[go: up one dir, main page]

JP4622160B2 - Diffraction grating integrated optical rotator and optical head device - Google Patents

Diffraction grating integrated optical rotator and optical head device Download PDF

Info

Publication number
JP4622160B2
JP4622160B2 JP2001164085A JP2001164085A JP4622160B2 JP 4622160 B2 JP4622160 B2 JP 4622160B2 JP 2001164085 A JP2001164085 A JP 2001164085A JP 2001164085 A JP2001164085 A JP 2001164085A JP 4622160 B2 JP4622160 B2 JP 4622160B2
Authority
JP
Japan
Prior art keywords
diffraction grating
liquid crystal
optical
light
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001164085A
Other languages
Japanese (ja)
Other versions
JP2002357715A (en
Inventor
真弘 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001164085A priority Critical patent/JP4622160B2/en
Publication of JP2002357715A publication Critical patent/JP2002357715A/en
Application granted granted Critical
Publication of JP4622160B2 publication Critical patent/JP4622160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回折格子一体型旋光子および光ヘッド装置に関し、特に高分子液晶を用いた回折格子一体型旋光子、並びに光記録媒体の情報の記録および再生を行う光ヘッド装置に関する。
【0002】
【従来の技術】
CD、DVDおよび光磁気ディスクなどの光記録媒体(以下、「光ディスク」という)に情報の記録および再生を行う光ヘッド装置において、半導体レーザからの出射光はレンズにより光記録媒体上に集光され、集光された出射光は光記録媒体で反射され戻り光となる。この戻り光となった出射光はビームスプリッタによって受光素子に導かれ、光記録媒体上の情報が電気信号に変換される。
【0003】
また、光ヘッド装置において、1/2波長板や、1/4波長板、偏光ビームスプリッタなどの素子を用いて、半導体レーザからの光の偏波面などの偏光状態を制御し、光の利用効率の向上、記録および再生の性能の向上を図ることができる。
【0004】
【発明が解決しようとする課題】
光ヘッド装置では、光ディスクのトラッキングサーボ用の回折格子と、偏光方向制御用の1/2波長板とが搭載されることがある。光ヘッド装置の小型化、生産性の向上のために、回折格子と1/2波長板の一体化が望まれている。しかしながら、光ヘッド装置の組み立てにおいて、回折格子を光軸の回りに回転調整し、回折光を光ディスク上のトラックに合わせる工程がある。すなわち、回折格子と1/2波長板を一体化したとき、前記工程において、1/2波長板も回折格子とともに回転するため、素子出射光として、所望の偏波面方向をもった光を得ることができなかった。
【0005】
そのため、1/2波長板の代わりに使用する光学素子として、光軸の回りの回転に対して偏波面方向は大きく変化せず、偏波面を所望の値だけ回転させる光学素子が求められていた。
【0006】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたものであり、透明基板と、透明基板上に形成された断面形状が凹凸状の回折格子と、透明基板上の回折格子とは反対側の面に形成された高分子液晶膜からなる旋光子とを備え、旋光子における液晶分子の配向方向が液晶膜の厚さ方向の軸の回りに捩れている回折格子一体型旋光子を提供する。
【0007】
また、直線偏光を出射する光源と、光源からの出射光を光記録媒体上に集光する対物レンズと、対物レンズにより集光され光記録媒体により反射された出射光を検出する検出器とを備える光ヘッド装置において、光源と対物レンズとの間の光路中に上記の回折格子一体型旋光子が設置されていることを特徴とする光ヘッド装置を提供する。
【0008】
【発明の実施の形態】
本発明の回折格子一体型旋光子の1例として、図1に示すように、透明基板11上に形成された断面形状が凹凸状の回折格子と、透明基板11の回折格子とは反対側の面に高分子液晶膜13とが配向膜12Aを挟んで一体に形成されている。高分子液晶膜13の液晶分子の配向方向は液晶膜の厚さ方向の軸の回りに捩じれている。さらに、透明基板14が配向膜12Bを挟んで高分子液晶膜13に重ねられ、回折格子一体型旋光子101を構成する。
図1では、波長λの直線偏光が紙面内の上から回折格子一体型旋光子101に入射し透過することで、その偏波面を旋光角度φだけ回転させ、回折光を生じて出射する様子も示している。
【0009】
回折格子一体型旋光子101は以下のように作製する。透明基板11としては、ガラスや石英ガラスなどの光学的に等方性の媒質を用いることができる。透明基板11に形成される回折格子は、透明基板11の材料として、ガラスを用いる場合、ガラス表面に成膜した石英ガラスをフォトリソグラフィとエッチングの技術を用いて加工して作製する。一方、透明基板11の材料として、石英ガラスを用いる場合、石英ガラス基板に直接、フォトリソグラフィとエッチングの技術を用いて作製してもよい。回折格子の格子平面パターンは、直線状の単純格子でも、曲線状のホログラム格子でもよく、用途によって選択できる。
【0010】
上述のように回折格子を形成した透明基板11および透明基板14上に配向膜用の膜を塗布し、おのおの所望の配向処理を施し配向膜12A、12Bとした後、透明基板14上の配向膜12Bに、複屈折性材料である液晶モノマーの溶液を塗布する。つぎに、配向膜12Aの配向処理方向と配向膜12Bの配向処理方向とが交差するようにして、回折格子を形成した透明基板11を重ねる。
【0011】
このとき、液晶モノマーのモノマー分子方向を、配向膜12Aと12Bとに接する位置でそれぞれの配向処理方向に合わせ、液晶層の厚さ方向の軸の回りに徐々に回転させて(捩じらせて)配向させる。すなわち、モノマー分子の方向は配向膜12Aと12Bとに接する位置では配向処理方向に合っている。最後に、光重合用の光源光を照射することにより重合硬化させて高分子液晶膜13とする。高分子液晶膜の液晶分子の配向方向は、液晶膜の膜面に平行であり、配向膜12Aと12Bとに接する位置では、それぞれの配向処理方向に一致している。したがって、高分子液晶の配向方向は高分子液晶膜13の膜内ではらせん状に捩じれている。
【0012】
また、高分子液晶膜13として、異常光屈折率と常光屈折率の差Δnが0.05〜0.25であるものを用いるのが次の理由から好ましい。Δnが0.05より小さいと、高分子液晶膜の膜厚dが厚くなり高分子液晶の配向不良が生じやすい。また、Δnが0.25より大きいと、適切なリタデーション値を得るために、膜厚dを1〜3μmと薄くしなければならず、生産性が低下するおそれがある。
【0013】
図2には、本発明における旋光子の高分子液晶膜13に、波長λの直線偏光が図の右奥から側から入射し、左手前に透過するときにその偏波面を回転させる様子を示している。図2において、高分子液晶膜13の光入射側の液晶分子の配向方向をαA、光出射側の配向方向をαBとする。このとき、入射する直線偏光の偏光方向と入射側の配向方向αAとを揃える(図2では水平方向)ことによって、波長λの直線偏光に対して所望の旋光特性を示し、その旋光角度φは入射側の配向方向αAと出射側の配向方向αBの差|αA−αB|に等しくなる。
【0014】
また、旋光子を透過する直線偏光の直線性を維持できる、高分子液晶膜13の膜厚dは、d=λ/(Δn・E)の関係式から求められる。ここで、係数Eは、図3に示すように、旋光角度φの関数として与えられ、φ=90°のとき、E≒1.13、φ=70°のとき、E≒1.06、φ=45°のとき、E≒1.01である。ここで、≒はほぼ等しいとこを意味する。
【0015】
本発明の回折格子一体型旋光子は、素子に形成された回折格子による回折光の方向を調整するとき、本素子を光軸の回りに回転しても、入射する直線偏光の偏波面はほとんど回転せず所望の値を維持できる。したがって、本発明によると、回折機能と旋光機能を一体化させた素子を実現することができる。また、温度変化に対して良好な透過波面収差を維持することも必要なために、透明基板としてガラス基板などの無機材料からなる光学的に平坦な基板を用いることが好ましい。
【0016】
図4は、上述の回折格子一体型旋光子101を搭載した本発明の光ヘッド装置の1例を示す側面図である。本発明の光ヘッド装置において、光源である半導体レーザ1を出射した直線偏光は、回折格子一体型旋光子101、偏光ビームスプリッタ2の順に透過後、コリメートレンズ3で平行光となり、対物レンズ4によって、光ディスク5の情報記録面上に集光する。ここで、光は回折格子一体型旋光子101を透過するとこにより、回折格子一体型旋光子101の旋光子の部分(高分子液晶膜)によって偏光方向を角度φだけ回転され、回折格子の部分によって複数の光に分けられる(図示せず)。光ディスク5の情報記録面上で反射した光は、対物レンズ4によって、再び平行光となり、コリメートレンズ3、偏光ビームスプリッタ2を経て光検出器6上に集光される。
【0017】
本発明の光ヘッド装置においては、回折格子を一体化した回折格子一体型旋光子101を使用しているので、従来の光ヘッド装置よりも、部品数を減らすことができる。また、回折格子部分により発生する光ディスクのトラッキングに用いる回折光の光ディスク上での集光位置を調整するとき、回折格子一体型旋光子を回転させても、出射する光の偏波面の偏光方向は一定である。結果として、偏光ビームスプリッタ2から安定した光量の往路光を得ることができて、安定した情報の記録および再生ができる。また、本発明の光ヘッド装置は、構成部品数が少なく、かつ組み立て調整が容易にできるので、生産性が高い。
【0018】
【実施例】
「例1」
本例は図1に示した回折格子一体型旋光子101の具体例で、旋光角度φが70°の旋光子である。
【0019】
屈折率が1.5であるガラスの透明基板11の表面を加工し、断面形状が凹凸状で周期が20μmの単純矩形の回折格子を、フォトリソグラフィと、エッチングを用いて形成した。つぎに、透明基板11と透明基板14(屈折率が1.5)に配向膜用のポリイミド膜を塗布しラビングによる配向処理を施して、配向膜12A、12Bとした。つぎに、透明基板14上の配向膜12Bに複屈折性材料である液晶モノマーの溶液を塗布し、配向膜12Aの配向処理方向と配向膜12Bの配向処理方向とが70°に交差するように透明基板11を重ね、光重合用の光源光を照射することで重合硬化させて高分子液晶膜13とし、回折格子一体型旋光子101を作製した。高分子液晶膜13内では、厚さ方向の軸の回りに液晶分子が捩じれている。また、高分子液晶膜13としては、異常光屈折率と常光屈折率との差Δnが0.067であるものを用いて、膜厚dを5.7μmとした。
【0020】
上述のように作製した回折格子一体型旋光子101は、透明基板14側から入射する光が波長405nmの直線偏光であり、その偏波面が配向膜12Bの配向方向に平行なときにその直線性を維持しつつ、その偏波面を70°回転させる旋光子として機能した。また、本例の回折格子一体型旋光子は光軸の回りの回転ズレに対して鈍感であり、±5°の素子の回転に対し、直線偏光の偏波面の回転角は70±0.1°であった。
【0021】
上述のように回折格子一体型旋光子を作製することで、素子に形成された回折格子による回折光の方向を調整するとき、本素子を光軸の回りに回転しても、入射する直線偏光の偏波面が回転する角度は変化せず所望の値を維持できる。したがって、本発明によって、回折機能と旋光機能を一体化させた素子を実現することができた。
【0022】
さらに、本例で作成した複数個の回折格子一体型旋光子101の透過波面収差を測定したところ、いずれの素子も波長633nmで0.01λrms(二乗平均偏差)以下の、低い値となった。この値は、従来の複屈折性を誘起したポリカーボネートなどをガラスなどで挟んだ光学素子の値0.015λrmsに比べ小さく、安定した値である。
【0023】
「例2」
例1で作製された回折格子一体型旋光子101を、図4に示すように、光ヘッド装置の半導体レーザ1と偏光ビームスプリッタ2との間に設置した。波長405nmの直線偏光を発振する半導体レーザ1から出射光を、透明基板14側から回折格子一体型旋光子101に、偏波面方向を配向膜12Bの配向方向に一致させて入射した(図1、図2参照)。
【0024】
このように光ヘッド装置を構成するとき、回折格子一体型旋光子101を±3°の間で回転させて、回折格子一体型旋光子101に形成された回折格子からの回折光の光ディスク5上での集光位置を調整した。このとき、回折格子一体型旋光子101からの出射光の偏波面方向は、入射偏光に対してほぼ70°であった。その結果、回折格子一体型旋光子101を出射した直線偏光の、偏光ビームスプリッタ2透過後の光量変動を、±1.5%以内に抑えることができ、良好な情報の記録および再生特性を示した。また、本例の光ヘッド装置においては、構成部品数が少なく、かつ組み立て調整を容易に実施できた。
【0025】
【発明の効果】
以上説明したように、本発明の回折格子一体型旋光子は、素子を構成する透明基板に形成された回折格子による回折光の集光位置調整の際、光軸の回りの回転調整に対して偏波面方向を変えることがない。
【0026】
本発明の回折格子一体型旋光子を光ヘッド装置に搭載することにより、素子搭載時に素子の光軸の回りの回転マージンが増し、緒性調整が容易となって生産性を向上できる。また、本発明の回折格子一体型旋光子は回折機能と旋光機能とを一体化しているので、光ヘッド装置の部品数を削減できる。
【図面の簡単な説明】
【図1】本発明の回折格子一体型旋光子の構成の1例を示す断面図。
【図2】本発明における旋光子が直線偏光の偏波面を回転させる様子を示す概念図。
【図3】実施形態に係る係数Eと旋光角度φの関係を示すグラフ。
【図4】本発明の光ヘッド装置の構成の1例を示す側面図。
【符号の説明】
101:回折格子一体型旋光子
11:透明基板
12A、12B:配向膜
13:高分子液晶膜
1:半導体レーザ
2:偏光ビームスプリッタ
3:コリメートレンズ
4:対物レンズ
5:光ディスク
6:光検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diffraction grating integrated optical rotator and an optical head device, and more particularly to a diffraction grating integrated optical rotator using a polymer liquid crystal and an optical head device for recording and reproducing information on an optical recording medium.
[0002]
[Prior art]
In an optical head device that records and reproduces information on an optical recording medium (hereinafter referred to as an “optical disk”) such as a CD, a DVD, and a magneto-optical disk, light emitted from the semiconductor laser is condensed on the optical recording medium by a lens. The condensed emitted light is reflected by the optical recording medium and becomes return light. The outgoing light that has become the return light is guided to the light receiving element by the beam splitter, and the information on the optical recording medium is converted into an electrical signal.
[0003]
Further, in the optical head device, the polarization state of the polarization plane of the light from the semiconductor laser is controlled using elements such as a half-wave plate, a quarter-wave plate, and a polarization beam splitter, and the light use efficiency And the performance of recording and reproduction can be improved.
[0004]
[Problems to be solved by the invention]
In an optical head device, a diffraction grating for tracking servo of an optical disk and a half-wave plate for controlling the polarization direction may be mounted. In order to reduce the size of the optical head device and improve productivity, it is desired to integrate a diffraction grating and a half-wave plate. However, in assembling the optical head device, there is a step of rotating the diffraction grating around the optical axis to match the diffracted light with the track on the optical disk. That is, when the diffraction grating and the half-wave plate are integrated, the half-wave plate is also rotated together with the diffraction grating in the above process, so that light having a desired polarization plane direction can be obtained as the element outgoing light. I could not.
[0005]
Therefore, as an optical element to be used in place of the half-wave plate, there has been a demand for an optical element that rotates the polarization plane by a desired value without largely changing the polarization plane direction with respect to the rotation around the optical axis. .
[0006]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-described problems, and includes a transparent substrate, a diffraction grating having an uneven cross-sectional shape formed on the transparent substrate, and a diffraction grating on the opposite side of the diffraction grating on the transparent substrate. And an optical rotator composed of a polymer liquid crystal film formed on a surface, wherein the orientation direction of liquid crystal molecules in the optical rotator is twisted about an axis in the thickness direction of the liquid crystal film.
[0007]
A light source that emits linearly polarized light; an objective lens that condenses the light emitted from the light source on the optical recording medium; and a detector that detects the outgoing light collected by the objective lens and reflected by the optical recording medium. An optical head device comprising the above-described diffraction grating integrated optical rotator is provided in an optical path between a light source and an objective lens.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As an example of the diffraction grating integrated optical rotator of the present invention, as shown in FIG. 1, the diffraction grating having a concavo-convex cross section formed on the transparent substrate 11 and the diffraction grating of the transparent substrate 11 opposite to the diffraction grating are provided. A polymer liquid crystal film 13 is integrally formed on the surface with the alignment film 12A interposed therebetween. The alignment direction of the liquid crystal molecules of the polymer liquid crystal film 13 is twisted around the axis of the thickness direction of the liquid crystal film. Further, the transparent substrate 14 is superimposed on the polymer liquid crystal film 13 with the alignment film 12B interposed therebetween, and the diffraction grating integrated optical rotator 101 is configured.
In FIG. 1, linearly polarized light having a wavelength λ is incident on and transmitted through the diffraction grating integrated optical rotator 101 from above in the paper, thereby rotating the polarization plane by the optical rotation angle φ and generating and emitting diffracted light. Show.
[0009]
The diffraction grating integrated optical rotator 101 is manufactured as follows. As the transparent substrate 11, an optically isotropic medium such as glass or quartz glass can be used. The diffraction grating formed on the transparent substrate 11 is produced by processing quartz glass formed on the glass surface using photolithography and etching techniques when glass is used as the material of the transparent substrate 11. On the other hand, when quartz glass is used as the material of the transparent substrate 11, it may be produced directly on the quartz glass substrate using photolithography and etching techniques. The grating plane pattern of the diffraction grating may be a straight simple grating or a curved hologram grating, and can be selected depending on the application.
[0010]
After the alignment film is applied on the transparent substrate 11 and the transparent substrate 14 on which the diffraction gratings are formed as described above and subjected to a desired alignment treatment to form the alignment films 12A and 12B, the alignment film on the transparent substrate 14 is obtained. A solution of a liquid crystal monomer that is a birefringent material is applied to 12B. Next, the transparent substrate 11 on which the diffraction grating is formed is overlaid so that the alignment treatment direction of the alignment film 12A and the alignment treatment direction of the alignment film 12B intersect each other.
[0011]
At this time, the monomer molecular direction of the liquid crystal monomer is aligned with each alignment treatment direction at a position in contact with the alignment films 12A and 12B, and is gradually rotated (twisted) around the axis in the thickness direction of the liquid crystal layer. And align. That is, the direction of the monomer molecules matches the alignment processing direction at the position in contact with the alignment films 12A and 12B. Finally, the polymer liquid crystal film 13 is obtained by being polymerized and cured by irradiation with light source light for photopolymerization. The alignment direction of the liquid crystal molecules of the polymer liquid crystal film is parallel to the film surface of the liquid crystal film, and coincides with each alignment treatment direction at a position in contact with the alignment films 12A and 12B. Therefore, the orientation direction of the polymer liquid crystal is twisted in a spiral manner in the polymer liquid crystal film 13.
[0012]
Moreover, it is preferable to use the polymer liquid crystal film 13 having a difference Δn between the extraordinary refractive index and the ordinary refractive index of 0.05 to 0.25 for the following reason. When Δn is smaller than 0.05, the film thickness d of the polymer liquid crystal film is increased, and alignment defects of the polymer liquid crystal are liable to occur. On the other hand, if Δn is greater than 0.25, the film thickness d must be reduced to 1 to 3 μm in order to obtain an appropriate retardation value, which may reduce productivity.
[0013]
FIG. 2 shows a state in which linearly polarized light having a wavelength λ is incident from the back right side of the figure and is transmitted to the left front side when the polarization plane is rotated to the polymer liquid crystal film 13 of the optical rotator according to the present invention. ing. In FIG. 2, the alignment direction of the liquid crystal molecules on the light incident side of the polymer liquid crystal film 13 is α A , and the alignment direction on the light emission side is α B. At this time, by aligning the polarization direction of the incident linearly polarized light with the orientation direction α A on the incident side (horizontal direction in FIG. 2), a desired optical rotation characteristic is exhibited with respect to the linearly polarized light of wavelength λ, and its optical rotation angle φ Is equal to the difference | α A −α B | between the orientation direction α A on the incident side and the orientation direction α B on the exit side.
[0014]
The film thickness d of the polymer liquid crystal film 13 that can maintain the linearity of the linearly polarized light that passes through the optical rotator can be obtained from the relational expression d = λ / (Δn · E). Here, as shown in FIG. 3, the coefficient E is given as a function of the optical rotation angle φ. When φ = 90 °, E≈1.13, when φ = 70 °, E≈1.06, φ When = 45 °, E≈1.01. Here, ≒ means almost equal.
[0015]
The diffraction grating integrated optical rotator of the present invention has almost no polarization plane of incident linearly polarized light even when the element is rotated around the optical axis when adjusting the direction of diffracted light by the diffraction grating formed on the element. The desired value can be maintained without rotating. Therefore, according to the present invention, an element in which the diffraction function and the optical rotation function are integrated can be realized. Further, since it is necessary to maintain good transmitted wavefront aberration with respect to temperature change, it is preferable to use an optically flat substrate made of an inorganic material such as a glass substrate as the transparent substrate.
[0016]
FIG. 4 is a side view showing an example of an optical head device of the present invention on which the above-described diffraction grating integrated optical rotator 101 is mounted. In the optical head device of the present invention, the linearly polarized light emitted from the semiconductor laser 1 as the light source passes through the diffraction grating integrated optical rotator 101 and the polarization beam splitter 2 in this order, and then becomes parallel light by the collimator lens 3. The light is condensed on the information recording surface of the optical disk 5. Here, since the light passes through the diffraction grating integrated optical rotator 101, the polarization direction is rotated by the angle φ by the optical rotator part (polymer liquid crystal film) of the diffraction grating integrated optical rotator 101, and the diffraction grating part. Is divided into a plurality of lights (not shown). The light reflected on the information recording surface of the optical disk 5 becomes parallel light again by the objective lens 4, and is condensed on the photodetector 6 through the collimator lens 3 and the polarization beam splitter 2.
[0017]
In the optical head device of the present invention, since the diffraction grating integrated optical rotator 101 in which the diffraction gratings are integrated is used, the number of components can be reduced as compared with the conventional optical head device. Also, when adjusting the condensing position of the diffracted light used for tracking of the optical disk generated by the diffraction grating part on the optical disk, the polarization direction of the polarization plane of the emitted light is adjusted even if the diffraction grating integrated optical rotator is rotated. It is constant. As a result, it is possible to obtain a stable amount of outgoing light from the polarization beam splitter 2 and to record and reproduce information stably. In addition, the optical head device of the present invention has high productivity because it has a small number of components and can be easily assembled and adjusted.
[0018]
【Example】
"Example 1"
This example is a specific example of the diffraction grating integrated optical rotator 101 shown in FIG. 1, and is an optical rotator having an optical rotation angle φ of 70 °.
[0019]
The surface of the glass transparent substrate 11 having a refractive index of 1.5 was processed, and a simple rectangular diffraction grating having an uneven cross-sectional shape and a period of 20 μm was formed using photolithography and etching. Next, a polyimide film for an alignment film was applied to the transparent substrate 11 and the transparent substrate 14 (refractive index 1.5), and an alignment process was performed by rubbing to obtain alignment films 12A and 12B. Next, a solution of a liquid crystal monomer, which is a birefringent material, is applied to the alignment film 12B on the transparent substrate 14, and the alignment treatment direction of the alignment film 12A and the alignment treatment direction of the alignment film 12B cross each other at 70 °. The transparent substrate 11 was stacked and polymerized and cured by irradiating light source light for photopolymerization to form a polymer liquid crystal film 13 to produce a diffraction grating integrated optical rotator 101. In the polymer liquid crystal film 13, liquid crystal molecules are twisted around an axis in the thickness direction. Moreover, as the polymer liquid crystal film 13, a film having a difference Δn between the extraordinary refractive index and the ordinary refractive index of 0.067 was used, and the film thickness d was set to 5.7 μm.
[0020]
The diffraction grating integrated optical rotator 101 manufactured as described above has linearity when light incident from the transparent substrate 14 side is linearly polarized light having a wavelength of 405 nm and its polarization plane is parallel to the alignment direction of the alignment film 12B. This functioned as an optical rotator that rotated the plane of polarization by 70 °. In addition, the diffraction grating integrated optical rotator of this example is insensitive to the rotational shift around the optical axis, and the rotation angle of the polarization plane of linearly polarized light is 70 ± 0.1 with respect to the rotation of the element of ± 5 °. °.
[0021]
By adjusting the direction of the diffracted light by the diffraction grating formed on the element by preparing the diffraction grating integrated optical rotator as described above, even if this element is rotated around the optical axis, the incident linearly polarized light The angle at which the plane of polarization of the light rotates does not change and can maintain a desired value. Therefore, according to the present invention, an element in which the diffraction function and the optical rotation function are integrated can be realized.
[0022]
Furthermore, when the transmitted wavefront aberration of the plurality of diffraction grating integrated optical rotators 101 prepared in this example was measured, all the elements had low values of 0.01λ rms (root mean square deviation) or less at a wavelength of 633 nm. . This value is small and stable compared to the value 0.015λ rms of the conventional optical element in which polycarbonate or the like in which birefringence is induced is sandwiched between glass or the like.
[0023]
"Example 2"
As shown in FIG. 4, the diffraction grating integrated optical rotator 101 produced in Example 1 was installed between the semiconductor laser 1 and the polarization beam splitter 2 of the optical head device. Light emitted from the semiconductor laser 1 that oscillates linearly polarized light having a wavelength of 405 nm is incident on the diffraction grating integrated optical rotator 101 from the transparent substrate 14 side with the polarization plane direction coincident with the alignment direction of the alignment film 12B (FIG. 1, FIG. (See FIG. 2).
[0024]
When the optical head device is configured in this way, the diffraction grating integrated optical rotator 101 is rotated by ± 3 °, and the diffracted light from the diffraction grating formed on the diffraction grating integrated optical rotator 101 is reflected on the optical disk 5. The condensing position at was adjusted. At this time, the polarization plane direction of the outgoing light from the diffraction grating integrated optical rotator 101 was approximately 70 ° with respect to the incident polarized light. As a result, the variation in the amount of light of the linearly polarized light emitted from the diffraction grating integrated optical rotator 101 after passing through the polarizing beam splitter 2 can be suppressed to within ± 1.5%, and excellent information recording and reproducing characteristics are exhibited. It was. Further, in the optical head device of this example, the number of components is small and assembly adjustment can be easily performed.
[0025]
【The invention's effect】
As described above, the diffraction grating integrated optical rotator of the present invention is capable of adjusting rotation of the diffracted light by the diffraction grating formed on the transparent substrate constituting the element, while adjusting the rotational position around the optical axis. Does not change the polarization plane direction.
[0026]
By mounting the diffraction grating integrated optical rotator of the present invention on an optical head device, the rotation margin around the optical axis of the element is increased when the element is mounted, and the adjustment of the characteristics can be facilitated to improve the productivity. In addition, since the diffraction grating integrated optical rotator of the present invention integrates the diffraction function and the optical rotation function, the number of parts of the optical head device can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of the configuration of a diffraction grating integrated optical rotator of the present invention.
FIG. 2 is a conceptual diagram showing how the optical rotator in the present invention rotates the plane of polarization of linearly polarized light.
FIG. 3 is a graph showing a relationship between a coefficient E and an optical rotation angle φ according to the embodiment.
FIG. 4 is a side view showing an example of the configuration of the optical head device of the present invention.
[Explanation of symbols]
101: diffraction grating integrated optical rotator 11: transparent substrate 12A, 12B: alignment film 13: polymer liquid crystal film 1: semiconductor laser 2: polarizing beam splitter 3: collimating lens 4: objective lens 5: optical disk 6: photodetector

Claims (5)

透明基板と、透明基板上に形成された断面形状が凹凸状の回折格子と、透明基板上の回折格子とは反対側の面に形成された高分子液晶膜からなる旋光子とを備え、旋光子における液晶分子の配向方向が液晶膜の厚さ方向の軸の回りに捩れている回折格子一体型旋光子。  An optical rotation comprising a transparent substrate, a diffraction grating having an uneven cross-sectional shape formed on the transparent substrate, and an optical rotator made of a polymer liquid crystal film formed on a surface opposite to the diffraction grating on the transparent substrate. A diffraction grating integrated optical rotator in which the orientation direction of liquid crystal molecules in the optical element is twisted around the axis of the thickness direction of the liquid crystal film. 前記高分子液晶膜の異常光屈折率と常光屈折率の差を△n、入射光の波長をλとすると、前記高分子液晶膜の膜厚dは次式となることを特徴とする請求項1記載の回折格子一体型旋光子。The film thickness d of the polymer liquid crystal film is expressed by the following equation, where Δn is the difference between the extraordinary refractive index and the ordinary light refractive index of the polymer liquid crystal film, and λ is the wavelength of incident light. 1. A diffraction grating integrated optical rotator according to 1.
d=λ/(△n・E) ただし、1<E≦1.13          d = λ / (Δn · E) where 1 <E ≦ 1.13
前記高分子液晶膜は、第1の配向膜が形成された第1の透明基板と、前記回折格子が形成された面の反対面に第2の配向膜が形成された第2の透明基板に狭持され、第1の配向膜面と第2の配向膜面における高分子液晶の配向方向が異なることを特徴とする請求項1又は2記載の回折格子一体型旋光子。The polymer liquid crystal film includes a first transparent substrate on which a first alignment film is formed, and a second transparent substrate on which a second alignment film is formed on a surface opposite to the surface on which the diffraction grating is formed. 3. The diffraction grating integrated optical rotator according to claim 1, wherein the orientation direction of the polymer liquid crystal is different between the first alignment film surface and the second alignment film surface. 前記高分子液晶膜は、液晶モノマー分子を光照射により重合硬化されることを特徴とする請求項1乃至3の何れか一項記載の回折格子一体型旋光子。4. The diffraction grating integrated optical rotator according to claim 1, wherein the polymer liquid crystal film is obtained by polymerizing and curing liquid crystal monomer molecules by light irradiation. 直線偏光を出射する光源と、光源からの出射光を光記録媒体上に集光する対物レンズと、対物レンズにより集光され光記録媒体により反射された出射光を検出する検出器とを備える光ヘッド装置において、光源と対物レンズとの間の光路中に請求項1乃至4の何れか一項記載の回折格子一体型旋光子が設置されていることを特徴とする光ヘッド装置。Light comprising: a light source that emits linearly polarized light; an objective lens that condenses the light emitted from the light source on the optical recording medium; and a detector that detects the emitted light collected by the objective lens and reflected by the optical recording medium. 5. An optical head device, wherein the diffraction grating integrated optical rotator according to claim 1 is installed in an optical path between a light source and an objective lens.
JP2001164085A 2001-05-31 2001-05-31 Diffraction grating integrated optical rotator and optical head device Expired - Fee Related JP4622160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001164085A JP4622160B2 (en) 2001-05-31 2001-05-31 Diffraction grating integrated optical rotator and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001164085A JP4622160B2 (en) 2001-05-31 2001-05-31 Diffraction grating integrated optical rotator and optical head device

Publications (2)

Publication Number Publication Date
JP2002357715A JP2002357715A (en) 2002-12-13
JP4622160B2 true JP4622160B2 (en) 2011-02-02

Family

ID=19006948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001164085A Expired - Fee Related JP4622160B2 (en) 2001-05-31 2001-05-31 Diffraction grating integrated optical rotator and optical head device

Country Status (1)

Country Link
JP (1) JP4622160B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124179B1 (en) 2003-04-09 2012-03-27 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
TWI609409B (en) 2003-10-28 2017-12-21 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TW201809801A (en) 2003-11-20 2018-03-16 日商尼康股份有限公司 Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method
TWI437618B (en) 2004-02-06 2014-05-11 尼康股份有限公司 Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method
EP2660853B1 (en) 2005-05-12 2017-07-05 Nikon Corporation Projection optical system, exposure apparatus and exposure method
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422917A (en) * 1990-05-18 1992-01-27 Nippon Oil Co Ltd Optically active optical element
JP3550905B2 (en) * 1996-09-18 2004-08-04 旭硝子株式会社 Manufacturing method of diffraction element used for optical head device
JP3635516B2 (en) * 1997-07-11 2005-04-06 株式会社リコー Optical disk device
JPH11174226A (en) * 1997-12-09 1999-07-02 Ricoh Co Ltd Polarizing hologram and optical head using the same

Also Published As

Publication number Publication date
JP2002357715A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP4479726B2 (en) Liquid crystal lens element and optical head device
JP3620145B2 (en) Optical head device
WO2006043516A1 (en) Liquid crystal diffractive lens element and optical head device
JPWO2005076265A1 (en) Liquid crystal lens element and optical head device
JP4560906B2 (en) Optical head device
JP4622160B2 (en) Diffraction grating integrated optical rotator and optical head device
JP3671768B2 (en) Optical head device
JP4300784B2 (en) Optical head device
JP4478398B2 (en) Polarizing optical element, optical element unit, optical head device, and optical disk drive device
JPH09304750A (en) Optical modulator and optical head device
JP4396294B2 (en) Optical head device
JP4631135B2 (en) Phaser
JPH1164615A (en) Diffraction element
JPH11174226A (en) Polarizing hologram and optical head using the same
JP5131244B2 (en) Laminated phase plate and optical head device
JP2003288733A (en) Aperture limiting element and optical head device
JP4626026B2 (en) Optical head device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP4649748B2 (en) Two-wavelength phase plate and optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JPWO2004079436A1 (en) Optical attenuator and optical head device
JP2001344800A (en) Optical head device
JP4085527B2 (en) Optical head device
JP4337510B2 (en) Diffraction element and optical head device
JP2001311821A (en) Phaser and optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees