JP4622958B2 - Nitrogen-containing waste liquid treatment method - Google Patents
Nitrogen-containing waste liquid treatment method Download PDFInfo
- Publication number
- JP4622958B2 JP4622958B2 JP2006215724A JP2006215724A JP4622958B2 JP 4622958 B2 JP4622958 B2 JP 4622958B2 JP 2006215724 A JP2006215724 A JP 2006215724A JP 2006215724 A JP2006215724 A JP 2006215724A JP 4622958 B2 JP4622958 B2 JP 4622958B2
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- nitrogen
- activated sludge
- treatment
- containing waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007788 liquid Substances 0.000 title claims description 82
- 239000002699 waste material Substances 0.000 title claims description 77
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 title claims description 51
- 238000000034 method Methods 0.000 title claims description 39
- 239000010802 sludge Substances 0.000 claims description 55
- 238000005273 aeration Methods 0.000 claims description 47
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 15
- 241000894006 Bacteria Species 0.000 description 32
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 230000001546 nitrifying effect Effects 0.000 description 15
- 230000007423 decrease Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000000855 fermentation Methods 0.000 description 8
- 230000004151 fermentation Effects 0.000 description 8
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 238000004062 sedimentation Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000002921 fermentation waste Substances 0.000 description 5
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000010815 organic waste Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、アンモニア性窒素等を含有する窒素含有廃液を生物化学的に処理して、窒素ガスとして除去する窒素含有廃液の処理方法に関する。 The present invention relates to a method for treating a nitrogen-containing waste liquid in which a nitrogen-containing waste liquid containing ammoniacal nitrogen or the like is treated biochemically and removed as nitrogen gas.
生ごみ等や下水の余剰汚泥等の有機性廃棄物(以下、「有機物」と記載する)をメタン菌等の存在下でメタン発酵処理し、メタンガスとしてエネルギーを回収する方法が、省資源、循環型社会形成の一環として採用されている。 Organic waste such as garbage and sewage surplus sludge (hereinafter referred to as “organic matter”) is treated with methane fermentation in the presence of methane bacteria to recover energy as methane gas. It is adopted as part of the formation of a type society.
メタン発酵処理では、有機物をメタンと炭酸ガスに分解することができるが、有機物を100%分解できるわけではなく、メタン発酵処理後の発酵廃液中には有機物が残存している。また、この発酵廃液には、発酵残渣もしくはメタン発酵槽で増殖した菌体としての汚泥や、有機物の分解生成物であるアンモニアも含まれている。したがって、発酵廃液は、そのまま下水道や河川には放流できず、有機物と窒素成分を分解除去し、放流レベル以下にまで低減することが必要とされている。 In the methane fermentation treatment, the organic matter can be decomposed into methane and carbon dioxide gas, but the organic matter cannot be decomposed 100%, and the organic matter remains in the fermentation waste liquid after the methane fermentation treatment. Moreover, this fermentation waste liquid also contains fermentation residue or sludge as bacterial cells grown in a methane fermentation tank, and ammonia which is a decomposition product of organic matter. Therefore, the fermentation waste liquid cannot be discharged as it is into the sewer or the river, and it is necessary to decompose and remove organic substances and nitrogen components to reduce them to below the discharge level.
メタン発酵廃液の処理には、活性汚泥処理法の一つである間欠曝気式活性汚泥処理(以下、「間欠曝気処理」と記載する)が広く用いられている。間欠曝気処理とは、上記メタン発酵廃液のようなアンモニア性窒素を含有する廃液(以下、「窒素含有廃液」と記載する)に対し、空気曝気と曝気停止を交互に繰り返し、アンモニアと有機物とを、活性汚泥に培養させた微生物の食物として利用して分解除去する処理方法である。すなわち、アンモニア性窒素を、好気状態で硝化菌により亜硝酸窒素や硝酸性窒素に酸化させる硝化工程(好気工程)と、硝化工程で得られた亜硝酸性窒素や硝酸性窒素を、嫌気状態で脱窒菌の作用により還元して窒素ガスにまで分解する脱窒工程(嫌気工程)とからなる2段階の生物反応によって、窒素含有廃液中のアンモニアを窒素ガスとして除去する方法である。 For the treatment of methane fermentation waste liquid, intermittent aeration activated sludge treatment (hereinafter referred to as “intermittent aeration treatment”), which is one of activated sludge treatment methods, is widely used. Intermittent aeration treatment refers to a waste liquid containing ammoniacal nitrogen such as the above methane fermentation waste liquid (hereinafter referred to as “nitrogen-containing waste liquid”), in which air aeration and aeration stop are repeated alternately to remove ammonia and organic matter. This is a treatment method for decomposing and removing microorganisms cultivated in activated sludge. That is, the nitrification process (aerobic process) in which ammonia nitrogen is oxidized to nitrite and nitrate nitrogen by nitrifying bacteria in an aerobic state, and the nitrite nitrogen and nitrate nitrogen obtained in the nitrification process are anaerobic. In this state, ammonia in the nitrogen-containing waste liquid is removed as nitrogen gas by a two-stage biological reaction consisting of a denitrification step (anaerobic step) that is reduced by the action of denitrifying bacteria and decomposed to nitrogen gas.
この間欠曝気処理には、例えば、下記特許文献1に開示されているような、単一の活性汚泥槽において、好気条件と嫌気条件とを繰り返し、時間的に区分して処理する方法等が知られている。 This intermittent aeration treatment includes, for example, a method in which aerobic conditions and anaerobic conditions are repeated in a single activated sludge tank as disclosed in Patent Document 1 below, and the treatment is divided in terms of time. Are known.
この単一の活性汚泥槽による間欠曝気処理は、装置の小型化が可能であるという利点を有するものの、最適条件での運転を続けるには高度の工程管理が必要とされており、活性汚泥槽内における処理状態をリアルタイムで把握する必要がある。 Although this intermittent aeration process using a single activated sludge tank has the advantage that the device can be downsized, advanced process management is required to continue operation under optimum conditions. It is necessary to grasp the processing state in the network in real time.
例えば下記特許文献2には、窒素含有廃液のpHを記憶手段に逐次記憶させ、記憶されたpH値の経時的変化より好気工程および嫌気工程におけるpH変化速度並びにpH変化幅を演算手段に演算させて、pH変化速度が標準速度に達したのち事実上0になる時点の出現の有無に基づき、硝化反応および脱窒反応の進行状況を診断することが開示されている。
間欠曝気処理による硝化・脱窒処理は、常に安定した状態を維持し続けるとは限らず、例えば、活性汚泥槽へ導入する窒素含有廃液の温度が変動すると、硝化菌や脱窒菌の活性が低下することがある。その他、好気・嫌気条件の不備、槽内の微生物の減少、阻害物質混入等の外乱によっても、硝化菌や脱窒菌の活性が低下する場合がある。そして、硝化菌や脱窒菌の活性が低下した状態で間欠曝気処理を継続すると、窒素含有廃液中の窒素を十分に処理しきれなくなり、徐々に活性汚泥槽内の窒素濃度が増加していき、最終的には硝化・脱窒処理が破綻してしまう。 Nitrification / denitrification treatment by intermittent aeration treatment does not always maintain a stable state. For example, if the temperature of the nitrogen-containing waste liquid introduced into the activated sludge tank fluctuates, the activity of nitrification bacteria and denitrification bacteria decreases. There are things to do. In addition, the activity of nitrifying bacteria and denitrifying bacteria may decrease due to disturbances such as inadequate aerobic / anaerobic conditions, a decrease in microorganisms in the tank, and contamination with inhibitory substances. And if the continuous aeration process is continued in a state where the activity of nitrifying bacteria and denitrifying bacteria is reduced, the nitrogen in the nitrogen-containing waste liquid cannot be sufficiently treated, and the nitrogen concentration in the activated sludge tank gradually increases, Eventually, nitrification / denitrification will fail.
そこで、活性汚泥槽内での処理状態を把握する必要があり、上記特許文献2では、pHの測定値を様々な演算加工に供し、その演算結果から総合的に活性汚泥槽内での処理状態を診断しているが、pH測定値を種々の演算に供していることから、演算工程が複雑であるという問題があった。 Therefore, it is necessary to grasp the treatment state in the activated sludge tank. In Patent Document 2, the measured value of pH is subjected to various arithmetic processing, and the treatment state in the activated sludge tank is comprehensively determined from the calculation results. However, since the measured pH value is used for various calculations, there is a problem that the calculation process is complicated.
また、硝化菌や脱窒菌の活性に低下が認められた場合、何らかの措置が必要となると考えられるが、上記特許文献1、2には、硝化・脱窒処理の破綻を防止する手段について具体的に開示されていない。 In addition, when a decrease in the activity of nitrifying bacteria and denitrifying bacteria is observed, it is considered that some measures are required. However, Patent Documents 1 and 2 specifically describe means for preventing failure of nitrifying / denitrifying treatment. Is not disclosed.
したがって、本発明の目的は、比較的簡単な管理によって、窒素含有廃液の硝化・脱窒処理を長期間安定して維持できる窒素含有廃液の処理方法を提供することである。 Accordingly, an object of the present invention is to provide a method for treating a nitrogen-containing waste liquid that can stably maintain nitrification / denitrification treatment of the nitrogen-containing waste liquid for a long period of time by relatively simple management.
本発明者は、間欠曝気処理について種々検討した結果、硝化菌や脱窒菌の活性が低下すると、間欠曝気処理の1サイクルにおけるpHの最大値と最小値との差分が小さくなり、これが硝化・脱窒処理の破綻をきたすきざしとなることを見出し、この事実に基づいて本発明をなすに至った。 As a result of various studies on intermittent aeration treatment, the present inventor has found that when the activity of nitrifying bacteria and denitrifying bacteria decreases, the difference between the maximum and minimum pH values in one cycle of intermittent aeration treatment becomes small. The present inventors have found that it causes a failure of the nitrogen treatment, and have come to make the present invention based on this fact.
すなわち、本発明の窒素含有廃液の処理方法は、アンモニア性窒素を含有する廃液を活性汚泥槽に供給し、前記廃液に対して空気曝気と曝気停止とを交互に繰り返し、空気曝気による好気工程と、曝気停止による嫌気工程とを1サイクルとした間欠曝気処理を行う窒素含有廃液の処理方法であって、前記活性汚泥槽内のpHを経時的に測定し、前記間欠曝気処理の1サイクルにおけるpHの最大値と最小値との差分を求め、この差分が予め定めた値を下回った場合には、前記間欠曝気処理の1サイクル当たりの前記活性汚泥槽への廃液供給量を低下させることを特徴とする。 That is, the nitrogen-containing waste liquid treatment method of the present invention supplies a waste liquid containing ammonia nitrogen to an activated sludge tank, and alternately repeats air aeration and aeration stop on the waste liquid to perform an aerobic process by air aeration. And a nitrogen-containing waste liquid treatment method for performing intermittent aeration treatment with one cycle as an anaerobic process by stopping aeration, measuring the pH in the activated sludge tank over time, and in one cycle of the intermittent aeration treatment. The difference between the maximum value and the minimum value of the pH is obtained, and when this difference falls below a predetermined value, the amount of waste liquid supplied to the activated sludge tank per cycle of the intermittent aeration treatment is reduced. Features.
硝化菌や脱窒菌の活性低下に伴ない、間欠曝気処理の1サイクルにおけるpHの最大値と最小値との差分は低下する傾向があることから、間欠曝気処理時において、活性汚泥槽内のpHを経時的に測定し、間欠曝気処理の1サイクルにおけるpHの最大値と最小値との差分を求めることで、特に複雑な演算処理等を行わなくとも硝化菌や脱窒菌の活性状態を容易に把握できる。そして、このpHの差分が、予め定めた値を下回った場合、間欠曝気処理1サイクルにおける活性汚泥槽への窒素含有廃液の供給量を低下させることで硝化菌や脱窒菌にかかる負荷が軽減されるので、間欠曝気処理にて未処理のアンモニア性窒素が生じにくくなり、窒素含有廃液の硝化・脱窒処理が途中で破綻することなく、長期間安定して窒素含有廃液を処理し続けることが出来る。 As the activity of nitrifying bacteria and denitrifying bacteria decreases, the difference between the maximum and minimum pH values in one cycle of intermittent aeration treatment tends to decrease, so the pH in the activated sludge tank during intermittent aeration treatment Can be measured over time, and the difference between the maximum and minimum pH values in one cycle of intermittent aeration treatment can be obtained, so that the active state of nitrifying bacteria and denitrifying bacteria can be easily achieved without any complicated processing. I can grasp. And when this pH difference falls below a predetermined value, the load on nitrifying bacteria and denitrifying bacteria is reduced by reducing the amount of nitrogen-containing waste liquid supplied to the activated sludge tank in one cycle of intermittent aeration treatment. Therefore, it is difficult to generate untreated ammonia nitrogen by intermittent aeration treatment, and nitrification / denitrification treatment of nitrogen-containing waste liquid does not break in the middle, and nitrogen-containing waste liquid can be treated stably for a long period of time. I can do it.
本発明によれば、間欠曝気処理時において、活性汚泥槽内のpHを経時的に測定し、間欠曝気処理の1サイクルにおけるpHの最大値と最小値との差分を求め、このpHの差分が、予め定めた値を下回った場合、間欠曝気処理1サイクルにおける活性汚泥槽への窒素含有廃液の供給量を低下させることで硝化菌や脱窒菌にかかる負荷が軽減し、間欠曝気処理にて未処理のアンモニア性窒素が生じて徐々に蓄積されることを防止できるので、窒素含有廃液の硝化・脱窒処理が途中で破綻することなく、長期間安定して窒素含有廃液を処理し続けることが出来る。 According to the present invention, during the intermittent aeration treatment, the pH in the activated sludge tank is measured over time, and the difference between the maximum and minimum pH values in one cycle of the intermittent aeration treatment is obtained. When the value falls below a predetermined value, the load on nitrifying bacteria and denitrifying bacteria is reduced by reducing the supply amount of nitrogen-containing waste liquid to the activated sludge tank in one cycle of intermittent aeration treatment. Since it can prevent ammonia nitrogen from being generated and gradually accumulated, the nitrification / denitrification treatment of the nitrogen-containing waste liquid can be prevented from failing in the middle, and the nitrogen-containing waste liquid can be treated stably for a long period of time. I can do it.
以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明の窒素含有廃液の処理方法に用いられる廃液処理装置の一例が示されている。 Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows an example of a waste liquid treatment apparatus used in the method for treating a nitrogen-containing waste liquid of the present invention.
本発明において、処理対象となる窒素含有廃液とは、アンモニア性窒素を含む水であれば特に限定はなく、糞尿、生ゴミ、食品加工残滓等の有機性廃棄物をメタン発酵処理した際に排出されるメタン発酵処理廃液等が一例として挙げられる。 In the present invention, the nitrogen-containing waste liquid to be treated is not particularly limited as long as it contains ammoniacal nitrogen, and is discharged when methane fermentation of organic waste such as manure, raw garbage, food processing residue, etc. An example of the methane fermentation treatment waste liquid is given.
この廃液処理装置は、窒素含有廃液を間欠曝気法にて硝化・脱窒処理する活性汚泥槽20を備えている。活性汚泥槽20の底部には、空気噴出装置21が配置されており、外部に設置したブロア22を稼動させることで、活性汚泥槽20内に酸素を含む気体(通常空気)を供給し、窒素含有廃液を曝気できるように構成されている。また、活性汚泥槽20の上部もしくは側壁には、モータ23と、攪拌軸24と、攪拌羽根25とからなる攪拌機が設けられており、攪拌羽根25によって活性汚泥槽20内の廃液を攪拌できるように構成されている。また、活性汚泥槽20の上部にはpH計26が配置されており、槽内のpHを経時的に測定できるように構成されている。 This waste liquid treatment apparatus includes an activated sludge tank 20 that nitrifies and denitrifies a nitrogen-containing waste liquid by an intermittent aeration method. An air ejection device 21 is arranged at the bottom of the activated sludge tank 20, and a gas (normal air) containing oxygen is supplied into the activated sludge tank 20 by operating a blower 22 installed outside. It is configured so that the contained waste liquid can be aerated. In addition, a stirrer including a motor 23, a stirring shaft 24, and a stirring blade 25 is provided on the upper portion or side wall of the activated sludge tank 20, so that the waste liquid in the activated sludge tank 20 can be stirred by the stirring blade 25. It is configured. In addition, a pH meter 26 is disposed on the upper part of the activated sludge tank 20 so that the pH in the tank can be measured over time.
活性汚泥槽20は、廃液貯留槽10から伸びる配管L1と接続している。この配管L1には、途中に供給ポンプP1が配置されている。 The activated sludge tank 20 is connected to a pipe L1 extending from the waste liquid storage tank 10. A supply pump P1 is disposed in the middle of the pipe L1.
上記廃液貯留槽10としては、特に限定はなく、貯留タンクのようなものでもよく、有機性廃棄物をメタン菌等でメタン発酵処理するメタン発酵処理槽等であってもよい。 The waste liquid storage tank 10 is not particularly limited, and may be a storage tank, or a methane fermentation treatment tank or the like for treating organic waste with methane bacteria or the like.
また、活性汚泥槽20から伸びる配管L2は、最終沈殿池30と接続している。最終沈殿池30では、活性汚泥槽20で硝化・脱窒処理された廃液(以下、「処理済廃液」と記載する)を、自然沈降や膜分離等によって処理水と汚泥とに分離する。最終沈殿池30の側壁には、配管L3が接続されており、処理済廃液を分離処理して得られる処理水を系外に排出できるように構成されている。また、最終沈殿池30の底部には配管L4が接続されており、最終沈殿池30の底部に堆積した汚泥を系外に排出できるように構成されている。 Further, the pipe L <b> 2 extending from the activated sludge tank 20 is connected to the final sedimentation tank 30. In the final sedimentation basin 30, the waste liquid nitrified and denitrified in the activated sludge tank 20 (hereinafter referred to as “treated waste liquid”) is separated into treated water and sludge by natural sedimentation, membrane separation, or the like. A pipe L3 is connected to the side wall of the final sedimentation basin 30 so that treated water obtained by separating the treated waste liquid can be discharged out of the system. A pipe L4 is connected to the bottom of the final sedimentation basin 30 so that the sludge accumulated on the bottom of the final sedimentation basin 30 can be discharged out of the system.
次に、この廃液処理装置を用いた、本発明による窒素含有廃液の処理方法の一実施形態について説明する。 Next, an embodiment of a method for treating a nitrogen-containing waste liquid according to the present invention using this waste liquid treatment apparatus will be described.
まず、供給ポンプP1を稼動させて、廃液貯留槽10から活性汚泥槽20に窒素含有廃液を供給する。 First, the supply pump P <b> 1 is operated to supply the nitrogen-containing waste liquid from the waste liquid storage tank 10 to the activated sludge tank 20.
活性汚泥槽20では、まず、ブロア22を稼動させて、空気噴出装置21のノズルから活性汚泥槽20内の窒素含有廃液に空気を供給し、曝気処理する(好気工程)。この状態では、硝化菌の作用によって、窒素含有廃液中のアンモニア性窒素は、亜硝酸性窒素や硝酸性窒素へと酸化(硝化反応)される。 In the activated sludge tank 20, first, the blower 22 is operated, air is supplied from the nozzle of the air ejection device 21 to the nitrogen-containing waste liquid in the activated sludge tank 20, and aeration processing is performed (aerobic process). In this state, ammonia nitrogen in the nitrogen-containing waste liquid is oxidized (nitrification reaction) to nitrite nitrogen or nitrate nitrogen by the action of nitrifying bacteria.
そして、所定時間経過後、ブロア22の稼動を停止し、モータ23を稼動させて攪拌羽根25により活性汚泥槽20内の窒素含有廃液を攪拌する。この状態では、活性汚泥槽20内の窒素含有廃液には溶存酸素が無い状態(嫌気工程)となり、脱窒菌の作用によって、亜硝酸性窒素や硝酸性窒素は、窒素ガスへと還元(脱窒反応)される。 Then, after the predetermined time has elapsed, the operation of the blower 22 is stopped, the motor 23 is operated, and the nitrogen-containing waste liquid in the activated sludge tank 20 is stirred by the stirring blade 25. In this state, the nitrogen-containing waste liquid in the activated sludge tank 20 has no dissolved oxygen (anaerobic process), and nitrite nitrogen and nitrate nitrogen are reduced to nitrogen gas (denitrification) by the action of denitrifying bacteria. Reaction).
このように、好気工程と嫌気工程とをそれぞれ交互に繰り返すことで、窒素含有廃液に含まれるアンモニア性窒素を、窒素ガスにまで分解することができる。この場合、活性汚泥槽20内に1サイクル当たりで供給される窒素含有廃液に含まれるアンモニア性窒素の全てが硝化、脱窒されて、未処理のアンモニア性窒素が残存しないように、1サイクル当たりの窒素含有廃液の供給量や、1サイクルの時間を調節する必要がある。未処理のアンモニア性窒素が残存する場合には、徐々にpHが高くなり、硝化菌や、脱窒菌の活性が低下して、最終的には硝化・脱窒処理が破綻してしまう。 In this manner, by repeating the aerobic process and the anaerobic process alternately, ammonia nitrogen contained in the nitrogen-containing waste liquid can be decomposed into nitrogen gas. In this case, in order to prevent nitrification and denitrification of all ammonia nitrogen contained in the nitrogen-containing waste liquid supplied to the activated sludge tank 20 per cycle, no untreated ammonia nitrogen remains per cycle. It is necessary to adjust the supply amount of the nitrogen-containing waste liquid and the time of one cycle. When untreated ammonia nitrogen remains, the pH gradually increases, the activity of nitrifying bacteria and denitrifying bacteria decreases, and eventually nitrification / denitrification treatment fails.
しかしながら、未処理のアンモニア性窒素が残存しないように、1サイクルの時間を調節して運転をした場合でも、例えば、活性汚泥槽20へ導入する窒素含有廃液の温度の変動や、好気・嫌気条件の不備、槽内の微生物の減少、阻害物質混入等の外乱等の要因によって、硝化菌や脱窒菌の活性が低下することがある。そのような場合に、同じ条件で間欠曝気処理を継続すると、窒素含有廃液中のアンモニア性窒素を十分に処理しきれず、アンモニア性窒素が残存、蓄積して徐々にpHが高くなり、最終的には硝化・脱窒処理が破綻してしまう。 However, even when the operation is performed by adjusting the time of one cycle so that untreated ammonia nitrogen does not remain, for example, the temperature variation of the nitrogen-containing waste liquid introduced into the activated sludge tank 20, aerobic / anaerobic, etc. The activity of nitrifying bacteria and denitrifying bacteria may decrease due to factors such as inadequate conditions, a decrease in microorganisms in the tank, and disturbances such as contamination with inhibitory substances. In such a case, if the intermittent aeration process is continued under the same conditions, the ammonia nitrogen in the nitrogen-containing waste liquid cannot be sufficiently treated, and the ammonia nitrogen remains and accumulates, and the pH gradually increases. Will fail in nitrification / denitrification treatment.
図2には、図1に示すような廃液処理装置を用いた廃液処理方法において、上記のような硝化・脱窒処理が破綻するときのpHを経時的に測定した結果が示されている。この例は、活性汚泥槽20の容積10000L、窒素含有廃液の流入量1000L/Day、滞留時間10日(好気工程60分、嫌気工程60分)、水温28℃の条件で窒素含有廃液を間欠曝気処理していたときに発生した状況を示している。 FIG. 2 shows the results of measuring the pH over time when the nitrification / denitrification process fails in the waste liquid treatment method using the waste liquid treatment apparatus as shown in FIG. In this example, the activated sludge tank 20 has a capacity of 10,000 L, an inflow of nitrogen-containing waste liquid of 1000 L / Day, a residence time of 10 days (aerobic process 60 minutes, anaerobic process 60 minutes), and nitrogen-containing waste liquid intermittently under conditions of a water temperature of 28 ° C. It shows the situation that occurred when aeration processing was in progress.
図2に示されるように、1サイクルにおけるpHの最大値と最小値との差分をΔpHとすると、硝化・脱窒処理が安定していた経過時間100分頃のΔpHは約0.1であったのに対し、硝化・脱窒処理が破綻しはじめた経過時間600分頃のΔpHは約0.7になり、硝化・脱窒処理が完全に破綻した経過時間1400分頃のΔpHは約0.5になっている。それと共に、硝化・脱窒処理の破綻が進行するにつれて、活性汚泥槽20内のpHが次第に上昇している。これは、供給される窒素含有廃液中のアンモニア性窒素が処理しきれずに残存し、蓄積されていることを示している。 As shown in FIG. 2, when the difference between the maximum and minimum pH values in one cycle is ΔpH, ΔpH at about 100 minutes after the nitrification / denitrification treatment was stable was about 0.1. On the other hand, the ΔpH at about 600 minutes after the nitrification / denitrification treatment started to break was about 0.7, and the ΔpH at about 1400 minutes after the nitrification / denitrification treatment was completely broken was about 0. .5. At the same time, as the failure of nitrification / denitrification progresses, the pH in the activated sludge tank 20 gradually increases. This indicates that the ammonia nitrogen in the supplied nitrogen-containing waste liquid remains without being treated and is accumulated.
そこで、本発明では、窒素含有廃液を間欠曝気処理にて硝化・脱窒処理するに当たり、活性汚泥槽20内のpHを経時的に測定し、間欠曝気処理の1サイクルにおけるpHの最大値と最小値との差分(以下、「ΔpH」と記載する)を算出する。そして、算出されたΔpHが、あらかじめ定めた値を下回った場合には、間欠曝気処理1サイクル当たりの活性汚泥槽20への窒素含有廃液の供給量を低減させることとした。なお、上記ΔpHは、間欠曝気処理の複数サイクルの平均値を用いてもよい。 Therefore, in the present invention, when the nitrogen-containing waste liquid is subjected to nitrification / denitrification treatment by intermittent aeration treatment, the pH in the activated sludge tank 20 is measured over time, and the maximum and minimum pH values in one cycle of the intermittent aeration treatment are measured. The difference from the value (hereinafter referred to as “ΔpH”) is calculated. Then, when the calculated ΔpH falls below a predetermined value, the supply amount of the nitrogen-containing waste liquid to the activated sludge tank 20 per cycle of the intermittent aeration treatment is reduced. The above ΔpH may be an average value of a plurality of cycles of intermittent aeration processing.
こうして、間欠曝気処理1サイクル当たりに活性汚泥槽20内に供給される窒素含有廃液の供給量を低減させることにより、硝化菌による硝化反応や、脱窒菌による脱窒反応を完全に進行させて、処理しきれずに残存するアンモニア性窒素の発生を防止できる。その結果、活性汚泥槽20内のpHの上昇を防ぎ、硝化・脱窒反応を良好に維持させることができる。そして、硝化・脱窒反応を良好に維持させることにより、硝化菌、脱窒菌の菌数や活性が次第に回復してくるので、間欠曝気処理1サイクル当たりの活性汚泥槽20への窒素含有廃液の供給量を徐々に増やして、定常の運転状態にもどすことができる。 In this way, by reducing the supply amount of the nitrogen-containing waste liquid supplied into the activated sludge tank 20 per cycle of intermittent aeration treatment, the nitrification reaction by nitrifying bacteria and the denitrification reaction by denitrifying bacteria can be advanced completely, Generation of ammonia nitrogen remaining without being treated can be prevented. As a result, an increase in pH in the activated sludge tank 20 can be prevented, and the nitrification / denitrification reaction can be maintained well. And by maintaining the nitrification / denitrification reaction well, the number and activity of nitrifying bacteria and denitrifying bacteria will gradually recover, so the nitrogen-containing waste liquid to the activated sludge tank 20 per cycle of intermittent aeration treatment The supply amount can be gradually increased to return to a steady operating state.
本発明において、間欠曝気処理1サイクル当たりの活性汚泥槽20への窒素含有廃液の供給量を減らす場合の上記ΔpHの設定値は、活性汚泥槽20の規模や、窒素含有廃液の性状や、間欠曝気処理の運転条件によって適宜設定されるが、一般的には、0.1〜1の間で定められた下限値を下回ったとき活性汚泥槽20への窒素含有廃液の供給量を低減することが好ましい。 In the present invention, when the supply amount of the nitrogen-containing waste liquid to the activated sludge tank 20 per cycle of the intermittent aeration treatment is reduced, the above ΔpH set values are the scale of the activated sludge tank 20, the properties of the nitrogen-containing waste liquid, the intermittent Although it is set as appropriate depending on the operating conditions of the aeration treatment, generally, the supply amount of the nitrogen-containing waste liquid to the activated sludge tank 20 is reduced when it falls below the lower limit value set between 0.1 and 1. Is preferred.
また、本発明においては、上記ΔpHの減少が認められなくなるまで、窒素含有廃液の供給量を、定常運転時における該窒素含有廃液の供給量から連続的又は段階的に低下させ続けることが好ましい。例えば、ΔpHの設定値を複数設けておき、ΔpHの最初の設定値となった時点で1段階供給量を減らす。それでもさらにΔpHが減少傾向となり、ΔpHが次の設定値になれば、更に1段階流入量を減らす運転を行う。 In the present invention, it is preferable to continuously or stepwise reduce the supply amount of the nitrogen-containing waste liquid from the supply amount of the nitrogen-containing waste liquid during the steady operation until the decrease in ΔpH is not recognized. For example, a plurality of set values of ΔpH are provided, and the one-stage supply amount is reduced when the first set value of ΔpH is reached. Even so, if ΔpH further decreases and ΔpH reaches the next set value, an operation for further reducing the one-step inflow amount is performed.
そして、ΔpHの減少が認められなくなった時点で、活性汚泥槽20内の硝化脱窒速度を、従来公知の方法、例えば、硝化速度を、好気工程における活性汚泥槽内の硝酸性窒素、亜硝酸性窒素を測定し、その合計量の増加速度として算出し、また、脱窒速度を、嫌気工程における活性汚泥槽内の硝酸性窒素、亜硝酸性窒素を測定し、その合計量の減少速度として算出する。そして、硝化脱窒能力の回復が認められた時点で、窒素含有廃液の供給量を徐々に増加させて、定常運転時の廃液供給量に戻すことが好ましい。 Then, when the decrease in ΔpH is no longer observed, the nitrification denitrification rate in the activated sludge tank 20 is changed to a conventionally known method, for example, the nitrification rate is changed to nitrate nitrogen in the activated sludge tank in the aerobic process, Nitrate nitrogen is measured and calculated as the rate of increase of the total amount, and the rate of denitrification is determined by measuring nitrate nitrogen and nitrite nitrogen in the activated sludge tank in the anaerobic process. Calculate as When the recovery of the nitrification / denitrification capability is recognized, it is preferable that the supply amount of the nitrogen-containing waste liquid is gradually increased to return to the waste liquid supply amount during the steady operation.
このように、本発明によれば、間欠曝気処理時において、活性汚泥槽20内のpHを経時的に測定して、ΔpHを算出し、このΔpHが予め定めた値を下回った場合には、間欠曝気処理1サイクルにおける活性汚泥槽への窒素含有廃液の供給量を低下させることにより、窒素含有廃液の硝化・脱窒処理が途中で破綻することなく、長期間安定して硝化・脱窒処理をし続けることが出来る。 Thus, according to the present invention, during intermittent aeration treatment, the pH in the activated sludge tank 20 is measured over time, ΔpH is calculated, and when this ΔpH falls below a predetermined value, Nitrogen-containing waste liquid nitrification / denitrification treatment can be stably performed for a long time without rupturing the nitrification / denitrification treatment of the nitrogen-containing waste liquid by reducing the supply amount of nitrogen-containing waste liquid to the activated sludge tank in one cycle of intermittent aeration treatment Can continue.
10:廃液貯留槽
20:活性汚泥槽
21:空気噴出装置
22:ブロア
23:モータ
24:攪拌軸
25:攪拌羽根
26:pH計
30:最終沈殿池
10: Waste liquid storage tank 20: Activated sludge tank 21: Air ejection device 22: Blower 23: Motor 24: Stirrer shaft 25: Stirrer blade 26: pH meter 30: Final sedimentation tank
Claims (1)
前記活性汚泥槽内のpHを経時的に測定し、前記間欠曝気処理の1サイクルにおけるpHの最大値と最小値との差分を求め、この差分が予め定めた値を下回った場合には、前記間欠曝気処理の1サイクル当たりの前記活性汚泥槽への廃液供給量を低下させることを特徴とする窒素含有廃液の処理方法。 A waste liquid containing ammonia nitrogen is supplied to the activated sludge tank, and air aeration and aeration stop are alternately repeated with respect to the waste liquid, and an aerobic process by air aeration and an anaerobic process by aeration stop are set as one cycle. A method for treating nitrogen-containing waste liquid that performs intermittent aeration treatment,
The pH in the activated sludge tank is measured over time, the difference between the maximum value and the minimum value of the pH in one cycle of the intermittent aeration treatment is obtained, and when this difference falls below a predetermined value, A method for treating a nitrogen-containing waste liquid, comprising reducing the amount of waste liquid supplied to the activated sludge tank per cycle of intermittent aeration treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006215724A JP4622958B2 (en) | 2006-08-08 | 2006-08-08 | Nitrogen-containing waste liquid treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006215724A JP4622958B2 (en) | 2006-08-08 | 2006-08-08 | Nitrogen-containing waste liquid treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008036558A JP2008036558A (en) | 2008-02-21 |
JP4622958B2 true JP4622958B2 (en) | 2011-02-02 |
Family
ID=39172178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006215724A Active JP4622958B2 (en) | 2006-08-08 | 2006-08-08 | Nitrogen-containing waste liquid treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4622958B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4743100B2 (en) * | 2006-12-07 | 2011-08-10 | 富士電機株式会社 | Fermentation waste liquid treatment method and fermentation waste liquid treatment apparatus |
JP5025020B2 (en) * | 2008-11-07 | 2012-09-12 | 国立大学法人帯広畜産大学 | Organic waste treatment system and method |
CN107055957A (en) * | 2017-04-12 | 2017-08-18 | 兴化格林生物制品有限公司 | A kind of sewage disposal system |
JP7638627B2 (en) * | 2020-03-24 | 2025-03-04 | 住友重機械エンバイロメント株式会社 | Water treatment device and water treatment method |
JP7421453B2 (en) * | 2020-09-15 | 2024-01-24 | 日立造船株式会社 | Nitrification and denitrification equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06182390A (en) * | 1992-12-17 | 1994-07-05 | Meidensha Corp | Operation control method for batch type active sludge treatment |
JPH08323394A (en) * | 1995-06-02 | 1996-12-10 | Fujita Corp | Method for diagnosing intermittent aeration type activated sludge tank |
JPH10202289A (en) * | 1997-01-24 | 1998-08-04 | Kubota Corp | Batch type active sludge method |
JP2003285096A (en) * | 2002-03-28 | 2003-10-07 | Univ Waseda | Simultaneous denitrification and dephosphorization type treatment method for wastewater |
JP2007029882A (en) * | 2005-07-28 | 2007-02-08 | Fuji Electric Holdings Co Ltd | Nitrogen-containing waste liquid treatment method |
-
2006
- 2006-08-08 JP JP2006215724A patent/JP4622958B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06182390A (en) * | 1992-12-17 | 1994-07-05 | Meidensha Corp | Operation control method for batch type active sludge treatment |
JPH08323394A (en) * | 1995-06-02 | 1996-12-10 | Fujita Corp | Method for diagnosing intermittent aeration type activated sludge tank |
JPH10202289A (en) * | 1997-01-24 | 1998-08-04 | Kubota Corp | Batch type active sludge method |
JP2003285096A (en) * | 2002-03-28 | 2003-10-07 | Univ Waseda | Simultaneous denitrification and dephosphorization type treatment method for wastewater |
JP2007029882A (en) * | 2005-07-28 | 2007-02-08 | Fuji Electric Holdings Co Ltd | Nitrogen-containing waste liquid treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP2008036558A (en) | 2008-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008284427A (en) | Apparatus and method for treating waste water | |
JP5814392B2 (en) | Waste liquid treatment method and waste liquid treatment apparatus | |
JP5170446B2 (en) | Method and apparatus for producing nitrite-type nitrification reaction sludge, and wastewater treatment method and wastewater treatment apparatus | |
JP2000015288A (en) | Wastewater treatment method and apparatus | |
JP5355314B2 (en) | Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus | |
KR101018587B1 (en) | Nitrogen and phosphorus removal membrane separation | |
KR20170040900A (en) | Process for nitrogen exclusion in biological waste water treatment system | |
WO2005068380A1 (en) | A-sbr apparatus for removing nitrogen and phosphorous in sewage/waste water | |
KR20150083435A (en) | Operating method for wastewater treatment apparatus | |
JP4622958B2 (en) | Nitrogen-containing waste liquid treatment method | |
JP5733785B2 (en) | Waste water treatment method and waste water treatment equipment | |
JP3772882B2 (en) | Methane fermentation treatment method | |
JP2008155086A (en) | Waste water treatment method and apparatus and microbial agent for waste water treatment | |
JP4576845B2 (en) | Nitrogen-containing waste liquid treatment method | |
CN111094194A (en) | Device and method for short-range denitrification and inhibition of nitrous acid oxidation microbial activity | |
JP2008114215A (en) | Method and apparatus for treating sludge | |
CN111032581B (en) | Water treatment control system | |
Yang et al. | Nitrite accumulation in the treatment of wastewaters with high ammonia concentration | |
JP2006075749A (en) | Sewage treatment system | |
JP5325124B2 (en) | Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water | |
JP2007105630A (en) | Method for treating organic waste water | |
JP4835580B2 (en) | Nitrogen-containing waste liquid treatment method | |
JP4765931B2 (en) | Nitrogen-containing waste liquid treatment method | |
JP4904738B2 (en) | Nitrogen-containing waste liquid treatment method | |
JP2004025051A (en) | Organic wastewater treatment method and organic wastewater treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101005 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101018 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4622958 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |