figure, it was confirmed that the battery of Example 1 can reduce the pressure generated during charging and discharging as compared with the batteries of Comparative Examples 2 and 3.
<Cycle life test>
A rated capacity of 50 Ah manufactured in the same manner as in Example 1 except that a non-aggregated non-rechargeable battery manufactured in Example 1 and a large number of cathodes obtained in Comparative Example 1 were selected and used. The non-aqueous secondary battery (hereinafter referred to as the non-aqueous secondary battery of Comparative Example 1) has an initial current density of 0.15 mA / cm. 2 After charging at a constant current and a constant voltage for 8 to 10 hours under a charging condition of an upper limit voltage of 3.0 V, a current density of 0.15 mA / cm 2 The cycle of constant current discharge to 1.0 V was repeated under the discharge conditions, and the number of charge / discharge cycles at which the capacity became 70% of the initial capacity was determined as the battery life.
[0050]
For the nonaqueous secondary batteries manufactured in Comparative Examples 2 and 3, the initial current density was 0.15 mA / cm. 2 After charging at a constant current and a constant voltage for 8 to 10 hours under a charging condition of an upper limit voltage of 4.1 V, a current density of 0.15 mA / cm 2 A cycle of constant current discharge to 3.0 V was repeated under the discharge conditions, and the number of charge / discharge cycles at which the capacity reached 70% of the initial capacity was determined as the battery life.
The results are shown in Table 1.
[0051]
[Table 1]
[0052]
From the table, it was confirmed that the non-aqueous secondary batteries of Example 1 and Comparative Example 1 both have a high battery life, and in particular, the non-aqueous secondary battery of Example 1 has an unprecedented long life. It was.
On the other hand, it was found that Comparative Examples 2 and 3 did not satisfy the practical battery life. Therefore, for Comparative Examples 2 and 3, the cycle life test was performed again in a state of being housed in a hard case made of stainless steel.
[0053]
As a hard case, based on the results of the battery characteristic test (1) (2) described above, it is sufficient to prevent expansion of the electrode laminate during charge / discharge and deformation due to pressure generation. As a result of considering the need to form a stainless steel plate having a sufficient thickness, the hard case of Comparative Example 2 has a weight of 900 g, and the hard case of Comparative Example 3 has a weight of 600 g.
The results are shown in Table 2.
[0054]
[Table 2]
[0055]
From the table, it was found that the batteries of Comparative Examples 2 and 3 were extended in life by being housed in a hard case, but still did not reach Example 1 and the energy density was lowered by using the hard case. .
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of a non-aqueous secondary battery of the present invention.
FIG. 2 is a graph showing the relationship between the particle size of particles and the capacitance density of a lithium titanate compound as a negative electrode active material.
FIG. 3 is a graph showing the relationship between the charge / discharge time and the amount of displacement representing the amount of expansion / contraction of the electrode laminate in the nonaqueous secondary batteries of Example 1 and Comparative Examples 2 and 3 of the present invention. .
FIG. 4 is a graph showing the relationship between the number of charge / discharge cycles and the maximum displacement at that time in the nonaqueous secondary batteries of Example 1 and Comparative Examples 2 and 3;
FIG. 5 is a graph showing the relationship between the charge / discharge time and the load applied to the battery container in the nonaqueous secondary batteries of Example 1 and Comparative Examples 2 and 3;
Claims (6)
LiaTi3−aO4 (1)
〔式中aは0<a<3の数を示す〕
で表されるチタン酸リチウム化合物の、平均粒径0.01μm以上、1μm未満の一次粒子を、平均粒径5〜100μmの粒状に凝集させた二次粒子を用い、負極集電体としての金属箔の片面または両面に、前記二次粒子と、導電助剤としての平均粒径30nm〜1μmのグラファイトと、結着剤との混合物の層を積層して負極を形成したことを特徴とする非水二次電池。As the negative electrode active material, the general formula (1):
Li a Ti 3-a O 4 (1)
[Wherein a represents a number of 0 <a <3]
A metal as a negative electrode current collector using secondary particles obtained by agglomerating primary particles of a lithium titanate compound having an average particle size of 0.01 μm or more and less than 1 μm into particles having an average particle size of 5 to 100 μm. A negative electrode is formed by laminating a layer of a mixture of the secondary particles, graphite having an average particle diameter of 30 nm to 1 μm as a conductive additive, and a binder on one or both sides of a foil. Water secondary battery.
LiCobNi1−bO2 (2)
〔式中bは0≦b≦1の数を示す〕、
一般式(3):
LiAlcCodNi1−c−dO2 (3)
〔式中、cおよびdは0≦c≦1、0≦d≦1で、かつ0≦c+d≦1の数を示す〕、
および一般式(4):
LiMn2−eMeO4 (4)
〔式中、eは0≦e≦0.1の数を示し、MはAl、Ni、Cr、Co、FeおよびMgから選ばれた少なくとも1種の金属元素を示す〕
で表される化合物からなる群より選ばれた少なくとも1種である請求項4記載の非水二次電池。 The positive electrode active material has the general formula (2):
LiCo b Ni 1-b O 2 (2)
[Wherein b represents a number of 0 ≦ b ≦ 1],
General formula (3):
LiAl c Co d Ni 1-c -d O 2 (3)
[Wherein c and d are 0 ≦ c ≦ 1, 0 ≦ d ≦ 1, and 0 ≦ c + d ≦ 1],
And general formula (4):
LiMn 2-e M e O4 ( 4)
[Wherein e represents a number of 0 ≦ e ≦ 0.1, and M represents at least one metal element selected from Al, Ni, Cr, Co, Fe and Mg]
The non-aqueous secondary battery according to claim 4, which is at least one selected from the group consisting of compounds represented by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32022799A JP4623786B2 (en) | 1999-11-10 | 1999-11-10 | Non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32022799A JP4623786B2 (en) | 1999-11-10 | 1999-11-10 | Non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001143702A JP2001143702A (en) | 2001-05-25 |
JP4623786B2 true JP4623786B2 (en) | 2011-02-02 |
Family
ID=18119155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32022799A Expired - Lifetime JP4623786B2 (en) | 1999-11-10 | 1999-11-10 | Non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4623786B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106575790A (en) * | 2014-09-10 | 2017-04-19 | 株式会社东芝 | Wound electrode group, electrode group, and non-aqueous electrolyte battery |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3619125B2 (en) * | 2000-07-21 | 2005-02-09 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
JP4080337B2 (en) | 2001-03-22 | 2008-04-23 | 松下電器産業株式会社 | Positive electrode active material and non-aqueous electrolyte secondary battery including the same |
JP4510331B2 (en) | 2001-06-27 | 2010-07-21 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
JP3827545B2 (en) | 2001-09-13 | 2006-09-27 | 松下電器産業株式会社 | Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery |
US8658125B2 (en) | 2001-10-25 | 2014-02-25 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US8241790B2 (en) | 2002-08-05 | 2012-08-14 | Panasonic Corporation | Positive electrode active material and non-aqueous electrolyte secondary battery containing the same |
US7462425B2 (en) | 2003-09-26 | 2008-12-09 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery and battery module |
JP4554911B2 (en) * | 2003-11-07 | 2010-09-29 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
JP3795886B2 (en) | 2003-11-20 | 2006-07-12 | Tdk株式会社 | Lithium ion secondary battery charging method, charging device and power supply device |
JP3769291B2 (en) | 2004-03-31 | 2006-04-19 | 株式会社東芝 | Non-aqueous electrolyte battery |
JP4746846B2 (en) * | 2004-04-14 | 2011-08-10 | パナソニック株式会社 | Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery |
FR2874603B1 (en) | 2004-08-31 | 2006-11-17 | Commissariat Energie Atomique | MIXED TITANIUM AND DENSE LITHIUM MIXED OXIDE POWDER COMPOUND, PROCESS FOR PRODUCING THE SAME, AND ELECTRODE COMPRISING SUCH COMPOUND |
CN101048898B (en) | 2004-10-29 | 2012-02-01 | 麦德托尼克公司 | Lithium-ion battery and medical device |
US8980453B2 (en) | 2008-04-30 | 2015-03-17 | Medtronic, Inc. | Formation process for lithium-ion batteries |
US7927742B2 (en) | 2004-10-29 | 2011-04-19 | Medtronic, Inc. | Negative-limited lithium-ion battery |
US9065145B2 (en) | 2004-10-29 | 2015-06-23 | Medtronic, Inc. | Lithium-ion battery |
US7811705B2 (en) * | 2004-10-29 | 2010-10-12 | Medtronic, Inc. | Lithium-ion battery |
US9077022B2 (en) | 2004-10-29 | 2015-07-07 | Medtronic, Inc. | Lithium-ion battery |
JP4208865B2 (en) * | 2005-07-07 | 2009-01-14 | 株式会社東芝 | Nonaqueous electrolyte battery and battery pack |
EP1974407A2 (en) * | 2005-10-21 | 2008-10-01 | Altairnano, Inc | Lithium ion batteries |
KR100856286B1 (en) * | 2005-12-19 | 2008-09-03 | 주식회사 엘지화학 | Flame retardant nonaqueous electrolyte and secondary battery comprising same |
JP4580949B2 (en) | 2006-06-02 | 2010-11-17 | 株式会社東芝 | Non-aqueous electrolyte battery, battery pack and rechargeable vacuum cleaner |
JP5032063B2 (en) * | 2006-06-06 | 2012-09-26 | 株式会社東芝 | Non-aqueous electrolyte battery, battery pack and automobile |
JP2007335308A (en) * | 2006-06-16 | 2007-12-27 | Toshiba Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP5049680B2 (en) | 2007-07-12 | 2012-10-17 | 株式会社東芝 | Nonaqueous electrolyte battery and battery pack |
JP4445537B2 (en) | 2007-09-26 | 2010-04-07 | 株式会社東芝 | Secondary battery, battery pack and car |
JP4930857B2 (en) * | 2008-03-12 | 2012-05-16 | 住友電気工業株式会社 | Electrolyte particles |
US8840814B2 (en) * | 2008-11-04 | 2014-09-23 | Sachtleben Pigments Oy | Process of preparing alkali metal titanates |
JP5159681B2 (en) | 2009-03-25 | 2013-03-06 | 株式会社東芝 | Non-aqueous electrolyte battery |
JP5417978B2 (en) * | 2009-05-14 | 2014-02-19 | 株式会社豊田中央研究所 | Negative electrode for lithium ion secondary battery and lithium ion secondary battery |
JP5763889B2 (en) * | 2010-03-16 | 2015-08-12 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery charge / discharge method |
JP5450284B2 (en) * | 2010-06-28 | 2014-03-26 | 株式会社日立製作所 | Lithium titanate particles and manufacturing method thereof, negative electrode for lithium ion battery, and lithium battery |
JP2012186141A (en) * | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | Electrochemical device |
JP2012256582A (en) | 2011-02-18 | 2012-12-27 | Sumitomo Electric Ind Ltd | Manufacturing method of electrode for electrochemical element |
JP2012186145A (en) | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | Method for manufacturing electrode for electrochemical element |
JP2012186143A (en) | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | Electrode for electrochemical element, and method for manufacturing the same |
JP2012256584A (en) | 2011-02-18 | 2012-12-27 | Sumitomo Electric Ind Ltd | Electrochemical element |
JP2012186144A (en) | 2011-02-18 | 2012-09-27 | Sumitomo Electric Ind Ltd | Electrode for electrochemical element |
DE102011108231A1 (en) | 2011-04-12 | 2012-10-18 | Audi Ag | Energiespeicheranordung |
EP2701231A4 (en) | 2011-04-20 | 2014-11-19 | Panasonic Corp | NONAQUEOUS ELECTROLYTE SECONDARY BATTERY |
CN103907228B (en) | 2011-10-24 | 2016-07-06 | 住友电气工业株式会社 | Electrode material and all include the battery of this material, nonaqueous electrolyte battery and capacitor |
WO2013080515A1 (en) | 2011-11-29 | 2013-06-06 | パナソニック株式会社 | Negative electrode active material, electrical storage device, and method for producing negative electrode active material |
JP6043339B2 (en) * | 2012-03-26 | 2016-12-14 | 株式会社東芝 | Nonaqueous electrolyte secondary battery electrode, nonaqueous electrolyte secondary battery and battery pack |
US9899680B2 (en) | 2012-03-30 | 2018-02-20 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte secondary battery and method for manufacturing the same |
WO2014007232A1 (en) * | 2012-07-04 | 2014-01-09 | 株式会社カネカ | Nonaqueous electrolyte secondary battery, secondary battery module, and method for using nonaqueous electrolyte secondary battery |
CN104508860B (en) * | 2012-07-24 | 2016-06-29 | 株式会社东芝 | Secondary cell |
JP6138436B2 (en) * | 2012-08-09 | 2017-05-31 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
JP6165425B2 (en) * | 2012-08-09 | 2017-07-19 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
EP2903059B1 (en) | 2012-09-26 | 2017-07-26 | Showa Denko K.K. | Negative electrode for secondary batteries, and secondary battery |
JP6193184B2 (en) * | 2013-07-08 | 2017-09-06 | 株式会社東芝 | Negative electrode active material for nonaqueous electrolyte secondary battery, method for producing negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack and vehicle |
JP6257222B2 (en) * | 2013-08-28 | 2018-01-10 | テイカ株式会社 | Ramsdelite type lithium titanate, lithium ion secondary battery and lithium ion capacitor using this ramsdelite type lithium titanate |
JP6305263B2 (en) * | 2014-07-31 | 2018-04-04 | 株式会社東芝 | Non-aqueous electrolyte battery, battery pack, battery pack and car |
US20160181603A1 (en) * | 2014-09-12 | 2016-06-23 | Johnson Controls Technology Company | Systems and methods for lithium titanate oxide (lto) anode electrodes for lithium ion battery cells |
US20160181604A1 (en) * | 2014-09-12 | 2016-06-23 | Johnson Controls Technology Company | Systems and methods for lithium titanate oxide (lto) anode electrodes for lithium ion battery cells |
EP3226328B1 (en) | 2014-11-27 | 2019-03-06 | Kabushiki Kaisha Toshiba | Active material for batteries, nonaqueous electrolyte battery, assembled battery, battery pack and automobile |
KR101950121B1 (en) | 2014-12-02 | 2019-02-19 | 가부시끼가이샤 도시바 | Negative electrode active material, nonaqueous electrolyte battery, battery pack and vehicle |
CN106104866B (en) | 2015-01-30 | 2020-01-21 | 株式会社东芝 | Battery pack and battery pack |
EP3051612B1 (en) | 2015-01-30 | 2017-07-19 | Kabushiki Kaisha Toshiba | Active material, nonaqueous electrolyte battery, battery pack and battery module |
JP6426509B2 (en) | 2015-03-13 | 2018-11-21 | 株式会社東芝 | Battery active materials, non-aqueous electrolyte batteries, assembled batteries, battery packs and automobiles |
JP6067902B2 (en) | 2015-03-13 | 2017-01-25 | 株式会社東芝 | Active materials, non-aqueous electrolyte batteries, battery packs, assembled batteries, and automobiles |
JP6659274B2 (en) | 2015-08-25 | 2020-03-04 | 株式会社東芝 | Negative electrode active material for non-aqueous electrolyte battery, negative electrode, non-aqueous electrolyte battery, assembled battery, battery pack, and automobile |
WO2017119287A1 (en) | 2016-01-07 | 2017-07-13 | 日産化学工業株式会社 | Electrode for energy storage devices |
JP6696689B2 (en) | 2016-03-16 | 2020-05-20 | 株式会社東芝 | Active materials, electrodes, non-aqueous electrolyte batteries, battery packs, and vehicles |
KR102025119B1 (en) * | 2019-02-15 | 2019-11-04 | 애경유화 주식회사 | Carbonaceous material for additive of negative electrode active material of lithium secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0822841A (en) * | 1994-04-21 | 1996-01-23 | Haibaru:Kk | Secondary battery |
JPH08213053A (en) * | 1994-12-02 | 1996-08-20 | Canon Inc | Lithium secondary battery |
JPH10172569A (en) * | 1996-12-16 | 1998-06-26 | Aichi Steel Works Ltd | Lithium secondary battery and manufacture of its positive electrode active material |
JPH10302768A (en) * | 1997-04-24 | 1998-11-13 | Fuji Photo Film Co Ltd | Lithium ion nonaqueous electrolytic secondary battery |
JP2001192208A (en) * | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | Lithium-titanium multiple oxide, its manufacturing method and its use |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3269396B2 (en) * | 1996-08-27 | 2002-03-25 | 松下電器産業株式会社 | Non-aqueous electrolyte lithium secondary battery |
-
1999
- 1999-11-10 JP JP32022799A patent/JP4623786B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0822841A (en) * | 1994-04-21 | 1996-01-23 | Haibaru:Kk | Secondary battery |
JPH08213053A (en) * | 1994-12-02 | 1996-08-20 | Canon Inc | Lithium secondary battery |
JPH10172569A (en) * | 1996-12-16 | 1998-06-26 | Aichi Steel Works Ltd | Lithium secondary battery and manufacture of its positive electrode active material |
JPH10302768A (en) * | 1997-04-24 | 1998-11-13 | Fuji Photo Film Co Ltd | Lithium ion nonaqueous electrolytic secondary battery |
JP2001192208A (en) * | 1999-06-03 | 2001-07-17 | Titan Kogyo Kk | Lithium-titanium multiple oxide, its manufacturing method and its use |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106575790A (en) * | 2014-09-10 | 2017-04-19 | 株式会社东芝 | Wound electrode group, electrode group, and non-aqueous electrolyte battery |
Also Published As
Publication number | Publication date |
---|---|
JP2001143702A (en) | 2001-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4623786B2 (en) | Non-aqueous secondary battery | |
CN110313089B (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP4061586B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
JP5049680B2 (en) | Nonaqueous electrolyte battery and battery pack | |
JP5300502B2 (en) | Battery active material, non-aqueous electrolyte battery and battery pack | |
JP5121614B2 (en) | Battery active material, non-aqueous electrolyte battery and battery pack | |
JP4245532B2 (en) | Nonaqueous electrolyte secondary battery | |
US7462422B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary cell | |
US20090123851A1 (en) | Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery | |
JP2009081049A (en) | Nonaqueous electrolyte battery and packed battery | |
JP2010129471A (en) | Cathode active material and nonaqueous electrolyte battery | |
JP5665828B2 (en) | Battery active material, non-aqueous electrolyte battery and battery pack | |
JP6096985B1 (en) | Nonaqueous electrolyte battery and battery pack | |
WO2017150311A1 (en) | Negative-electrode active material and lithium ion secondary battery using same | |
JP3160920B2 (en) | Non-aqueous electrolyte secondary battery | |
US20160211515A1 (en) | Electrode And Non-Aqueous Electrolyte Secondary Battery | |
US20220166007A1 (en) | Non-aqueous electrolyte secondary battery | |
JP6629110B2 (en) | Non-aqueous electrolyte battery, battery pack and vehicle | |
US9559352B2 (en) | Active material, electrode using same, and lithium ion secondary battery | |
US20230361278A1 (en) | Positive electrode for secondary battery and secondary battery including the same | |
JP5865951B2 (en) | Nonaqueous electrolyte battery and battery pack | |
JP2005347222A (en) | Electrolyte liquid and battery | |
US20230102905A1 (en) | Nonaqueous electrolyte energy storage device | |
CN115668542A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JPH0434855A (en) | Spiral type non-aqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090723 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090918 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100902 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101014 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4623786 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |