JP4623257B2 - Optical film and method for producing the same - Google Patents
Optical film and method for producing the same Download PDFInfo
- Publication number
- JP4623257B2 JP4623257B2 JP2002083936A JP2002083936A JP4623257B2 JP 4623257 B2 JP4623257 B2 JP 4623257B2 JP 2002083936 A JP2002083936 A JP 2002083936A JP 2002083936 A JP2002083936 A JP 2002083936A JP 4623257 B2 JP4623257 B2 JP 4623257B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- cooling drum
- optical film
- thermoplastic resin
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B29C47/92—
Landscapes
- Polarising Elements (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
【0001】
本発明は、光学用フィルムの製造方法に関し、より詳しくは、レターデーションの値が小さくて均一で、他の基材との接着性に優れ、フラットパネルディスプレイ等に用いられる各種フィルム及びその原料フィルムとして好適な光学用フィルムの製造方法に関する。
【0002】
本発明の目的は、厚さが100μm以下で、レターデーションの値が小さくて一定で、残留溶剤がなく、ロール状に巻いて保存した時に巻きジワが少なく、他のフィルムとの接着性に優れた光学用フィルムの製造方法を提供することにある。
【0003】
従来、熱可塑性樹脂製の光学用フィルムであって、レターデーションが小さくて一定であるフィルムが提案されている。偏光子の保護フィルムとしては、従来、トリアセチルセルロース(TAC)の溶液流延法によるフィルムが主に用いられてきた。TACの溶液流延法フィルムは、レターデーションが比較的小さく、フィルム面内で比較的一定である反面、生産性に劣る、溶液流延後の乾燥時に完全には溶剤を除去することが不可能でありフィルム内残留する溶剤に起因して、揮散する溶剤がフラットパネルディスプレイの電子回路や他の部品に悪影響を与え誤動作や表示欠陥を起こす等の問題があった。そこで、最近では、保護フィルムとして、TACの溶液流延法によるフィルムに代わって、熱可塑性樹脂の溶融押出法によるフィルムが検討されている。例えば、特開2000−273204号公報には、特定の熱可塑性樹脂を特定の条件で溶融押し出し成形することにより、シート厚み150〜1000μm、シートの面内厚み公差(Rmax)15μ、シート表面の粗さ0.06μm、シートの表面レターデーション(最大値)が15nmであり、レターデーションが比較的一定で比較的小さいシートが得られる技術が開示されている。しかし、この公報に開示される技術は、シート厚み150μm以上の厚いシートについての技術であり、一般に厚みが薄くなるに従って、厚みのバラツキが厚みに比べて大きくなりやすく、光学的歪みが酷くなることから、最近のフラットディスプレイの薄型化の要求に対応できない。
【0004】
また、熱可塑性樹脂の溶融押出法によるフィルムは通常はロール状に巻き取って保管され、その後の工程に供されるが、本発明者らが検討したところ、厚みが100μm以下の薄いフィルムの場合には、ロール状に巻き取る際に、巻きジワが発生しやすく、巻きジワがあるとフィルム表面にキズや欠陥が発生しやすく、これが表示欠陥につながることを見いだした。さらに、本発明者らが検討したところ、熱可塑性樹脂の溶融押出法によるフィルムは、厚みが100μm以下の場合には、耐久試験後に偏光子との接着不良を起こしやすいという問題があることを見いだした。
【0005】
【発明が解決しようとする課題】
本発明の目的は、厚さが100μm以下で、レターデーションの値が小さくて一定で、残留溶剤がなく、ロール状に巻いて保存したときに巻きジワが少なく、他のフィルムとの接着性に優れた光学用フィルムを提供することにある。
【0006】
【課題を解決する為の手段】
本発明者らは、前記課題を解決すべく鋭意検討した結果、特定の構成の移送工程を有し、特定の冷却ドラム周速度条件と特定の温度条件で行う溶融押出法により得られる熱可塑性樹脂製フィルムから得られる平均厚みDaveが100μm以下のフィルムであって、該フィルム全面にわたって、厚みの最大値と最小値の差Drと前記平均厚みDaveの比Dr/Daveが7%以下、レターデーションReが4nm以下、かつ視野角40°における位相差Re40と視野角0°における位相差Re0の比Re40/Re0が平均で0.8以上で1.3以下であるものを用いれば、レターデーションの値が小さくて一定で、残留溶剤がなく、ロール状に巻いて保存したときに巻きジワが少なく、他のフィルムとの接着性に優れた光学用フィルムとなることを見いだした。また、本発明者らは、その光学用フィルムの原料となる熱可塑性樹脂としては、脂環式構造含有重合体が好ましいことを見いだした。本発明は、これらの知見に基づいて完成するに至ったものである。
【0007】
かくして本発明によれば、
「押出機から押し出された溶融状態の熱可塑性樹脂を、第1冷却ドラム、第2冷却ドラム及び第3冷却ドラムの3本の冷却ドラムに順に外接させて移送する工程を有し、
該第3冷却ドラムの周速度R3の、前記第2冷却ドラムの周速度R2に対する比R3/R2を0.999未満で0.990以上とし、
該第1冷却ドラムでの樹脂接触時間をt1(秒)、該第1冷却ドラムを離れるときの該溶融状態の熱可塑性樹脂の温度をT1(℃)、該熱可塑性樹脂のガラス転移温度をTg(℃)としたときのt1×(T1−Tg)(単位:秒・deg)を、−40以上+15以下とすることにより、平均厚みDaveが100μm以下であり、該フィルム全面にわたって、厚みの最大値と最小値の差Drと前記平均厚みDaveの比Dr/Daveが7%以下、レターデーションReが1.4nm以下、かつ視野角40°における位相差Re40と視野角0°における位相差Re0の比Re40/Re0の平均値が0.95以上で1.20以下の光学用フィルムを製造する方法。」
その光学用フィルムの製造方法の好ましい例として、
「熱可塑性樹脂が脂環式構造含有重合体である上記に記載の光学用フィルムを製造する方法。」、
が提供される。
【0008】
【発明の実施の形態】
本発明の光学用フィルムの製造に用いる熱可塑性樹脂は、通常の光学用フィルムの製造に用いられるフィルムであればよく、特に限定されない。具体例としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリスチレン、ポリアクリロニトリル、アクリロニトリル−スチレン共重合体、ポリ塩化ビニル、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートや脂環式構造含有重合体などが挙げられる。これらの熱可塑性樹脂の中でも、透明性が高く、フィルム強度に優れることから、ポリエチレンテレフタレート、ポリブチレンテレフタレートや脂環式構造含有重合体が好ましく、更にレターデーションをより小さくできることから脂環式構造含有重合体が特に好ましい。
【0009】
脂環式構造含有重合体は、繰り返し単位内に、炭素−炭素飽和結合からなる環構造(本発明では、「脂環式構造」という。)を有する重合体であり、その具体例としては、ノルボルネン環構造を有するモノマー(以下、「ノルボルネン類」という。)の開環重合体及びその水素添加物、ノルボルネン類の付加重合体及びその水素添加物、ノルボルネン類とビニル化合物との付加共重合体及びその水素添加物;ポリスチレンなどの芳香族ビニル炭化水素化合物の重合体の芳香環を水素添加した重合体、脂環式構造とビニル基とを有するモノマーの付加重合体、炭素−炭素からなる環構造の中に一つ以上の不飽和結合を有するモノマーの付加重合体及びその水素添加物などが挙げられる。
【0010】
上記の熱可塑性樹脂は、通常は、必要に応じて各種配合剤が配合されて押出成形用に適したペレット状で、押出機に供給される。配合剤としては、格別限定はないが、酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;滑剤、可塑剤等の樹脂改質剤;染料や顔料等の着色剤;帯電防止剤等が挙げられる。これらの配合剤は、単独で、あるいは2種以上を組み合せて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択される。
【0011】
酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤、特にアルキル置換フェノール系酸化防止剤が好ましい。これらの酸化防止剤を配合することにより、透明性、低吸水性等を低下させることなく、成形時の酸化劣化等による成形物の着色や強度低下を防止できる。これらの酸化防止剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができ、その配合量は、本発明の目的を損なわれない範囲で適宜選択されるが、熱可塑性樹脂100重量部に対して通常0.001〜5重量部、好ましくは0.01〜1重量部である。
【0012】
本発明では上記の熱可塑性樹脂を、溶融押出法により、フィルム状に加工したフィルムを用いる。溶融押出法は、熱可塑性樹脂をシリンダー中で加熱溶融し、スクリューで加圧して、Tダイ等のダイスから押し出す方法である。通常は、ダイスから押し出された溶融状態の熱可塑性樹脂を複数の冷却ドラムに順に外接させて移送し、その間に冷却し、その後に必要な工程を経て、熱可塑性樹脂製フィルムとなる。ダイスから押し出された直後の溶融状態の熱可塑性樹脂の幅(ダイスのリップの幅に同じ)に比べて、冷却ドラムを通った後の熱可塑性樹脂製フィルムの幅は、ネックインにより、2〜10%程度狭くなる。そして、熱可塑性樹脂製フィルムの幅方向の端(以下、単に「端」ともいう。)は、そのフィルムの他の部分に比べて、厚みが厚くなり、レターデーションも大きくなる。本発明の様に光学用途に用いる場合には、通常は、巻き取りドラムで巻き取る前に、端の適当な部分を切り取っておく。本発明では、この切り取ってしまう部分を「ミミ」と言う。本発明では、無延伸の熱可塑性樹脂フィルムのうち、ミミとなる部分を除いた部分を「光学用フィルム」という。保護フィルムや液晶基板などのように、レターデーションがゼロに近い状態で用いる場合には、無延伸の熱可塑性樹脂フィルムからミミを取って、光学用フィルムを取り出し、これを巻き取りドラムで巻き取る。光学用フィルムは、巻き取りドラムでロール状に巻き取られたあと、次工程である、延伸工程や他のフィルム等との貼り合わせ工程に供される。
【0013】
本発明の光学用フィルムは、平均厚みDaveが100μm以下である。平均厚みDaveは、溶融押出機に投入する原料ペレットの投入速度、冷却ドラムの回転速度及びこれらの両方を変化させること等により、任意に設定することができる。本発明の光学用フィルムは、薄型のフラットパネルディスプレイ用などに適したものであり、厚み100μm以下、80μm以下、特に60μm以下の厚みで用いる場合にも好適である。
【0014】
本発明の光学用フィルムは、フィルム全面に亘って、厚みの最大値と最小値の差Drと前記平均厚みDaveの比Dr/Daveが7%以下であることが必要である。平均厚みDaveと、厚みの最大値と最小値の差Drは、押出の長さ(以下、単に「長さ」ともいう。)方向については、例えば接触式連続厚み計で押出方向の長さ(以下、単に「長さ」ともいう。)の適当な長さに亘って測定し、更に幅方向に対しては光学用フィルムの端に近い部分を含む数点以上を測定することにより、得ることができる値を代用値として採用することができる。Dr/Daveの値は、小さければ小さい程好ましいが、通常7%以下である。Dr/Daveの値がこの範囲にあるときに、ロール状に巻いて保存したときに巻きジワが少なく、他のフィルムとの接着性に優れた光学用フィルムとなる。
【0015】
本発明の光学用フィルムは、フィルム全面に亘って、レターデーションReが4nm以下であることが必要である。Reの値はエリプソメータ等の光学的手法により測定が可能で、その最大値は、適当な長さに亘って測定し、更に幅方向に対しては光学用フィルムの端に近い部分を含む数点以上を測定することにより、得ることができる値を代用値として採用することができる。Reの最大値は小さければ小さいほど好ましいが、通常は4nm以下、好ましくは3nm以下、特に好ましくは2.5nmである。Reがこの範囲にあるときに、フラットパネルディスプレイとしたときの色むらが小さいだけでなく、ロール状に巻いて保存したときに巻きジワが少なく、他のフィルムとの接着性に優れた光学用フィルムとなる。
【0016】
本発明の光学用フィルムは、視野角40°における位相差Re40と視野角0°における位相差Re0の比Re40/Re0が平均で0.8以上で1.3以下であることが必要である。Re40とRe0の値は、フィルム面の角度をそれぞれ40°と0°としてリターデーションを測定することにより得られ、その最大値と最小値は、適当な長さに亘って測定し、更に幅方向に対しては光学用フィルムの端に近い部分を含む数点以上を測定することにより、得ることができる値を代用値として採用することができる。Re40/Re0は、レターデーションの視野角依存性を示し、理想的には1.0であるが、平均で、通常0.8以上で1.3以下、好ましくは0.9以上で1.25以下、更に好ましくは0.95以上で1.20以下である。Re40/Re0の平均値がこの範囲にあるときに、得られるフラットパネルディスプレイにおける見た色ムラやコントラストに優れる。
【0017】
以上のようなDr/Dave、Reの最大値及びRe40/Re0の平均値の範囲を満たす光学用フィルムを製造する方法は特に限定されない。例えば、フィルム全面に亘って上記の条件を満たす様に、フィルム全体に占めるミミの部分の割合を従来の場合よりも多くする方法がある。この場合の、ミミの部分の割合は、通常、左右各3%以上、好ましくは左右各5%以上、特に好ましくは左右各7%以上であり、好ましくは左右各40%以下、特に好ましくは左右各20%以下である。
【0018】
また、本発明の光学用フィルムを製造する際に用いる熱可塑性樹脂製フィルムの製造方法として、押出機から押し出された溶融状態の熱可塑性樹脂を、第1冷却ドラム、第2冷却ドラム及び第3冷却ドラムの3本の冷却ドラムに順に外接させて移送する工程を有し、該第3冷却ドラムの周速度R3の、前記第2冷却ドラムの周速度R2に対する比R3/R2を0.999未満で0.990以上とし、該第1冷却ドラムでの樹脂接触時間をt1(秒)、該第1冷却ドラムを離れるときの該溶融状体の熱可塑性樹脂の温度をT1(℃)、該熱可塑性樹脂のガラス転移温度をTg(℃)としたときのt1×(T1−Tg)(単位:秒・deg)を、−50以上+20以下とする。以下にこの方法について説明する。
【0019】
この製造方法では、押出機から押し出された、シート状に溶融した熱可塑性樹脂(以下、「シート状熱可塑性樹脂」ともいう。)を、第1冷却ドラム、第2冷却ドラム及び第3冷却ドラムの3本の冷却ドラムに順に外接させて移送する工程を有する。前記第3冷却ドラムの周速度R3の、前記第2冷却ドラムの周速度R2に対する比R3/R2を0.999未満、0.990以上、好ましくは0.998未満、0.995以上に設定する。R3/R2の値が過度に大きいとシート状熱可塑性樹脂に延伸がかかってレターデーション値やそのバラツキが大きくなり好ましくない。一方、R3/R2の値が過度に小さい場合も、シート状熱可塑性樹脂が弛んで垂れ、その重さが張力となってシート状熱可塑性樹脂に延伸がかかりレターデーションの値やそのバラツキが大きくなり、やはり好ましくない。R3/R2の設定値を決定するには、シート状熱可塑性樹脂を第2冷却ドラムから第3冷却ドラムへと移送するときに、第2冷却ドラム温度近辺から第3冷却ドラム温度近辺に低下することによる樹脂の収縮率に見合うように、樹脂温度を設定する。上記の周速比を採ることにより、シート状熱可塑性樹脂が弛むことなく、適当なテンションで引っ張られながら、レターデーション値が小さくて均一な熱可塑性樹脂シートが製造できるようになる。
【0020】
また、第2冷却ドラムの周速度R2の、第1冷却ドラムの周速度R1に対する比R2/R1を1.01未満、0.990以上に設定することが好ましく、1.000未満、0.995以上に設定することがより好ましい。R2/R1の値がこの範囲にある場合に、得られる光学用フィルムのレターデーションムラが特に小さくなり、巻きジワが発生しにくくなり、好ましい。
【0021】
さらに、シート状熱可塑性樹脂が第3冷却ドラムを離れるときに、樹脂温度T3を該熱可塑性樹脂のガラス転移温度(Tg)よりも50〜100℃低い温度にすることが好ましく、特にTgよりも60〜80℃低い温度にすることがより好ましい。T3がこの範囲にあるときに、得られる光学用フィルムのレターデーションムラが特に小さくなり、巻きジワが発生しにくくなり、好ましい。温度T3を上記範囲とするためには、第3冷却ドラム及び第2冷却ドラムの温度を制御する。
【0022】
シート状熱可塑性樹脂が第2冷却ドラムを離れるときのシート状熱可塑性樹脂の温度T2を、そのTgよりも0〜60℃低い温度にすることが好ましく、20〜40℃低い温度にすることがより好ましい。T2の値がこの範囲にある場合に、得られる光学用フィルムのレターデーションムラが特に小さくなり、巻きジワが発生しにくくなり、好ましい。
【0023】
第1冷却ドラムと第2冷却ドラムの温度は、その温度差が10℃未満なるようにすることが好ましい。
【0024】
第1冷却ドラムでのシート状熱可塑性樹脂の接触時間をt1(秒)、第1冷却ドラムを離れるときの樹脂温度をT1(℃)、該熱可塑性樹脂のガラス転移温度をTg(℃)としたときの、t1×(T1−Tg)(単位:秒・deg)を通常−50以上で+20以下、好ましくは−40以上で+15以下とする。この範囲にある場合に、得られる光学用フィルムの厚みの均一性Dr/Daveが小さくなり、Reの最大値が小さくなため、本発明の光学用フィルムを得やすくなり、好ましい。
【0025】
【実施例】
以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。
これらの例中の「部」及び「%」は、特に断わりのない限り質量基準である。
各種の試料作成及び試験は、下記に従って行った。
【0026】
(1)フィルムの平均厚みDave及びバラツキDr
接触式膜厚計を用い、フィルムの長さ方向は500mm毎に10mに亘って(20箇所)、幅方向には等間隔に5箇所について、フィルムの厚みを測定し、平均値Daveと、最大値と最小値との差Drを求めた。
【0027】
(2)レターデーション値Re及びその最大値
位相差測定装置〔王子計測機器製:KOBRA−21ADH〕を用い、フィルムの長さ方向は500mm毎に10mに亘って(20箇所)、幅方向には等間隔に5箇所所について、レターデーション値Reを測定し、その最大値を求めた。
測定波長は550nm、入射角は0°とした。
【0028】
(3)視野角40°におけるレターデーションRe40と視野角0°におけるレターデーションRe0の比Re40/Re0の平均値
(2)と同様の測定点について、(2)と同様の測定方法でRe0と測定光の入射角を40°に変えた測定法でRe40を測定して、Re40/Re0を算出し、その平均値を求めた。
【0029】
(4)ロール巻き性
巻き取りドラムで巻き取ったロール状の光学用フィルムを目視で観察し、巻きジワが認められないものを○、わずかに巻きジワが認められるものを△、巻きジワが明らかに認められるものを×とした。
【0030】
(5)色ムラ
偏光子の保護フィルムとして用いる際に問題となる色ムラ、色抜けを簡易的に試験した。実際の液晶ディスプレイの構成では、偏光子の両面を2枚の保護フィルムで挟んで偏光板とし、さらに液晶の両面を(必要なその他の層を介して)2枚の偏光板で挟んだ構造となっている。保護フィルムに光学的歪みがあると、液晶ディスプレイ全体の色ムラ、色ヌケの原因となる。それぞれの保護フィルムとなる光学用フィルムの光学的的歪みを簡易的に以下のように試験することとした。液晶ポリビニルアルコールにヨウ素がドープされた市販の偏光子を2枚用意し、二枚の偏光子をお互いの偏光軸が直行するように合わせて、その間に実験で得られた光学用フィルムを挟んで、偏光子/光学用フィルム/偏光子からなる3層構造として非偏光(自然光)の透過の度合いを、目視観察し、光の漏れが認められないものを○、わずかに認められるものを△、明らかに認められるものを×とした。測定点は、フィルムの長さ方向は500mm毎に10mに亘って(20箇所)、幅方向には等間隔に5箇所所について行った。
【0031】
(6)30°傾斜透過率比
更に、色ムラ、色ヌケの一つの指標として、30°傾斜透過率比を測定した。
実験で得られた光学用フィルムの幅方向に等間隔に5箇所について試料片を切り出し、これらの試料片について、日本電色工業(株)製のNDH300A型濁色計を用い、JIS K7105に準拠して直行透過率と、30°傾斜透過率を測定し、30°傾斜透過率/直行透過率を求め、30°傾斜透過率比とし、その平均値を求めた。この値は大きい方が好ましく、1000以上であれば、得られるフラットパネルディスプレイの色ムラ、色ヌケが問題とならず、良好である。
【0032】
(7)接着性
光学用フィルムでは、他のフィルム状部材と接着して用いることが多く、特に耐久試験後の接着性が問題となることが多い。(5)で用いたと同じ偏光子と、実験で得られた光学用フィルムから切り出した同面積の試料片を、ポリビニルアルコールの10質量%の水溶液で貼り合わせた。得られた積層物を80℃、90%RH、100時間の条件で耐久試験にかけ、その後の積層物の状態を目視で観察し、界面に変化の認められないものを○、わずかにでも膨れ(界面の剥がれ)が発生したものを×とした。
【0033】
(8)延伸後のReムラ
本発明で得られる光学用フィルムは、その後に延伸加工することによって、位相差フィルムとすることができる。位相差フィルムとしては、所定の位相差(レターデーション値)を持ち、その値が均一であることが要求される。位相差フィルムの原料フィルムとしての、本発明の光学用フィルムの性能を調べるために以下の試験を行った。実験で得られた光学用フィルムを、(幅100mm、長さ150mm)で切り出して試験片とし、この試験片を140℃で縦方向に1.1〜2倍、100mm/分の速さで延伸した。延伸倍率は、レターデーションが平均で275±10nmとなるように調整した。(2)と同様の測定方法によりレターデーションを測定し、バラツキ(最大値と最小値との差)を平均値で割ってReムラとした。測定点は幅方向の中心部で、長さ方向の中心付近を10mmおきに10点とした。
【0034】
実施例1
ZEONOR1420(ノルボルネン類の開環重合体の水素化物、日本ゼオン社製、Tg140℃)のペレットを用いた。ペレットをシリンダー内径が50mm、スクリューL/Dが28の単軸押出成形機(日本製鋼所製)でバレル温度260℃で溶融押出し、ダイ温度260℃のコートハンガーダイから幅650mmのシート状溶融樹脂を押し出し、第1冷却ドラム(直径200mm、温度T1:135℃、周速度R1:12.50m/秒)に密着させ、直ちにナイフコーターにより第1冷却ドラムを、次いで第2冷却ドラム(直径350mm、温度T2:125℃、周速度R2:14.46m/秒)、次いで第3冷却ドラム(直径350mm、温度T3:80℃、周速度R3:14.40m/秒)に順次密着させて移送し、逐次、冷却ならびに冷却ドラム面転写による表裏面の平滑化を行い、幅550mm(ネックインは左右各50mm)の熱可塑性樹脂製フィルムが得られ、調整ドラムを経た後、カッターにより両方の端から各30mmをミミとして取り除き、巻き取りドラムによりロール状に巻き取り、ロール状の光学用フィルムを得た。この際、第1冷却ドラムでのシート状熱可塑性樹脂の接触時間t1は3.1(秒)、第1冷却ドラムを離れるときの樹脂温度をT1は132(℃)、t1×(T1−Tg)は−24.8(単位:秒・deg)であった。
得られた光学用フィルムについて、上記の各試験項目を行った結果を表1に記す。
【0035】
実施例2
実施例1において、R1を7.10m/秒、R2を7.07m/秒、R3を7.04m/秒に変更した他は実施例1と同様に行って光学用フィルムを製造した。得られた光学用フィルムの試験結果を表1に記す。
【0036】
比較例1
実施例1において、T1を120℃に変更した他は実施例1と同様に行って光学用フィルムを製造した。得られた光学用フィルムの試験結果を表1に記す。
【0037】
比較例2
実施例1において、T1を120℃、T2を110℃に変更した他は実施例1と同様に行って光学用フィルムを製造した。得られた光学用フィルムの試験結果を表1に記す。
【0038】
比較例3
実施例1において、T1を110℃、T2を100℃に変更した他は実施例1と同様に行って光学用フィルムを製造した。得られた光学用フィルムの試験結果を表1に記す。
【0039】
【表1】
【0040】
表1が示すように、本発明の実施例の光学用フィルムは、比較例の場合に比べて、Dr/Dave、Re及びRe40/Re0の平均値が所定の範囲にあるため、ロール巻き性、色ムラ、30傾斜°透過率比、接着性に優れている。比較例1はDr/Dave、Reの最大値は所定の範囲にあるが、Re 4 0/Re0の平均値が外れているため、ロール巻き性、色ムラ、30傾斜°透過率比、接着性のいずれも劣っている。比較例2はDr/Dave、Re 4 0/Re0の平均値は所定の範囲にあるが、Reの最大値が外れているため、ロール巻き性、色ムラ、30傾斜°透過率比、接着性のいずれも劣り、特に色ムラと接着性が著しく悪い。比較例3はDr/Daveの値が外れているため、ロール巻き性が著しく悪い。
【0041】
表2には、各実験例について、延伸後のReムラを測定した結果を示す。
【0042】
【表2】
【0043】
表2が示すように、本発明の実施例の光学用フィルムは、比較例の場合に比べて、Dr/Dave、Re及びRe40/Re0の平均値が所定の範囲にあるため、延伸加工後のリターデーションムラが小さくて優れており、本発明の光学用フィルムが位相差フィルムの原料フィルムとして適している。
【0044】
【発明の効果】
本発明により、厚さが100μm以下で、レターデーションの値が小さくて一定で、残留溶剤がなく、ロール状に巻いて保存したときに巻きジワが少なく、他のフィルムとの接着性に優れた光学用フィルムとその製造方法が提供される。本発明の光学用フィルムは、偏光子の保護フィルムや液晶セル基板用フィルムなどのフラットパネルディスプレイ用の各種の光学用フィルムとして有用である。また、本発明の光学用フィルムは、レターデーションが小さく均一なものであるが、その後に延伸加工することによって、所定のレターデーションをもち、その値が均一である位相差フィルムとすることができるから、本発明の光学用フィルムは位相差フィルムなどの原料フィルムとしても有用である。[0001]
The present invention is an optical film.Manufacturing methodMore specifically, the retardation value is small and uniform, excellent in adhesion to other substrates, various films used for flat panel displays and the like, and optical films suitable as raw material films thereofManufacturing methodConcerningThe
[0002]
The object of the present invention is that the thickness is 100 μm or less, the retardation value is small and constant, there is no residual solvent, there are few wrinkles when stored in a roll shape, and excellent adhesion to other films. Optical filmManufacturing methodIs to provide.
[0003]
Conventionally, an optical film made of a thermoplastic resin and having a small and constant retardation has been proposed. Conventionally, a film produced by a solution casting method of triacetyl cellulose (TAC) has been mainly used as a protective film for a polarizer. TAC solution casting film has relatively small retardation and is relatively constant within the film surface, but is inferior in productivity, and cannot completely remove the solvent when drying after solution casting. However, due to the solvent remaining in the film, there is a problem that the volatilizing solvent adversely affects the electronic circuit and other parts of the flat panel display and causes malfunctions and display defects. Therefore, recently, as a protective film, a film by a melt extrusion method of a thermoplastic resin has been studied in place of a film by a solution casting method of TAC. For example, Japanese Patent Laid-Open No. 2000-273204 discloses that a specific thermoplastic resin is melt-extruded under specific conditions to obtain a sheet thickness of 150 to 1000 μm, an in-plane thickness tolerance (Rmax) of 15 μm, and a rough sheet surface. A technique is disclosed in which a sheet having a thickness of 0.06 μm and a sheet surface retardation (maximum value) of 15 nm and a relatively small retardation and a relatively small value can be obtained. However, the technique disclosed in this publication is a technique for a thick sheet having a sheet thickness of 150 μm or more. Generally, as the thickness becomes thinner, the thickness variation tends to become larger than the thickness, and the optical distortion becomes severe. Therefore, it cannot meet the recent demand for thinner flat displays.
[0004]
In addition, a film obtained by melt extrusion of a thermoplastic resin is usually wound and stored in a roll shape, and is provided for the subsequent process. However, when the present inventors examined, a thin film having a thickness of 100 μm or less is used. It was found that when winding in a roll shape, winding wrinkles are likely to occur, and if there are winding wrinkles, scratches and defects are likely to occur on the film surface, which leads to display defects. Further, as a result of investigations by the present inventors, it has been found that a film obtained by melt extrusion of a thermoplastic resin has a problem that it tends to cause poor adhesion to a polarizer after a durability test when the thickness is 100 μm or less. It was.
[0005]
[Problems to be solved by the invention]
The object of the present invention is that the thickness is 100 μm or less, the retardation value is small and constant, there is no residual solvent, there are few wrinkles when stored in a roll shape, and adhesion to other films The object is to provide an excellent optical film.
[0006]
[Means for solving the problems]
As a result of intensive studies to solve the above problems, the present inventors,It has a transfer process with a specific configuration and is performed under specific cooling drum peripheral speed conditions and specific temperature conditionsAverage thickness D obtained from thermoplastic resin film obtained by melt extrusion methodaveIs a film having a thickness of 100 μm or less, and the difference D between the maximum value and the minimum value of the thickness over the entire film surface.rAnd the average thickness DaveRatio Dr/ DaveIs 7% or less, retardation Re is 4 nm or less, and the phase difference Re is 40 °.40And phase difference Re at a viewing angle of 0 °0Ratio Re40/ Re0If the average is 0.8 or more and 1.3 or less, the retardation value is small and constant, there is no residual solvent, and there are few wrinkles when stored in a roll shape. It has been found that it becomes an optical film excellent in adhesiveness with the film. Further, the present inventors have found that an alicyclic structure-containing polymer is preferable as the thermoplastic resin used as a raw material for the optical film.It was.The present invention has been completed based on these findings.
[0007]
Thus, according to the present invention,
“Having a step of transferring the molten thermoplastic resin extruded from the extruder in a circumscribed manner to the three cooling drums of the first cooling drum, the second cooling drum and the third cooling drum in order,
The peripheral speed R of the third cooling drum3The peripheral speed R of the second cooling drum2R to3/ R2Less than 0.999 and 0.990 or more,
The resin contact time on the first cooling drum is t1(Seconds), the temperature of the molten thermoplastic resin when leaving the first cooling drum is T1(° C.), t when the glass transition temperature of the thermoplastic resin is Tg (° C.)1× (T1-Tg) (unit: second.deg)-40 or more +15 or lessThe average thickness Dave is 100 μm or less, the ratio Dr / Dave of the difference Dr / Dave between the maximum value and the minimum value of the thickness and the average thickness Dave is 7% or less over the entire film surface, and the retardation Re is1.4Phase difference Re at nm or less and at a viewing angle of 40 °40And phase difference Re at a viewing angle of 0 °0Ratio Re40/ Re0The average value of0.95Above1.20The method of manufacturing the following optical films. "
As a preferred example of the method for producing the optical film,
“The method for producing the optical film as described above, wherein the thermoplastic resin is an alicyclic structure-containing polymer.”
Is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The thermoplastic resin used for manufacturing the optical film of the present invention is not particularly limited as long as it is a film used for manufacturing a normal optical film. Specific examples include polyethylene, polypropylene, ethylene-propylene copolymer, polystyrene, polyacrylonitrile, acrylonitrile-styrene copolymer, polyvinyl chloride, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polycarbonate and alicyclic structure. A polymer etc. are mentioned. Among these thermoplastic resins, polyethylene terephthalate, polybutylene terephthalate and alicyclic structure-containing polymers are preferred because of their high transparency and excellent film strength, and since the retardation can be further reduced, alicyclic structures are contained. Polymers are particularly preferred.
[0009]
The alicyclic structure-containing polymer is a polymer having a cyclic structure composed of a carbon-carbon saturated bond in the repeating unit (in the present invention, referred to as “alicyclic structure”). Ring-opening polymers of monomers having a norbornene ring structure (hereinafter referred to as “norbornenes”) and hydrogenated products thereof, addition polymers of norbornenes and hydrogenated products thereof, addition copolymers of norbornenes and vinyl compounds And hydrogenated products thereof: polymers obtained by hydrogenating aromatic rings of polymers of aromatic vinyl hydrocarbon compounds such as polystyrene, addition polymers of monomers having an alicyclic structure and a vinyl group, rings comprising carbon-carbon Examples thereof include addition polymers of monomers having one or more unsaturated bonds in the structure and hydrogenated products thereof.
[0010]
The thermoplastic resin is usually supplied to an extruder in the form of pellets suitable for extrusion molding by blending various compounding agents as required. The compounding agent is not particularly limited, but is a stabilizer such as an antioxidant, a heat stabilizer, a light stabilizer, a weathering stabilizer, an ultraviolet absorber, a near infrared absorber, and the like; a resin modifier such as a lubricant and a plasticizer. Colorants such as dyes and pigments; antistatic agents and the like. These compounding agents can be used alone or in combination of two or more, and the compounding amount is appropriately selected within a range not impairing the object of the present invention.
[0011]
Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. Among them, phenolic antioxidants, particularly alkyl-substituted phenolic antioxidants are preferable. By blending these antioxidants, it is possible to prevent coloration and strength reduction of the molded product due to oxidative degradation during molding without lowering transparency, low water absorption and the like. These antioxidants can be used alone or in combination of two or more, and the blending amount thereof is appropriately selected within a range not impairing the object of the present invention, but 100 parts by weight of the thermoplastic resin. The amount is usually 0.001 to 5 parts by weight, preferably 0.01 to 1 part by weight.
[0012]
In the present invention, a film obtained by processing the above thermoplastic resin into a film by a melt extrusion method is used. The melt extrusion method is a method in which a thermoplastic resin is heated and melted in a cylinder, pressurized with a screw, and extruded from a die such as a T die. Usually, a molten thermoplastic resin extruded from a die is sequentially circumscribed and transferred to a plurality of cooling drums, cooled in the meantime, and then subjected to necessary steps to form a thermoplastic resin film. Compared to the width of the molten thermoplastic resin immediately after being extruded from the die (same as the width of the lip of the die), the width of the thermoplastic resin film after passing through the cooling drum is 2 to 2, It becomes narrower by about 10%. And the edge (henceforth only an "edge") of the width direction of a film made from a thermoplastic resin becomes thick compared with the other part of the film, and retardation also becomes large. When used in an optical application as in the present invention, an appropriate portion of the end is usually cut out before winding with a winding drum. In the present invention, this portion that is cut off is referred to as “mimi”. In the present invention, the portion of the unstretched thermoplastic resin film excluding the portion that becomes a stain is referred to as “optical film”. When used in a state where the retardation is close to zero, such as a protective film or a liquid crystal substrate, take a mim from an unstretched thermoplastic resin film, take out the optical film, and wind it with a take-up drum . After the optical film is wound up in a roll shape by a winding drum, it is subjected to a subsequent step, ie, a stretching step or a bonding step with another film.
[0013]
The optical film of the present invention has an average thickness DaveIs 100 μm or less. The average thickness Dave can be arbitrarily set by changing the feeding speed of the raw material pellets to be fed into the melt extruder, the rotation speed of the cooling drum, and both. The optical film of the present invention is suitable for a thin flat panel display or the like, and is also suitable for use in a thickness of 100 μm or less, 80 μm or less, particularly 60 μm or less.
[0014]
The optical film of the present invention has a difference D between the maximum value and the minimum value of the thickness over the entire film surface.rAnd the average thickness DaveRatio Dr/ DaveIs 7% or less. Average thickness DaveAnd the difference D between the maximum and minimum thicknessesrIs an appropriate length of the length in the extrusion direction (hereinafter also simply referred to as “length”), for example, by a contact type continuous thickness meter. It is possible to adopt a value that can be obtained as a substitute value by measuring over several points and measuring several points including a portion close to the end of the optical film in the width direction. Dr/ DaveThe value of is preferably as small as possible, but is usually 7% or less. Dr/ DaveWhen the value is in this range, there is little wrinkle when stored in a roll shape, and it becomes an optical film excellent in adhesiveness to other films.
[0015]
The optical film of the present invention needs to have a retardation Re of 4 nm or less over the entire film surface. The value of Re can be measured by an optical technique such as an ellipsometer, and the maximum value is measured over an appropriate length, and several points including the portion near the edge of the optical film in the width direction. By measuring the above, a value that can be obtained can be adopted as a substitute value. The smaller the maximum value of Re, the better. However, it is usually 4 nm or less, preferably 3 nm or less, particularly preferably 2.5 nm. When Re is in this range, not only is the color unevenness when flat panel display is small, but there are few wrinkles when rolled and stored, and it has excellent adhesion to other films. Become a film.
[0016]
The optical film of the present invention has a retardation Re at a viewing angle of 40 °.40And phase difference Re at a viewing angle of 0 °0Ratio Re40/ Re0Must be 0.8 or more and 1.3 or less on average. Re40And Re0Is obtained by measuring the retardation at an angle of the film surface of 40 ° and 0 °, respectively. The maximum value and the minimum value are measured over an appropriate length, and further with respect to the width direction. The value which can be obtained by measuring several points including the part near the end of the optical film can be used as a substitute value. Re40/ Re0Shows viewing angle dependence of retardation, ideally 1.0, but on average, usually 0.8 or more and 1.3 or less, preferably 0.9 or more and 1.25 or less, Preferably it is 0.95 or more and 1.20 or less. Re40/ Re0When the average value is within this range, the obtained flat panel display has excellent color unevenness and contrast.
[0017]
D as abover/ Dave, The maximum value of Re and Re40/ Re0The method for producing an optical film satisfying the range of the average value is not particularly limited. For example, there is a method in which the ratio of the portion of the mimi occupying the entire film is made larger than in the conventional case so as to satisfy the above-described conditions over the entire film surface. In this case, the ratio of the Mimi portion is usually 3% or more for each of the left and right, preferably 5% or more for each of the left and right, particularly preferably 7% or more of each of the left and right, preferably 40% or less of each of the left and right. Each is 20% or less.
[0018]
Moreover, the film made from the thermoplastic resin used when manufacturing the optical film of this inventionMade ofAs a manufacturing method, it has a step of transferring the thermoplastic resin in a molten state extruded from an extruder by sequentially circumscribing the three cooling drums of the first cooling drum, the second cooling drum, and the third cooling drum, The peripheral speed R of the third cooling drum3The peripheral speed R of the second cooling drum2R to3/ R2Is less than 0.999 and 0.990 or more, and the resin contact time on the first cooling drum is t1(Seconds), the temperature of the thermoplastic resin of the molten body when leaving the first cooling drum is T1(° C), t when the glass transition temperature of the thermoplastic resin is Tg (° C)1× (T1−Tg) (unit: second · deg) is set to be −50 or more and +20 or less.TheThis method will be described below.
[0019]
In this manufacturing method, a thermoplastic resin that has been extruded from an extruder and melted into a sheet (hereinafter also referred to as a “sheet thermoplastic resin”) is used as a first cooling drum, a second cooling drum, and a third cooling drum. The three cooling drums are sequentially circumscribed and transferred. The peripheral speed R of the third cooling drum3The peripheral speed R of the second cooling drum2R to3/ R2Is set to less than 0.999 and 0.990 or more, preferably less than 0.998 and 0.995 or more. R3/ R2If the value is excessively large, the sheet-like thermoplastic resin is stretched to increase the retardation value and its variation, which is not preferable. On the other hand, R3/ R2Even if the value of the sheet is excessively small, the sheet-like thermoplastic resin sags and sags, its weight becomes tension, and the sheet-like thermoplastic resin is stretched, resulting in an increase in retardation value and its variation, which is also not preferable. . R3/ R2In order to determine the set value of the resin, when the sheet-like thermoplastic resin is transferred from the second cooling drum to the third cooling drum, the resin is caused by lowering from the vicinity of the second cooling drum temperature to the vicinity of the third cooling drum temperature. The resin temperature is set so as to meet the shrinkage rate. By adopting the above peripheral speed ratio, the sheet-like thermoplastic resin is not loosened, and a uniform thermoplastic resin sheet having a small retardation value can be produced while being pulled with an appropriate tension.
[0020]
Also, the peripheral speed R of the second cooling drum2The peripheral speed R of the first cooling drum1R to2/ R1Is preferably set to less than 1.01 and 0.990 or more, and more preferably set to less than 1.000 and 0.995 or more. R2/ R1When the value is within this range, the retardation unevenness of the obtained optical film is particularly small, and winding wrinkles are less likely to occur, which is preferable.
[0021]
Further, when the sheet-like thermoplastic resin leaves the third cooling drum, the resin temperature T3Is preferably 50-100 ° C. lower than the glass transition temperature (Tg) of the thermoplastic resin, more preferably 60-80 ° C. lower than Tg. T3Is within this range, the retardation unevenness of the resulting optical film is particularly small, and winding wrinkles are less likely to occur, which is preferable. Temperature T3Is set to the above range, the temperatures of the third cooling drum and the second cooling drum are controlled.
[0022]
Temperature T of the sheet-like thermoplastic resin when the sheet-like thermoplastic resin leaves the second cooling drum2Is preferably 0 to 60 ° C. lower than its Tg, more preferably 20 to 40 ° C. T2When the value is within this range, the retardation unevenness of the obtained optical film is particularly small, and winding wrinkles are less likely to occur, which is preferable.
[0023]
It is preferable that the temperature difference between the first cooling drum and the second cooling drum is less than 10 ° C.
[0024]
The contact time of the sheet-like thermoplastic resin on the first cooling drum is t1(Seconds), the resin temperature when leaving the first cooling drum is T1(° C.), t when the glass transition temperature of the thermoplastic resin is Tg (° C.)1× (T1−Tg) (unit: second · deg) is usually −50 to +20, preferably −40 to +15. When the thickness is within this range, the thickness uniformity of the resulting optical film Dr/ DaveIs small, and the maximum value of Re is small, which makes it easy to obtain the optical film of the present invention, which is preferable.
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
“Part” and “%” in these examples are based on mass unless otherwise specified.
Various sample preparations and tests were performed according to the following.
[0026]
(1) Average thickness D of the filmaveAnd variation Dr
Using a contact-type film thickness meter, the length of the film is 10 m every 500 mm (20 places), and the thickness of the film is measured at five places at equal intervals in the width direction.aveAnd the difference D between the maximum and minimum valuesrAsked.
[0027]
(2) Retardation value Re and its maximum value
Retardation values are measured using a phase difference measuring device [manufactured by Oji Scientific Instruments: KOBRA-21ADH], the length direction of the film is 10 m every 500 mm (20 locations), and the width direction is equal to 5 locations at equal intervals. Re was measured and the maximum value was determined.
The measurement wavelength was 550 nm and the incident angle was 0 °.
[0028]
(3) Retardation Re at a viewing angle of 40 °40And retardation Re at a viewing angle of 0 °0Ratio Re40/ Re0Average value
For the same measurement point as in (2), the same measurement method as in (2)0And the measurement method with the incident angle of the measurement light changed to 40 °.40Measure Re40/ Re0Was calculated, and the average value was obtained.
[0029]
(4) Roll rollability
A roll-shaped optical film wound up by a take-up drum is visually observed, ○ for those in which no winding wrinkles are observed, Δ in which slight wrinkles are observed, and those in which winding wrinkles are clearly recognized × It was.
[0030]
(5) Color unevenness
When used as a protective film for a polarizer, color unevenness and color loss, which are problems, were simply tested. In the actual configuration of the liquid crystal display, both sides of the polarizer are sandwiched between two protective films to form a polarizing plate, and both sides of the liquid crystal are sandwiched between two polarizing plates (with other necessary layers) It has become. If the protective film is optically distorted, it may cause color unevenness and color loss on the entire liquid crystal display. The optical distortion of the optical film serving as each protective film was simply tested as follows. Prepare two commercially available polarizers in which liquid crystal polyvinyl alcohol is doped with iodine, align the two polarizers so that their polarization axes are perpendicular, and sandwich the optical film obtained in the experiment between them. As a three-layer structure composed of a polarizer / optical film / polarizer, the degree of transmission of non-polarized light (natural light) is visually observed, ◯ when no light leakage is observed, △ when slightly observed, What was clearly recognized was marked with x. The measurement was performed at 5 points at equal intervals in the width direction over 10 m (20 places) in the length direction of the film every 500 mm.
[0031]
(6) 30 ° slope transmittance ratio
Further, a 30 ° inclined transmittance ratio was measured as one index of color unevenness and color leakage.
Sample pieces were cut out at five positions at equal intervals in the width direction of the optical film obtained in the experiment, and NDH300A type turbidimeter manufactured by Nippon Denshoku Industries Co., Ltd. was used for these sample pieces in accordance with JIS K7105. Then, the direct transmittance and the 30 ° inclined transmittance were measured, the 30 ° inclined transmittance / the orthogonal transmittance was obtained, and the average value was obtained as the 30 ° inclined transmittance ratio. A larger value is preferable. If the value is 1000 or more, color unevenness and color leakage of the obtained flat panel display do not cause a problem and are favorable.
[0032]
(7) Adhesiveness
Optical films are often used by being bonded to other film-like members, and in particular, adhesion after a durability test is often a problem. The same polarizer used in (5) and a sample piece of the same area cut out from the optical film obtained in the experiment were bonded together with a 10% by mass aqueous solution of polyvinyl alcohol. The obtained laminate was subjected to an endurance test under the conditions of 80 ° C., 90% RH, 100 hours, and then the state of the laminate was visually observed. The case where the peeling of the interface occurred was taken as x.
[0033]
(8) Re unevenness after stretching
The optical film obtained in the present invention can be made into a retardation film by subsequent stretching. The retardation film is required to have a predetermined retardation (retardation value) and a uniform value. In order to investigate the performance of the optical film of the present invention as a raw material film for a retardation film, the following test was conducted. The optical film obtained in the experiment was cut out (width 100 mm, length 150 mm) to obtain a test piece, and the test piece was stretched 1.1 to 2 times in the longitudinal direction at 140 ° C. at a speed of 100 mm / min. did. The draw ratio was adjusted so that the average retardation was 275 ± 10 nm. Retardation was measured by the same measurement method as in (2), and the variation (difference between the maximum value and the minimum value) was divided by the average value to obtain Re unevenness. The measurement point was the central part in the width direction, and 10 points were set around the center in the length direction every 10 mm.
[0034]
Example 1
A pellet of ZEONOR1420 (hydrogenated ring-opening polymer of norbornenes, manufactured by Nippon Zeon Co., Ltd., Tg 140 ° C.) was used. The pellets were melt extruded at a barrel temperature of 260 ° C. with a single screw extruder (manufactured by Nippon Steel) with a cylinder inner diameter of 50 mm and a screw L / D of 28, and a sheet-like molten resin having a width of 650 mm from a coat hanger die with a die temperature of 260 ° C. The first cooling drum (diameter 200 mm, temperature T1: 135 ° C, peripheral speed R112:50 m / sec) immediately, the first cooling drum was immediately put on by a knife coater, and then the second cooling drum (diameter 350 mm, temperature T2: 125 ° C, peripheral speed R2: 14.46 m / sec), then the third cooling drum (diameter 350 mm, temperature T3: 80 ° C, peripheral speed R3: 14.40 m / sec) in order to be transferred in close contact with each other, and the front and back surfaces are smoothed by successive cooling and cooling drum surface transfer to obtain a thermoplastic resin film having a width of 550 mm (neck-in is 50 mm each on the left and right). After passing through the adjustment drum, 30 mm each was removed from both ends with a cutter and wound into a roll with a winding drum to obtain a roll-shaped optical film. At this time, the contact time t of the sheet-like thermoplastic resin on the first cooling drum13.1 (seconds), the resin temperature when leaving the first cooling drum is T1Is 132 (° C), t1× (T1-Tg) is-24.8(Unit: second · deg).
Table 1 shows the results of the above test items performed on the obtained optical film.
[0035]
Example 2
In Example 1, R17.10 m / s, R27.07 m / s, R3An optical film was produced in the same manner as in Example 1 except that the value was changed to 7.04 m / sec. The test results of the obtained optical film are shown in Table 1.
[0036]
Comparative Example 1
In Example 1, T1An optical film was produced in the same manner as in Example 1 except that was changed to 120 ° C. The test results of the obtained optical film are shown in Table 1.
[0037]
Comparative Example 2
In Example 1, T1At 120 ° C, T2An optical film was produced in the same manner as in Example 1 except that was changed to 110 ° C. The test results of the obtained optical film are shown in Table 1.
[0038]
Comparative Example 3
In Example 1, T1110 ° C, T2An optical film was produced in the same manner as in Example 1 except that was changed to 100 ° C. The test results of the obtained optical film are shown in Table 1.
[0039]
[Table 1]
[0040]
As Table 1 shows, the optical film of the example of the present invention has D as compared with the comparative example.r/ Dave, Re and Re40/ Re0Since the average value is within a predetermined range, the roll winding property, color unevenness, 30 tilt angle transmittance ratio, and adhesiveness are excellent. Comparative Example 1 is Dr/ DaveThe maximum value of Re is within a predetermined range, but Re 4 0/ Re0Since the average value of the above is deviated, all of roll rollability, color unevenness, 30 tilt angle transmittance ratio, and adhesiveness are inferior. Comparative Example 2 is Dr/ Dave, Re 4 0/ Re0Although the average value is within a predetermined range, since the maximum value of Re is deviated, all of roll rollability, color unevenness, 30 slope transmittance ratio, and adhesiveness are inferior. bad. Comparative Example 3 is Dr/ DaveRoll rollability is remarkably poor because the value of.
[0041]
Table 2 shows the measurement results of Re unevenness after stretching for each experimental example.
[0042]
[Table 2]
[0043]
As shown in Table 2, the optical films of the examples of the present invention have dr / dave, re and re compared to the comparative examples.40/ Re0Is within a predetermined range, the retardation unevenness after stretching is small and excellent, and the optical film of the present invention is suitable as a raw material film for a retardation film.
[0044]
【The invention's effect】
According to the present invention, the thickness is 100 μm or less, the retardation value is small and constant, there is no residual solvent, there are few wrinkles when stored in a roll shape, and excellent adhesion to other films. An optical film and a method for producing the same are provided. The optical film of the present invention is useful as various optical films for flat panel displays such as a polarizer protective film and a liquid crystal cell substrate film. Further, the optical film of the present invention has a small retardation and a uniform film, but it can be made into a retardation film having a predetermined retardation and a uniform value by subsequent stretching. Therefore, the optical film of the present invention is also useful as a raw material film such as a retardation film.
Claims (2)
該第3冷却ドラムの周速度R3の、前記第2冷却ドラムの周速度R2に対する比R3/R2を0.999未満で0.990以上とし、
該第1冷却ドラムでの樹脂接触時間をt1(秒)、該第1冷却ドラムを離れるときの該溶融状態の熱可塑性樹脂の温度をT1(℃)、該熱可塑性樹脂のガラス転移温度をTg(℃)としたときのt1×(T1−Tg)(単位:秒・deg)を、−40以上+15以下とすることにより、平均厚みDaveが100μm以下であり、該フィルム全面にわたって、厚みの最大値と最小値の差Drと前記平均厚みDaveの比Dr/Daveが7%以下、レターデーションReが1.4nm以下、かつ視野角40°における位相差Re40と視野角0°における位相差Re0の比Re40/Re0の平均値が0.95以上で1.20以下の光学用フィルムを製造する方法。A step of transporting the molten thermoplastic resin extruded from the extruder by sequentially circumscribing the three cooling drums of the first cooling drum, the second cooling drum, and the third cooling drum;
The ratio R 3 / R 2 of the peripheral speed R 3 of the third cooling drum to the peripheral speed R 2 of the second cooling drum is less than 0.999 and 0.990 or more,
The resin contact time on the first cooling drum is t 1 (seconds), the temperature of the molten thermoplastic resin when leaving the first cooling drum is T 1 (° C.), and the glass transition temperature of the thermoplastic resin. By setting t 1 × (T 1 −Tg) (unit: second · deg) where Tg (° C.) is −40 to +15, the average thickness Dave is 100 μm or less. The ratio Dr / Dave of the difference Dr between the maximum value and the minimum value of the thickness and the average thickness Dave is 7% or less, the retardation Re is 1.4 nm or less, and the phase difference Re 40 and the viewing angle 0 ° at a viewing angle 40 °. A method for producing an optical film having an average value of the ratio Re 40 / Re 0 of the phase difference Re 0 of 0.95 to 1.20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002083936A JP4623257B2 (en) | 2002-03-25 | 2002-03-25 | Optical film and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002083936A JP4623257B2 (en) | 2002-03-25 | 2002-03-25 | Optical film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003279741A JP2003279741A (en) | 2003-10-02 |
JP4623257B2 true JP4623257B2 (en) | 2011-02-02 |
Family
ID=29231492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002083936A Expired - Lifetime JP4623257B2 (en) | 2002-03-25 | 2002-03-25 | Optical film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4623257B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006327107A (en) * | 2005-05-27 | 2006-12-07 | Fujifilm Holdings Corp | Manufacturing method of thermoplastic film |
JP2007216658A (en) * | 2006-01-23 | 2007-08-30 | Asahi Kasei Chemicals Corp | Film stretching method and stretched film |
JP5357462B2 (en) * | 2008-08-12 | 2013-12-04 | 住友化学株式会社 | Light guide plate |
JP2011218814A (en) * | 2011-06-21 | 2011-11-04 | Fujifilm Corp | Method for manufacturing thermoplastic film |
JP6207846B2 (en) | 2013-03-04 | 2017-10-04 | 富士フイルム株式会社 | Transparent conductive film and touch panel |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61277422A (en) * | 1985-05-31 | 1986-12-08 | Kuraray Co Ltd | Manufacturing method of polyester film |
JPH01235623A (en) * | 1988-03-16 | 1989-09-20 | Kyowa Gas Chem Ind Co Ltd | New acrylic resin extruded sheet and manufacture thereof |
JPH05212828A (en) * | 1992-02-05 | 1993-08-24 | Nippon Zeon Co Ltd | Composite sheet |
JPH0659121A (en) * | 1992-08-11 | 1994-03-04 | Toray Ind Inc | Phase difference film and its production |
JPH06262682A (en) * | 1993-11-15 | 1994-09-20 | Kuraray Co Ltd | Novel acrylic resin extruded plate and its manufacturing method |
JPH10130402A (en) * | 1996-10-29 | 1998-05-19 | Nippon Zeon Co Ltd | Polymer film and preparation thereof |
JPH111548A (en) * | 1996-10-09 | 1999-01-06 | Nippon Zeon Co Ltd | Norbornene-based polymer and its production |
JP2001139705A (en) * | 1999-11-18 | 2001-05-22 | Teijin Chem Ltd | Polycarbonate resin film for insert molding with excellent dimensional stability |
JP2001194532A (en) * | 1999-10-27 | 2001-07-19 | Kanegafuchi Chem Ind Co Ltd | Optical film and its manufacturing method |
JP2001324616A (en) * | 2001-04-23 | 2001-11-22 | Nippon Zeon Co Ltd | Manufacturing method of polarizing film for liquid crystal display |
JP2001337221A (en) * | 2000-05-24 | 2001-12-07 | Sekisui Chem Co Ltd | Optical film and polarizing plate |
JP2003236914A (en) * | 2002-02-20 | 2003-08-26 | Nippon Zeon Co Ltd | Method for producing thermoplastic resin sheet |
-
2002
- 2002-03-25 JP JP2002083936A patent/JP4623257B2/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61277422A (en) * | 1985-05-31 | 1986-12-08 | Kuraray Co Ltd | Manufacturing method of polyester film |
JPH01235623A (en) * | 1988-03-16 | 1989-09-20 | Kyowa Gas Chem Ind Co Ltd | New acrylic resin extruded sheet and manufacture thereof |
JPH05212828A (en) * | 1992-02-05 | 1993-08-24 | Nippon Zeon Co Ltd | Composite sheet |
JPH0659121A (en) * | 1992-08-11 | 1994-03-04 | Toray Ind Inc | Phase difference film and its production |
JPH06262682A (en) * | 1993-11-15 | 1994-09-20 | Kuraray Co Ltd | Novel acrylic resin extruded plate and its manufacturing method |
JPH111548A (en) * | 1996-10-09 | 1999-01-06 | Nippon Zeon Co Ltd | Norbornene-based polymer and its production |
JPH10130402A (en) * | 1996-10-29 | 1998-05-19 | Nippon Zeon Co Ltd | Polymer film and preparation thereof |
JP2001194532A (en) * | 1999-10-27 | 2001-07-19 | Kanegafuchi Chem Ind Co Ltd | Optical film and its manufacturing method |
JP2001139705A (en) * | 1999-11-18 | 2001-05-22 | Teijin Chem Ltd | Polycarbonate resin film for insert molding with excellent dimensional stability |
JP2001337221A (en) * | 2000-05-24 | 2001-12-07 | Sekisui Chem Co Ltd | Optical film and polarizing plate |
JP2001324616A (en) * | 2001-04-23 | 2001-11-22 | Nippon Zeon Co Ltd | Manufacturing method of polarizing film for liquid crystal display |
JP2003236914A (en) * | 2002-02-20 | 2003-08-26 | Nippon Zeon Co Ltd | Method for producing thermoplastic resin sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2003279741A (en) | 2003-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI387526B (en) | Thermoplastic film and method of producing the same, polarizing plate, optical compensation film, antireflection film and crystal display device | |
KR101496490B1 (en) | Optical film, process for producing the optical film, polarizing plate, and display device | |
TWI655098B (en) | Laminated retardation film and method of producing the same | |
US7785503B2 (en) | Optical film and process for producing the same | |
TW200920588A (en) | Optical film and process for producing the same | |
JP2005099097A (en) | Optical film and its manufacturing method, and polarizing plate using optical film | |
JP4461795B2 (en) | Optical laminate and method for producing optical laminate | |
CN110945393B (en) | Polarizer and Display Device | |
JP2003131036A (en) | Optical film, manufacturing method thereof, and polarizing plate | |
JP3846566B2 (en) | Method for producing thermoplastic resin sheet | |
JP4623257B2 (en) | Optical film and method for producing the same | |
TW201522007A (en) | Method for producing retardation film | |
US20060237864A1 (en) | Method for producing optical film | |
JP4442191B2 (en) | Optical film and manufacturing method thereof | |
JP4292912B2 (en) | Optical film | |
JP4492116B2 (en) | Method for producing optical film | |
JP4214797B2 (en) | Optical film and manufacturing method thereof | |
WO2022153785A1 (en) | Film roll and method for manufacturing film roll | |
KR101645760B1 (en) | Method for producing optical film, optical film, and apparatus for producing optical film | |
JP4964805B2 (en) | Thermoplastic film, method for producing the same, heat treatment method, polarizing plate, optical compensation film for liquid crystal display plate, antireflection film, and liquid crystal display device | |
JP2003057439A (en) | Optical film and method for manufacturing the same | |
JP4500122B2 (en) | Method for producing optical film | |
JP2011242578A (en) | Set of roll-like polarizing plates, manufacturing method thereof, and manufacturing method of liquid crystal panel | |
JP2011242579A (en) | Set of roll-like polarizing plates, manufacturing method thereof, and manufacturing method of liquid crystal panel | |
KR20230167314A (en) | Film roll and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100909 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4623257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |