[go: up one dir, main page]

JP4619575B2 - Hydrogen gas production method and hydrogen gas production facility - Google Patents

Hydrogen gas production method and hydrogen gas production facility Download PDF

Info

Publication number
JP4619575B2
JP4619575B2 JP2001181443A JP2001181443A JP4619575B2 JP 4619575 B2 JP4619575 B2 JP 4619575B2 JP 2001181443 A JP2001181443 A JP 2001181443A JP 2001181443 A JP2001181443 A JP 2001181443A JP 4619575 B2 JP4619575 B2 JP 4619575B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
hydrogen gas
heat exchanger
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001181443A
Other languages
Japanese (ja)
Other versions
JP2003002601A (en
Inventor
直彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Japan GK
Original Assignee
Air Liquide Japan GK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Japan GK filed Critical Air Liquide Japan GK
Priority to JP2001181443A priority Critical patent/JP4619575B2/en
Publication of JP2003002601A publication Critical patent/JP2003002601A/en
Application granted granted Critical
Publication of JP4619575B2 publication Critical patent/JP4619575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液化天然ガスを原料として水素ガスを生成させた後に、水素貯蔵装置に低温下で貯蔵する水素ガスの製造方法およびその製造設備に関する。
【0002】
【従来の技術】
近年、エネルギー消費に伴う環境破壊が顕在化し、再生・持続可能な社会の構築の必要性が認識されるようになってきた。この観点からクリーンなエネルギーである水素エネルギーの利用に関心が集まっており、自動車燃料、未来航空機燃料等への利用が期待されている。
【0003】
しかし、水素エネルギーを各種用途に利用する場合、水素ガス等をどのような手段で貯蔵するかが、体積効率等の点から問題となる。水素ガスの貯蔵手段としては、従来より水素吸蔵合金が知られているが、重量がネックとなって、自動車等の輸送手段などへの利用には難点があり、実用化の弊害となっていた。
【0004】
このため、貯蔵手段の軽量化を図るべく、炭素系水素吸蔵材に注目が集まっている。その一つとしては、活性炭を水酸化カリウムなどの特殊な薬品賦活法によって水素吸着能力を増強したものが挙げられる。これを液化天然ガス温度又は液化窒素温度まで冷却すると、単なる高圧ガス貯蔵方法に比較し、低い圧力かつ軽量化ができるとの結果が出ている。また、最近ではカーボンナノチューブなどの新しい材料による水素吸蔵材での高い吸着能などにも関心が集まっている。
【0005】
一方、最終的には、自然エネルギーを利用した水素の生成が究極の姿と考えられているが、当面、自動車等の燃料として水素を利用するインフラ整備の観点から、比較的に環境に優しい天然ガスからの水素生成にも関心が集まっている。当該水素生成は、例えば、特開平8−92577号公報等に記載のように、天然ガスの主成分であるメタンと水との反応により水素と一酸化炭素を生成させ、更に一酸化炭素と水との反応により水素と二酸化炭素を生成させた後、水素ガスを分離膜又はPSA(圧力スイング吸着)装置等により精製する方法が知られている。
【0006】
【発明が解決しようとする課題】
しかしながら、このような方法で製造した水素ガスを、上述した水素吸蔵材で貯蔵しようとすると、水素ガスの冷却のために多大な動力が必要となり、その低減が望まれていた。
【0007】
一方、天然ガスは海外からの輸送のために液化され、液化天然ガス(LNG)の形で輸入される。その寒冷の利用例は幾つかあるが、大部分は単に海水などとの熱交換で気化され、寒冷は有効利用されず捨てられている。
【0008】
そこで、本発明の目的は、液化天然ガスから水素ガスを製造して低温下で貯蔵する際に、原料の寒冷を利用して貯蔵のための冷却動力を軽減することができる水素ガスの製造方法および水素ガスの製造設備を提供することにある。
【0009】
【課題を解決するための手段】
上記目的は、下記の如き本発明により達成できる。即ち、液化天然ガスを昇圧する工程と、昇圧した液化天然ガスを熱交換器に導入して熱交換により液化天然ガスを加温する工程と、加温した液化天然ガスを気化させる工程と、気化した天然ガスの少なくとも一部を反応原料として水素ガス生成装置に供給して水素ガスを生成させる工程と、生成した水素ガスを前記熱交換器に導入して前記液化天然ガスとの熱交換により水素ガスを−50℃以下に予冷する工程と、予冷した水素ガスを水素貯蔵装置に供給して低温下で貯蔵する工程とを含むことを特徴とする。
【0010】
上記において、前記生成した水素ガスを補助昇圧手段により昇圧してから前記熱交換器に導入することが好ましい。
【0011】
一方、本発明の水素ガスの製造設備は、液化天然ガスを昇圧させる昇圧装置と、天然ガスを反応原料として水素ガスを生成させる水素ガス生成装置と、水素ガスを低温下で貯蔵する水素貯蔵装置と、前記昇圧された液化天然ガスおよび前記生成した水素ガスを導入して両者を熱交換させ、予冷された水素ガスを前記水素貯蔵装置に供給する熱交換器と、その熱交換器で加温・気化された液化天然ガスの少なくとも一部を前記水素ガス生成装置に供給する手段とを備えることを特徴とする。
【0012】
上記において、前記水素ガス生成装置で生成した水素ガスを昇圧してから前記熱交換器に導入する補助昇圧手段を備えてもよい。
【0013】
また、前記水素貯蔵装置は、内設した水素貯蔵部を冷却する液化冷媒を貯留する保冷槽と、その保冷槽で気化した冷媒蒸発ガスを熱交換器で加温した後、圧縮機で圧縮して再びその熱交換器に導入して冷却した後、膨張により一部液化させ、気体分を再び前記熱交換器に導入して寒冷を回収し、液化した液化冷媒を再び前記保冷槽に供給するリサイクル経路とを備えることが好ましい。
【0014】
あるいは、前記水素貯蔵装置は、内設した水素貯蔵部を冷却する液化冷媒を貯留する保冷槽と、その保冷槽で気化した冷媒蒸発ガスを熱交換器で加温した後、圧縮機で圧縮して再びその熱交換器に導入して冷却した後、膨張により一部液化させ、気体分を再び前記熱交換器に導入して寒冷源とし、液化した液化冷媒を再び前記保冷槽に供給するリサイクル経路とを備えると共に、そのリサイクル経路の熱交換器には、別の寒冷源として液化天然ガスを導入する経路を備えることが好ましい。
【0015】
[作用効果]
本発明の製造方法によると、原料である液化天然ガスにより、生成した水素ガスの予冷を行うため、有効利用されず捨てられていた寒冷を利用することにより水素貯蔵の際の冷却動力を軽減することができる。また、液化天然ガスを液体状態で昇圧するため、別途ガス原料を圧縮する場合と比べて動力を軽減することができる。その結果、液化天然ガスから水素ガスを製造して低温下で貯蔵する際に、原料の寒冷を利用して貯蔵のための冷却動力を軽減することができる水素ガスの製造方法が提供できる。
【0016】
また、前記生成した水素ガスを補助昇圧手段により昇圧してから前記熱交換器に導入する場合、水素貯蔵装置が高圧を要する場合にも対応できる。
【0017】
一方、本発明の製造設備によると、上記の如き作用効果により、液化天然ガスから水素ガスを製造して低温下で貯蔵する際に、原料の寒冷を利用して貯蔵のための冷却動力を軽減することができる。
【0018】
また、前記水素ガス生成装置で生成した水素ガスを昇圧してから前記熱交換器に導入する補助昇圧手段を備える場合、水素貯蔵装置が高圧を要する場合にも対応できる。
【0019】
前記水素貯蔵装置は、前記保冷槽と前記リサイクル経路とを備える場合、リサイクル経路により水素貯蔵装置の水素貯蔵部を冷却する液化冷媒を発生させることができ、保冷槽の液化冷媒の気化潜熱を利用して効率良く冷却をおこなうことができる。
【0020】
前記水素貯蔵装置は、前記保冷槽と前記リサイクル経路とを備えると共に、そのリサイクル経路の熱交換器には、別の寒冷源として液化天然ガスを導入する経路を備える場合、水素貯蔵装置の水素貯蔵部を冷却する液化冷媒を発生させる際の寒冷源としても液化天然ガスを利用するため、冷却動力をより軽減することができる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0022】
本発明の水素ガスの製造方法は、図1に示すような本発明の水素ガスの製造設備によって好適に実施することができる。本発明の製造設備は、液化天然ガスを昇圧させる昇圧装置1と、天然ガスを反応原料として水素ガスを生成させる水素ガス生成装置10と、水素ガスを低温下で貯蔵する水素貯蔵装置20と、前記昇圧された液化天然ガスおよび前記生成した水素ガスを導入して両者を熱交換させ、予冷された水素ガスを前記水素貯蔵装置に供給する熱交換器2と、その熱交換器2で加温・気化された液化天然ガスの少なくとも一部を水素ガス生成装置10に供給する手段とを備える。
【0023】
本実施形態では、熱交換器を2基設けて、低温用の熱交換器2には液化天然ガスを導入し、加温によりその大部分を気化させた後、気液分離器5で気液分離し、分離後の天然ガスを高温用の熱交換器3に導入すると共に、気液分離器5から導出した液化天然ガスを気化して水素ガス生成装置10に供給する蒸発器4を備える例を示す。
【0024】
本発明では、まず、液化天然ガスを昇圧する工程を行うが、昇圧は後の工程で昇圧の必要がない圧力まで行うのが好ましい。具体的には、水素ガス生成装置の精製手段又は水素貯蔵装置等の要求圧に応じて設定され、例えば水素ガス生成装置がPSA精製手段を備える場合は、昇圧を10〜40barGまで行うのが好ましく、20〜30barGまで行うのがより好ましい。なお、原料となる液化天然ガスは、ほぼ大気圧、約−155℃で供給されるのが一般的である。
【0025】
次いで、昇圧した液化天然ガスを熱交換器に導入して熱交換により液化天然ガスを加温する工程を行うが、本実施形態では、低温用の熱交換器2に液化天然ガスが導入される。大部分が気化した液化天然ガスは、気液分離器5で気液分離され、気相分は高温用の熱交換器3に導入される。つまり、低温用の熱交換器2によって、液化天然ガスを加温する工程と気化させる工程を行っている。
【0026】
その一方で、本実施形態では、気液分離器5の液相部から導出した液化天然ガスを蒸発器4で気化させる。蒸発器4の熱媒としては、海水やフレオンなどを用いることができるが、熱交換により生じた冷熱(寒冷)を圧縮機等の冷却水として使用することもできる。
【0027】
熱交換器3へ供給された天然ガスは、生成した水素ガスと熱交換して加温される。加温器6は、熱交換器3から排出される水素ガスの温度が、水素ガス生成装置10の原料温度として不十分である場合に設けられる。熱媒としては、蒸発器4の場合と同様である。
【0028】
次いで、加温器6と蒸発器4からの天然ガスを反応原料として水素ガス生成装置10に供給して水素ガスを生成させる工程を行う。なお、過剰な天然ガスは弁7を介して、他の系に供給される。水素ガス生成装置10としては、天然ガスを反応原料として水素ガスが生成可能な装置であれば何れでもよいが、例えば下記の装置が挙げられる。通常、このような水素ガス生成装置10では、原料圧縮機が必要であるが、本発明ではこれを不要にすることが出来る。
【0029】
水素ガス生成装置は、図2に示すように、天然ガスを脱硫する脱硫部12と、脱硫された天然ガスに水を添加後、この混合流体を改質触媒と接触させて水蒸気改質することで、高濃度水素含有ガスを製造する水蒸気改質部13と、脱硫部12へ供給される原料を予熱する原料予熱部11と、水蒸気改質部13へ供給される混合流体を予熱する予熱部17と、高濃度水素含有ガスを変成触媒と接触させて水素濃度を高めた高濃度水素含有ガスを製造するガス変成部18と、水素以外の改質ガス含有成分を吸着除去する吸着剤を有して、高純度水素ガスを精製するPSA部19とで主に構成されている。本発明ではPSAの代わりにTSAを利用してもよい。
【0030】
脱硫部12は、水素化触媒が内部充填された上流側の水素化触媒層と、脱硫剤が充填された下流側の脱硫剤層とから構成されている。水素化触媒層は、硫黄分を含んだ原料天然ガスを水素化触媒に接触させることで、この硫黄分を水素化処理して硫化水素に改質する。これらの反応は、通常200〜400℃で行われるため、原料予熱部11での排ガスによる予熱が行われる。
【0031】
水蒸気改質部13は、脱硫された天然ガスに水蒸気を添加したガスを、改質触媒と接触させて水蒸気改質することで、高濃度水素含有ガスを製造する。この水蒸気改質部13には、反応管内に、白金,ルテニウムまたはニッケルなどの元素を、アルミナ,シリカなどの担体に担持した改質触媒が充填されている。
【0032】
原料天然ガスから水素含有量の多いガスを製造する水蒸気改質(スチームリフォーミング)反応は、メタンと水との反応により水素と一酸化炭素を生成させる改質反応と、一酸化炭素と水との反応により水素と二酸化炭素を生成させる一酸化炭素変成反応を含んでいる。
【0033】
水蒸気改質部13は、水蒸気改質炉のバーナ13a側に収納されている。このバーナ13aの熱により、水蒸気改質部13は650〜850℃に加熱され、上記の改質反応が行われる。なお、バーナ13aの主な燃料はPSAオフガスであり、空気圧送ポンプを介して、燃焼用の外部空気が供給される。
【0034】
ガス変成部18は、水蒸気改質部13から排出された高濃度水素含有ガスを、このガス変成部18より上流の改質ガスクーラ14を通過させることで200〜450℃に低下させたのち、変成触媒と接触させて、高濃度水素含有ガスに含まれる一酸化炭素と水蒸気とを反応させて二酸化炭素および水素に転換し、これにより一酸化炭素を除去する一方、さらに水素濃度を高めた高濃度水素含有ガスを製造する。変成触媒としては、鉄−クロムや銅−亜鉛などの酸化物が用いられる。
【0035】
PSA部19は、ガス変成部18から排出された水素濃度がさらに高められた高濃度水素含有ガスを、このPSA部19より上流の変成ガスクーラ15、及び気液分離器16を通過させることで10〜50℃、好ましくは20〜40℃に低下させたのち、吸着剤により水素以外の改質ガス含有成分(一酸化炭素、二酸化炭素、水など)を吸着除去して高純度水素ガスを精製する装置である。なお、このPSA部19で精製された高純度水素ガスは、水素ホルダ19aにいったん貯留される。一方、水素以外の改質ガス含有成分は、オフガスホルダ(図示省略)にいったん貯留され、その後、燃料としてバーナ13aに供給される。この吸着剤としては、アルミナ、活性炭、ゼオライトなどを採用することができる。
【0036】
次いで、生成した水素ガスを熱交換器2に導入して液化天然ガスとの熱交換により水素ガスを−50℃以下に予冷する工程を行う。但し、本実施形態では、それに先立って、水素ガスを高温側の熱交換器3に導入して、天然ガスとの熱交換により水素ガスが冷却される。
【0037】
なお、水素貯蔵装置20の運転圧との関係で、水素貯蔵装置20への水素ガスの導入圧力が低すぎる場合には、仮想線で示したような補助昇圧手段8を高温側の熱交換器3の入口側に設けてもよい。
【0038】
次いで、予冷した水素ガスを水素貯蔵装置20に供給して低温下で貯蔵する工程を行う。水素貯蔵装置20としては、例えば−150℃以下の温度にて水素ガスの吸着を行い、減圧下又は加温下で水素ガスを脱着させる装置が好ましい。このような装置としては、例えば図3に示すような水素ガスの導入と排出とを同時に行うことが可能な切換型の水素貯蔵装置20が挙げられる。この水素貯蔵装置20は、図3に示すように、水素貯蔵部22a,22bを内設する保冷槽21a,21bと熱交換器23から主に構成される。熱交換器23は冷媒蒸発ガスの寒冷を回収するために設けてあるが、省略することも可能である。
【0039】
保冷槽21a,21bの内部空間には、外部から供給される液体窒素、液化天然ガスなどの液化冷媒が貯留されており、気化により生じた冷媒蒸発ガスは、外部に排出され熱交換器23で冷熱回収される。液化冷媒は弁27a,27bを介して保冷槽21a,21bに供給され、弁25a,25bを介して保冷槽21a,21bから排出される。排出され冷媒蒸発ガスは、独立した冷凍サイクル(図示省略)によって冷却、液化されて再び液化冷媒として利用される。
【0040】
水素貯蔵部22a,22bには、水酸化カリウムなどの特殊な薬品賦活法によって水素吸着能力を増強した活性炭などの水素吸蔵材が充填されており、水素ガスの吸着と脱着が均一に行われるような充填構造となっている。また、保冷槽21a,21bは外部と断熱するための真空断熱層などを備える。
【0041】
両者の水素貯蔵部22a,22bでは、水素ガスの導入と排出とを切り換えながら行うことができる。例えば水素貯蔵部22aに水素ガスの導入しつつ、水素貯蔵部22bから水素ガスを排出する場合、水素ガスは熱交換器23で冷媒蒸発ガスと熱交換して予冷され、弁24aを介して水素貯蔵部22aに導入される一方、水素貯蔵部22bからは、弁26bと排出ポート28bとを介して、水素ガスが排出される。
【0042】
次に、水素貯蔵部22a,22bでの水素ガスの導入・排出の条件等について説明する。例えば水素貯蔵部22a,22bの水素吸蔵材として活性炭を使用する場合を例にとると次のようになる。以降の吸着水素ガス量等の数値は、R.Chahine and P.Benard「ADSORPTION STORAGE OF GASEOUS HYDROGEN AT CRYOGENIC TEMPERATURES」Advances in Cryogenic Engineering.Vol.43(1998)に記載のグラフ等から読み取った数値を使用している。
【0043】
活性炭で吸着可能な水素ガスの量は、低温ほど多くなり、また吸脱着の圧力差が大きいほど多くなる。脱着圧力を1.4バールとする場合、活性炭の単位体積当たりの吸蔵水素ガス量(総吸着量−脱着後残量)は、20バールの吸着圧力の場合で温度77Kでは150Kの1.7倍、273Kの約10倍となる。このため、保冷槽21a,21bの液体冷媒として、液体窒素等を用いて、−193〜−196℃で吸着を行うのが好ましい。
【0044】
また、吸着圧力については、脱着圧力を1.4バールとする場合、活性炭の単位体積当たりの吸蔵水素ガス量は、吸着温度77Kの場合の各々の吸着圧力において、表1のような値となる。水素ガスを圧縮貯蔵する場合と比較して、特に吸着方式が有効になるのは、吸着圧力5〜60バールの場合であり、本発明では、水素ガス生成装置10の排出圧力などを考慮すると20〜60バールが好ましい。必要な昇圧は、昇圧装置1と補助昇圧手段8とで達成される。なお、脱着圧力が低いほど吸蔵効率が良くなる。
【0045】
【表1】

Figure 0004619575
[他の実施形態]
以下、本発明の他の実施の形態について説明する。
【0046】
(1)前述の実施形態では、水素貯蔵装置からの冷媒蒸発ガスを独立した冷凍サイクルによって冷却、液化されて再び液化冷媒として利用する例を示したが、このような冷凍サイクルを構成するリサイクル経路としては、水素貯蔵装置の保冷槽で気化した冷媒蒸発ガスを熱交換器で加温した後、圧縮機で圧縮して再びその熱交換器に導入して冷却した後、膨張により一部液化させ、気体分を再び前記熱交換器に導入して寒冷を回収し、液化した液化冷媒を再び前記保冷槽に供給するリサイクル経路が例示される。その際、膨張により一部液化した冷媒は、気液分離器で気液分離してもよく、混相状態の冷媒を直接保冷槽に供給して保冷槽に気液分離の機能をもたせてもよい。本発明では、かかる冷媒として、液化天然ガスや液体窒素を使用することができる。
【0047】
(2)一方、原料である液化天然ガスの寒冷をより有効に利用する観点より、前記水素貯蔵装置が、内設した水素貯蔵部を冷却する液化冷媒を貯留する保冷槽と、その保冷槽で気化した冷媒蒸発ガスを液化した後、再び保冷槽に供給するリサイクル経路とを備え、そのリサイクル経路の熱交換器には、別の寒冷源として液化天然ガスを導入する経路を備えることが好ましい。即ち、水素貯蔵装置の低温保持に使用する冷媒の再液化のため、液化天然ガスの寒冷を利用することが好適である。その際のリサイクル経路としては、保冷槽で気化した冷媒蒸発ガスを熱交換器で加温した後、圧縮機で圧縮して再びその熱交換器に導入して冷却した後、膨張により一部液化させ、気体分を再び前記熱交換器に導入して寒冷源とし、液化した液化冷媒を再び前記保冷槽に供給するリサイクル経路であることが好ましい。
【0048】
具体的なリサイクル経路としては、熱交換器2,3を兼用して液化天然ガスの冷熱を利用可能とした図4又は図5に示す装置や、液化天然ガスの導入経路を別に設けたものが挙げられる。なお、図3に示す水素貯蔵装置20では、冷媒蒸発ガスの寒冷を回収するための熱交換器23を設けているが、図4又は図5に示す装置に適用する場合、熱交換器23を省略することも可能である。
【0049】
図4に示すリサイクル経路では、水素貯蔵装置20からの冷媒蒸発ガスを、熱交換器34,33,2,3に順次経由させて、熱交換により冷却し、圧縮機31と圧縮機32とで圧縮した後、熱交換器3,2,33を順次経由させて冷却する。その後、膨張弁(J−T弁)38によりフラッシュして一部液化させ、一部液化した冷媒(例えば窒素)は気液分離器35で気液分離される。気体の冷媒は再び熱交換器33,2,3に順次経由させて、熱交換により加熱され、圧縮機31と圧縮機32との間の経路に供給される。液化した冷媒は、熱交換器34を経由して液体冷媒として水素吸蔵装置20に供給される。
【0050】
(3)また、図5に示すようなリサイクル経路では、圧縮機36と圧縮機37とが、図4の圧縮機31と圧縮機32とに相当するが、少なくともその一部を低温圧縮機とすることにより、冷媒の再液化のための能力を低減するという効果を得ることができる。
【0051】
(4)前述の実施形態では、低温用の熱交換器に液化天然ガスが導入され加温によりその大部分が気化される例を示したが、気化しない温度まで加温されるようにしたり、或いは超臨界の領域まで加温・昇温がなされてもよい。超臨界状態の場合、低温側の熱交換器から導出された天然ガスは、流量制御しつつその一部を高温側の熱交換器に導入することで、熱交換の熱的バランスを維持することができる。
【0052】
(5)前述の実施形態では、オルソ−パラ変換を行わない例を示したが、例えば熱交換器2にオルソ−パラ変換の機能をもたせてもよい。オルソ−パラ変換は、触媒を用いた公知の方法により行うことができる。
【0053】
(6)前述の実施形態では、1台の昇圧装置を用いて液化天然ガスを昇圧する例を示したが、昇圧装置を2台以上として、以降の経路を2系統以上とし、1系統以外の系統を系外の他の装置等や動力系統に供給するように構成してもよい。その場合、各系統を異なる圧力で操作でき、1つの系統を前述と同様の圧力とし、他の系統は、供給先の要求圧力に応じて設定してもよい。
【0054】
動力系統への供給としては、例えば圧縮機、昇圧装置、膨張タービンなどの駆動用の天然ガスエンジンあるいは天然ガスタービンに供給する方法が挙げられ、系外の他の装置等への供給としては、工場内の天然ガス配給ラインへの供給が挙げられる。
【図面の簡単な説明】
【図1】本発明の水素ガスの製造設備の一例を示す概略構成図
【図2】本発明における水素ガス生成装置の一例を示す概略構成図
【図3】本発明における水素貯蔵装置の一例を示す概略構成図
【図4】本発明における水素貯蔵装置の冷凍リサイクル経路の例を示す概略構成図
【図5】本発明における水素貯蔵装置の冷凍リサイクル経路の他の例を示す概略構成図
【符号の説明】
1 昇圧装置
2 熱交換器
4 蒸発器
10 水素ガス生成装置
19 PSA部
20 水素貯蔵装置
21a 保冷槽
21b 保冷槽
22a 水素貯蔵部
22b 水素貯蔵部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrogen gas and a production facility therefor, in which hydrogen gas is generated from liquefied natural gas as a raw material and then stored in a hydrogen storage device at a low temperature.
[0002]
[Prior art]
In recent years, environmental destruction associated with energy consumption has become apparent, and the need to build a regenerative and sustainable society has been recognized. From this point of view, interest in the use of hydrogen energy, which is a clean energy, has been attracting attention, and is expected to be used for automobile fuel, future aviation fuel, and the like.
[0003]
However, when hydrogen energy is used for various purposes, it is a problem in terms of volume efficiency and the like how to store hydrogen gas and the like. Conventionally, hydrogen storage alloys have been known as hydrogen gas storage means, but the weight has become a bottleneck, and there are difficulties in using it for transportation means such as automobiles, which has been a negative effect of practical use. .
[0004]
For this reason, carbon-based hydrogen storage materials have attracted attention in order to reduce the weight of the storage means. One example is activated carbon with enhanced hydrogen adsorption capacity by a special chemical activation method such as potassium hydroxide. When this is cooled to the liquefied natural gas temperature or the liquefied nitrogen temperature, the result shows that the pressure can be reduced and the weight can be reduced as compared with a simple high-pressure gas storage method. Recently, attention has also been focused on the high adsorption capacity of hydrogen storage materials using new materials such as carbon nanotubes.
[0005]
On the other hand, in the end, the generation of hydrogen using natural energy is considered to be the ultimate form, but for the time being, from the viewpoint of infrastructure development that uses hydrogen as a fuel for automobiles, etc. There is also interest in hydrogen production from gas. In the hydrogen generation, for example, as described in JP-A-8-92577, hydrogen and carbon monoxide are generated by the reaction of methane, which is a main component of natural gas, and water, and then carbon monoxide and water. A method is known in which hydrogen and carbon dioxide are produced by the reaction with hydrogen, and then the hydrogen gas is purified by a separation membrane or a PSA (pressure swing adsorption) device.
[0006]
[Problems to be solved by the invention]
However, if the hydrogen gas produced by such a method is to be stored with the above-described hydrogen storage material, a great amount of power is required for cooling the hydrogen gas, and reduction thereof has been desired.
[0007]
On the other hand, natural gas is liquefied for overseas transportation and imported in the form of liquefied natural gas (LNG). There are several examples of the use of the cold, but most are vaporized simply by heat exchange with seawater and the like, and the cold is not used effectively but is discarded.
[0008]
Accordingly, an object of the present invention is to produce a hydrogen gas from liquefied natural gas and store it at a low temperature, and a method for producing a hydrogen gas that can reduce the cooling power for storage using the coldness of the raw material And providing hydrogen gas production facilities.
[0009]
[Means for Solving the Problems]
The above object can be achieved by the present invention as described below. That is, a step of boosting the liquefied natural gas, comprising the steps of vaporizing a step of heating the liquefied natural gas by heat exchange with pressurized liquefied natural gas is introduced into the heat exchanger, the heated liquefied natural gas, vaporized Supplying at least a part of the natural gas as a reaction raw material to a hydrogen gas generating device to generate hydrogen gas, and introducing the generated hydrogen gas into the heat exchanger to exchange hydrogen with the liquefied natural gas. It includes a step of pre-cooling the gas to −50 ° C. or less and a step of supplying the pre-cooled hydrogen gas to a hydrogen storage device and storing it at a low temperature.
[0010]
In the above, it is preferable that the generated hydrogen gas is boosted by auxiliary boosting means and then introduced into the heat exchanger.
[0011]
On the other hand, the hydrogen gas production facility of the present invention includes a booster for boosting liquefied natural gas, a hydrogen gas generator for generating hydrogen gas using natural gas as a reaction raw material, and a hydrogen storage device for storing hydrogen gas at a low temperature. A heat exchanger that introduces the pressurized liquefied natural gas and the generated hydrogen gas to exchange heat, and supplies precooled hydrogen gas to the hydrogen storage device, and heats the heat exchanger And means for supplying at least a part of the vaporized liquefied natural gas to the hydrogen gas generator.
[0012]
In the above, an auxiliary boosting means for boosting the hydrogen gas generated by the hydrogen gas generation apparatus and introducing it into the heat exchanger may be provided.
[0013]
In addition, the hydrogen storage device includes a cold storage tank for storing a liquefied refrigerant that cools an internal hydrogen storage section, and a refrigerant evaporative gas vaporized in the cold storage tank is heated by a heat exchanger and then compressed by a compressor. Then, it is again introduced into the heat exchanger and cooled, and then partially liquefied by expansion, the gas component is again introduced into the heat exchanger to recover the cold, and the liquefied liquefied refrigerant is supplied to the cold storage tank again. It is preferable to provide a recycling path.
[0014]
Alternatively, the hydrogen storage device may be a cold storage tank that stores a liquefied refrigerant that cools an internal hydrogen storage section, and a refrigerant evaporating gas that is vaporized in the cold storage tank is heated by a heat exchanger and then compressed by a compressor. Recycled into the heat exchanger again, cooled, then partially liquefied by expansion, re-introduced gas component into the heat exchanger again as a cold source, and again supplied liquefied liquefied refrigerant to the cold storage tank It is preferable that the heat exchanger of the recycle path is provided with a path for introducing liquefied natural gas as another cold source.
[0015]
[Function and effect]
According to the production method of the present invention, the generated hydrogen gas is pre-cooled with the liquefied natural gas that is the raw material, so that the cooling power at the time of hydrogen storage is reduced by using the cold that has been discarded without being effectively used. be able to. Further, since the pressure of the liquefied natural gas is increased in a liquid state, power can be reduced as compared with the case where the gas raw material is separately compressed. As a result, when producing hydrogen gas from liquefied natural gas and storing it at a low temperature, it is possible to provide a method for producing hydrogen gas that can reduce the cooling power for storage using the coldness of the raw material.
[0016]
Further, when the generated hydrogen gas is boosted by the auxiliary boosting means and then introduced into the heat exchanger, it can cope with a case where the hydrogen storage device requires high pressure.
[0017]
On the other hand, according to the production facility of the present invention, when the hydrogen gas is produced from the liquefied natural gas and stored at a low temperature, the cooling power for storage is reduced by using the cold of the raw material due to the above-described effects. can do.
[0018]
Moreover, when the auxiliary | assistant pressure | voltage rise means which pressurizes the hydrogen gas produced | generated with the said hydrogen gas production | generation apparatus and introduce | transduces into the said heat exchanger is provided, it can respond also when a hydrogen storage apparatus requires a high voltage | pressure.
[0019]
When the hydrogen storage device includes the cold storage tank and the recycling path, the hydrogen storage apparatus can generate a liquefied refrigerant that cools the hydrogen storage unit of the hydrogen storage apparatus through the recycling path, and uses the latent heat of vaporization of the liquefied refrigerant in the cold storage tank. Thus, cooling can be performed efficiently.
[0020]
The hydrogen storage device includes the cold storage tank and the recycling path, and when the heat exchanger of the recycling path includes a path for introducing liquefied natural gas as another cold source, the hydrogen storage of the hydrogen storage apparatus Since liquefied natural gas is also used as a cold source when generating the liquefied refrigerant for cooling the part, the cooling power can be further reduced.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
The method for producing hydrogen gas of the present invention can be preferably carried out by the hydrogen gas production facility of the present invention as shown in FIG. The production facility of the present invention includes a booster 1 that boosts liquefied natural gas, a hydrogen gas generator 10 that generates hydrogen gas using natural gas as a reaction raw material, a hydrogen storage device 20 that stores hydrogen gas at a low temperature, A heat exchanger 2 that introduces the pressurized liquefied natural gas and the generated hydrogen gas, exchanges heat between them, supplies the precooled hydrogen gas to the hydrogen storage device, and heats the heat exchanger 2 with the heat exchanger 2 Means for supplying at least a part of the vaporized liquefied natural gas to the hydrogen gas generator 10.
[0023]
In this embodiment, two heat exchangers are provided, liquefied natural gas is introduced into the low-temperature heat exchanger 2, and most of the gas is vaporized by heating, and then the gas-liquid separator 5 An example in which an evaporator 4 is provided that separates and supplies the separated natural gas to the high-temperature heat exchanger 3 and vaporizes the liquefied natural gas derived from the gas-liquid separator 5 and supplies it to the hydrogen gas generator 10. Indicates.
[0024]
In the present invention, first, a step of increasing the pressure of liquefied natural gas is performed, but it is preferable that the pressure increase is performed up to a pressure that does not require a pressure increase in a later step. Specifically, it is set according to the required pressure of the purifying means or hydrogen storage device of the hydrogen gas generating device. For example, when the hydrogen gas generating device includes the PSA purifying device, it is preferable to increase the pressure to 10 to 40 barG. It is more preferable to carry out up to 20-30 barG. The liquefied natural gas as a raw material is generally supplied at about atmospheric pressure and about −155 ° C.
[0025]
Then, although a step of heating the liquefied natural gas pressurized liquefied natural gas is introduced into the heat exchanger by heat exchange, in the present embodiment, the liquefied natural gas is introduced into the heat exchanger 2 for the low temperature . Most of the liquefied natural gas vaporized is gas-liquid separated by the gas-liquid separator 5, and the gas phase is introduced into the high-temperature heat exchanger 3. That is, the process of heating and vaporizing the liquefied natural gas is performed by the low-temperature heat exchanger 2.
[0026]
On the other hand, in this embodiment, the liquefied natural gas derived from the liquid phase part of the gas-liquid separator 5 is vaporized by the evaporator 4. Seawater, freon, or the like can be used as a heat medium for the evaporator 4, but cold (cold) generated by heat exchange can also be used as cooling water for a compressor or the like.
[0027]
The natural gas supplied to the heat exchanger 3 is heated by exchanging heat with the generated hydrogen gas. The heater 6 is provided when the temperature of the hydrogen gas discharged from the heat exchanger 3 is insufficient as the raw material temperature of the hydrogen gas generator 10. The heat medium is the same as in the evaporator 4.
[0028]
Next, the process of supplying the natural gas from the heater 6 and the evaporator 4 as a reaction raw material to the hydrogen gas generator 10 to generate hydrogen gas is performed. Excess natural gas is supplied to the other system via the valve 7. The hydrogen gas generation apparatus 10 may be any apparatus that can generate hydrogen gas using natural gas as a reaction raw material, and examples thereof include the following apparatuses. Normally, such a hydrogen gas generator 10 requires a raw material compressor, but this can be made unnecessary in the present invention.
[0029]
As shown in FIG. 2, the hydrogen gas generator is configured to desulfurize natural gas, add water to the desulfurized natural gas, and then contact the mixed fluid with a reforming catalyst to perform steam reforming. Thus, the steam reforming unit 13 for producing the high-concentration hydrogen-containing gas, the raw material preheating unit 11 for preheating the raw material supplied to the desulfurization unit 12, and the preheating unit for preheating the mixed fluid supplied to the steam reforming unit 13 17, a gas shift unit 18 for producing a high-concentration hydrogen-containing gas in which the hydrogen concentration is increased by bringing the high-concentration hydrogen-containing gas into contact with the shift catalyst, and an adsorbent for adsorbing and removing reformed gas-containing components other than hydrogen. The PSA unit 19 that purifies high-purity hydrogen gas is mainly configured. In the present invention, TSA may be used instead of PSA.
[0030]
The desulfurization part 12 is composed of an upstream hydrogenation catalyst layer filled with a hydrogenation catalyst and a downstream desulfurization agent layer filled with a desulfurization agent. The hydrogenation catalyst layer is reformed to hydrogen sulfide by hydrogenating the sulfur content by bringing the natural gas containing sulfur into contact with the hydrogenation catalyst. Since these reactions are normally performed at 200 to 400 ° C., preheating with exhaust gas in the raw material preheating unit 11 is performed.
[0031]
The steam reforming unit 13 produces a high-concentration hydrogen-containing gas by performing steam reforming by bringing a gas obtained by adding steam to the desulfurized natural gas into contact with the reforming catalyst. The steam reforming section 13 is filled with a reforming catalyst in which an element such as platinum, ruthenium or nickel is supported on a support such as alumina or silica in a reaction tube.
[0032]
Steam reforming (steam reforming) reaction, which produces gas with high hydrogen content from raw natural gas, is a reforming reaction that produces hydrogen and carbon monoxide by reaction of methane and water, and carbon monoxide and water. It includes a carbon monoxide shift reaction that produces hydrogen and carbon dioxide by the reaction of
[0033]
The steam reforming unit 13 is accommodated on the burner 13a side of the steam reforming furnace. The steam reforming section 13 is heated to 650 to 850 ° C. by the heat of the burner 13a, and the above reforming reaction is performed. The main fuel of the burner 13a is PSA offgas, and external air for combustion is supplied via a pneumatic feed pump.
[0034]
The gas shift unit 18 lowers the high-concentration hydrogen-containing gas discharged from the steam reforming unit 13 to 200 to 450 ° C. by passing the reformed gas cooler 14 upstream from the gas shift unit 18, and then converts the gas. The carbon monoxide contained in the high-concentration hydrogen-containing gas reacts with water vapor by contacting with the catalyst to convert it into carbon dioxide and hydrogen, thereby removing the carbon monoxide, while increasing the hydrogen concentration. Producing a hydrogen-containing gas. As the shift catalyst, oxides such as iron-chromium and copper-zinc are used.
[0035]
The PSA unit 19 passes the high-concentration hydrogen-containing gas having a further increased hydrogen concentration discharged from the gas conversion unit 18 through the conversion gas cooler 15 and the gas-liquid separator 16 upstream of the PSA unit 19. After the temperature is lowered to -50 ° C, preferably 20-40 ° C, the high-purity hydrogen gas is purified by adsorbing and removing reformed gas-containing components other than hydrogen (carbon monoxide, carbon dioxide, water, etc.) using an adsorbent. Device. The high purity hydrogen gas purified by the PSA unit 19 is temporarily stored in the hydrogen holder 19a. On the other hand, the reformed gas-containing components other than hydrogen are once stored in an off-gas holder (not shown) and then supplied to the burner 13a as fuel. As this adsorbent, alumina, activated carbon, zeolite, or the like can be employed.
[0036]
Next, the generated hydrogen gas is introduced into the heat exchanger 2 and a process of precooling the hydrogen gas to −50 ° C. or less by heat exchange with the liquefied natural gas is performed. However, in this embodiment, prior to that, hydrogen gas is introduced into the heat exchanger 3 on the high temperature side, and the hydrogen gas is cooled by heat exchange with natural gas.
[0037]
When the introduction pressure of hydrogen gas to the hydrogen storage device 20 is too low in relation to the operating pressure of the hydrogen storage device 20, the auxiliary pressure boosting means 8 as indicated by the phantom line is replaced with a heat exchanger on the high temperature side. 3 may be provided on the inlet side.
[0038]
Next, a process of supplying the precooled hydrogen gas to the hydrogen storage device 20 and storing it at a low temperature is performed. As the hydrogen storage device 20, for example, a device that adsorbs hydrogen gas at a temperature of −150 ° C. or less and desorbs the hydrogen gas under reduced pressure or heating is preferable. An example of such an apparatus is a switchable hydrogen storage apparatus 20 capable of simultaneously introducing and discharging hydrogen gas as shown in FIG. As shown in FIG. 3, the hydrogen storage device 20 is mainly composed of cold storage tanks 21 a and 21 b in which hydrogen storage units 22 a and 22 b are provided and a heat exchanger 23. The heat exchanger 23 is provided for recovering the coldness of the refrigerant evaporating gas, but may be omitted.
[0039]
Liquefied refrigerants such as liquid nitrogen and liquefied natural gas supplied from the outside are stored in the internal spaces of the cold storage tanks 21 a and 21 b, and the refrigerant evaporative gas generated by vaporization is discharged to the outside and is exchanged by the heat exchanger 23. It is recovered cold. The liquefied refrigerant is supplied to the cold storage tanks 21a and 21b via the valves 27a and 27b, and is discharged from the cold storage tanks 21a and 21b via the valves 25a and 25b. The discharged refrigerant evaporative gas is cooled and liquefied by an independent refrigeration cycle (not shown) and used again as a liquefied refrigerant.
[0040]
The hydrogen storage units 22a and 22b are filled with a hydrogen storage material such as activated carbon whose hydrogen adsorption capacity is enhanced by a special chemical activation method such as potassium hydroxide so that the adsorption and desorption of hydrogen gas can be performed uniformly. The filling structure. The cold storage tanks 21a and 21b are provided with a vacuum heat insulating layer for heat insulation from the outside.
[0041]
Both hydrogen storage units 22a and 22b can perform switching between introduction and discharge of hydrogen gas. For example, when hydrogen gas is discharged from the hydrogen storage unit 22b while hydrogen gas is introduced into the hydrogen storage unit 22a, the hydrogen gas is pre-cooled by heat exchange with the refrigerant evaporating gas in the heat exchanger 23, and hydrogen is supplied through the valve 24a. While introduced into the storage unit 22a, hydrogen gas is discharged from the hydrogen storage unit 22b via the valve 26b and the discharge port 28b.
[0042]
Next, conditions for introducing and discharging hydrogen gas in the hydrogen storage units 22a and 22b will be described. For example, the case where activated carbon is used as the hydrogen storage material of the hydrogen storage units 22a and 22b is as follows. Subsequent numerical values such as the amount of adsorbed hydrogen gas are as follows. Chahine and P.M. Benard “ADSORPTION STORAGE OF GASEOUS HYDROGEN AT CRYOGENIC TEMPERATURES” Advances in Cryogenic Engineering. Vol. 43 (1998) is read from the graph.
[0043]
The amount of hydrogen gas that can be adsorbed by activated carbon increases as the temperature decreases, and increases as the pressure difference between adsorption and desorption increases. When the desorption pressure is 1.4 bar, the amount of stored hydrogen gas per unit volume of activated carbon (total adsorption amount-remaining amount after desorption) is 1.7 times 150K at a temperature of 77 K at an adsorption pressure of 20 bar. It is about 10 times that of 273K. For this reason, it is preferable to perform adsorption at −193 to −196 ° C. using liquid nitrogen or the like as the liquid refrigerant in the cold storage tanks 21a and 21b.
[0044]
As for the adsorption pressure, when the desorption pressure is 1.4 bar, the amount of stored hydrogen gas per unit volume of the activated carbon is a value as shown in Table 1 at each adsorption pressure when the adsorption temperature is 77K. . Compared with the case of compressing and storing hydrogen gas, the adsorption method is particularly effective when the adsorption pressure is 5 to 60 bar. In the present invention, 20 is considered in consideration of the discharge pressure of the hydrogen gas generator 10 and the like. ~ 60 bar is preferred. The necessary boosting is achieved by the booster 1 and the auxiliary booster 8. Note that the lower the desorption pressure, the better the occlusion efficiency.
[0045]
[Table 1]
Figure 0004619575
[Other Embodiments]
Hereinafter, other embodiments of the present invention will be described.
[0046]
(1) In the above-described embodiment, the refrigerant evaporative gas from the hydrogen storage device is cooled and liquefied by an independent refrigeration cycle, and reused as a liquefied refrigerant again. However, a recycling path that constitutes such a refrigeration cycle The refrigerant evaporative gas evaporated in the cold storage tank of the hydrogen storage device is heated by a heat exchanger, compressed by a compressor, introduced again into the heat exchanger, cooled, and then partially liquefied by expansion. An example is a recycling path in which a gas component is again introduced into the heat exchanger to recover cold, and a liquefied liquefied refrigerant is again supplied to the cold storage tank. At that time, the refrigerant partially liquefied by the expansion may be gas-liquid separated by a gas-liquid separator, or the refrigerant in a mixed phase may be directly supplied to the cold insulation tank so that the cold insulation tank has a function of gas-liquid separation. . In the present invention, liquefied natural gas or liquid nitrogen can be used as such a refrigerant.
[0047]
(2) On the other hand, from the viewpoint of more effectively using the cooling of the liquefied natural gas that is the raw material, the hydrogen storage device includes a cold storage tank that stores a liquefied refrigerant that cools the internal hydrogen storage section, and the cold storage tank. It is preferable that after the vaporized refrigerant evaporative gas is liquefied, it is provided with a recycle path for supplying it again to the cold storage tank, and the heat exchanger of the recycle path is provided with a path for introducing liquefied natural gas as another cold source. That is, it is preferable to use refrigeration of liquefied natural gas in order to reliquefy the refrigerant used for maintaining the low temperature of the hydrogen storage device. In this case, the refrigerant evaporative gas vaporized in the cold storage tank is heated by a heat exchanger, compressed by a compressor, introduced again into the heat exchanger, cooled, and then partially liquefied by expansion. It is preferable that the recycle path be a recirculation path in which a gas component is again introduced into the heat exchanger to be used as a cold source, and the liquefied liquefied refrigerant is again supplied to the cold storage tank.
[0048]
Specific recycling paths include the apparatus shown in FIG. 4 or 5 in which the heat of the liquefied natural gas can be used by using both the heat exchangers 2 and 3, and the liquefied natural gas introduction path separately provided. Can be mentioned. In addition, in the hydrogen storage apparatus 20 shown in FIG. 3, the heat exchanger 23 for recovering the coldness of the refrigerant evaporative gas is provided, but when applied to the apparatus shown in FIG. 4 or FIG. It can be omitted.
[0049]
In the recycling path shown in FIG. 4, the refrigerant evaporative gas from the hydrogen storage device 20 is sequentially passed through the heat exchangers 34, 33, 2, 3 and cooled by heat exchange, and between the compressor 31 and the compressor 32. After compression, the heat exchangers 3, 2 and 33 are sequentially passed through and cooled. Thereafter, the refrigerant is flushed and partially liquefied by an expansion valve (J-T valve) 38, and the partially liquefied refrigerant (for example, nitrogen) is gas-liquid separated by a gas-liquid separator 35. The gaseous refrigerant is sequentially passed through the heat exchangers 33, 2, 3 again, heated by heat exchange, and supplied to the path between the compressor 31 and the compressor 32. The liquefied refrigerant is supplied to the hydrogen storage device 20 as a liquid refrigerant via the heat exchanger 34.
[0050]
(3) Further, in the recycling path as shown in FIG. 5, the compressor 36 and the compressor 37 correspond to the compressor 31 and the compressor 32 of FIG. 4, but at least a part thereof is a low-temperature compressor. By doing, the effect of reducing the capability for reliquefaction of a refrigerant | coolant can be acquired.
[0051]
(4) In the above-described embodiment, an example has been shown in which liquefied natural gas is introduced into a heat exchanger for low temperature and most of the gas is vaporized by heating. Alternatively, heating / heating may be performed up to a supercritical region. In the supercritical state, the natural gas derived from the heat exchanger on the low temperature side is partly introduced into the heat exchanger on the high temperature side while controlling the flow rate, thereby maintaining the thermal balance of heat exchange. Can do.
[0052]
(5) In the above-mentioned embodiment, although the example which does not perform ortho-para conversion was shown, you may give the function of ortho-para conversion to the heat exchanger 2, for example. Ortho-para conversion can be carried out by a known method using a catalyst.
[0053]
(6) In the above-described embodiment, an example in which liquefied natural gas is boosted using one booster device is shown. However, two or more booster devices are used, and the subsequent paths are two or more systems. You may comprise so that a system | strain may be supplied to other apparatuses etc. outside a system, or a power system. In that case, each system can be operated at different pressures, one system may be set to the same pressure as described above, and the other systems may be set according to the required pressure at the supply destination.
[0054]
Examples of the supply to the power system include a method for supplying to a natural gas engine or a natural gas turbine for driving a compressor, a booster, an expansion turbine, etc. Supply to the natural gas distribution line in the factory.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram illustrating an example of a hydrogen gas production facility according to the present invention. FIG. 2 is a schematic configuration diagram illustrating an example of a hydrogen gas generation apparatus according to the present invention. Schematic configuration diagram showing FIG. 4 Schematic configuration diagram showing an example of the refrigeration recycling path of the hydrogen storage device in the present invention FIG. 5 Schematic configuration diagram showing another example of the refrigeration recycling route of the hydrogen storage device in the present invention Explanation of]
DESCRIPTION OF SYMBOLS 1 Booster 2 Heat exchanger 4 Evaporator 10 Hydrogen gas production | generation apparatus 19 PSA part 20 Hydrogen storage apparatus 21a Cold storage tank 21b Cold storage tank 22a Hydrogen storage part 22b Hydrogen storage part

Claims (4)

液化天然ガスを昇圧する工程と、昇圧した液化天然ガスを熱交換器に導入して熱交換により液化天然ガスを加温する工程と、加温した液化天然ガスを気化させる工程と、気化した天然ガスの少なくとも一部を反応原料として水素ガス生成装置に供給して水素ガスを生成させる工程と、生成した水素ガスを前記熱交換器に導入して前記液化天然ガスとの熱交換により水素ガスを−50℃以下に予冷する工程と、予冷した水素ガスを水素貯蔵装置に供給して低温下で貯蔵する工程とを含む水素ガスの製造方法。A step of boosting the liquefied natural gas, comprising the steps of vaporizing a step of heating the liquefied natural gas by heat exchange with pressurized liquefied natural gas is introduced into the heat exchanger, the heated liquefied natural gas, vaporized natural Supplying at least a part of the gas as a reaction raw material to a hydrogen gas generating device to generate hydrogen gas, and introducing the generated hydrogen gas into the heat exchanger to exchange hydrogen gas by heat exchange with the liquefied natural gas. A method for producing hydrogen gas, comprising: a step of pre-cooling to −50 ° C. or less; and a step of supplying the pre-cooled hydrogen gas to a hydrogen storage device and storing it at a low temperature. 前記生成した水素ガスを補助昇圧手段により昇圧してから前記熱交換器に導入する請求項1記載の水素ガスの製造方法。  The method for producing hydrogen gas according to claim 1, wherein the generated hydrogen gas is boosted by auxiliary boosting means and then introduced into the heat exchanger. 液化天然ガスを昇圧させる昇圧装置と、天然ガスを反応原料として水素ガスを生成させる水素ガス生成装置と、水素ガスを低温下で貯蔵する水素貯蔵装置と、前記昇圧された液化天然ガスおよび前記生成した水素ガスを導入して両者を熱交換させ、予冷された水素ガスを前記水素貯蔵装置に供給する熱交換器と、その熱交換器で加温・気化された液化天然ガスの少なくとも一部を前記水素ガス生成装置に供給する手段とを備える水素ガスの製造設備。  Pressurizing device for boosting liquefied natural gas, hydrogen gas generating device for generating hydrogen gas using natural gas as a reaction raw material, hydrogen storage device for storing hydrogen gas at a low temperature, said pressurized liquefied natural gas and said generating A heat exchanger that exchanges heat between the two and introduces a preheated hydrogen gas to the hydrogen storage device, and at least a part of the liquefied natural gas heated and vaporized by the heat exchanger Hydrogen gas production equipment comprising means for supplying to the hydrogen gas generator. 前記水素ガス生成装置で生成した水素ガスを昇圧してから前記熱交換器に導入する補助昇圧手段を備える請求項3記載の水素ガスの製造設備。  The hydrogen gas production facility according to claim 3, further comprising auxiliary boosting means that pressurizes the hydrogen gas generated by the hydrogen gas generation device and introduces the hydrogen gas into the heat exchanger.
JP2001181443A 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility Expired - Fee Related JP4619575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001181443A JP4619575B2 (en) 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001181443A JP4619575B2 (en) 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility

Publications (2)

Publication Number Publication Date
JP2003002601A JP2003002601A (en) 2003-01-08
JP4619575B2 true JP4619575B2 (en) 2011-01-26

Family

ID=19021713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001181443A Expired - Fee Related JP4619575B2 (en) 2001-06-15 2001-06-15 Hydrogen gas production method and hydrogen gas production facility

Country Status (1)

Country Link
JP (1) JP4619575B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459962B1 (en) 2013-10-31 2014-11-07 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20210126800A (en) * 2020-04-03 2021-10-21 주식회사 패리티 Hydrogen liquefaction and bog control system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675648B2 (en) * 2005-03-04 2011-04-27 東京瓦斯株式会社 Gas compressor and gas pressure increasing method
JP5019829B2 (en) * 2006-09-19 2012-09-05 Jx日鉱日石エネルギー株式会社 Hydrogen storage device and hydrogen supply method
US7849691B2 (en) * 2006-10-03 2010-12-14 Air Liquide Process & Construction, Inc. Steam methane reforming with LNG regasification terminal for LNG vaporization
JP5437568B2 (en) * 2007-07-27 2014-03-12 功 横山 Capping method for obtaining hydrogen reduced water or hydrogen reduced food and its cap
KR101169748B1 (en) 2009-10-29 2012-07-30 서울과학기술대학교 산학협력단 Hydrogen storage system of ultra low temperature and press type using lng cold energy
JP2011127754A (en) * 2009-11-19 2011-06-30 Taiyo Nippon Sanso Corp Hydrogen gas cooling device
CN107055470A (en) * 2017-03-10 2017-08-18 同济大学 A kind of hot utilization system of liquid organic hydrogen storage carrier reactor
JP7237755B2 (en) * 2018-08-17 2023-03-13 エア・ウォーター株式会社 Cryogenic Fluid Pumping Unit, Cryogenic Fluid Pumping Method, and Device Equipped with Cryogenic Fluid Pumping Unit
CN108799824A (en) * 2018-08-31 2018-11-13 中海石油气电集团有限责任公司 It is a kind of using LNG as the charging method of raw material scene hydrogen manufacturing and device
CN111779976A (en) * 2019-04-04 2020-10-16 顾士平 Foam nanopore high pressure hydrogen storage
CN111322521B (en) * 2020-02-17 2021-07-20 中国石油集团工程股份有限公司 Hydrogen accumulation control-based hydrogen-containing natural gas pipeline safety guarantee system and method
CN113217817A (en) * 2021-04-29 2021-08-06 中国人民解放军63796部队 Large-flow low-pressure online gas supply system
CN114704765B (en) * 2022-03-31 2023-03-24 浙江大学 Hydrogen liquefaction and boil-off gas recondensation system based on cryocooler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140777A (en) * 1984-12-11 1986-06-27 株式会社神戸製鋼所 Manufacture of liquid h2 and gas natural gas
JP3385384B2 (en) * 1992-03-23 2003-03-10 大阪瓦斯株式会社 Method and apparatus for storing and effectively utilizing LNG cold energy
JPH05295374A (en) * 1992-04-16 1993-11-09 Mitsubishi Heavy Ind Ltd Reforming of liquefied natural gas
JP2000247604A (en) * 1999-02-25 2000-09-12 Toshiba Corp Hydrogen producing device and method thereof
JP2001076750A (en) * 1999-09-09 2001-03-23 Osaka Gas Co Ltd High temperature fuel cell facility
JP3678662B2 (en) * 2001-03-16 2005-08-03 エア・ウォーター株式会社 Hydrogen production method and apparatus used therefor
US20030021743A1 (en) * 2001-06-15 2003-01-30 Wikstrom Jon P. Fuel cell refueling station and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459962B1 (en) 2013-10-31 2014-11-07 현대중공업 주식회사 A Treatment System of Liquefied Gas
KR20210126800A (en) * 2020-04-03 2021-10-21 주식회사 패리티 Hydrogen liquefaction and bog control system
KR102336884B1 (en) * 2020-04-03 2021-12-09 주식회사 패리티 Hydrogen liquefaction and bog control system

Also Published As

Publication number Publication date
JP2003002601A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP3647028B2 (en) Liquid hydrogen production method and liquid hydrogen production equipment
CN115943119B (en) Ammonia cracking for green hydrogen
KR102315763B1 (en) Production system of purified hydrogen gas by decomposing ammonia gas
JP4619575B2 (en) Hydrogen gas production method and hydrogen gas production facility
JP3670229B2 (en) Method and apparatus for producing hydrogen with liquefied CO2 recovery
KR102234540B1 (en) Power generating apparatus
JP5415109B2 (en) Hybrid hydrogen supply station
JP7412073B2 (en) Liquid hydrogen production equipment and hydrogen gas production equipment
US11614280B2 (en) Reforming system connected with a raw material gas vaporization system
KR20200049933A (en) Floating platform
KR20220053060A (en) Hydrogen-floating production and treatment system
JP2025071367A (en) Dehydrogenation reactor and control device
JP4429552B2 (en) Liquid hydrogen production system
JP2002193603A (en) Method for manufacturing hydrogen and its system
JP2014073923A (en) Hydrogen purification system and hydrogen feeding system
JP2006224885A (en) Hydrogen manufacturing equipment and manufacturing method
JPWO2007114276A1 (en) Method for starting liquid fuel synthesis system and liquid fuel synthesis system
JPH10273301A (en) Hydrogen manufacturing equipment
US20230135291A1 (en) Hydrogen supply system
JP7626608B2 (en) Hydrogen supply system and control device
JP4091755B2 (en) Hydrogen purification method and system at liquefied natural gas receiving terminal
JP6553273B1 (en) Hydrogen production equipment
JP6236354B2 (en) Hydrogen supply system
JP7602682B1 (en) Hydrogen gas production device, hydrogen gas supply device, fuel cell system, mobile body, and hydrogen gas production method
JPH04126512A (en) System for separating and recovering gaseous mixture and its operation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees