JP4615531B2 - Ultrasonic flow meter - Google Patents
Ultrasonic flow meter Download PDFInfo
- Publication number
- JP4615531B2 JP4615531B2 JP2007055253A JP2007055253A JP4615531B2 JP 4615531 B2 JP4615531 B2 JP 4615531B2 JP 2007055253 A JP2007055253 A JP 2007055253A JP 2007055253 A JP2007055253 A JP 2007055253A JP 4615531 B2 JP4615531 B2 JP 4615531B2
- Authority
- JP
- Japan
- Prior art keywords
- space
- ultrasonic
- light
- fluid
- detected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Description
本発明は、流体中の空間を検知する空間検知手段を備えた超音波流量計に関するものである。 The present invention relates to an ultrasonic flowmeter provided with space detection means for detecting a space in a fluid.
従来から、流路用管体の内径が小さい時間差方式の超音波流量計においては、図9に示すようなコ字型の流路用管体1の直管部の両側の対向する位置に超音波送受波器2、3を設置している。これらの超音波送受波器2、3間で交互に超音波ビームBを発信、受信して、上流側から下流側への超音波ビームBの伝播と、下流側から上流側への超音波ビームBの伝播により生ずる時間差から、管体1内を流れる流体の流速及び流量を求めている。
Conventionally, in a time-difference type ultrasonic flowmeter with a small inner diameter of a flow path tube body, the flow tube body is positioned at opposite positions on both sides of a straight pipe portion of a U-shaped flow
また、流体内に混入した気泡を検出する手段を備えた超音波流量計としては、例えば特許文献1〜3が知られている。しかし、これらの特許文献で対象としているのは、流体中に混在する微小な気泡であり、このような気泡は計測誤差をもたらすことがあっても、流量計測を不能とするものではない。また、そのための専用の気泡検出器を備えることなく、流量計測のための超音波ビームの受信信号中から気泡情報を得ている。
For example,
しかし、従来の超音波流量計においては、例えば管体1の内径が数mmのような小径の場合に、管壁に付着した気泡が時々剥れて管体1を塞ぐ程度の大きさの空間Aとなって、流体と共に管体1中を通過することがある。このような空間Aが超音波ビームBの伝播経路に存在すると、超音波送受波器2、3間における超音波ビームBの伝播ができなくなり流量計測が不能となる。
However, in the conventional ultrasonic flowmeter, when the inner diameter of the
具体的には、時間t1に空間Aが管体1の直管部の入口S1の位置に達すると、超音波ビームBは伝播されなくなるため流量計測が不能となる。空間Aが直管部の出口S2に移動する時間t2までの間は、超音波ビームBの伝播は空間Aにより遮断されるため計測不能であり、空間Aが位置S2を通過すると、再び超音波ビームBが伝播が可能となり計測を再開できる。従って、空間Aにより測定が不能になった時間においては正常に伝播されたときのデータを利用して流量を補間している。
Specifically, when the space A reaches the position of the inlet S1 of the straight pipe portion of the
つまり、従来の超音波流量計においては、超音波ビームの伝播不能により測定値が得られない場合の計測値については、やむなく直前と直後の瞬時流量値を平均化する技術が採用されている。 In other words, in the conventional ultrasonic flowmeter, a technique for unavoidably averaging the instantaneous flow rate values immediately before and after the measurement value when the measurement value cannot be obtained due to the impossibility of propagation of the ultrasonic beam is employed.
図10はこの場合の瞬時流量値を示したグラフ図である。S1〜S2間を空間Aが通過する時間t1〜t2は超音波ビームBが伝播されなかった時間であり、この時間t1〜t2では前段の流量値により補間をする。 FIG. 10 is a graph showing the instantaneous flow rate value in this case. Times t1 to t2 during which the space A passes between S1 and S2 are times when the ultrasonic beam B has not been propagated, and during these times t1 and t2, interpolation is performed based on the previous flow rate value.
例えば、流量100ml/分で流れる流体中に5mlの空間Aが存在している場合に、正常に超音波ビームが伝播されたときのデータを用いて計測不能時の補間を行うと、1分間に流れた流量は100ml/分と計算される。しかし、実際には1分間に流れた流量は、100mlから空間Aの5mlを除いた95mlであり、5ml分の誤差が生じている。 For example, when a space A of 5 ml exists in a fluid flowing at a flow rate of 100 ml / min, if interpolation is performed when measurement is impossible using data when an ultrasonic beam is normally propagated, 1 minute The flow rate flowing is calculated as 100 ml / min. However, in practice, the flow rate that flows in 1 minute is 95 ml, which is 100 ml minus 5 ml of space A, and an error of 5 ml occurs.
流量を正確に求めるためには、空間Aの大きさを推測しなければならないが、この時間t1〜t2をもって空間Aの大きさを求めることは困難である。何故なら、この空間Aの形状や大きさは一定でなく、例えば図11に示すような複数の空間Aが混在する場合や、図12に示すように長さが大きい空間A’が流れる場合がある。これらの場合に、時間t1〜t2で超音波ビームBが伝播されなかったからといって、一率に空間の大きさを推定してその量を差し引いて流量とすることはできない。 In order to accurately determine the flow rate, it is necessary to estimate the size of the space A, but it is difficult to determine the size of the space A with these times t1 to t2. This is because the shape and size of the space A is not constant. For example, a plurality of spaces A as shown in FIG. 11 may be mixed, or a space A ′ having a large length may flow as shown in FIG. is there. In these cases, just because the ultrasonic beam B is not propagated at the times t1 to t2, it is impossible to estimate the size of the space and subtract the amount to obtain the flow rate.
このように、従来の超音波流量計においては、空間が流体中に存在すると、空間の大きさ等を検知して、正確な瞬時流量及び積算流量が計測することができない。 As described above, in the conventional ultrasonic flowmeter, if the space exists in the fluid, the size of the space and the like cannot be detected to accurately measure the instantaneous flow rate and the integrated flow rate.
本発明の目的は、上述の問題点を解消し、空間の大きさを検知して、流体中に空間が存在したときの計測誤差を低減することが可能な超音波流量計を提供することにある。 An object of the present invention is to provide an ultrasonic flowmeter capable of solving the above-described problems, detecting the size of a space, and reducing measurement errors when a space exists in a fluid. is there.
上記目的を達成するための本発明に係る超音波流量計は、流路用管体の流体の流れ方向の上流側と下流側に一対の超音波送受波器を取り付け、これらの超音波送受波器により超音波ビームの発信、受信を交互に繰り返し、前記流路用管体内を流れる流体の流速により前記流体中を伝播する超音波ビームに生ずる伝播時間差を基に流量値を測定し、前記管体内を前記流体と共に通過する空間を検知する空間検知手段を前記一対の超音波送受波器の間の前記管体に設置した超音波流量計であって、前記超音波送受波器により超音波ビームを検出しかつ前記空間検知手段により空間を検知しないときの第1の測定モードでは、得られた超音波ビームを基に流量値を測定して測定流量値とし、前記超音波送受波器により超音波ビームを検出しかつ前記空間検知手段により空間を検知したときの第2の測定モードでは、予め求めてある前記空間検知手段の出力と空間の大きさを基に空間の大きさを検出し、超音波ビームを基に得られた流量値から前記検出した空間の大きさを差し引くことにより測定流量値を求め、前記超音波送受波器により超音波ビームを検出せずかつ前記空間検知手段により空間を検知しないときの第3の測定モードでは、前記第1の測定モードにより測定した最後の流量値を測定流量値とし、前記超音波送受波器により超音波ビームを検出せずかつ前記空間検知手段により空間を検知しないときの第4の測定モードでは、測定流量値を0とすることを特徴とする。 In order to achieve the above object, an ultrasonic flowmeter according to the present invention is provided with a pair of ultrasonic transducers on the upstream side and the downstream side in the fluid flow direction of a flow path tube body, and these ultrasonic transducers The ultrasonic beam is alternately transmitted and received by a vessel, and the flow rate value is measured based on the propagation time difference generated in the ultrasonic beam propagating through the fluid by the flow velocity of the fluid flowing through the flow path tube. An ultrasonic flowmeter in which space detecting means for detecting a space passing through the body together with the fluid is installed in the tube body between the pair of ultrasonic transducers , wherein the ultrasonic beam is transmitted by the ultrasonic transducers. In the first measurement mode when the space is not detected by the space detecting means, the flow rate value is measured based on the obtained ultrasonic beam to obtain the measured flow rate value, and the ultrasonic transducer is used to measure the flow rate value. Detecting a sound beam and said In the second measurement mode when the space is detected by the interval detection means, the size of the space is detected based on the output of the space detection means and the size of the space obtained in advance, and obtained based on the ultrasonic beam. A measured flow rate value is obtained by subtracting the size of the detected space from the obtained flow rate value, and a third case where no ultrasonic beam is detected by the ultrasonic transducer and no space is detected by the space detection means. In the measurement mode, the last flow rate value measured in the first measurement mode is set as the measurement flow rate value, and when the ultrasonic beam is not detected by the ultrasonic transducer and the space is not detected by the space detection means. In the fourth measurement mode, the measured flow rate value is set to zero.
本発明に係る超音波流量計によれば、流体中に空間が存在したときにもその空間の大きさを検知して流量を正確に計測することができる。 According to the ultrasonic flowmeter of the present invention, even when a space exists in the fluid, the flow rate can be accurately measured by detecting the size of the space.
本発明を図1〜図7に図示の実施例に基づいて詳細に説明する。 The present invention will be described in detail based on the embodiment shown in FIGS.
図1は実施例1における超音波流量計の構成図を示しており、流路用管体11はコ字型形状から成り、中間の直管部を挟んだ上流側と下流側の外壁の対向位置には、一対の超音波送受波器12a、12bが取り付けられている。流路用管体11の光透過管である直管部の管軸を挟んで対向する位置には、流体中に存在する空間を検知するための発光器13a、受光器13bから成る空間検知手段が取り付けられている。そして、超音波送受波器12a、12b、発光器13a、受光器13bは演算制御手段14に接続され、この演算制御手段14の出力は表示手段15に接続されている。
FIG. 1 shows a configuration diagram of an ultrasonic flowmeter according to the first embodiment. A
流量測定に際しては、超音波送受波器12a、12bにおいて、交互に超音波ビームBを繰り返して発信かつ受信し、超音波ビームBが上流側から下流側に到達するまでの時間と、下流側から上流側に到達する時間の流速による伝播時間差を演算制御手段14で測定する。この伝播時間差により、演算制御手段14において公知の方法により流量値を算出し、表示手段15に表示する。
When measuring the flow rate, the
空間検知手段の信号送信器である発光器13aには、例えばGaAlAsやGaAs等から成る赤外線LED等が用いられる。信号受信器である受光器13bにはフォトダイオード、フォトトランジスタ、フォトIC等が使用され、受光器13bでは光を検知すると光量に比例した電流が得られる。発光器13aから発光された光が光透過管から成る流路用管体11内に入り、流体中を横切り、受光器13bに到達する際に、流体中を透過し流体により減衰した場合の光量と、空間中を透過した場合の光量が異なるため、空間の存在を検知することができる。
For example, an infrared LED made of GaAlAs, GaAs, or the like is used for the
即ち、空間検知手段によって空間の存在が検知されている時間は、空間検知手段の光透過経路を空間が通過している時間であり、演算制御手段14は空間に相当するこの時間分の大きさを流量値から差し引いて正確な流量値を演算し、表示手段15で正確な流量値或いは更に警報を表示する。 That is, the time during which the presence of the space is detected by the space detection means is the time during which the space passes through the light transmission path of the space detection means, and the calculation control means 14 has a magnitude corresponding to this time corresponding to the space. Is subtracted from the flow rate value to calculate an accurate flow rate value, and the display means 15 displays an accurate flow rate value or further an alarm.
図2はこの流体中に空間Aが存在する場合の説明図、図3は空間Aが移動したときの瞬時流量値、空間の検知の有無、積算流量値を示している。空間AがS1で示される位置に達したとき、超音波ビームBは伝播されなくなるため計測不能となる。 FIG. 2 is an explanatory diagram when the space A exists in the fluid, and FIG. 3 shows an instantaneous flow rate value, presence / absence of space detection, and integrated flow rate value when the space A moves. When the space A reaches the position indicated by S1, the ultrasonic beam B is not propagated and cannot be measured.
空間Aが位置S1における時間t1から空間検知手段に達する時間taまでは直前の流量値によって流量が補間される。時間taに達すると、空間検知手段により空間Aが検知されるため、そのときの流量値を0とする。このようにすることにより、空間Aが検知されているときの流量分を0とすることにより、流量の積算が正確となる。 The flow rate is interpolated by the immediately preceding flow rate value from the time t1 at which the space A reaches the space detection means at the position S1. When time ta is reached, space A is detected by the space detection means, and the flow rate value at that time is set to zero. In this way, the flow rate when the space A is detected is set to 0, so that the flow rate is accurately integrated.
空間Aが空間検知手段の検知範囲を通過し終った時間tbから超音波送受波器12bの直前に至る時間t2までの時間には、空間検知手段によって空間Aは検知されていないが、超音波ビームBは伝播されない。この間の時間tb〜t2も時間t1〜taと同様に、空間Aが位置S1に至る前の流量値、或いは位置S2を通過した後の流量値を用いて補間する。
The space A is not detected by the space detector during the period from the time tb when the space A has passed the detection range of the space detector to the time t2 immediately before the
しかし、この補間方法は空間Aの大きさが管体11の内径とほぼ同じ大きさの空間Aが存在する場合において有効であるが、空間Aの大きさが例えば気泡のように小さい場合には、空間Aが存在しても超音波ビームBが伝播されることがある。
However, this interpolation method is effective in the case where there is a space A in which the size of the space A is almost the same as the inner diameter of the
この場合は、予め実験で空間検知手段によって検知される空間の大きさと、そのときの空間検知手段の発信強度、受信強度の関係を求めておき、記憶装置に記憶させて演算制御手段14により演算すればよい。 In this case, the relationship between the size of the space detected by the space detection means in the experiment and the transmission intensity and reception intensity of the space detection means at that time is obtained in advance and stored in the storage device and calculated by the calculation control means 14. do it.
つまり、超音波ビームBが正常に伝播されているにも拘わらず、空間検知手段によって空間Aが検知されたときは、記憶装置によって空間検知手段の受信強度から空間の大きさを求め、その大きさを差し引くことにより正確な流量値を算出することができる。 That is, when the space A is detected by the space detection means despite the normal propagation of the ultrasonic beam B, the size of the space is obtained from the received intensity of the space detection means by the storage device. By subtracting the distance, an accurate flow rate value can be calculated.
図4は実施例2の空間検知手段を示し、発光器13a、受光器13bは管体11の同じ側に配置され、発光器13aからの光は管体11の内壁で反射して受光器13bに戻るようにされている。この場合の管体11内の反射面は反射ミラー等とするか、或いは光束が全反射をするような角度で反射面に対し入射するようにすればよい。
FIG. 4 shows the space detecting means of the second embodiment. The
実施例1、2の光電変換による空間検知手段は、流体の光透過度が低いスラリ液等で有効である。しかし、流体が光透過度の高い水のような場合には、空間Aが混在するときとしないときの光量差が小さいため、図1或いは図4のように光束を透過させてその減衰量を求める方式では検知が困難なため、光の屈折利用が考えられる。 The space detection means by photoelectric conversion of the first and second embodiments is effective for a slurry liquid having a low light transmittance of fluid. However, when the fluid is water having a high light transmittance, the difference in the amount of light when the space A is mixed and when the space A is not mixed is small. Therefore, as shown in FIG. 1 or FIG. Since it is difficult to detect with the required method, the refraction of light can be considered.
例えば、図5に示す実施例3においては、空間が存在していないときには発光器13aから光が流体の光屈折率により受光器13bに到達しないようにして、空間が存在した際には光は直進して受光器13bに到達するような構成とされている。逆に、空間が存在するときに光量が得られ、存在しないときに光が到達できないような構成とすることができる。
For example, in Example 3 shown in FIG. 5, when there is no space, the light from the
これによって、空間が存在するときとしないときの受光量に大きな差が生ずるため、空間検知が確実に行われる。 As a result, a large difference occurs in the amount of received light when the space exists and when it does not exist, so that space detection is performed reliably.
図6は実施例4の構成を示し、発光器13a、受光器13bとを管体11の同じ側に配置し、流体の光屈折率による空間が存在するときに発光器13aからの光は管体11内で反射して受光器13bに戻るような構成とされており、空間の検知については図5の場合と同様である。
FIG. 6 shows the configuration of the fourth embodiment, in which the
図7は実施例5の管体11の断面方向から見た発光器13aと受光器13bの配置を示し、管体11の外周上の設置位置によって、先の実施例と同様の効果を生ずる構成とされている。
FIG. 7 shows the arrangement of the
つまり、発光器13aと受光器13bは、管体11の周囲の管軸方向の同一位置に配置され、流体の光屈折率を利用して空間を検知するようにされている。この場合においても、図6のように反射方式とすることもできる。
That is, the
図8は各実施例における動作フローチャート図である。超音波送受波器12a、12b間で超音波ビームBが伝播しているかを検知する(ステップS1)。
FIG. 8 is an operation flowchart in each embodiment. It is detected whether the ultrasonic beam B propagates between the
超音波ビームBが伝播している場合には、空間検知手段により空間の存在を検知する(ステップS2)。空間が検知されなければ、超音波ビームBによる流量計測を続ける(ステップS3)。ステップS2で空間が検知されると、超音波ビームBが伝播し得る程度の大きさの気泡が存在することになり、前述した補間方法による空間検知手段により気泡の大きさを推定し、実験値から気泡の混在量を算出し流量を補正する(ステップS4)。 When the ultrasonic beam B is propagating, the presence of the space is detected by the space detecting means (step S2). If no space is detected, flow measurement by the ultrasonic beam B is continued (step S3). When the space is detected in step S2, bubbles that are large enough to propagate the ultrasonic beam B are present. The size of the bubbles is estimated by the space detection means using the interpolation method described above, and an experimental value is obtained. From this, the amount of bubbles mixed is calculated and the flow rate is corrected (step S4).
ステップS1で超音波ビームBの伝播が検知されない場合には、空間検知手段で空間の存在を検知する(ステップS5)。空間が検知されない場合には、超音波ビームの経路中に位置は不明ではあるが空間が存在することになり、計測が正常に行われた最後の流量値を流量値として用いる(ステップS6)。ステップS5で空間が検知されると、その空間分の大きさだけ流体は流れないので、その間の流量値を0とする(ステップS7)。 If the propagation of the ultrasonic beam B is not detected in step S1, the presence of space is detected by the space detection means (step S5). When the space is not detected, the position is unknown in the path of the ultrasonic beam, but there is a space, and the last flow rate value at which the measurement was normally performed is used as the flow rate value (step S6). When a space is detected in step S5, the fluid does not flow by the size of the space, so the flow value during that time is set to 0 (step S7).
なお、上述の実施例のように空間検知手段に光を利用した場合に、ノイズ対策として信号光を変調して外乱光と区別することも好適である。 In addition, when light is used for the space detection unit as in the above-described embodiment, it is also preferable to modulate the signal light to distinguish it from disturbance light as a noise countermeasure.
また、空間検知手段としては光の送受信以外に、信号送受信器としてチタン酸ジルコン酸鉛等の圧電素子を用いて、管体11を横切るように超音波ビームを送信することによっても、或いは管体11の内壁で反射させることによっても、空間の検知は可能である。この場合には、管体11は光透過管とする必要はない。
In addition to transmitting and receiving light as a space detection means, a piezoelectric element such as lead zirconate titanate is used as a signal transmitter / receiver, and an ultrasonic beam is transmitted across the
なお、本発明は実施例のようなコ字型の管体以外の流路用管体においても、適用することができる。 In addition, this invention is applicable also to the pipes for flow paths other than the U-shaped pipe like an Example.
11 流路用管体
12a、12b 超音波送受波器
13a 発光器
13b 受光器
14 演算制御手段
15 表示手段
DESCRIPTION OF
Claims (8)
前記超音波送受波器により超音波ビームを検出しかつ前記空間検知手段により空間を検知しないときの第1の測定モードでは、得られた超音波ビームを基に流量値を測定して測定流量値とし、
前記超音波送受波器により超音波ビームを検出しかつ前記空間検知手段により空間を検知したときの第2の測定モードでは、予め求めてある前記空間検知手段の出力と空間の大きさを基に空間の大きさを検出し、超音波ビームを基に得られた流量値から前記検出した空間の大きさを差し引くことにより測定流量値を求め、
前記超音波送受波器により超音波ビームを検出せずかつ前記空間検知手段により空間を検知しないときの第3の測定モードでは、前記第1の測定モードにより測定した最後の流量値を測定流量値とし、
前記超音波送受波器により超音波ビームを検出せずかつ前記空間検知手段により空間を検知しないときの第4の測定モードでは、測定流量値を0とすることを特徴とする超音波流量計。 A pair of ultrasonic transducers are attached to the upstream and downstream sides of the fluid flow direction of the flow path tube body, and the ultrasonic flow is alternately transmitted and received by these ultrasonic transducers. A pair of space detecting means for measuring a flow rate value based on a propagation time difference generated in an ultrasonic beam propagating in the fluid according to a flow velocity of the fluid flowing in the tube, and detecting a space passing through the tube together with the fluid; An ultrasonic flowmeter installed in the tube between the ultrasonic transducers of
In a first measurement mode in which an ultrasonic beam is detected by the ultrasonic transducer and a space is not detected by the space detector, a flow rate value is measured by measuring a flow rate value based on the obtained ultrasonic beam. age,
In the second measurement mode when the ultrasonic beam is detected by the ultrasonic transducer and the space is detected by the space detection means, the output of the space detection means and the size of the space obtained in advance are used. By detecting the size of the space and subtracting the detected size of the space from the flow rate value obtained based on the ultrasonic beam,
In a third measurement mode in which no ultrasonic beam is detected by the ultrasonic transducer and no space is detected by the space detection means, the last flow value measured in the first measurement mode is a measured flow value. age,
And in the fourth measurement mode when detecting no space by and the space detecting means detects no ultrasonic beam by the ultrasonic transducer, ultrasonic flowmeter, characterized in that the measured flow rate value is zero.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007055253A JP4615531B2 (en) | 2007-03-06 | 2007-03-06 | Ultrasonic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007055253A JP4615531B2 (en) | 2007-03-06 | 2007-03-06 | Ultrasonic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008216100A JP2008216100A (en) | 2008-09-18 |
JP4615531B2 true JP4615531B2 (en) | 2011-01-19 |
Family
ID=39836307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007055253A Expired - Fee Related JP4615531B2 (en) | 2007-03-06 | 2007-03-06 | Ultrasonic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4615531B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8700344B2 (en) | 2011-04-20 | 2014-04-15 | Neptune Technology Group Inc. | Ultrasonic flow meter |
JP7568445B2 (en) | 2020-08-18 | 2024-10-16 | アズビル株式会社 | Ultrasonic Flow Meter |
CN112013910B (en) * | 2020-08-27 | 2021-06-25 | 深圳市宏电技术股份有限公司 | Drainage pipe network flow detection method and device, server and storage medium |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116219A (en) * | 1981-01-10 | 1982-07-20 | Yokogawa Hokushin Electric Corp | Ultrasonic flowmeter |
JPS59191662U (en) * | 1983-06-06 | 1984-12-19 | 海上電機株式会社 | Ultrasonic detection device |
JPS62268565A (en) * | 1986-05-16 | 1987-11-21 | 株式会社 ミドリ十字 | Device and method for detecting air bubbles in liquid in pipes |
JPH04177170A (en) * | 1990-11-09 | 1992-06-24 | Aloka Co Ltd | Apparatus for detecting air bubble in liquid sample |
JPH05119159A (en) * | 1991-10-23 | 1993-05-18 | Canon Inc | Ink detector, ink tank, head cartridge and ink jet recorder |
JPH07159213A (en) * | 1993-12-09 | 1995-06-23 | Fuji Electric Co Ltd | Ultrasonic flow meter |
JPH10216227A (en) * | 1997-02-03 | 1998-08-18 | Terumo Corp | Infusion pump |
JPH10281843A (en) * | 1997-04-02 | 1998-10-23 | Sekiyu Kodan | Multi-phase flow meter |
JP2001281032A (en) * | 2000-03-30 | 2001-10-10 | Hitachi Shonan Denshi Co Ltd | Ultrasonic flow meter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009505079A (en) * | 2005-08-12 | 2009-02-05 | セレリティ・インコーポレイテッド | Flow measurement and control using bubble detection |
-
2007
- 2007-03-06 JP JP2007055253A patent/JP4615531B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57116219A (en) * | 1981-01-10 | 1982-07-20 | Yokogawa Hokushin Electric Corp | Ultrasonic flowmeter |
JPS59191662U (en) * | 1983-06-06 | 1984-12-19 | 海上電機株式会社 | Ultrasonic detection device |
JPS62268565A (en) * | 1986-05-16 | 1987-11-21 | 株式会社 ミドリ十字 | Device and method for detecting air bubbles in liquid in pipes |
JPH04177170A (en) * | 1990-11-09 | 1992-06-24 | Aloka Co Ltd | Apparatus for detecting air bubble in liquid sample |
JPH05119159A (en) * | 1991-10-23 | 1993-05-18 | Canon Inc | Ink detector, ink tank, head cartridge and ink jet recorder |
JPH07159213A (en) * | 1993-12-09 | 1995-06-23 | Fuji Electric Co Ltd | Ultrasonic flow meter |
JPH10216227A (en) * | 1997-02-03 | 1998-08-18 | Terumo Corp | Infusion pump |
JPH10281843A (en) * | 1997-04-02 | 1998-10-23 | Sekiyu Kodan | Multi-phase flow meter |
JP2001281032A (en) * | 2000-03-30 | 2001-10-10 | Hitachi Shonan Denshi Co Ltd | Ultrasonic flow meter |
Also Published As
Publication number | Publication date |
---|---|
JP2008216100A (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7437948B2 (en) | Ultrasonic flowmeter and ultrasonic flow rate measurement method | |
RU2601223C1 (en) | Ultrasonic flow meter system with pressure transducer arranged upstream | |
US8626466B2 (en) | Flow meter validation | |
JP2008134267A (en) | Ultrasonic flow measurement method | |
RU2637381C2 (en) | Ultrasonic waveguide | |
CN107076602B (en) | Method and arrangement for clamp-on ultrasonic flow measurement and circuit arrangement for controlling clamp-on ultrasonic flow measurement | |
JP4615531B2 (en) | Ultrasonic flow meter | |
JP2006078362A (en) | Coaxial-type doppler ultrasonic current meter | |
WO2014148081A1 (en) | Ultrasonic flow meter, flow velocity measurement method, and flow velocity measurement program | |
JP2022161052A (en) | ultrasonic flow meter | |
JP5297864B2 (en) | Ultrasonic gas meter | |
JP6652840B2 (en) | Ultrasonic flow meter | |
JP5141613B2 (en) | Ultrasonic flow meter | |
JP5282955B2 (en) | Ultrasonic flow meter correction method and ultrasonic flow meter | |
JP4535065B2 (en) | Doppler ultrasonic flow meter | |
JP2011038870A (en) | Ultrasonic flow meter and flow rate measuring method using the same | |
JP6405520B2 (en) | Ultrasonic flow meter | |
JP2017116458A (en) | Ultrasonic flow meter | |
JP5965292B2 (en) | Ultrasonic flow meter | |
JP7630078B2 (en) | Water leak detection system and ultrasonic flow meter used therein | |
JP5155490B1 (en) | Ultrasonic flow meter | |
KR102410147B1 (en) | Ultrasonic flowmeter | |
JP7568445B2 (en) | Ultrasonic Flow Meter | |
JP2005037290A (en) | Ultrasonic flowmeter | |
JP7627840B2 (en) | Water Leak Detection System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101020 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4615531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |