[go: up one dir, main page]

JP4619195B2 - Trace impurity analysis method - Google Patents

Trace impurity analysis method Download PDF

Info

Publication number
JP4619195B2
JP4619195B2 JP2005145679A JP2005145679A JP4619195B2 JP 4619195 B2 JP4619195 B2 JP 4619195B2 JP 2005145679 A JP2005145679 A JP 2005145679A JP 2005145679 A JP2005145679 A JP 2005145679A JP 4619195 B2 JP4619195 B2 JP 4619195B2
Authority
JP
Japan
Prior art keywords
gas
path
sample gas
sample
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005145679A
Other languages
Japanese (ja)
Other versions
JP2006322790A (en
Inventor
文男 川崎
隆治 小南
岳利 渡辺
英明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2005145679A priority Critical patent/JP4619195B2/en
Publication of JP2006322790A publication Critical patent/JP2006322790A/en
Application granted granted Critical
Publication of JP4619195B2 publication Critical patent/JP4619195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、試料ガス中の不純物濃度をリアルタイムに管理し、より純度の安定した原料ガスを供給するための微量不純物分析装置および微量不純物分析方法に関する。   The present invention relates to a trace impurity analysis apparatus and a trace impurity analysis method for managing impurity concentrations in a sample gas in real time and supplying a source gas with a more stable purity.

近年の半導体分野においては、ますます微細化される線幅加工や多層化処理等の歩留りを向上させるため、半導体製造工程に供給されるガスの高純度化が要求されつつある。ここ数年において、半導体製造における歩留り向上は、プロセスガス中の不純物濃度の削減による高純度化より、むしろ不純物濃度の変動の抑制によって達成できると考えられるようになっている。よって、プロセスガスの供給時に該プロセスガス中の不純物をより低濃度までリアルタイムかつ統計的に管理することが要求されるようになってきている。具体的には、たとえばサブppbオーダーでの不純物の検出が要求されている。サブppbオーダーの不純物濃度を統計的に管理するためには、要求に見合う性能を有する分析装置が必要となるが、実際の半導体工場においては、コンタミネーションフリーによる絶対的な信頼性や365日無停止操業等も要求される。   In the semiconductor field in recent years, in order to improve the yield of line width processing and multi-layer processing that are increasingly miniaturized, it is required to increase the purity of the gas supplied to the semiconductor manufacturing process. In recent years, it has been considered that the yield improvement in semiconductor manufacturing can be achieved by suppressing the fluctuation of the impurity concentration rather than the high purity by reducing the impurity concentration in the process gas. Therefore, it is required to manage the impurities in the process gas in real time and statistically to a lower concentration when supplying the process gas. Specifically, for example, detection of impurities in the sub ppb order is required. In order to statistically manage the impurity concentration in the sub ppb order, an analyzer having performance that meets the requirements is required. However, in an actual semiconductor factory, absolute reliability due to contamination free and 365 days Stop operation is also required.

図4は、従来の不純物分析装置の構成の一例を説明する図である。図4に示す構成においては、減圧弁41a、開閉弁42aを備えた試料ガスAの送入経路43aと、減圧弁41b、開閉弁42bを備えた試料ガスBの送入経路43bとが、それぞれガス分析手段44に接続され得るようになっており、試料ガスAのガス分析を行なう際には、送入経路43aをガス分析手段44に接続するとともに送入経路43bの配管を取り外して該送入経路43bとガス分析手段44とを接続しないようにし、試料ガスBのガス分析を行なう際には、送入経路43bをガス分析手段44に接続するとともに送入経路43aの配管を取り外して該送入経路43aとガス分析手段44とを接続しないようにすることにより、ガス分析手段44に導入するガス種を切替えることができる。   FIG. 4 is a diagram for explaining an example of the configuration of a conventional impurity analyzer. In the configuration shown in FIG. 4, the sample gas A feeding path 43a provided with the pressure reducing valve 41a and the opening / closing valve 42a, and the sample gas B feeding path 43b provided with the pressure reducing valve 41b and the opening / closing valve 42b are respectively provided. When the sample gas A is analyzed, the feed path 43a is connected to the gas analysis means 44, and the pipe of the feed path 43b is removed to perform the gas analysis. When performing gas analysis of the sample gas B without connecting the inlet path 43b and the gas analyzing means 44, the inlet path 43b is connected to the gas analyzing means 44 and the piping of the inlet path 43a is removed. By not connecting the delivery path 43a and the gas analysis means 44, the gas species introduced into the gas analysis means 44 can be switched.

しかしながらこのような構成の不純物分析装置においては、試料ガスの切替えの都度配管の取り外しおよび取り付けの作業が伴うため、ガス種の切替えに時間がかかり、リアルタイムでの不純物分析ができないという問題があった。   However, in the impurity analyzer of such a configuration, there is a problem that it takes time to switch the gas type because the pipe must be removed and attached every time the sample gas is switched, and the impurity analysis cannot be performed in real time. .

図5は、従来の不純物分析装置の構成の別の例を説明する図である。図5に示す構成においては、減圧弁51a、開閉弁52aを備えた試料ガスAの送入経路53aと、減圧弁51b、開閉弁52bを備えた試料ガスBの送入経路53bとが導入経路54で合流し、該導入経路54とガス分析手段55とが接続されている。ガス分析手段55に導入する試料ガスのガス種は、減圧弁51a,51b,開閉弁52a,52bの開閉により切替えられる。しかし、図5に示すような構成においては、たとえば試料ガスAの測定時に試料ガスBの開閉弁52bがリークすると、導入経路54に試料ガスBが混入する場合がある他、送入経路53aと送入経路53bとの圧力が異なる場合には、開閉弁52bのリークにより、送入経路53a内にまで試料ガスBが逆流する場合がある。これらの場合、ガス分析手段55に試料ガスBが混入することによって、試料ガスAの不純物分析の精度が低下する他、たとえば試料ガスAが酸素ガス、試料ガスBが水素ガスである場合等、試料ガスAと試料ガスBとが混合による危険性を有する組合せである場合には、ガス分析の安全性も確保できないという問題がある。   FIG. 5 is a diagram for explaining another example of the configuration of a conventional impurity analyzer. In the configuration shown in FIG. 5, the introduction path 53a of the sample gas A provided with the pressure reducing valve 51a and the opening / closing valve 52a, and the delivery path 53b of the sample gas B provided with the pressure reducing valve 51b and the opening / closing valve 52b are provided. 54, the introduction path 54 and the gas analysis means 55 are connected. The gas type of the sample gas introduced into the gas analyzing means 55 is switched by opening / closing the pressure reducing valves 51a, 51b and the opening / closing valves 52a, 52b. However, in the configuration as shown in FIG. 5, for example, when the sample gas B on-off valve 52 b leaks during measurement of the sample gas A, the sample gas B may be mixed into the introduction path 54, and the inflow path 53 a When the pressure with the inflow path 53b differs, the sample gas B may flow back into the inflow path 53a due to leakage of the on-off valve 52b. In these cases, the sample gas B is mixed into the gas analysis means 55, so that the accuracy of impurity analysis of the sample gas A is reduced. When the sample gas A and the sample gas B are a combination having a danger due to mixing, there is a problem that safety of gas analysis cannot be ensured.

特許文献1には、試料ガスをガスクロマトグラフ法により成分分別した後、キャリアガスとともに大気圧イオン化質量分析計に導入し、ガス中の微量不純物成分を検出する微量不純物の分析方法が提案されている。   Patent Document 1 proposes a trace impurity analysis method in which a sample gas is fractionated by gas chromatography and then introduced into an atmospheric pressure ionization mass spectrometer together with a carrier gas to detect trace impurity components in the gas. .

特許文献2には、複数の試料ガスを切替導入する試料ガス導入系統と分析計とを組み合わせたガス分析装置であって、試料ガスを切替導入した際に、切替前に導入していた試料ガス成分の濃度変化を監視する手段を設けたガス分析装置が提案されている。特許文献2のガス分析装置においては、1台の分析計で複数のガスを分析することができ、また、試料ガスの種類を切り替える際に、切替前に導入していた試料ガス成分の濃度変化速度が所定の濃度変化速度と異なる場合には、遮断弁を閉じたり、経路内を窒素等の不活性ガスでパージしたりすることによって、ガス分析装置の分析運転を停止させることが可能である。しかし、特許文献2のガス分析装置においては、異種ガス系列の配管をまとめ、弁の切替だけで分析機器へガスを切り替えるため、1の試料ガス導入系統の弁にリークが生じると、1の試料ガスと他の試料ガスとが混合したり、1の試料ガスが他の試料ガスの導入経路に逆流したりする場合がある。これらの現象が生じると、分析精度が十分得られないという問題や、混合するガス種によっては安全性が確保できないという問題がある。   Patent Document 2 discloses a gas analyzer that combines a sample gas introduction system for switching and introducing a plurality of sample gases and an analyzer, and the sample gas introduced before switching when the sample gas is switched and introduced. There has been proposed a gas analyzer provided with means for monitoring changes in the concentration of components. In the gas analyzer of Patent Document 2, it is possible to analyze a plurality of gases with one analyzer, and when changing the type of sample gas, the concentration change of the sample gas component introduced before switching When the speed is different from the predetermined concentration change speed, the analysis operation of the gas analyzer can be stopped by closing the shut-off valve or purging the path with an inert gas such as nitrogen. . However, in the gas analyzer of Patent Document 2, since pipes of different gas series are combined and the gas is switched to the analytical instrument only by switching the valve, if a leak occurs in the valve of one sample gas introduction system, one sample The gas and other sample gas may be mixed, or one sample gas may flow backward to the other sample gas introduction path. When these phenomena occur, there is a problem that sufficient analysis accuracy cannot be obtained, and a problem that safety cannot be secured depending on the kind of gas to be mixed.

特許文献3には、ガスクロマトグラフと大気圧イオン化質量分析計とを備えたガス中の微量不純物の分析装置であって,試料ガス導入源から導入される試料ガスを,該大気圧イオン化質量分析計に直接導入する系統と、該ガスクロマトグラフを介して大気圧イオン化質量分析計に導入する系統とを設けるとともに、試料ガスの流路を、該両系統のいずれかに切替えるための流路切替手段を設け、該ガスクロマトグラフには、該ガスクロマトグラフで分離した不純物を同伴して該大気圧イオン化質量分析計に導入するためのキャリアガス導入経路が設けられていることを特徴とするガス中の微量不純物の分析装置が提案されている。特許文献3の分析装置によれば、試料ガスの流路を切替えるだけで試料ガス中の不純物をすべて測定することができる。しかし、特許文献3の分析装置は試料ガスの流路を切替える構成を有するため、異種ガスの混合による分析精度や安全性の低下の問題は依然として存在する。
特開平6−34616号公報 特開平11−295270号公報 特開2004−294446号公報
Patent Document 3 discloses an apparatus for analyzing trace impurities in a gas comprising a gas chromatograph and an atmospheric pressure ionization mass spectrometer, wherein a sample gas introduced from a sample gas introduction source is supplied to the atmospheric pressure ionization mass spectrometer. And a system for introducing the gas into the atmospheric pressure ionization mass spectrometer via the gas chromatograph, and a flow path switching means for switching the flow path of the sample gas to either of the two systems. The gas chromatograph is provided with a carrier gas introduction path for entraining the impurities separated by the gas chromatograph and introducing them into the atmospheric pressure ionization mass spectrometer. An analysis apparatus has been proposed. According to the analyzer of Patent Document 3, all impurities in the sample gas can be measured simply by switching the flow path of the sample gas. However, since the analysis apparatus of Patent Document 3 has a configuration in which the flow path of the sample gas is switched, there still remains a problem of deterioration in analysis accuracy and safety due to mixing of different gases.
JP-A-6-34616 JP-A-11-295270 JP 2004-294446 A

本発明は上記の課題を解決し、試料ガス中の微量不純物の測定をリアルタイムで行なうことができ、さらに複数種類の試料ガスの分析を短周期の切替えで実施することが可能な微量不純物分析装置および微量不純物分析方法を提供することを目的とする。   The present invention solves the above-described problems, can measure trace impurities in a sample gas in real time, and can further analyze a plurality of types of sample gases by switching in a short cycle. It is another object of the present invention to provide a trace impurity analysis method.

本発明は、複数種類の試料ガスに含まれる不純物成分を該試料ガス毎に検出するための微量不純物分析装置であって、該試料ガス毎に並列に配置された、試料ガス送入のための複数の送入経路と、該複数の送入経路が合流する導入経路と、該導入経路に接続された1または2以上のガス分析手段と、を含み、該複数の送入経路の各々に、少なくとも2つの開閉弁と、該2つの開閉弁の間の経路を減圧するための減圧手段とが設けられ、かつ、該ガス分析手段に導入する試料ガスの種類の切り替えを行なうことにより、1のガス分析手段に対して2以上の種類の該試料ガスが順次導入される微量不純物分析装置に関する。   The present invention is a trace impurity analyzer for detecting impurity components contained in a plurality of types of sample gases for each of the sample gases, and is arranged in parallel for each of the sample gases. A plurality of inlet paths, an introduction path where the plurality of inlet paths merge, and one or more gas analysis means connected to the inlet path, each of the plurality of inlet paths, At least two on-off valves and a decompression means for decompressing the path between the two on-off valves are provided, and by switching the type of sample gas introduced into the gas analysis means, 1 The present invention relates to a trace impurity analysis apparatus in which two or more kinds of sample gases are sequentially introduced into a gas analysis means.

本発明の微量不純物分析装置においては、ガス分析手段を運転状態に維持して該ガス分析手段に導入する試料ガスの種類の切り替えを行なうことが好ましい。   In the trace impurity analyzing apparatus of the present invention, it is preferable to switch the type of sample gas introduced into the gas analyzing means while maintaining the gas analyzing means in an operating state.

本発明の微量不純物分析装置におけるガス分析手段は大気圧イオン化質量分析装置を含むことが好ましい。また、該ガス分析手段が大気圧イオン化質量分析装置およびガスクロマトグラフからなることも好ましい。   The gas analysis means in the trace impurity analyzer of the present invention preferably includes an atmospheric pressure ionization mass spectrometer. It is also preferred that the gas analysis means comprises an atmospheric pressure ionization mass spectrometer and a gas chromatograph.

本発明の微量不純物分析装置においては、導入経路に接続してパージ経路がさらに設けられることが好ましい。   In the trace impurity analyzer of the present invention, it is preferable to further provide a purge path connected to the introduction path.

本発明はまた、上記のガス分析手段によって分析される試料ガスが、窒素ガス、酸素ガス、アルゴンガス、ヘリウムガス、水素ガスから選択される2種以上である微量不純物分析装置に関する。   The present invention also relates to a trace impurity analysis apparatus in which the sample gas analyzed by the gas analysis means is at least two selected from nitrogen gas, oxygen gas, argon gas, helium gas, and hydrogen gas.

本発明の微量不純物分析装置は、あらかじめ設定されたプログラムに従い完全自動システムによって稼動することが好ましい。   The trace impurity analyzer of the present invention is preferably operated by a fully automatic system according to a preset program.

また、本発明の微量不純物分析装置においては、減圧手段によって減圧される経路の圧力をリアルタイム測定する圧力監視手段が設けられることが好ましい。   In the trace impurity analyzer of the present invention, it is preferable to provide a pressure monitoring means for measuring in real time the pressure of the path depressurized by the decompression means.

本発明はさらに、複数種類の試料ガスの各々に含まれる不純物成分を該試料ガス毎に検出するための微量不純物分析方法であって、該試料ガス毎に並列に配置され、各々に少なくとも2つの開閉弁と該2つの開閉弁の間の経路を減圧するための減圧手段とが設けられた、試料ガス送入のための複数の送入経路のうち、第1の試料ガスを送入するための第1の送入経路以外の送入経路における開閉弁を閉鎖して該開閉弁の間の経路を減圧状態とし、かつ、該第1の送入経路における2つの開閉弁を開放して該第1の試料ガスを該第1の送入経路内に送入する第1ステップと、該複数の送入経路が合流する導入経路を経て、該第1の試料ガスを該ガス分析手段に導入する第2ステップと、該ガス分析手段により該第1の試料ガスに含まれる微量不純物を検出する第3ステップと、該第1の送入経路における該2つの開閉弁を閉鎖して該開閉弁の間の経路を減圧状態とする第4ステップと、を含み、該第1ステップにおいて開閉弁が開放される送入経路を他の送入経路に順次切り替えて該ガス分析手段に導入される該試料ガスの種類を変える他は該第1ステップ〜第4ステップと同様の操作を繰り返すことにより、1のガス分析手段に対して2以上の種類の該試料ガスを順次導入して微量不純物の検出を行なう微量不純物分析方法に関する。   The present invention further provides a trace impurity analysis method for detecting an impurity component contained in each of a plurality of types of sample gases for each of the sample gases, wherein the method is arranged in parallel for each of the sample gases, and each includes at least two Among a plurality of feeding paths for feeding a sample gas, provided with an opening / closing valve and a decompression means for decompressing the path between the two opening / closing valves, for feeding the first sample gas Closing the on-off valve in the inlet path other than the first inlet path to reduce the path between the on-off valves, and opening the two on-off valves in the first inlet path The first sample gas is introduced into the gas analyzing means through a first step of feeding the first sample gas into the first feeding path and an introduction path where the plurality of feeding paths merge. A second step of measuring the amount of trace contained in the first sample gas by the gas analyzing means. A third step of detecting an object, and a fourth step of closing the two on-off valves in the first sending-in path and reducing the path between the on-off valves to a reduced pressure state. The same operation as in the first to fourth steps is performed except that the inflow path in which the on-off valve is opened is sequentially switched to another inflow path and the type of the sample gas introduced into the gas analyzing means is changed. The present invention relates to a trace impurity analysis method for detecting trace impurities by sequentially introducing two or more kinds of sample gases into one gas analysis means by repeating.

本発明の微量不純物分析方法においては、ガス分析手段に試料ガスを導入する前に、導入経路内をガスでパージするステップをさらに含むことが好ましい。   The trace impurity analysis method of the present invention preferably further includes a step of purging the introduction path with gas before introducing the sample gas into the gas analysis means.

本発明によれば、1のガス分析手段に対して複数種類の試料ガスを順次導入することによって試料ガスごとに微量不純物分析を行なうことができる微量不純物分析装置において、試料ガスの送入経路に減圧手段を設けることにより、ガス分析手段への異種ガスの混入を防止し、分析精度を向上させることができる。また本発明によれば、ガス分析手段への異種ガスの混入を防止できるため、試料ガスが互いの混合により危険が生じるガス種の組合せを含む場合にも分析を安全に行なうことができる。   According to the present invention, in a trace impurity analyzer capable of performing trace impurity analysis for each sample gas by sequentially introducing a plurality of types of sample gases into one gas analysis means, By providing the decompression means, it is possible to prevent the mixing of different gases into the gas analysis means and improve the analysis accuracy. In addition, according to the present invention, it is possible to prevent foreign gas from being mixed into the gas analysis means, and therefore, the analysis can be performed safely even when the sample gas includes a combination of gas species that may cause danger due to mutual mixing.

本発明の微量不純物分析装置は、試料ガス毎に並列に配置された、試料ガス送入のための複数の送入経路と、該複数の送入経路が合流する導入経路と、該導入経路に接続された1または2以上のガス分析手段と、を含み、該複数の送入経路の各々に、少なくとも2つの開閉弁と、該2つの開閉弁の間の経路を減圧するための減圧手段とが設けられ、かつ、該ガス分析手段に導入する試料ガスの種類の切り替えを行なうことにより、1のガス分析手段に対して2以上の種類の該試料ガスが順次導入される。   The trace impurity analyzer of the present invention includes a plurality of inflow paths for injecting a sample gas, an introduction path through which the plurality of inflow paths merge, arranged in parallel for each sample gas, and the introduction path One or more gas analysis means connected to each other, and at least two on-off valves in each of the plurality of delivery paths, and a decompression means for decompressing a path between the two on-off valves And by switching the type of the sample gas introduced into the gas analyzing means, two or more types of the sample gases are sequentially introduced into one gas analyzing means.

以下図を参照しながら、本発明に係る微量不純物分析装置および微量不純物分析方法の典型的な態様について説明するが、本発明はこれに限定されるものではない。図1は、本発明に係る微量不純物分析装置の構成の一例を説明する図である。図1に示す構成の微量不純物分析装置においては、試料ガスの送入経路として、減圧弁11a,開閉弁12a,13aを備えた試料ガスAの送入経路14aと、減圧弁11b、開閉弁12b,13bを備えた試料ガスBの送入経路14bとが並列に配置されている。   Hereinafter, typical aspects of the trace impurity analysis apparatus and trace impurity analysis method according to the present invention will be described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a diagram for explaining an example of the configuration of a trace impurity analyzer according to the present invention. In the trace impurity analyzing apparatus having the configuration shown in FIG. 1, the sample gas A supply path 14a including the pressure reducing valve 11a and the open / close valves 12a and 13a, the pressure reducing valve 11b, and the open / close valve 12b are provided as the sample gas supply path. , 13b and the sample gas B feed path 14b are arranged in parallel.

送入経路14a,14bは導入経路16に合流し、該導入経路16はガス分析手段17に接続されている。また、送入経路14aの開閉弁12aと開閉弁13aとの間、および、送入経路14bの開閉弁12bと開閉弁13bとの間をそれぞれ減圧するための減圧手段15が設けられ、さらに送入経路14a,14bと減圧手段15との間には開閉弁15a,15bがそれぞれ設けられている。   The feeding paths 14 a and 14 b merge into the introduction path 16, and the introduction path 16 is connected to the gas analysis means 17. Further, pressure reducing means 15 is provided for reducing the pressure between the on-off valve 12a and the on-off valve 13a of the infeed path 14a and between the on-off valve 12b and the on-off valve 13b of the inflow path 14b. On-off valves 15a and 15b are provided between the inlet paths 14a and 14b and the pressure reducing means 15, respectively.

図1に示す構成の微量不純物分析装置においては、ガス分析手段17に導入する試料ガスの種類を試料ガスAと試料ガスBとで順次切替えることにより、1のガス分析手段17に対して2種類の試料ガスを順次導入し、試料ガス中に含まれる不純物成分を該試料ガス毎に検出することができる。なお、図1では試料ガスが2種類の場合について示しているが、本発明はこれに限定されず、試料ガスが3種類以上とされても良い。3種類以上の試料ガスを分析する際にも、試料ガスの切替えを順次行ない、1のガス分析手段に対して複数種類の試料ガスを順次導入することによって分析を行なうことができる。   In the trace impurity analysis apparatus having the configuration shown in FIG. 1, two types of gas analysis means 17 are provided for one gas analysis means 17 by sequentially switching the type of sample gas introduced into the gas analysis means 17 between sample gas A and sample gas B. The sample gas can be sequentially introduced, and the impurity component contained in the sample gas can be detected for each sample gas. Although FIG. 1 shows the case where there are two types of sample gases, the present invention is not limited to this, and three or more types of sample gases may be used. When analyzing three or more kinds of sample gases, the analysis can be performed by sequentially switching the sample gases and sequentially introducing a plurality of kinds of sample gases into one gas analyzing means.

本発明の微量不純物分析装置においては、ガス分析手段を運転状態に維持して該ガス分析手段に導入する試料ガスの種類の切り替えを行なうことがより好ましい。たとえば、試料ガスの送入経路とは別途にパージガスの送入経路を設け、試料ガスの切替え時に該パージガスをガス分析手段に導入することによって、ガス分析手段へのガスの供給を中断させないようにすることができる。すなわち、本発明の微量不純物分析装置においては、パージガスの送入経路を設けることがより好ましい。   In the trace impurity analyzing apparatus of the present invention, it is more preferable to switch the type of sample gas introduced into the gas analyzing means while maintaining the gas analyzing means in an operating state. For example, a purge gas feed path is provided separately from the sample gas feed path, and the purge gas is introduced into the gas analyzing means when the sample gas is switched so as not to interrupt the gas supply to the gas analyzing means. can do. That is, in the trace impurity analyzer of the present invention, it is more preferable to provide a purge gas supply path.

また、試料ガスの送入経路の他にパージガスの送入経路を別途設けた場合、試料ガス切替え時に導入経路等の配管をパージガスでパージし、配管内の残留試料ガスの除去をより短時間で行なうことができる点で好ましい。パージガスの送入経路を別途設ける場合、パージガスとしては、超高純度窒素ガス、超高純度アルゴンガス等の不活性ガスや、試料ガスと同じガス種の超高純度ガス等が好ましく使用され得る。   In addition to the sample gas delivery route, if a purge gas delivery route is provided separately, the piping such as the introduction route is purged with the purge gas when the sample gas is switched, and the residual sample gas in the piping can be removed in a shorter time. It is preferable in that it can be performed. In the case where a purge gas feeding path is separately provided, an inert gas such as ultra high purity nitrogen gas or ultra high purity argon gas, or ultra high purity gas of the same gas type as the sample gas may be preferably used as the purge gas.

本発明の微量不純物分析装置におけるガス分析手段は、大気圧イオン化質量分析装置を含むことが好ましい。大気圧イオン化質量分析装置は不純物の検出感度に優れ、微量不純物分析の有用な手段となる。また、分析される試料ガスの種類に応じ、該ガス分析手段が大気圧イオン化質量分析装置およびガスクロマトグラフからなることも好ましい。大気圧イオン化質量分析装置およびガスクロマトグラフを併用することは、いずれか一方のガス分析手段では分離して検出することが困難な複数の物質を分析する場合に有用である。   The gas analysis means in the trace impurity analyzer of the present invention preferably includes an atmospheric pressure ionization mass spectrometer. The atmospheric pressure ionization mass spectrometer is excellent in impurity detection sensitivity and is a useful means for analyzing trace impurities. Further, it is also preferable that the gas analyzing means comprises an atmospheric pressure ionization mass spectrometer and a gas chromatograph according to the type of sample gas to be analyzed. The combined use of an atmospheric pressure ionization mass spectrometer and a gas chromatograph is useful when analyzing a plurality of substances that are difficult to be separated and detected by any one of the gas analysis means.

本発明において分析される試料ガスとしては、たとえば半導体分野等の各種工程において原料ガスとして供給されるガス等が挙げられ、窒素ガス、酸素ガス、アルゴンガス、ヘリウムガス、水素ガス、二酸化炭素ガス等が例示される。また典型的には、たとえば、窒素ガス、酸素ガス、アルゴンガス、ヘリウムガス、水素ガスから選択される2種以上の組合せが例示される。本発明の微量不純物分析装置は、異種の試料ガスの混合を防止することができるため、たとえば酸素ガスと水素ガスとの組合せのような、混合した場合に危険が生じるガス種の組合せであっても、高い安全性を維持しつつ、ガス分析手段に導入するガス種を切替えて順次分析を行なうことができる。   Examples of the sample gas analyzed in the present invention include, for example, a gas supplied as a raw material gas in various processes in the semiconductor field and the like, such as nitrogen gas, oxygen gas, argon gas, helium gas, hydrogen gas, and carbon dioxide gas. Is exemplified. Further, typically, for example, combinations of two or more selected from nitrogen gas, oxygen gas, argon gas, helium gas, and hydrogen gas are exemplified. Since the trace impurity analyzer of the present invention can prevent mixing of different kinds of sample gases, it is a combination of gas species that causes danger when mixed, such as a combination of oxygen gas and hydrogen gas. However, it is possible to sequentially perform analysis by switching the gas species introduced into the gas analysis means while maintaining high safety.

本発明の微量不純物分析装置は、あらかじめ設定されたプログラムに従い完全自動システムによって稼動することが好ましい。本発明においてガス分析手段が無停止で連続運転される場合には、完全自動システムを比較的容易に構築することができる。完全自動システムを採用することによって、人為的操作によるガス分析結果のばらつきの問題や操業時の安全性の問題が解決される。   The trace impurity analyzer of the present invention is preferably operated by a fully automatic system according to a preset program. In the present invention, when the gas analyzing means is continuously operated without stopping, a fully automatic system can be constructed relatively easily. By adopting a fully automatic system, the problem of variation in gas analysis results due to human operation and the problem of safety during operation are solved.

本発明の微量不純物分析装置においては、減圧手段によって減圧される経路の圧力をリアルタイム測定する圧力監視手段が設けられることが好ましい。本発明の微量不純物分析装置においては、分析中の試料ガス以外の試料ガスについては、各々の送入経路の少なくとも一部を減圧状態に維持することにより、導入経路内または分析中の試料ガスの送入経路内へのリークが防止される構造となっている。送入経路内の開閉弁のリークが生じた場合には減圧手段によって減圧される経路の圧力が上昇する。よって、圧力監視手段によって該経路の圧力をリアルタイム測定することにより、送入経路内の開閉弁のリークの有無がリアルタイムでモニターできる。これにより、分析中の試料ガスと他のガスとの混合の有無を確認することができ、分析精度をより向上させることができる。圧力監視手段は、それぞれの送入経路において減圧される経路のいずれかの部位に適宜設置することができる。   In the trace impurity analyzer of the present invention, it is preferable to provide a pressure monitoring means for measuring in real time the pressure of the path depressurized by the decompression means. In the trace impurity analyzer of the present invention, for sample gases other than the sample gas being analyzed, the pressure of the sample gas in the introduction path or under analysis is maintained by maintaining at least a part of each inlet path in a reduced pressure state. The structure prevents leakage into the delivery path. When the on-off valve leaks in the delivery path, the pressure in the path that is decompressed by the decompression means increases. Therefore, by measuring the pressure in the path in real time by the pressure monitoring means, it is possible to monitor in real time whether the on-off valve in the sending path is leaking. Thereby, the presence or absence of mixing of the sample gas under analysis and the other gas can be confirmed, and the analysis accuracy can be further improved. The pressure monitoring means can be appropriately installed at any part of the path where the pressure is reduced in each of the feeding paths.

本発明の微量不純物分析装置においては、試料ガスの送入経路の合流点近傍を減圧状態にできる構成がより好ましく採用される。本発明においては、各々の試料ガスに対応した送入経路から全試料ガスに共通の導入経路を経由して試料ガスがガス分析手段に導入される。よって、送入経路の合流点近傍に試料ガスが残留すると、試料ガス切替え後に分析される試料ガスに、切替え前の試料ガスが混入し、分析精度を低下させる場合がある。試料ガスの切替え時に送入経路の合流点近傍を減圧した場合、該合流点近傍の残留試料ガスが比較的短時間で除去されるため、分析精度がより向上するという利点がある。   In the trace impurity analyzer of the present invention, a configuration that can reduce the pressure in the vicinity of the confluence of the sample gas delivery path is more preferably employed. In the present invention, the sample gas is introduced into the gas analysis means from the feeding path corresponding to each sample gas via the common introduction path for all the sample gases. Therefore, if the sample gas remains in the vicinity of the confluence of the delivery path, the sample gas before switching may be mixed into the sample gas analyzed after switching the sample gas, which may reduce the analysis accuracy. If the pressure in the vicinity of the confluence of the delivery path is reduced when the sample gas is switched, the residual sample gas in the vicinity of the confluence is removed in a relatively short time, which has the advantage of improved analysis accuracy.

さらに、本発明の微量不純物分析装置は、配管を所望の温度に維持することを可能とする温度調節手段を備えることが好ましい。具体的には、たとえば、各々の送入経路、該送入経路の合流点近傍、導入経路等に対し、配管を加熱状態に保ち、該配管のベーキングが可能となるような温度調節手段を設けることができる。特に、送入経路の合流点近傍、導入経路が比較的細い配管で形成される場合、配管内壁からのアウトガスが分析結果に大きな影響を与える傾向があり、この傾向は複数種のガスが接触する経路が長くなる程顕著である。これらの配管に温度調節手段を設け、試料ガス切替え時に配管のベーキングを行なうことにより、配管内の残留試料ガスを除去するとともにアウトガスを短時間で放出させることができる。さらに、その後該温度調節手段によって該配管を比較的低温に保ちながらガス分析を行なう場合には、ガス分析中の配管内壁からのアウトガスを低濃度に抑えることができるので、分析精度をより向上させることができる。   Furthermore, it is preferable that the trace impurity analyzer of the present invention includes a temperature adjusting means that enables the piping to be maintained at a desired temperature. Specifically, for example, a temperature adjusting means is provided for each inflow path, in the vicinity of the junction of the inflow path, in the introduction path, etc., so that the pipe is kept in a heated state and can be baked. be able to. In particular, when the introduction path is formed by a relatively narrow pipe near the confluence of the inflow path, the outgas from the inner wall of the pipe tends to have a large effect on the analysis results, and this tendency is in contact with multiple types of gases. The longer the route, the more prominent. By providing temperature control means in these pipes and baking the pipes at the time of switching the sample gas, it is possible to remove the residual sample gas in the pipes and release the outgas in a short time. Further, when the gas analysis is performed while the pipe is kept at a relatively low temperature by the temperature adjusting means, the outgas from the inner wall of the pipe during the gas analysis can be suppressed to a low concentration, thereby improving the analysis accuracy. be able to.

以下本発明の具体的な実施の形態について説明するが、本発明はこれらに限定されない。   Hereinafter, specific embodiments of the present invention will be described, but the present invention is not limited thereto.

<実施の形態1>
本実施の形態においては、図1に示す構成の微量不純物分析装置を用い、試料ガスAの分析をまず行ない、続いて試料ガスBの分析を行なう場合について説明する。まず、試料ガスAの分析を行なうために、試料ガスAの送入経路における減圧弁11a,開閉弁12a,13aを開放し、試料ガスBの送入経路14bにおける減圧弁11b、開閉弁12b,13bを閉鎖する。また開閉弁15aを閉鎖し,15bを開放する(第1ステップ)。これにより、試料ガスAは送入経路14aから導入経路16を経てガス分析手段17に導入される一方、試料ガスBは減圧弁11bの閉鎖によって送入経路14b内への送入が停止される(第2ステップ)。ここで、送入経路14bの開閉弁12b,13b間は、開放された開閉弁15bを経て減圧手段15により減圧状態に維持されるため、万一減圧弁11bのリークが生じた場合にも、開閉弁12b,13b間の圧力が、開閉弁13bの下流の経路より低く維持されるために試料ガスBが開閉弁13bを通過することはなく、試料ガスAと試料ガスBとの混合が防止される。この状態で、試料ガスA中の不純物濃度をガス分析手段17にて測定する(第3ステップ)。試料ガスAの分析が終了した後、送入経路14aの減圧弁11a,開閉弁12a,13aを閉鎖してガス分析手段17への試料ガスAの導入を停止するとともに、開閉弁15aを開放し、開閉弁12a,13a間を減圧状態とする(第4ステップ)。以上の第1〜第4ステップにより、試料ガスAの分析を完了する。
<Embodiment 1>
In the present embodiment, a case will be described in which the sample gas A is first analyzed and then the sample gas B is analyzed using the trace impurity analyzer configured as shown in FIG. First, in order to analyze the sample gas A, the pressure reducing valve 11a and the on-off valves 12a and 13a in the sample gas A feeding path are opened, and the pressure reducing valve 11b and the on-off valve 12b in the sample gas B feeding path 14b are opened. 13b is closed. Further, the on-off valve 15a is closed and 15b is opened (first step). As a result, the sample gas A is introduced from the delivery path 14a through the introduction path 16 into the gas analyzing means 17, while the sample gas B is stopped from being fed into the delivery path 14b by closing the pressure reducing valve 11b. (Second step). Here, between the on-off valves 12b and 13b of the delivery path 14b is maintained in a reduced pressure state by the decompression means 15 via the opened on-off valve 15b, so that even if a leak of the decompression valve 11b occurs, Since the pressure between the on-off valves 12b and 13b is maintained lower than the downstream path of the on-off valve 13b, the sample gas B does not pass through the on-off valve 13b, and mixing of the sample gas A and the sample gas B is prevented. Is done. In this state, the impurity concentration in the sample gas A is measured by the gas analyzing means 17 (third step). After the analysis of the sample gas A is completed, the pressure reducing valve 11a and the on-off valves 12a and 13a of the delivery path 14a are closed to stop the introduction of the sample gas A to the gas analyzing means 17, and the on-off valve 15a is opened. The pressure between the on-off valves 12a and 13a is reduced (fourth step). The analysis of the sample gas A is completed by the above first to fourth steps.

次に、上記の第1〜第4ステップと同様の操作を試料ガスBについて行ない、試料ガスBについての分析を行なう。試料ガスBの送入経路14bにおける減圧弁11b、開閉弁12b,13bを順次開放し、さらに開閉弁15bを閉鎖する。これにより、試料ガスBが送入経路14bから導入経路16を経てガス分析手段17に導入される。送入経路14aの開閉弁12a,13a間は、開放された開閉弁15aを経て減圧手段15により減圧状態に維持されるため、万一減圧弁11aのリークが生じた場合にも、開閉弁12a,13a間の圧力が、開閉弁13aの下流の経路より低く維持されるために試料ガスAが開閉弁13aを通過することはなく、試料ガスAと試料ガスBとの混合が防止される。この状態で試料ガスB中の不純物濃度をガス分析手段17にて測定する。試料ガスBの分析が終了した後、送入経路14bの減圧弁11b、開閉弁12b,13bを閉鎖してガス分析手段17への試料ガスBの導入を停止し、さらに開閉弁15bを開放する。   Next, the same operation as in the first to fourth steps is performed for the sample gas B, and the sample gas B is analyzed. The pressure reducing valve 11b and the open / close valves 12b and 13b in the sample gas B feed path 14b are sequentially opened, and the open / close valve 15b is closed. As a result, the sample gas B is introduced into the gas analysis means 17 through the introduction path 16 through the introduction path 14b. Between the on-off valves 12a and 13a of the delivery path 14a, the decompression means 15 is maintained in a decompressed state via the opened on-off valve 15a. Therefore, even if the decompression valve 11a leaks, the on-off valve 12a , 13a is maintained lower than the downstream path of the on-off valve 13a, so that the sample gas A does not pass through the on-off valve 13a, and mixing of the sample gas A and the sample gas B is prevented. In this state, the gas analyzer 17 measures the impurity concentration in the sample gas B. After the analysis of the sample gas B is completed, the pressure reducing valve 11b and the open / close valves 12b and 13b of the delivery path 14b are closed to stop the introduction of the sample gas B into the gas analyzing means 17, and the open / close valve 15b is opened. .

以上を繰り返し、ガス分析手段17に導入するガスを試料ガスAと試料ガスBとで順次切替えることにより、試料ガスAおよび試料ガスBに含まれる微量不純物の分析をリアルタイムで行なうことができる。   By repeating the above and sequentially switching the gas introduced into the gas analyzing means 17 between the sample gas A and the sample gas B, the trace impurities contained in the sample gas A and the sample gas B can be analyzed in real time.

本実施の形態においては、試料ガスAおよび試料ガスBとを順次切替えてガス分析手段17に導入する際に、リアルタイム分析されていない方の試料ガスの送入経路の少なくとも一部が減圧状態に維持されることにより、分析中の試料ガスの送入経路または導入経路への混入が生じず、分析精度の低下が効果的に防止される。これにより、より微量の不純物の分析が可能となる。   In the present embodiment, when the sample gas A and the sample gas B are sequentially switched and introduced into the gas analyzing means 17, at least a part of the sample gas feeding path that has not been analyzed in real time is in a reduced pressure state. By being maintained, the sample gas being analyzed is not mixed into the feed-in path or the introduction path, and degradation of the analysis accuracy is effectively prevented. As a result, a trace amount of impurities can be analyzed.

<実施の形態2>
図2は、本発明に係る微量不純物分析装置の構成の別の例を説明する図である。本実施の形態においては、図2に示す構成の微量不純物分析装置を用いる場合について説明する。図2に示す微量分析装置は、減圧弁21a,開閉弁22a,23aを備えた試料ガスAの送入経路24aと、減圧弁21b、開閉弁22b,23bを備えた試料ガスBの送入経路24bに加え、減圧弁21c、開閉弁22c,23cを備えたパージガスCの送入経路24cをさらに備える。送入経路24a,24b,24cは導入経路26に合流し、該導入経路26はガス分析手段27に接続されている。また、送入経路24aの開閉弁22aと開閉弁23aとの間、送入経路24bの開閉弁22bと開閉弁23bとの間、および、送入経路24cの開閉弁22cと開閉弁23cとの間をそれぞれ減圧するための減圧手段25が設けられ、さらに送入経路24a,24b,24cと減圧手段25との間には開閉弁25a,25b,25cがそれぞれ設けられている。図2に示す構成においては、試料ガスAの送入経路24aと試料ガスBの送入経路24bとが合流した後であってパージガスCの送入経路24cと合流する前の経路に開閉弁28が設けられ、さらに、開閉弁23a,23b,28と減圧手段25との間に開閉弁29が設けられている。
<Embodiment 2>
FIG. 2 is a diagram for explaining another example of the configuration of the trace impurity analyzer according to the present invention. In this embodiment, a case where a trace impurity analyzer having the configuration shown in FIG. 2 is used will be described. The microanalyzer shown in FIG. 2 includes a sample gas A feed path 24a provided with a pressure reducing valve 21a and on / off valves 22a and 23a, and a sample gas B feed path provided with a pressure reducing valve 21b and on / off valves 22b and 23b. In addition to 24b, a purge gas C feed path 24c having a pressure reducing valve 21c and on-off valves 22c and 23c is further provided. The inflow paths 24a, 24b, and 24c merge into the introduction path 26, and the introduction path 26 is connected to the gas analysis means 27. Further, between the opening / closing valve 22a and the opening / closing valve 23a of the sending path 24a, between the opening / closing valve 22b and the opening / closing valve 23b of the sending path 24b, and between the opening / closing valve 22c and the opening / closing valve 23c of the sending path 24c. Pressure reducing means 25 for reducing the pressure between each of them is provided, and on-off valves 25a, 25b, and 25c are provided between the feeding paths 24a, 24b, and 24c and the pressure reducing means 25, respectively. In the configuration shown in FIG. 2, the opening / closing valve 28 is connected to the path after the sample gas A feed path 24a and the sample gas B feed path 24b merge and before the purge gas C feed path 24c merges. Further, an on-off valve 29 is provided between the on-off valves 23 a, 23 b, 28 and the pressure reducing means 25.

本実施の形態におけるガス分析の手順を、試料ガスAの分析をまず行ない、次に試料ガスBの分析を行なう場合について以下に説明する。まず、試料ガスAの分析を行なうために、試料ガスAの送入経路における減圧弁21a,開閉弁22a,23aを開放し、試料ガスBの送入経路24bにおける減圧弁21b、開閉弁22b,23b、および、パージガスCの送入経路24cにおける減圧弁21c、開閉弁22c,23cを閉鎖する。また開閉弁25aを閉鎖し,開閉弁25b,25cを開放する(第1ステップ)。これにより、試料ガスAは送入経路24aから導入経路26を経てガス分析手段27に導入される一方、試料ガスBおよびパージガスCは減圧弁21b,21cの閉鎖によって送入経路24b,24cへの送入が停止される(第2ステップ)。ここで、送入経路24bの開閉弁22b,23b間、および、送入経路24cの開閉弁22c,23c間は、開放された開閉弁25b,25cを経て減圧手段25によりそれぞれ減圧状態に維持されるため、万一減圧弁21b,21cのリークが生じた場合にも、開閉弁22b,23b間および開閉弁22c,23c間の圧力が、それぞれ開閉弁23bおよび開閉弁23cの下流の経路より低く維持されるために試料ガスBおよびパージガスCが開閉弁23b,23cを通過することはなく、試料ガスAと試料ガスBまたはパージガスCとの混合が防止される。この状態で、試料ガスA中の不純物濃度をガス分析手段27にて測定する(第3ステップ)。試料ガスAの分析が終了した後、試料ガスAの送入経路24aにおける減圧弁21a、開閉弁22a,23aを閉鎖してガス分析手段27への試料ガスAの導入を停止し、続いてパージガスCの送入経路24cにおける減圧弁21c、開閉弁22c,23cを開放し、開閉弁25cを閉鎖して、パージガスCを導入経路26を経てガス分析手段27に導入する。また、開閉弁25aを開放し、開閉弁22a,23a間を減圧状態とする(第4ステップ)。   The procedure of gas analysis in the present embodiment will be described below in the case where sample gas A is first analyzed and then sample gas B is analyzed. First, in order to analyze the sample gas A, the pressure reducing valve 21a and the on-off valves 22a and 23a in the sample gas A feeding path are opened, and the pressure reducing valve 21b and the on-off valve 22b in the sample gas B feeding path 24b are opened. 23b, and the pressure reducing valve 21c and the on-off valves 22c and 23c in the purge gas C feed path 24c are closed. The on-off valve 25a is closed and the on-off valves 25b and 25c are opened (first step). As a result, the sample gas A is introduced from the delivery path 24a through the introduction path 26 to the gas analyzing means 27, while the sample gas B and the purge gas C are supplied to the delivery paths 24b and 24c by closing the pressure reducing valves 21b and 21c. Delivery is stopped (second step). Here, between the on-off valves 22b and 23b of the delivery path 24b and between the on-off valves 22c and 23c of the delivery path 24c are maintained in a decompressed state by the decompression means 25 via the opened on-off valves 25b and 25c. Therefore, even if a leak occurs in the pressure reducing valves 21b and 21c, the pressure between the on-off valves 22b and 23b and between the on-off valves 22c and 23c is lower than the paths downstream of the on-off valves 23b and 23c, respectively. Therefore, the sample gas B and the purge gas C do not pass through the on-off valves 23b and 23c, and mixing of the sample gas A and the sample gas B or the purge gas C is prevented. In this state, the impurity concentration in the sample gas A is measured by the gas analyzing means 27 (third step). After the analysis of the sample gas A is completed, the pressure reducing valve 21a and the on-off valves 22a and 23a in the sample gas A delivery path 24a are closed to stop the introduction of the sample gas A into the gas analyzing means 27, and then the purge gas The pressure reducing valve 21c and the on-off valves 22c and 23c in the C feeding path 24c are opened, the on-off valve 25c is closed, and the purge gas C is introduced into the gas analyzing means 27 through the introduction path 26. Further, the on-off valve 25a is opened, and the pressure between the on-off valves 22a, 23a is reduced (fourth step).

本実施の形態においては、開閉弁23a,23b,28と減圧手段25との間に開閉弁29が設けられており、パージガスCによるパージの際に、開閉弁29を開放し、開閉弁23a,23bと開閉弁28との間に残留する試料ガスAを減圧手段25によって除去することができる。これにより、配管内に残留した試料ガスと、次に分析される試料ガスとの混合が防止される。その後、開閉弁29を閉鎖し、さらにパージガスCの送入経路24cにおける減圧弁21c、開閉弁22c,23cを閉鎖し、開閉弁25cを開放し、開閉弁22c,23c間も減圧状態とする。以上の手順により、試料ガスAの分析を完了する。   In the present embodiment, an on-off valve 29 is provided between the on-off valves 23a, 23b, 28 and the decompression means 25, and when purging with the purge gas C, the on-off valve 29 is opened, and the on-off valves 23a, 23a, The sample gas A remaining between 23 b and the on-off valve 28 can be removed by the decompression means 25. This prevents mixing of the sample gas remaining in the pipe with the sample gas to be analyzed next. Thereafter, the on-off valve 29 is closed, and the pressure reducing valve 21c and the on-off valves 22c, 23c in the purge gas C feed path 24c are closed, the on-off valve 25c is opened, and the pressure between the on-off valves 22c, 23c is also reduced. The analysis of the sample gas A is completed by the above procedure.

次に、上記の第1〜第4ステップと同様の操作を試料ガスBについて行ない、試料ガスBについての分析を行なう。試料ガスBの送入経路24bにおける減圧弁21b、開閉弁22b,23bを順次開放し、さらに開閉弁25bを閉鎖する。これにより、試料ガスBが送入経路24bから導入経路26を経てガス分析手段27に導入される。送入経路24aの開閉弁22a,23a間、および送入経路24cの開閉弁22c,23c間は、開放された開閉弁25a,25cを経て減圧手段25により減圧状態に維持されるため、万一減圧弁21a,21cのリークが生じた場合にも、開閉弁22a,23a間および開閉弁22c,23c間の圧力が、それぞれ開閉弁23aおよび開閉弁23cの下流の経路より低く維持されるために試料ガスAおよびパージガスCが開閉弁23a,23cを通過することはなく、試料ガスAまたはパージガスCと試料ガスBとの混合が防止される。この状態で試料ガスB中の不純物濃度をガス分析手段27にて測定する。試料ガスBの分析が終了した後、送入経路24bの減圧弁21b、開閉弁22b,23bを閉鎖してガス分析手段27への試料ガスBの導入を停止し、さらに開閉弁25bを開放する。この後、前述の方法でパージガスCによるパージを行ない、配管内に残留する試料ガスBを除去する。   Next, the same operation as in the first to fourth steps is performed for the sample gas B, and the sample gas B is analyzed. The pressure reducing valve 21b and the open / close valves 22b and 23b in the sample gas B feed path 24b are sequentially opened, and the open / close valve 25b is closed. As a result, the sample gas B is introduced into the gas analyzing means 27 through the introduction path 26 through the introduction path 24b. Since the opening / closing valves 22a and 23a of the delivery path 24a and between the opening / closing valves 22c and 23c of the delivery path 24c are maintained in a reduced pressure state by the decompression means 25 via the opened opening / closing valves 25a and 25c. Even when a leak occurs in the pressure reducing valves 21a and 21c, the pressure between the on-off valves 22a and 23a and between the on-off valves 22c and 23c is maintained lower than the downstream path of the on-off valve 23a and the on-off valve 23c, respectively. The sample gas A and the purge gas C do not pass through the on-off valves 23a and 23c, and mixing of the sample gas A or the purge gas C and the sample gas B is prevented. In this state, the gas analyzer 27 measures the impurity concentration in the sample gas B. After the analysis of the sample gas B is completed, the pressure reducing valve 21b and the open / close valves 22b and 23b of the delivery path 24b are closed to stop the introduction of the sample gas B into the gas analyzing means 27, and the open / close valve 25b is opened. . Thereafter, purging with the purge gas C is performed by the method described above, and the sample gas B remaining in the pipe is removed.

以上を繰り返し、ガス分析手段27に導入するガスを試料ガスAと試料ガスBとで順次切替えることにより、試料ガスAおよび試料ガスBに含まれる微量不純物の分析をリアルタイムで行なうことができる。   By repeating the above and sequentially switching the gas introduced into the gas analyzing means 27 between the sample gas A and the sample gas B, the trace impurities contained in the sample gas A and the sample gas B can be analyzed in real time.

本実施の形態においては、試料ガスAおよび試料ガスBとを順次切替えてガス分析手段27に導入する際に、リアルタイム分析されていない方の試料ガスの送入経路の少なくとも一部が減圧状態に維持されることにより、分析中の試料ガスの送入経路または導入経路への混入が生じず、分析精度の低下が効果的に防止される。これにより、より微量の不純物の分析が可能となる。また、試料ガスの切替え時にパージガスを流すことによって、配管内に残留する試料ガスをより短時間で除去することができる。さらに、試料ガスの切替え時にパージガスをガス分析手段27に供給し続けることにより、ガス分析手段27の無停止連続運転が可能となる。一方、パージ時に送入経路の合流点近傍の減圧を行なうことによっても、配管内に残留する試料ガスをより短時間で除去することができる。   In the present embodiment, when the sample gas A and the sample gas B are sequentially switched and introduced into the gas analyzing means 27, at least a part of the sample gas feeding path that has not been analyzed in real time is in a reduced pressure state. By being maintained, the sample gas being analyzed is not mixed into the feed-in path or the introduction path, and degradation of the analysis accuracy is effectively prevented. As a result, a trace amount of impurities can be analyzed. Further, by flowing the purge gas when switching the sample gas, the sample gas remaining in the pipe can be removed in a shorter time. Further, by continuing to supply the purge gas to the gas analysis means 27 when the sample gas is switched, the gas analysis means 27 can be continuously operated without stopping. On the other hand, the sample gas remaining in the pipe can be removed in a shorter time by reducing the pressure in the vicinity of the confluence of the delivery path during the purge.

<実施の形態3>
図3は、本発明に係る微量不純物分析装置の構成のさらに別の例を説明する図である。本実施の形態においては、図3に示す構成の微量不純物分析装置を用いる場合について説明する。図3に示す構成の微量分析装置は、減圧弁301a、開閉弁302a,303aを備えた試料ガスAの送入経路304aと、減圧弁301b、開閉弁302b,303bを備えた試料ガスBの送入経路304bと、開閉弁302c,303cを備えたパージガスCの送入経路304cとを備える。送入経路304a,304b,304cは導入経路306に合流し、該導入経路306はガス分析手段307に接続されている。また、送入経路304aの開閉弁302aと開閉弁303aとの間、送入経路304bの開閉弁302bと開閉弁303bとの間、および、送入経路304cの開閉弁302cと開閉弁303cとの間をそれぞれ減圧するための減圧手段305が設けられ、さらに送入経路304a,304b,304cと減圧手段305との間には開閉弁305a,305b,305cがそれぞれ設けられている。
<Embodiment 3>
FIG. 3 is a diagram for explaining still another example of the configuration of the trace impurity analyzer according to the present invention. In this embodiment, a case where a trace impurity analyzer having the configuration shown in FIG. 3 is used will be described. The microanalyzer configured as shown in FIG. 3 has a sample gas A feed path 304a having a pressure reducing valve 301a and on / off valves 302a and 303a, and a sample gas B having a pressure reducing valve 301b and on / off valves 302b and 303b. An inlet path 304b and a purge gas C inlet path 304c including on-off valves 302c and 303c are provided. The inflow paths 304 a, 304 b, and 304 c merge into the introduction path 306, and the introduction path 306 is connected to the gas analysis means 307. Further, between the on-off valve 302a and the on-off valve 303a of the inflow path 304a, between the on-off valve 302b and the on-off valve 303b of the inflow path 304b, and between the on-off valve 302c and the on-off valve 303c of the inflow path 304c. Pressure reducing means 305 for reducing the pressure between them is provided, and on-off valves 305a, 305b, and 305c are provided between the feeding paths 304a, 304b, and 304c and the pressure reducing means 305, respectively.

図3に示す構成の微量不純物分析装置においては、試料ガスAの送入経路304aと試料ガスBの送入経路304bとが合流した後であってパージガスCの送入経路304cと合流する前の経路に開閉弁308が設けられ、さらに、開閉弁303a,303b,308と減圧手段305との間に開閉弁309が設けられている。試料ガス切替え時に開閉弁309を開放することにより、送入経路304aと送入経路304bとの合流点近傍を減圧状態とすることができるため、該合流点近傍の残留試料ガスを比較的短時間で除去することができる。   In the trace impurity analyzing apparatus having the configuration shown in FIG. 3, the sample gas A feeding path 304a and the sample gas B feeding path 304b are merged and before the purge gas C feeding path 304c is merged. An on-off valve 308 is provided in the path, and an on-off valve 309 is provided between the on-off valves 303 a, 303 b, 308 and the pressure reducing means 305. By opening the on-off valve 309 when the sample gas is switched, the vicinity of the confluence of the inflow path 304a and the inflow path 304b can be in a reduced pressure state, so that the residual sample gas in the vicinity of the confluence is relatively short. Can be removed.

さらに、図3に示す構成の微量不純物分析装置においてはパージ経路310が設けられ、パージガスCが、送入経路304c、導入経路306を経てパージ経路310から系外に排気されることができる。また、試料ガスAの送入経路304aと試料ガスBの送入経路304bとの合流点近傍と導入経路306とにそれぞれ温度調節手段311,312が設けられている。   Further, in the trace impurity analyzer configured as shown in FIG. 3, the purge path 310 is provided, and the purge gas C can be exhausted from the purge path 310 to the outside of the system via the inlet path 304c and the introduction path 306. Further, temperature adjusting means 311 and 312 are provided in the vicinity of the junction of the sample gas A feed path 304a and the sample gas B feed path 304b and the introduction path 306, respectively.

図3に示す構成の微量不純物分析装置においては、パージガスCの送入経路304c、導入経路306、パージ経路310の配管の内径が試料ガスの送入経路の配管の内径より大きくされることも好ましい。この場合、ガス分析手段307に負荷を与えたり、試料ガスの分析精度に影響を及ぼしたりすることなく、試料ガスの種類の切替え時に、送入経路304cから導入経路306を経てパージ経路310にパージガスCを大流量でパージすることができる。これにより、導入経路306の残留試料ガスはより短時間で除去され、試料ガスの切替え所要時間を短縮することができる。   In the trace impurity analyzer configured as shown in FIG. 3, it is also preferable that the inner diameters of the pipes of the purge gas C feeding path 304c, the introduction path 306, and the purge path 310 are larger than the inner diameters of the pipes of the sample gas feeding path. . In this case, the purge gas is supplied from the feed path 304c to the purge path 310 via the introduction path 306 when switching the type of the sample gas without imposing a load on the gas analysis means 307 or affecting the analysis accuracy of the sample gas. C can be purged at a high flow rate. Thereby, the residual sample gas in the introduction path 306 is removed in a shorter time, and the time required for switching the sample gas can be shortened.

図3に示す構成においては、試料ガスの切替え時に該パージガスCがガス分析手段307に導入されることもでき、この場合パージ中もガス分析手段307へのガスの供給が中断されない。よってガス分析手段307を運転状態に維持したまま試料ガスの切替えを行なうことが可能である。   In the configuration shown in FIG. 3, the purge gas C can be introduced into the gas analysis means 307 when the sample gas is switched. In this case, the supply of gas to the gas analysis means 307 is not interrupted even during the purge. Therefore, it is possible to switch the sample gas while maintaining the gas analyzing means 307 in the operating state.

本実施の形態におけるガス分析の手順を、試料ガスの分析をまず行ない、次に試料ガスBの分析を行なう場合について以下に説明する。まず、試料ガスAの分析を行なうために、試料ガスAの送入経路における減圧弁301a、開閉弁302a,303aを開放し、試料ガスBの送入経路304bにおける開閉弁302b,303b、および、パージガスCの送入経路304cにおける開閉弁302c,303cを閉鎖する。また開閉弁305aを閉鎖し,開閉弁305b,305cを開放する(第1ステップ)。これにより、試料ガスAは送入経路304aから導入経路306を経てガス分析手段307に導入される一方、試料ガスBおよびパージガスCについては、減圧弁301b、開閉弁302cの閉鎖によって送入経路304b,304cへの送入が停止される(第2ステップ)。ここで、送入経路304bの開閉弁302b,303b間、および、送入経路304cの開閉弁302c,303c間は、開放された開閉弁305b,305cを経て減圧手段305によりそれぞれ減圧状態に維持されるため、万一減圧弁301b,開閉弁302cのリークが生じた場合にも、開閉弁302b,303b間および開閉弁302c,303c間の圧力が、それぞれ開閉弁303bおよび開閉弁303cの下流の経路より低く維持されるために試料ガスBおよびパージガスCが開閉弁303b,303cを通過することはなく、試料ガスAと試料ガスBまたはパージガスCとの混合が防止される。この状態で、試料ガスA中の不純物濃度をガス分析手段307にて測定する(第3ステップ)。試料ガスAの分析が終了した後、試料ガスAの送入経路304aにおける減圧弁301a、開閉弁302a,303aを閉鎖して試料ガスAの送入を停止し、続いてパージガスCの送入経路304cにおける開閉弁302c,303cを開放し、開閉弁305cを閉鎖する。また、開閉弁305aを開放し、開閉弁302a,303a間を減圧状態とする(第4ステップ)。本実施の形態においては、パージガスCをガス分析手段307には導入せず、パージ経路310から系外に排気する。これにより、パージガスを大流量で導入経路306に流すことが可能となるため、該導入経路306内の残留試料ガスをより短時間で除去し、試料ガスの切替え所要時間を短縮できる。   The procedure of gas analysis in the present embodiment will be described below in the case where sample gas is analyzed first and then sample gas B is analyzed. First, in order to analyze the sample gas A, the pressure reducing valve 301a and the on-off valves 302a and 303a in the sample gas A feeding path are opened, and the on-off valves 302b and 303b in the sample gas B feeding path 304b are opened. The on-off valves 302c and 303c in the purge gas C feed path 304c are closed. The on-off valve 305a is closed and the on-off valves 305b and 305c are opened (first step). As a result, the sample gas A is introduced from the delivery path 304a through the introduction path 306 to the gas analyzing means 307, while the sample gas B and the purge gas C are fed into the delivery path 304b by closing the pressure reducing valve 301b and the on-off valve 302c. , 304c is stopped (second step). Here, between the on-off valves 302b and 303b of the sending-in route 304b and between the on-off valves 302c and 303c of the sending-in route 304c are maintained in a decompressed state by the decompressing means 305 via the opened on-off valves 305b and 305c. Therefore, even if a leak occurs in the pressure reducing valve 301b and the on-off valve 302c, the pressure between the on-off valves 302b and 303b and the pressure between the on-off valves 302c and 303c are paths downstream of the on-off valves 303b and 303c, respectively. In order to be kept lower, the sample gas B and the purge gas C do not pass through the on-off valves 303b and 303c, and mixing of the sample gas A and the sample gas B or the purge gas C is prevented. In this state, the impurity concentration in the sample gas A is measured by the gas analyzing means 307 (third step). After the analysis of the sample gas A is completed, the pressure reducing valve 301a and the open / close valves 302a and 303a in the sample gas A feed path 304a are closed to stop the feed of the sample gas A, and then the purge gas C feed path The on-off valves 302c and 303c in 304c are opened, and the on-off valve 305c is closed. Further, the on-off valve 305a is opened, and the pressure between the on-off valves 302a and 303a is reduced (fourth step). In the present embodiment, the purge gas C is not introduced into the gas analysis means 307 but is exhausted from the purge path 310 to the outside of the system. As a result, the purge gas can flow through the introduction path 306 at a large flow rate, so that the residual sample gas in the introduction path 306 can be removed in a shorter time, and the time required for switching the sample gas can be shortened.

本実施の形態においては、この後、開閉弁309も開放し、開閉弁303a,303bと開閉弁308との間に残留する試料ガスAを減圧手段305によって除去する。これにより、配管内に残留した試料ガスと次に分析される試料ガスとの混合が防止される。その後、開閉弁309を閉鎖し、さらにパージガスCの送入経路304cにおける開閉弁302c,303cを閉鎖し、開閉弁305cを開放し、開閉弁302c,303c間も減圧状態とする。以上の手順により、試料ガスAの分析を完了する。   In the present embodiment, the on-off valve 309 is also opened thereafter, and the sample gas A remaining between the on-off valves 303a and 303b and the on-off valve 308 is removed by the decompression means 305. Thereby, mixing of the sample gas remaining in the pipe and the sample gas to be analyzed next is prevented. Thereafter, the on-off valve 309 is closed, and the on-off valves 302c and 303c in the purge gas C feed path 304c are closed, the on-off valve 305c is opened, and the pressure between the on-off valves 302c and 303c is reduced. The analysis of the sample gas A is completed by the above procedure.

図3に示す構成の微量不純物分析装置は温度調節手段311,312を有する。本実施の形態においては、パージガスCによる導入経路306のパージの際、送入経路304aと送入経路304bとの合流点近傍、および導入経路306を、それぞれ温度調節手段311,312によってベーキングしても良い。ベーキングを行なうことにより、該合流点近傍および導入経路306に残留した試料ガスをさらに短時間で除去することができる。ベーキングの条件としては、たとえば、パージガスを高純度窒素ガスとし、流量60Nl/min、ベーキング温度50℃、パージ時間20時間でベーキングする条件等を採用できる。   The trace impurity analyzer configured as shown in FIG. 3 includes temperature adjusting means 311 and 312. In the present embodiment, when purging the introduction path 306 with the purge gas C, the vicinity of the junction of the introduction path 304a and the introduction path 304b and the introduction path 306 are baked by the temperature adjusting means 311 and 312 respectively. Also good. By performing the baking, the sample gas remaining in the vicinity of the junction and in the introduction path 306 can be removed in a shorter time. As the baking conditions, for example, a condition in which the purge gas is a high purity nitrogen gas, the flow rate is 60 Nl / min, the baking temperature is 50 ° C., and the purge time is 20 hours can be employed.

次に、上記の第1〜第4ステップと同様の操作を試料ガスBについて行ない、試料ガスBについての分析を行なう。試料ガスBの送入経路304bにおける減圧弁301b、開閉弁302b,303bを順次開放し、さらに開閉弁305bを閉鎖する。これにより、試料ガスBが送入経路304bから導入経路306を経てガス分析手段307に導入される。送入経路304aの開閉弁302a,303a間、および送入経路304cの開閉弁302c,303c間は、開放された開閉弁305a,305cを経て減圧手段305により減圧状態に維持されるため、万一減圧弁301a,開閉弁302cのリークが生じた場合にも、開閉弁302a,303a間および開閉弁302c,303c間の圧力が、それぞれ開閉弁303aおよび開閉弁303cの下流の経路より低く維持されるために試料ガスAおよびパージガスCが開閉弁303a,303cを通過することはなく、試料ガスAまたはパージガスCと試料ガスBとの混合が防止される。この状態で試料ガスB中の不純物濃度をガス分析手段307にて測定する。試料ガスBの分析が終了した後、送入経路304bの減圧弁301b、開閉弁302b,303bを閉鎖してガス分析手段307への試料ガスBの導入を停止し、さらに開閉弁305bを開放する。この後、前述の方法でパージガスCによるパージを行ない、配管内に残留する試料ガスBを除去する。   Next, the same operation as in the first to fourth steps is performed for the sample gas B, and the sample gas B is analyzed. The pressure reducing valve 301b and the open / close valves 302b and 303b in the sample gas B feed path 304b are sequentially opened, and the open / close valve 305b is closed. As a result, the sample gas B is introduced into the gas analyzing means 307 through the introduction path 304b and the introduction path 306. Since the opening / closing valves 302a and 303a of the delivery path 304a and between the opening and closing valves 302c and 303c of the delivery path 304c are maintained in a reduced pressure state by the decompression means 305 via the opened opening / closing valves 305a and 305c, Even when the pressure reducing valve 301a and the on-off valve 302c leak, the pressure between the on-off valves 302a and 303a and between the on-off valves 302c and 303c is maintained lower than the paths downstream of the on-off valves 303a and 303c, respectively. Therefore, the sample gas A and the purge gas C do not pass through the on-off valves 303a and 303c, and mixing of the sample gas A or the purge gas C and the sample gas B is prevented. In this state, the gas analyzer 307 measures the impurity concentration in the sample gas B. After the analysis of the sample gas B is completed, the pressure reducing valve 301b and the open / close valves 302b and 303b of the delivery path 304b are closed to stop the introduction of the sample gas B into the gas analyzing means 307, and the open / close valve 305b is opened. . Thereafter, purging with the purge gas C is performed by the method described above, and the sample gas B remaining in the pipe is removed.

以上を繰り返し、ガス分析手段307に導入するガスを試料ガスAと試料ガスBとで順次切替えることにより、試料ガスAおよび試料ガスBに含まれる微量不純物の分析をリアルタイムで行なうことができる。   By repeating the above and sequentially switching the gas introduced into the gas analysis means 307 between the sample gas A and the sample gas B, the trace impurities contained in the sample gas A and the sample gas B can be analyzed in real time.

本実施の形態においては、試料ガスAおよび試料ガスBとを順次切替えてガス分析手段307に導入する際に、リアルタイム分析されていない方の試料ガスの送入経路の少なくとも一部が減圧状態に維持されることにより、分析中の試料ガスの送入経路または導入経路への混入が生じず、分析精度の低下が効果的に防止される。これにより、より微量の不純物の分析が可能となる。さらに、パージ経路を設けることにより、試料ガスの切替え時にはパージガスを大流量で流すことができ、この場合、配管内に残留する試料ガスをより短時間で除去することができる。また、パージ時に複数の試料ガスの送入経路の合流点近傍の減圧を行なうことによっても、配管内に残留する試料ガスをより短時間で除去することができる。   In the present embodiment, when the sample gas A and the sample gas B are sequentially switched and introduced into the gas analyzing means 307, at least a part of the sample gas feeding path that has not been analyzed in real time is in a reduced pressure state. By being maintained, the sample gas being analyzed is not mixed into the feed-in path or the introduction path, and degradation of the analysis accuracy is effectively prevented. As a result, a trace amount of impurities can be analyzed. Furthermore, by providing the purge path, the purge gas can be flowed at a large flow rate when the sample gas is switched, and in this case, the sample gas remaining in the pipe can be removed in a shorter time. In addition, the sample gas remaining in the pipe can be removed in a shorter time by reducing the pressure in the vicinity of the confluence of the plurality of sample gas feed paths during the purge.

<実施例>
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
<Example>
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

(実施例1)
図2に示す構成の微量不純物分析装置を用い、試料ガスAが水素ガス、試料ガスBがアルゴンガス、パージガスCが窒素ガスである場合において、水素ガスの分析後、窒素ガスをパージし、アルゴンガスへの切替えが可能となるまでのパージ所要時間を評価した。ガス分析手段27としては、API−MS(大気圧イオン化質量分析計)(ルネサステクノロジ社製「UG510−II特型」)を用いた。また本実施例においては、各経路に、SUS316L−EP 1/8サイズ(直径3.2mm)および1/4サイズ(直径6.35mm)の配管を用いた。
Example 1
When the sample gas A is hydrogen gas, the sample gas B is argon gas, and the purge gas C is nitrogen gas, after the analysis of the hydrogen gas, the nitrogen gas is purged and argon is used. The purge time until gas switching was possible was evaluated. As the gas analysis means 27, API-MS (atmospheric pressure ionization mass spectrometer) (“UG510-II special type” manufactured by Renesas Technology) was used. In this example, SUS316L-EP 1/8 size (diameter 3.2 mm) and 1/4 size (diameter 6.35 mm) pipes were used for each path.

アルゴンガスの送入経路の開閉弁22b,23b間、および、窒素ガスの送入経路の開閉弁22c,23c間を減圧状態とし、水素ガスを送入し、API-MSにて水素ガスの不純物濃度を測定した。その後、水素ガスの送入経路の開閉弁22a,23a間を減圧状態とし,窒素ガスの送入経路の開閉弁22c,23cを開放して、送入経路24c、導入経路26を経てガス分析手段27に窒素ガスを流量12Nl/minでパージした。   The pressure between the open / close valves 22b and 23b of the argon gas feed path and the open / close valves 22c and 23c of the nitrogen gas feed path is reduced, hydrogen gas is fed, and impurities of hydrogen gas are obtained by API-MS. Concentration was measured. Thereafter, the pressure between the on-off valves 22a and 23a of the hydrogen gas feeding path is reduced, the on-off valves 22c and 23c of the nitrogen gas feeding path are opened, and the gas analyzing means passes through the feeding path 24c and the introduction path 26. 27 was purged with nitrogen gas at a flow rate of 12 Nl / min.

パージの完了は、送入経路24c、導入経路26を経由した窒素ガスをガス分析手段27としてのAPI−MSに導入し、該窒素ガス中の水素ガス濃度を測定することにより確認した。本実施例における窒素ガスパージの所要時間は、不純物成分分析値が1ppb未満となるまでに数日間であった。   Completion of the purge was confirmed by introducing nitrogen gas via the inlet path 24c and the inlet path 26 into the API-MS as the gas analyzing means 27 and measuring the hydrogen gas concentration in the nitrogen gas. The time required for the nitrogen gas purge in this example was several days until the impurity component analysis value became less than 1 ppb.

(実施例2)
図3に示す微量不純物分析装置を用い、試料ガスAが水素ガス、試料ガスBがアルゴンガス、パージガスCが窒素ガスである場合において、水素ガスの分析後、窒素ガスをパージし、アルゴンガスへの切替えが可能となるまでのパージ所要時間を評価した。ガス分析手段307としては、実施例1と同機種のAPI−MS(大気圧イオン化質量分析計)を用いた。なお本実施例においては、送入経路304c、導入経路306、パージ経路310に、実施例1で使用したものと同じ1/4サイズ(直径6.35mm)の配管を用い、他の経路に、実施例1で使用したものと同じ1/8サイズ(直径3.2mm)の配管を用いた。
(Example 2)
When the sample gas A is hydrogen gas, the sample gas B is argon gas, and the purge gas C is nitrogen gas, the nitrogen gas is purged after the analysis of the hydrogen gas to the argon gas using the trace impurity analyzer shown in FIG. The time required for purging until the changeover was enabled was evaluated. As the gas analysis means 307, API-MS (atmospheric pressure ionization mass spectrometer) of the same model as in Example 1 was used. In the present embodiment, the same 1/4 size (diameter 6.35 mm) pipe as that used in the first embodiment is used for the delivery path 304c, the introduction path 306, and the purge path 310, and the other paths are used. The same 1/8 size pipe (diameter 3.2 mm) as that used in Example 1 was used.

アルゴンガスの送入経路の開閉弁302b,303b間、および、窒素ガスの送入経路の開閉弁302c,303c間を減圧状態とし、水素ガスを送入し、API−MSにて水素ガス中の不純物濃度を測定した。その後、水素ガスの送入経路の開閉弁302a,303a間を減圧状態とし、窒素ガスの送入経路の開閉弁302c,303cを開放して、送入経路304c、導入経路306、およびパージ経路310に、窒素ガスを流量60Nl/minでパージした。さらに、パージの開始時から終了時まで、温度調節手段311,312により送入経路の合流点近傍および導入経路306を50℃でベーキングした。   The pressure between the open / close valves 302b and 303b of the argon gas feed path and the open / close valves 302c and 303c of the nitrogen gas feed path is reduced, hydrogen gas is fed, and the API-MS Impurity concentration was measured. Thereafter, the pressure between the on-off valves 302a and 303a of the hydrogen gas feeding path is reduced, the on-off valves 302c and 303c of the nitrogen gas feeding path are opened, and the feeding path 304c, the introduction path 306, and the purge path 310 are opened. Then, nitrogen gas was purged at a flow rate of 60 Nl / min. Further, from the start to the end of the purge, the temperature adjusting means 311, 312 baked the vicinity of the confluence of the feed path and the introduction path 306 at 50 ° C.

パージの完了は、送入経路304c、導入経路306を経由した窒素ガスをガス分析手段307に導入し、水素ガス濃度を測定することにより確認した。本実施例における窒素ガスパージの所要時間は、不純物成分分析値が1ppb未満となるまでに1日であった。   Completion of the purge was confirmed by introducing nitrogen gas via the feed path 304c and the introduction path 306 into the gas analysis means 307 and measuring the hydrogen gas concentration. The time required for the nitrogen gas purge in this example was one day until the impurity component analysis value became less than 1 ppb.

(実施例3)
図3に示す構成の微量不純物分析装置を用い、購入直後のコイルチューブ配管、すなわちベーキングを行なっていないコイルチューブ配管を各送入経路として取り付け、アウトガス濃度を評価した。なお該コイルチューブ配管としては、KUZE SUS316L−EP1/4(直径6.35mm) 1.0t×28mを用いた。
(Example 3)
Using the trace impurity analyzer of the configuration shown in FIG. 3, coil tube piping immediately after purchase, that is, coil tube piping that has not been baked, was attached as each inflow path, and the outgas concentration was evaluated. As the coil tube piping, KUZE SUS316L-EP1 / 4 (diameter 6.35 mm) 1.0 t × 28 m was used.

送入経路Aからアルゴンガスを送入し、導入経路306を経てガス分析手段307に導入し、該アルゴンガス中の水素ガスおよび水の濃度をアウトガス濃度として測定した。ガス分析手段としては、実施例1と同機種のAPI−MSを用いた。結果を表1に示す。   Argon gas was fed from the feeding path A, introduced into the gas analysis means 307 via the introduction path 306, and the concentrations of hydrogen gas and water in the argon gas were measured as outgas concentrations. As a gas analysis means, API-MS of the same model as in Example 1 was used. The results are shown in Table 1.

(実施例4)
各送入経路に、あらかじめベーキングを行なったステンレスの配管(KUZE SUS316L−EP1/4 1.0t×28mコイルチューブ配管)を用いた他は、実施例3と同様の操作を行ない、アルゴンガス中の水素ガスおよび水の濃度をアウトガス濃度として測定した。なお上記のベーキングは、0.2〜0.5ppbの水分量の精製アルゴンガスをパージしながら、350℃で24時間行なった。結果を表1に示す。
Example 4
The same operation as in Example 3 was performed except that stainless steel piping (KUZE SUS316L-EP 1/4 1.0 t × 28 m coil tube piping) that had been baked in advance was used for each delivery route. Hydrogen gas and water concentrations were measured as outgas concentrations. The baking was performed at 350 ° C. for 24 hours while purging purified argon gas having a moisture content of 0.2 to 0.5 ppb. The results are shown in Table 1.

Figure 0004619195
Figure 0004619195

実施例1および2の結果より、本発明の微量不純物分析装置によれば、ガス分析手段に導入される試料ガスの切替え周期が比較的短時間であっても、不純物成分分析値の誤差が1ppb以下という極めて優れた分析精度が得られることが分かる。さらに、実施例2の結果より、試料ガスの切替え時に大流量でパージガスを流し、また送入経路の合流点近傍をパージ時にベーキングした場合には、配管内の残留試料ガスの除去効率がさらに向上することが分かる。   From the results of Examples 1 and 2, according to the trace impurity analyzer of the present invention, even if the switching cycle of the sample gas introduced into the gas analyzing means is relatively short, the error of the impurity component analysis value is 1 ppb. It can be seen that the following excellent analysis accuracy can be obtained. Furthermore, from the results of Example 2, when the purge gas is flowed at a large flow rate when the sample gas is switched, and the vicinity of the confluence of the feeding path is baked at the time of purging, the removal efficiency of the residual sample gas in the pipe is further improved. I understand that

表1に示す結果より、あらかじめベーキングを施した配管を用いた実施例4においては、アルゴンガス中の水素ガスおよび水の濃度が、送入開始から2.0時間経過後には送入開始時の濃度まで復元している。よって、本発明においてあらかじめベーキングされた配管を送入経路として使用した場合には、配管内壁からのアウトガスが試料ガス中に混入することが防止され、分析精度がさらに向上することが分かる。   From the results shown in Table 1, in Example 4 using piping that had been baked in advance, the hydrogen gas and water concentrations in the argon gas were less than 2.0 hours after the start of the transfer. The concentration is restored. Therefore, it can be seen that, when a pipe baked in advance in the present invention is used as an inflow path, outgas from the inner wall of the pipe is prevented from being mixed into the sample gas, and the analysis accuracy is further improved.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の微量不純物分析装置および微量不純物分析方法は、たとえば半導体製造工程等、純度の安定した原料ガスを供給することが要求される種々の用途に対して好適に適用され得る。   The trace impurity analysis apparatus and trace impurity analysis method of the present invention can be suitably applied to various uses that require supply of a source gas with stable purity, such as a semiconductor manufacturing process.

本発明に係る微量不純物分析装置の構成の一例を説明する図である。It is a figure explaining an example of the composition of the trace impurity analysis device concerning the present invention. 本発明に係る微量不純物分析装置の構成の別の例を説明する図である。It is a figure explaining another example of the structure of the trace impurity analyzer which concerns on this invention. 本発明に係る微量不純物分析装置の構成のさらに別の例を説明する図である。It is a figure explaining the further another example of the structure of the trace impurity analyzer which concerns on this invention. 従来の不純物分析装置の構成の一例を説明する図である。It is a figure explaining an example of the composition of the conventional impurity analyzer. 従来の不純物分析装置の構成の別の例を説明する図である。It is a figure explaining another example of the structure of the conventional impurity analyzer.

符号の説明Explanation of symbols

11a,11b,21a,21b,21c,301a,301b,41a,41b,51a,51b 減圧弁、12a,12b,13a,13b,15a,15b,22a,22b,22c,23a,23b,23c,25a,25b,25c,28,29,302a,302b,302c,303a,303b,303c,305a,305b,305c,308,309,42a,42b,52a,52b 開閉弁、14a,14b,24a,24b,24c,304a,304b,304c,43a,43b,53a,53b 送入経路、15,25,305 減圧手段、16,26,306,54 導入経路、17,27,307,44,55 ガス分析手段、310 パージ経路、311,312 温度調節手段。   11a, 11b, 21a, 21b, 21c, 301a, 301b, 41a, 41b, 51a, 51b Pressure reducing valve, 12a, 12b, 13a, 13b, 15a, 15b, 22a, 22b, 22c, 23a, 23b, 23c, 25a, 25b, 25c, 28, 29, 302a, 302b, 302c, 303a, 303b, 303c, 305a, 305b, 305c, 308, 309, 42a, 42b, 52a, 52b On-off valve, 14a, 14b, 24a, 24b, 24c, 304a, 304b, 304c, 43a, 43b, 53a, 53b Inlet path, 15, 25, 305 Pressure reducing means, 16, 26, 306, 54 Inlet path, 17, 27, 307, 44, 55 Gas analyzing means, 310 Purge Path, 311, 312 Temperature adjustment means.

Claims (2)

複数種類の試料ガスの各々に含まれる不純物成分を前記試料ガス毎に検出するための微量不純物分析方法であって、
前記試料ガス毎に並列に配置され、各々に少なくとも2つの開閉弁と前記2つの開閉弁の間の経路を減圧するための減圧手段とが設けられた、試料ガス送入のための複数の送入経路のうち、第1の試料ガスを送入するための第1の送入経路以外の送入経路における開閉弁を閉鎖して前記開閉弁の間の経路を減圧状態とし、かつ、前記第1の送入経路における2つの開閉弁を開放して前記第1の試料ガスを前記第1の送入経路内に送入する第1ステップと、
前記複数の送入経路が合流する導入経路を経て、前記第1の試料ガスを前記ガス分析手段に導入する第2ステップと、
前記ガス分析手段により前記第1の試料ガスに含まれる微量不純物を検出する第3ステップと、
前記第1の送入経路における前記2つの開閉弁を閉鎖して前記開閉弁の間の経路を減圧状態とする第4ステップと、
を含み、前記第1ステップにおいて開閉弁が開放される送入経路を他の送入経路に順次切り替えて前記ガス分析手段に導入される前記試料ガスの種類を変える他は前記第1ステップ〜第4ステップと同様の操作を繰り返すことにより、1のガス分析手段に対して2以上の種類の前記試料ガスを順次導入して微量不純物の検出を行なう、微量不純物分析方法。
A trace impurity analysis method for detecting, for each sample gas, an impurity component contained in each of a plurality of types of sample gases,
Each of the sample gases is arranged in parallel, each of which is provided with a plurality of feeds for feeding a sample gas, each of which is provided with at least two on-off valves and a decompression means for decompressing a path between the two on-off valves. Of the inlet paths, the on-off valves in the inlet paths other than the first inlet path for feeding the first sample gas are closed to reduce the path between the on-off valves, and the first A first step of opening the two on-off valves in one delivery path and feeding the first sample gas into the first delivery path;
A second step of introducing the first sample gas into the gas analysis means via an introduction path where the plurality of delivery paths merge;
A third step of detecting trace impurities contained in the first sample gas by the gas analyzing means;
A fourth step of closing the two on-off valves in the first delivery path and reducing the path between the on-off valves;
Except that the type of the sample gas introduced into the gas analyzing means is changed by sequentially switching the feeding path in which the on-off valve is opened in the first step to another feeding path. A trace impurity analysis method for detecting trace impurities by sequentially introducing two or more kinds of the sample gases into one gas analysis means by repeating the same operation as in the four steps.
前記ガス分析手段に前記試料ガスを導入する前に、前記導入経路内をガスでパージするステップをさらに含む、請求項1に記載の微量不純物分析方法。 The trace impurity analysis method according to claim 1 , further comprising a step of purging the introduction path with a gas before introducing the sample gas into the gas analysis means.
JP2005145679A 2005-05-18 2005-05-18 Trace impurity analysis method Expired - Fee Related JP4619195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145679A JP4619195B2 (en) 2005-05-18 2005-05-18 Trace impurity analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145679A JP4619195B2 (en) 2005-05-18 2005-05-18 Trace impurity analysis method

Publications (2)

Publication Number Publication Date
JP2006322790A JP2006322790A (en) 2006-11-30
JP4619195B2 true JP4619195B2 (en) 2011-01-26

Family

ID=37542587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145679A Expired - Fee Related JP4619195B2 (en) 2005-05-18 2005-05-18 Trace impurity analysis method

Country Status (1)

Country Link
JP (1) JP4619195B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6002404B2 (en) * 2012-02-24 2016-10-05 株式会社日本エイピーアイ Mass spectrometer, method of using the same, and method of measuring gas permeation characteristics
US10488318B2 (en) * 2014-02-24 2019-11-26 Mocon, Inc. Target-analyte permeation testing instrument with sensor feed line conditioning system
JP6333714B2 (en) 2014-12-15 2018-05-30 岩谷産業株式会社 Sampling apparatus and sampling method
GB2587579B (en) * 2019-11-06 2022-07-13 Ogrands Innovation Inc Multi-channel gas sampling and detection device with interval gas supply
CN114200085B (en) * 2021-12-09 2023-03-10 中科三清科技有限公司 Multi-sampling-point detection and analysis device and method for gas
CN117330369A (en) * 2023-11-24 2024-01-02 广东广业投资集团有限公司 A limited space gas sampling monitoring system and sampling monitoring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021450A (en) * 1983-07-16 1985-02-02 Shimadzu Corp Sample gas introducing apparatus
JPS62165545U (en) * 1986-04-11 1987-10-21
JPH0634616A (en) * 1992-07-13 1994-02-10 Japan Pionics Co Ltd Analysis of a trace of impurities
JPH10274644A (en) * 1997-03-31 1998-10-13 Tokyo Gas Co Ltd Gas analyzer and analysis method thereof
JPH11295270A (en) * 1998-04-09 1999-10-29 Nippon Sanso Kk Device and method for analyzing gas
JP2004239921A (en) * 2004-05-24 2004-08-26 Tokyo Gas Co Ltd Gas analysis method
JP2004294446A (en) * 2004-06-07 2004-10-21 Nippon Sanso Corp Apparatus for analyzing trace amount of impurity in gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021450A (en) * 1983-07-16 1985-02-02 Shimadzu Corp Sample gas introducing apparatus
JPS62165545U (en) * 1986-04-11 1987-10-21
JPH0634616A (en) * 1992-07-13 1994-02-10 Japan Pionics Co Ltd Analysis of a trace of impurities
JPH10274644A (en) * 1997-03-31 1998-10-13 Tokyo Gas Co Ltd Gas analyzer and analysis method thereof
JPH11295270A (en) * 1998-04-09 1999-10-29 Nippon Sanso Kk Device and method for analyzing gas
JP2004239921A (en) * 2004-05-24 2004-08-26 Tokyo Gas Co Ltd Gas analysis method
JP2004294446A (en) * 2004-06-07 2004-10-21 Nippon Sanso Corp Apparatus for analyzing trace amount of impurity in gas

Also Published As

Publication number Publication date
JP2006322790A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
US9347875B2 (en) Gas analyzing system
JP4119003B2 (en) Gas analyzer and method
JP3607997B2 (en) Analyzer for trace impurities in gas
JP4619195B2 (en) Trace impurity analysis method
CN104155417B (en) The preprocessing system of trace water analysis and method in a kind of ultra-pure gases
US6397660B1 (en) Gas analyzing apparatus
JP5123152B2 (en) Gas-in-oil analyzer and gas-in-oil analysis method
JPH04353761A (en) Method and apparatus for measuring quantity of impurity in specific gas
EP0877246A2 (en) In situ monitoring of contaminants in semiconductor processing chambers
JP2013175321A (en) Mass spectroscope and usage thereof, and gas permeation characteristic measuring method
US6478040B1 (en) Gas supplying apparatus and gas substitution method
GB2352808A (en) Apparatus for supplying gas
US7028563B2 (en) Fluid sampling system and method thereof
JP3896005B2 (en) Gas leakage inspection method in gas supply equipment
JP2005331309A (en) Exhaust gas measuring device
JPH04353743A (en) Method and apparatus for evaluating amount of impurity adsorption
JP2002243593A (en) Analytic system and analytic method
JP6874937B2 (en) Quantitative analyzer for oxygen generated from battery material
JP2022078387A (en) Gas analyzer and gas sampling device
CN218896092U (en) Gas detection system
CN118150718A (en) Non-methane total hydrocarbon concentration detection device and detection method
KR100251643B1 (en) Cut-off System for Impurity Evaluation in Gas for Semiconductor Device Manufacturing
CA2463247C (en) Fluid sampling system and method thereof
JP2538067Y2 (en) Concentration analyzer
WO2021059905A1 (en) Gas analysis method and gas analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees