[go: up one dir, main page]

JP4615438B2 - Optical amplification method and optical amplification device - Google Patents

Optical amplification method and optical amplification device Download PDF

Info

Publication number
JP4615438B2
JP4615438B2 JP2005379323A JP2005379323A JP4615438B2 JP 4615438 B2 JP4615438 B2 JP 4615438B2 JP 2005379323 A JP2005379323 A JP 2005379323A JP 2005379323 A JP2005379323 A JP 2005379323A JP 4615438 B2 JP4615438 B2 JP 4615438B2
Authority
JP
Japan
Prior art keywords
optical
gain
circuit
coefficient
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005379323A
Other languages
Japanese (ja)
Other versions
JP2007180409A (en
Inventor
和郎 岡村
信行 加木
大 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2005379323A priority Critical patent/JP4615438B2/en
Publication of JP2007180409A publication Critical patent/JP2007180409A/en
Application granted granted Critical
Publication of JP4615438B2 publication Critical patent/JP4615438B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Description

本発明は、光増幅方法および光増幅装置に関し、より詳しくは、自動利得制御による光増幅方法及び自動利得制御回路を使用する光増幅装置に関する。   The present invention relates to an optical amplification method and an optical amplification device, and more particularly to an optical amplification method using automatic gain control and an optical amplification device using an automatic gain control circuit.

波長の異なる複数の光信号を波長多重して1心の光伝送路に同時に伝送させる波長多重(WDM:Wavelength Division Multiplexing)システムにおいては、図13に示した光増幅装置を光伝送路中に取り付けて光信号のパワーを調整した後に、シングルモード光ファイバ(SMF)や分散シフト光ファイバ(DSF)からなる光伝送路に光信号を送信するような構成が採用されている。   In a wavelength division multiplexing (WDM) system in which a plurality of optical signals having different wavelengths are multiplexed and transmitted simultaneously to a single optical transmission line, the optical amplification device shown in FIG. 13 is mounted in the optical transmission line. Thus, after the power of the optical signal is adjusted, a configuration is adopted in which the optical signal is transmitted to an optical transmission line composed of a single mode optical fiber (SMF) or a dispersion shifted optical fiber (DSF).

その光増幅装置は、光伝送路の途中に光増幅器として接続されるエレビウム添加ファイバ(EDF:Erbium Doped Fiber)101と、光カプラ102を介してEDF101を励起する励起レーザダイオード(LD:Laser Diode)103と、EDF101の入力側に取り付けられた光カプラ104に入力した光信号を電気信号に変換する第1のフォトダイオード(PD:Photo Diode)105と、EDF101の出力側に取り付けられた光カプラ106に入力した光信号を電気信号に変換する第2のフォトダイオード(PD)107と、第1、第2のフォトダイオード105,107の各々の出力信号を別々に検出する第1、第2のモニタ回路108,109と、第1及び第2のモニタ回路108,109の各出力に基づいて励起LD103の出力を制御するLD制御回路110とを有している。   The optical amplifying device includes an erbium-doped fiber (EDF) 101 connected as an optical amplifier in the middle of an optical transmission line, and a pump laser diode (LD) that excites the EDF 101 via an optical coupler 102. 103, a first photodiode (PD) 105 that converts an optical signal input to the optical coupler 104 attached to the input side of the EDF 101 into an electrical signal, and an optical coupler 106 attached to the output side of the EDF 101. The second photodiode (PD) 107 that converts the optical signal input to the first and second photodiodes (PD) 107 and the first and second monitors that separately detect the output signals of the first and second photodiodes 105 and 107, respectively. The output of the excitation LD 103 is controlled based on the outputs of the circuits 108 and 109 and the first and second monitor circuits 108 and 109. And an LD control circuit 110.

第1のモニタ回路108は、第1のフォトダイオード105から出力された電気信号に基づいて第1のフォトダイオード105の光入力パワーに応じた電圧値を出力し、第2のモニタ回路109も同様に、第2のフォトダイオード107の光入力パワーに応じた電圧値を出力する。
また、LD制御回路110は、第1、第2のモニタ回路108,109から出力される電圧値に基づいて励起LD103を制御し、これによりEDF101の利得一定制御(AGC(automatic gain control))を行ってEDF101の利得を所望の値となるように制御している。
The first monitor circuit 108 outputs a voltage value corresponding to the optical input power of the first photodiode 105 based on the electrical signal output from the first photodiode 105, and the second monitor circuit 109 is the same. In addition, a voltage value corresponding to the optical input power of the second photodiode 107 is output.
The LD control circuit 110 controls the excitation LD 103 based on the voltage values output from the first and second monitor circuits 108 and 109, thereby performing constant gain control (AGC (automatic gain control)) of the EDF 101. The gain of the EDF 101 is controlled to be a desired value.

そのようなAGC制御を行う光増幅装置では、波長多重した光信号の波長数の変化などに伴い、利得(gain)を一定に保つように励起LDパワーを変化させている。
しかし、光入力パワーの変動時における光増幅器の過渡特性が不十分の場合には、図14(a)に示すような光増幅器への光入力パワーの変化に対して、図14(b)に示すように、増幅器からの光出力パワーの変化がΔtだけ遅延してしまう。この結果、光入力パワーの変動時に、図14(c)に示すように、1波当たりの光出力パワーが大きく変動してしまい、光信号の伝送品質を劣化させることがある。
In an optical amplifying apparatus that performs such AGC control, the pumping LD power is changed so as to keep the gain (gain) constant with a change in the number of wavelengths of the wavelength-multiplexed optical signal.
However, when the transient characteristics of the optical amplifier when the optical input power fluctuates are insufficient, the change in optical input power to the optical amplifier as shown in FIG. As shown, the change in the optical output power from the amplifier is delayed by Δt. As a result, when the optical input power fluctuates, the optical output power per wave greatly fluctuates as shown in FIG. 14C, which may deteriorate the transmission quality of the optical signal.

そのような伝送品質の劣化を制御するための手法として、図15に示す回路が下記の特許文献1に記載されている。
図15において、光増幅器111はEDFと光カプラからなり、光増幅器111の光信号入力部には光カプラ104を介して第1のフォトダイオード105が接続され、また、光増幅器111の光信号出力部には光カプラ106を介して第2のフォトダイオード107が接続されている。また、第1、第2のフォトダイオード105,107の電気信号出力端は、それぞれ第1、第2の対数変換回路112,113に接続されている。さらに、光増幅器111には、励起エネルギーを照射するための励起LD103が光接続されている。
As a technique for controlling such deterioration in transmission quality, a circuit shown in FIG.
In FIG. 15, an optical amplifier 111 is composed of an EDF and an optical coupler. A first photodiode 105 is connected to an optical signal input portion of the optical amplifier 111 via an optical coupler 104, and an optical signal output of the optical amplifier 111 is provided. A second photodiode 107 is connected to this portion via an optical coupler 106. The electrical signal output terminals of the first and second photodiodes 105 and 107 are connected to the first and second logarithmic conversion circuits 112 and 113, respectively. Furthermore, the optical amplifier 111 is optically connected to a pumping LD 103 for irradiating pumping energy.

励起LDの出力を制御するAGC制御回路120は、第1、第2の対数変換回路112,113の出力に基づいて求めるモニタ利得と目標利得G0との偏差ΔGを算出する差動回路121と、偏差ΔGに比例倍数kを掛けて演算する比例回路122と、偏差ΔGを所定の式で積分する積分回路123と、積分回路123と比例回路122の演算結果を加算する加算回路124と、加算回路124に基づいて励起LD103の駆動電流を制御するLD電流制御回路125と、第1の対数変換回路112の出力値に基づいて比例回路122の比例倍率kを調整する比例倍数調整回路126とを有している。
このAGC制御回路120は、光増幅器111の利得を制御することで、1波当たりの光出力パワーの変動を小さく抑えて、伝送品質への影響を軽減するものである。
The AGC control circuit 120 that controls the output of the excitation LD includes a differential circuit 121 that calculates a deviation ΔG between the monitor gain and the target gain G 0 obtained based on the outputs of the first and second logarithmic conversion circuits 112 and 113. A proportional circuit 122 that multiplies the deviation ΔG by a proportional multiple k, an integration circuit 123 that integrates the deviation ΔG by a predetermined formula, an addition circuit 124 that adds the calculation results of the integration circuit 123 and the proportional circuit 122, and an addition An LD current control circuit 125 that controls the drive current of the excitation LD 103 based on the circuit 124, and a proportional multiple adjustment circuit 126 that adjusts the proportional magnification k of the proportional circuit 122 based on the output value of the first logarithmic conversion circuit 112. Have.
The AGC control circuit 120 controls the gain of the optical amplifier 111, thereby suppressing the fluctuation of the optical output power per wave to be small and reducing the influence on the transmission quality.

この方法では、光増幅器111の光入出力パワーをPD105,107や対数変換回路112,113によりモニタし、さらに比例倍数調整回路126が光増幅器111の光入出力パワーに応じて比例回路122及び積分回路123の制御定数を調整するので、運用中の光増幅器111への光入力パワー変化にも対応した制御定数の調整が可能となり、これにより応答速度を速くしてAGC制御回路120の過渡特性を良くして、安定した光信号伝送を行うことができるという効果を奏する。   In this method, the optical input / output power of the optical amplifier 111 is monitored by the PDs 105 and 107 and the logarithmic conversion circuits 112 and 113, and the proportional multiple adjustment circuit 126 further integrates the proportional circuit 122 and the integration according to the optical input / output power of the optical amplifier 111. Since the control constant of the circuit 123 is adjusted, it is possible to adjust the control constant corresponding to a change in the optical input power to the optical amplifier 111 in operation, thereby increasing the response speed and improving the transient characteristics of the AGC control circuit 120. This is advantageous in that stable optical signal transmission can be performed.

また、光増幅器111内のEDFの利得の応答時間はEDFの光入出力パワーに依存しており、このためAGC制御回路120の最適な制御定数は光入出力パワーによって異なる。図16は、比例回路122と光増幅器111の光入力パワーとの関係を示しており、光入力パワーが増加又は減少すると、比例倍数調整回路126が比例係数kを増加又は減少させて過渡特性が不十分な領域に入らず且つ発振領域に入らないように制御している。
特開2004−266251号公報
Further, the response time of the gain of the EDF in the optical amplifier 111 depends on the optical input / output power of the EDF. For this reason, the optimum control constant of the AGC control circuit 120 differs depending on the optical input / output power. FIG. 16 shows the relationship between the proportional circuit 122 and the optical input power of the optical amplifier 111. When the optical input power increases or decreases, the proportional multiple adjustment circuit 126 increases or decreases the proportional coefficient k, and the transient characteristics are increased. Control is performed so as not to enter the insufficient region and the oscillation region.
JP 2004-266251 A

しかし、図15に示すような光増幅装置によれば、図17(a)に示すように光増幅器111への光入力パワーが増加した直後の1波当たりの光出力パワーの変動抑制効果に比べて、図17(b)に示すように光増幅器111への光入力パワーが減少した場合の1波当たりの光出力パワーの変動抑制効果が不十分であり、さらなる改善を図ることが好ましい。なお、図17(a)の入力光は、信号が1波から32波に増加した場合の光パワーの変化を示し、図17(b)の入力光は、信号が32波から1波に減少した場合の光パワーの変化を示している。   However, according to the optical amplifying device as shown in FIG. 15, compared with the effect of suppressing fluctuation in the optical output power per wave immediately after the optical input power to the optical amplifier 111 is increased as shown in FIG. Thus, as shown in FIG. 17B, the effect of suppressing fluctuation in the optical output power per wave when the optical input power to the optical amplifier 111 decreases is insufficient, and further improvement is preferable. Note that the input light in FIG. 17A shows the change in optical power when the signal increases from 1 wave to 32 waves, and the input light in FIG. 17B decreases from 32 waves to 1 wave. The change in optical power is shown.

本発明は、光増幅器への光入力パワーが増加した場合と減少した場合の光出力パワーの変動抑制にも優れた効果を有する光増幅方法および光増幅装置を提供することにある。   An object of the present invention is to provide an optical amplification method and an optical amplification device that have an excellent effect in suppressing fluctuations in optical output power when the optical input power to the optical amplifier increases and decreases.

上記の課題を解決するための本発明の第1の態様は、入力された光信号を励起光源からの励起光に基づいて増幅して出力する光増幅器と、前記光増幅器に入力される入力光信号および前記光増幅器から出力される出力光信号のそれぞれの光パワーを検出する検出手段と、前記検出手段によって検出された入力光信号および出力光信号の光パワーから前記光増幅器の利得を算出する算出手段と、前記算出手段によって算出された前記利得が、利得一定制御のための固定値としての目標利得と等しくなるように前記励起光源から出力される前記励起光の光パワーをフィードバック制御する制御手段と、を有し、前記制御手段は、前記入力光信号の光パワーの過渡的な減少伴って、前記算出手段によって算出された前記利得が前記目標利得よりも大きくなった場合は、前記フィードバック制御の比例係数を前記利得と前記目標利得が略等しくなるまでの間増加させることを特徴とする光増幅装置である。 A first aspect of the present invention for solving the above problems is an optical amplifier that amplifies and outputs an input optical signal based on pumping light from a pumping light source, and input light input to the optical amplifier. Detecting means for detecting the optical power of each of the signal and the output optical signal output from the optical amplifier, and calculating the gain of the optical amplifier from the optical power of the input optical signal and the output optical signal detected by the detecting means And a control unit that feedback-controls the optical power of the pumping light output from the pumping light source so that the gain calculated by the calculating unit is equal to a target gain as a fixed value for constant gain control. a means, the said control means, said with the transient decrease of the optical power of the input optical signal, than the gain the target gain calculated by said calculating means If it becomes hear is an optical amplifying apparatus for causing a proportional coefficient of the feedback control is increased until the target gain and the gain is substantially equal.

本発明の第2の態様は、前記第1の態様の光増幅装置において、前記比例係数は、前記目標利得から前記利得を減算することで得られる利得偏差が負のときに増加されることを特徴とする。
本発明の第3の態様は、前記第1または2の態様の光増幅装置において、前記制御手段は、前記フィードバック制御の前記比例係数を調整するために、フィードバックループ中に設けられた定数倍回路を有し、当該定数倍回路の定数値を調整することにより、前記比例係数を増加させることを特徴とする。
本発明の第4の態様は、前記第3の態様の光増幅装置において、前記定数倍回路の前記定数値は、前記検出手段によって検出された前記入力光信号の光パワーに比例して増減する値に設定されることを特徴とする。
According to a second aspect of the present invention, in the optical amplification device according to the first aspect, the proportionality factor is increased when a gain deviation obtained by subtracting the gain from the target gain is negative. Features.
According to a third aspect of the present invention, in the optical amplifying device according to the first or second aspect, the control means is a constant multiplication circuit provided in a feedback loop for adjusting the proportionality factor of the feedback control. The proportionality coefficient is increased by adjusting a constant value of the constant multiplication circuit .
According to a fourth aspect of the present invention, in the optical amplifying device according to the third aspect, the constant value of the constant multiplier circuit increases or decreases in proportion to the optical power of the input optical signal detected by the detecting means. It is set to a value .

本発明の第5の態様は、前記第4の態様の光増幅装置において、前記制御手段は、前記目標利得と前記利得の差分値を積分する積分回路と、前記積分回路の出力値と前記定数倍回路の出力値とを加算する加算回路と、を有し、前記加算回路の出力値に応じて前記励起光源が制御されるとともに、前記入力光信号の光パワーの過渡的な減少に伴って、前記算出手段によって算出された前記利得が前記目標利得よりも大きくなった場合には、前記積分回路の積分定数を調整することにより積分係数を前記利得と前記目標利得が略等しくなるまでの間増加させることを特徴とする。
本発明の第6の態様は、前記第1乃至5のいずれかの態様の光増幅装置において、前記制御手段は、前記目標利得と前記利得との差分値が所定の値よりも大きくなった場合には、前記比例係数をさらに増加させることを特徴とする。
According to a fifth aspect of the present invention, in the optical amplifying device according to the fourth aspect, the control means includes an integration circuit that integrates the target gain and a difference value between the gains, an output value of the integration circuit, and the constant. An adder circuit for adding the output value of the multiplier circuit, and the pumping light source is controlled according to the output value of the adder circuit, and along with a transient decrease in the optical power of the input optical signal When the gain calculated by the calculating means is larger than the target gain, the integration coefficient is adjusted until the gain and the target gain become substantially equal by adjusting the integration constant of the integration circuit. It is characterized by increasing .
According to a sixth aspect of the present invention, in the optical amplifying device according to any one of the first to fifth aspects, the control means has a difference value between the target gain and the gain larger than a predetermined value. Is characterized in that the proportionality coefficient is further increased .

本発明の第7の態様は、前記第6の態様の光増幅装置において、前記制御手段は、前記目標利得と前記利得との利得差が0.03dBより大きいときは前記比例係数を一時的に2倍にし、前記目標利得と前記利得との利得差が0.3dBより大きいときは前記比例係数を一時的に4倍にすることを特徴とする。 According to a seventh aspect of the present invention, in the optical amplification device according to the sixth aspect, the control means temporarily sets the proportionality coefficient when a gain difference between the target gain and the gain is greater than 0.03 dB. The proportionality factor is temporarily quadrupled when the gain difference between the target gain and the gain is greater than 0.3 dB .

本発明の第9の態様は、入力された光信号を励起光源からの励起光に基づいて増幅して出力する光増幅器を有する光増幅装置の光増幅方法において、前記光増幅器に入力される入力光信号および前記光増幅器から出力される出力光信号のそれぞれの光パワーを検出する検出工程と、前記検出工程によって検出された入力光信号および出力光信号の光パワーから前記光増幅器の利得を算出する算出工程と、前記算出工程によって算出された前記利得が、利得一定制御のための固定値としての目標利得と等しくなるように前記励起光源から出力される前記励起光の光パワーをフィードバック制御する制御工程と、を有し、前記制御工程は、前記入力光信号の光パワーの過渡的な減少に伴って、前記算出工程によって算出された前記利得が前記目標利得よりも大きくなった場合には、前記フィードバック制御の比例係数を前記利得と前記目標利得が略等しくなるまでの間増加させることを特徴とする光増幅方法である。 According to a ninth aspect of the present invention, there is provided an optical amplification method for an optical amplifier having an optical amplifier that amplifies an input optical signal based on pumping light from a pumping light source and outputs the amplified optical signal. A detection process for detecting the optical power of each of the optical signal and the output optical signal output from the optical amplifier, and the gain of the optical amplifier is calculated from the optical power of the input optical signal and the output optical signal detected by the detection process And a feedback control of the optical power of the excitation light output from the excitation light source so that the gain calculated by the calculation step is equal to a target gain as a fixed value for constant gain control. A control step, and the control step is configured such that the gain calculated by the calculation step is the target when the optical power of the input optical signal is transiently decreased. If it becomes larger than the resultant is an optical amplification method characterized by increasing during the proportional coefficient of the feedback control to the target gain and the gain is substantially equal.

本発明によれば、光増幅器を励起する励起用光素子の駆動電流の制御のために利得偏差に基づいて比例演算及び積分演算を行う場合に、利得偏差の絶対値、符号の少なくとも一方を使用して変更される係数を用いて演算するようにした。利得偏差は光増幅器の光入力パワーと光出力パワーの双方に基づいて求められるので、本発明により光増幅器内の光パワーの変化を考慮して比例演算、積分演算を行うことになり、光増幅器の残存光の利得の変動を抑制することができる。   According to the present invention, when performing proportional calculation and integral calculation based on the gain deviation for controlling the drive current of the pumping optical element that excites the optical amplifier, at least one of the absolute value and sign of the gain deviation is used. Thus, the calculation is performed using the coefficient to be changed. Since the gain deviation is obtained based on both the optical input power and the optical output power of the optical amplifier, according to the present invention, proportional calculation and integration calculation are performed in consideration of the change of the optical power in the optical amplifier. Fluctuation of the remaining light gain can be suppressed.

以下に本発明の実施の形態を図面に基づいて詳細に説明する。
(第1の実施の形態)
図1は、本発明の実施形態に係る光増幅装置を示す構成図である。
図1において、OADM(Optical Add-Drop Multiplexer)などの波長合分波手段により所定波長の光信号が変化して伝送される光伝送路に接続されるエレビウム添加光ファイバ(EDF)1とこのEDF1に接続される第1の光カプラ2とを含む光増幅器3と、第1の光カプラ2を介してEDF1に光励起エネルギーを照射する励起レーザダイオード(LD)4と、EDF1に入力する光信号を第2の光カプラ5を介して受光して光電変換する第1のフォトダイオード(PD)6と、光増幅器3から出力する光信号を第3の光カプラ7を介して受光して光電変換する第2のフォトダイオード(PD)8と、第1、第2のフォトダイオード6,8の電気信号出力端子のそれぞれに接続される第1、第2の対数変換回路9,10と、第1、第2の対数変換回路9,10のそれぞれの出力信号を入力するAGC制御回路11とを有している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a configuration diagram illustrating an optical amplifying device according to an embodiment of the present invention.
In FIG. 1, an erbium-doped optical fiber (EDF) 1 connected to an optical transmission line through which an optical signal having a predetermined wavelength is changed and transmitted by wavelength multiplexing / demultiplexing means such as OADM (Optical Add-Drop Multiplexer) and the EDF 1 An optical amplifier 3 including a first optical coupler 2 connected to the laser, an excitation laser diode (LD) 4 that irradiates the EDF 1 with optical excitation energy via the first optical coupler 2, and an optical signal input to the EDF 1. A first photodiode (PD) 6 that receives light through the second optical coupler 5 and performs photoelectric conversion, and an optical signal output from the optical amplifier 3 through the third optical coupler 7 and photoelectrically converts the light signal. First and second logarithmic conversion circuits 9 and 10 connected to the second photodiode (PD) 8 and the electric signal output terminals of the first and second photodiodes 6 and 8, respectively, Second logarithmic transformation And an AGC control circuit 11 for inputting respective output signals of the circuits 9 and 10.

第1の対数変換回路9は、第1のフォトダイオード6から出力される電気信号を所定の式で対数変換することにより光増幅器3の光入力信号を入力側電圧信号Vinとして出力する構成となっている。また、第2の対数変換回路10は、第2のフォトダイオード8から出力される電気出力信号を所定の式で対数変換することにより光増幅器3の光出力信号を出力側電圧信号Voutとして出力する構成となっている。   The first logarithmic conversion circuit 9 is configured to output the optical input signal of the optical amplifier 3 as the input side voltage signal Vin by logarithmically converting the electrical signal output from the first photodiode 6 by a predetermined formula. ing. Further, the second logarithmic conversion circuit 10 outputs the optical output signal of the optical amplifier 3 as the output side voltage signal Vout by logarithmically converting the electrical output signal output from the second photodiode 8 by a predetermined formula. It has a configuration.

AGC制御回路11は、目標利得G0を設定する目標利得設定回路12と、第1、第2の対数変換回路9,10からそれぞれ出力される電圧信号Vin,Voutの差と目標利得G0とに基づいて利得偏差ΔGを出力する差動回路13と、差動回路13から出力される利得偏差ΔGを入力してこれに可変の比例係数kを掛けた値を算出する比例回路14と、差動回路13から出力される利得偏差ΔGを積分係数γを用いた所定の式で積分して出力する積分回路15と、第1及び第2の対数変換回路9,10からの出力信号と差動回路13の利得偏差ΔGの少なくとも1つに基づいて比例回路14及び積分回路15の比例積分(PI)係数を調整するPI係数調整回路16と、比例回路14及び積分回路15の出力信号を加算して出力する加算回路17と、励起LD4を駆動する電流を加算回路17の出力信号に基づいて制御するLD電流制御回路18とを有している。なお、比例回路14、積分回路15及び加算回路17による制御を以下にPI制御という。 The AGC control circuit 11 includes a target gain setting circuit 12 that sets a target gain G 0 , a difference between voltage signals Vin and Vout output from the first and second logarithmic conversion circuits 9 and 10, and a target gain G 0 . A differential circuit 13 that outputs a gain deviation ΔG based on the above, a proportional circuit 14 that receives the gain deviation ΔG output from the differential circuit 13 and calculates a value obtained by multiplying the gain deviation ΔG by a variable proportional coefficient k; An integration circuit 15 for integrating and outputting the gain deviation ΔG output from the dynamic circuit 13 by a predetermined formula using an integration coefficient γ, and the output signals from the first and second logarithmic conversion circuits 9 and 10 and the differential. A PI coefficient adjusting circuit 16 that adjusts a proportional integration (PI) coefficient of the proportional circuit 14 and the integrating circuit 15 based on at least one of the gain deviations ΔG of the circuit 13 and an output signal of the proportional circuit 14 and the integrating circuit 15 are added. And an adder circuit 17 for outputting, And a LD current control circuit 18 is controlled on the basis of the current driving the electromotive LD4 on the output signal of the adder circuit 17. The control by the proportional circuit 14, the integrating circuit 15, and the adding circuit 17 is hereinafter referred to as PI control.

AGC制御回路11における差動回路13は、次の式(1)に基づいて利得偏差ΔGを演算する。
ΔG=G0−(Vout−Vin) (1)
The differential circuit 13 in the AGC control circuit 11 calculates the gain deviation ΔG based on the following equation (1).
ΔG = G 0 − (Vout−Vin) (1)

また、比例回路14は次式(2)による演算によりT1を算出して出力し、積分回路15は式(3)による演算により値T2を算出して出力し、また、加算回路17は式(3)による演算により値T3を算出して出力する。
T1=k・ΔG (2)
T2=γ∫ΔGdt (3)
T3=k・ΔG+γ∫ΔGdt (4)
なお、γは積分係数、kは比例係数であり、γ、kは共にPI係数調整回路16の出力に基づいて変更される。
Further, the proportional circuit 14 calculates and outputs T1 by the calculation according to the following equation (2), the integrating circuit 15 calculates and outputs the value T2 by the calculation according to the equation (3), and the adding circuit 17 calculates the equation (2). The value T3 is calculated and output by the calculation in 3).
T1 = k · ΔG (2)
T2 = γ∫ΔGdt (3)
T3 = k · ΔG + γ∫ΔGdt (4)
Γ is an integral coefficient, k is a proportional coefficient, and both γ and k are changed based on the output of the PI coefficient adjustment circuit 16.

比例回路14は、例えば図2に示すように、コンパレータ14aと固定抵抗14bと可変抵抗14cから構成され、可変抵抗14cには例えばCPUによるデジタル的な調整が可能なデジタル調整ポテンショメータ(Digital Controlled Potentiometer:DCP)を用いることにより、本実施形態に係る光増幅装置の運用中でもPI係数調整回路16の自動調整機能を用いて可変抵抗14cの抵抗値R2の変更をステップ状に行うことを可能にしている。
比例回路14の比例係数kは、回路内の固定抵抗14bの抵抗値R1と可変抵抗14cの抵抗値R2の比k=R2/R1によって決まる。
For example, as shown in FIG. 2, the proportional circuit 14 includes a comparator 14a, a fixed resistor 14b, and a variable resistor 14c. The variable resistor 14c has a digital control potentiometer (Digital Controlled Potentiometer: digital adjustment by a CPU, for example). DCP) makes it possible to change the resistance value R2 of the variable resistor 14c stepwise using the automatic adjustment function of the PI coefficient adjustment circuit 16 even during operation of the optical amplifying device according to the present embodiment. .
Proportional coefficient of the proportional circuit 14 k is determined by the ratio k = R2 / R1 of the resistance value R 2 of the resistance value R1 and the variable resistor 14c of the fixed resistor 14b in the circuit.

そして、比例回路14の比例係数を調整するPI係数調整回路16は、例えば比例係数kを次の式(5)の目標値k0になるように調整する。
0=A・Vin+B (5)
Then, the PI coefficient adjusting circuit 16 that adjusts the proportional coefficient k of the proportional circuit 14 adjusts the proportional coefficient k so that it becomes the target value k 0 of the following equation (5), for example.
k 0 = A · Vin + B (5)

ここで、Vinは第1の対数変換回路9からの出力電圧であり、A、Bは予め設定される定数である。また、k0は、利得偏差ΔGの符号や絶対値に応じて所定の条件でN倍、M倍される(M>0、N>0)。
EDF1における発振領域と過渡特性の不十分な領域を比例係数と光入力パワーの関係で示すと図3のようになり、比例係数kを含むPI係数は、PI係数調整回路16によって図4に示すフローに従って調整される。
Here, Vin is an output voltage from the first logarithmic conversion circuit 9, and A and B are preset constants. Further, k 0 is multiplied by N and M (M> 0, N> 0) under a predetermined condition according to the sign and absolute value of the gain deviation ΔG.
When the oscillation region and the region having insufficient transient characteristics in the EDF 1 are shown by the relationship between the proportional coefficient and the optical input power, the PI coefficient including the proportional coefficient k is shown in FIG. 4 by the PI coefficient adjustment circuit 16. Adjusted according to the flow.

まず、光増幅器3の光入力パワーPinに対応する入力側電圧値Vinが第1の対数変換回路9からPI係数調整回路16及び差動回路13に出力され、また、光増幅器3の光出力パワーPoutに対応する出力側電圧値Voutが第2の対数変換回路10から差動回路13に出力される(図4のS1)。また、差動回路13が式(1)により算出した利得偏差ΔGは、PI係数調整回路16に出力される(図4のS1)。 First, the input side voltage value Vin corresponding to the optical input power Pin of the optical amplifier 3 is output from the first logarithmic conversion circuit 9 to the PI coefficient adjustment circuit 16 and the differential circuit 13, and the optical output power of the optical amplifier 3 is also output. The output side voltage value Vout corresponding to Pout is output from the second logarithmic conversion circuit 10 to the differential circuit 13 (S1 in FIG. 4). Further, the gain deviation ΔG calculated by the differential circuit 13 using the equation (1) is output to the PI coefficient adjustment circuit 16 (S1 in FIG. 4).

続いて、PI係数調整回路16は、式(5)に基づいて目標比例係数0を計算する(図4のS2)とともに、利得偏差ΔGが負か否かを判断し(図4のS3)、利得偏差ΔGが負であって利得偏差ΔGの絶対値が所定値αよりも小さい場合には目標比例係数0に所定値Nを掛けた値を新たな目標比例係数0として設定する(図4のS3、S4、S5)一方、利得偏差ΔGが負であって利得偏差ΔGの絶対値が所定値αより大きい場合には目標比例係数0に所定値N×Mを掛けた値を新たな目標比例係数0として設定する(図4のS3、S4、S6)。また、利得偏差ΔGが正の場合には目標比例係数0をM倍、N×M倍せずに初期値のままとする。なお、N、Mは倍数であって、N>0、M>0である。 Subsequently, the PI coefficient adjustment circuit 16 calculates the target proportionality coefficient k 0 based on the equation (5) (S2 in FIG. 4) and determines whether or not the gain deviation ΔG is negative (S3 in FIG. 4). When the gain deviation ΔG is negative and the absolute value of the gain deviation ΔG is smaller than the predetermined value α, a value obtained by multiplying the target proportional coefficient k 0 by the predetermined value N is set as a new target proportional coefficient k 0 ( On the other hand, when the gain deviation ΔG is negative and the absolute value of the gain deviation ΔG is larger than the predetermined value α, a value obtained by multiplying the target proportionality coefficient k 0 by the predetermined value N × M is obtained. A new target proportionality coefficient k 0 is set (S3, S4, S6 in FIG. 4). When the gain deviation ΔG is positive, the target proportionality coefficient k 0 is not multiplied by M or N × M but is kept at the initial value. N and M are multiples, and N> 0 and M> 0.

ここで、図5の破線X1に示すように光増幅器3の光入力パワーが増加した瞬間には、通常は利得偏差ΔGが正になり、図5の破線X2に示すように光増幅器3の光入力パワーが減少した瞬間には、通常は利得偏差ΔGが負になる。
比例回路14の比例係数kを目標比例係数0となるように調整する処理は以下のように行われる。
Here, at the moment the optical input power of the optical amplifier 3 is increased as indicated by the broken line X 1 in FIG. 5, normally gain deviation ΔG becomes positive, the optical amplifier 3 as indicated by a broken line X 2 in FIG. 5 Usually, the gain deviation ΔG becomes negative at the moment when the optical input power decreases.
The process of adjusting the proportional coefficient k of the proportional circuit 14 so as to become the target proportional coefficient k 0 is performed as follows.

即ち、PI係数調整回路16は図2に示した比例回路14のDCP14aに接続した可変抵抗14cの抵抗値R2を読み(図4のS7)、これを固定抵抗14bの抵抗値R1で割って暫定的に比例係数k=R1/R2を演算する(図4のS8)。さらに、求めた比例係数kから目標比例係数0を引いた値Δkを求め(図4のS9)、−δ<Δkの条件を満たさない場合にはPI係数調整回路16は比例回路14に対してDCP14aの可変抵抗14の抵抗値R2を1ステップ増加させる動作を行わせる一方(図4のS10、S11)、Δk<+δを満たさない場合にはPI係数調整回路16は比例回路14に対してDCP14aの可変抵抗14の抵抗値R2を1ステップ減少させる動作を行わせる(図4のS12、S13)。この動作は、Δkが所定範囲δの絶対値よりも小さくなるまで繰り返され、これにより比例係数kは目標比例係数0又はその所定範囲内に設定され、比例回路14は演算値ΔGkを加算回路17に出力する(図4のS14)。 That is, the PI coefficient adjustment circuit 16 reads the resistance value R2 of the variable resistor 14c connected to the DCP 14a of the proportional circuit 14 shown in FIG. 2 (S7 in FIG. 4), and divides this by the resistance value R1 of the fixed resistor 14b. Therefore, the proportional coefficient k = R1 / R2 is calculated (S8 in FIG. 4). Further, a value Δk obtained by subtracting the target proportionality coefficient k 0 from the obtained proportionality coefficient k is obtained (S9 in FIG. 4), and if the condition of −δ <Δk is not satisfied, the PI coefficient adjustment circuit 16 determines that the proportional circuit 14 while causing the variable resistor 14 c of the resistance R2 an operation to increase one step DCP14a Te (S10 in FIG. 4, S11), PI coefficient adjustment circuit 16 in the case of not satisfied .DELTA.k <+ [delta] is to proportional circuit 14 the resistance value R2 of the variable resistor 14 c of DCP14a to perform operations to reduce one step Te (S12 in FIG. 4, S13). This operation is repeated until Δk becomes smaller than the absolute value of the predetermined range δ, whereby the proportional coefficient k is set to the target proportional coefficient k 0 or within the predetermined range, and the proportional circuit 14 adds the calculated value ΔGk to the adder circuit. 17 (S14 in FIG. 4).

以上の動作はPI係数調整を行う必要がある間は続けられる(図4のS15)。
以上のようにPI係数調整回路16に光入力側の第1の対数変換回路9の出力信号を入力するとともに利得偏差ΔGの値を入力するようにしたのは次のような理由による。
The above operation is continued while it is necessary to adjust the PI coefficient (S15 in FIG. 4).
The reason why the output signal of the first logarithmic conversion circuit 9 on the optical input side and the value of the gain deviation ΔG are input to the PI coefficient adjustment circuit 16 as described above is as follows.

EDF1の利得の応答時間は、EDF1内の光パワーが大きいほど速くなるが、特許文献1に記載のように、EDF1に入力する光パワーが大きくなるに応じて比例係数kを大きくし、逆に光パワーが小さくなると比例係数kを小さくするというように、光入力パワーが大きいほど比例係数kを大きくすると、図5の破線X2と図3に示すように光入力パワーがPHからPLに減少した場合に、その変化に伴って図17(b)に示したように過度特性が悪くなる。これは、光入力パワーがPHからPLに減少した直後のEDF1の励起状態は、入力パワーが減少する直前の励起状態がほぼ保たれるという特性があるために、図3に示すように比例係数1をk2に小さくして励起LD4の光出力パワーを減少させるという従来の方法によれば、EDF1の内部の励起状態はほぼPHのままであるために、EDF1による利得の応答時間が早くなり、EDF1内の過渡特性が不十分になるという状況が発生し、結果としてEDF1内の残存光の変動抑制効果が不十分になる。 The response time of the gain of the EDF 1 is faster as the optical power in the EDF 1 is larger. However, as described in Patent Document 1, the proportional coefficient k is increased as the optical power input to the EDF 1 is increased. When the proportional coefficient k is increased as the optical input power is increased, such that the proportional coefficient k is decreased as the optical power is decreased, the optical input power is changed from P H to P L as shown in the broken line X 2 in FIG. 5 and FIG. when reduced to, transient response as shown in FIG. 17 (b) is deteriorated with the change. This is because the pumping state of the EDF 1 immediately after the optical input power decreases from P H to P L has a characteristic that the pumping state immediately before the input power decreases is substantially maintained, as shown in FIG. according proportional coefficient k 1 to the conventional method of reducing the optical output power of the small to excite LD4 to k 2, for internal excited state of EDF1 remains substantially the P H, the gain response of the by EDF1 A situation occurs in which the time is shortened and the transient characteristics in the EDF 1 become insufficient, and as a result, the fluctuation suppressing effect of the residual light in the EDF 1 becomes insufficient.

これに対して、本実施形態では、光入力パワーに応じてPI制御の係数を変更することに加えて、利得偏差ΔGの符号、ΔGの絶対値の大きさに応じてPI係数である比例係数k、積分係数γを変更して、利得偏差ΔGが負の場合のPI制御の係数を、同じ入力パワーで利得偏差ΔGが正の場合のPI制御の係数の所定倍とすることで、図3に示すように入力パワーがPHからPLに減少した直後のPI制御の比例係数をk2からk2’に大きくして利得変動抑制効果を十分に高めることが可能になる。 On the other hand, in this embodiment, in addition to changing the PI control coefficient according to the optical input power, the proportional coefficient which is the PI coefficient according to the sign of the gain deviation ΔG and the absolute value of ΔG k and the integration coefficient γ are changed so that the PI control coefficient when the gain deviation ΔG is negative is a predetermined multiple of the PI control coefficient when the gain deviation ΔG is positive with the same input power. input power as shown in becomes possible to increase the proportional coefficient of the PI control immediately after reduced to P L sufficiently large to gain variation suppressing effect of k 2 to k 2 'from P H.

すなわち、上記の光増幅装置において、PI係数を調整した後に図5の破線X1に示すように光入力パワーPinが増加して利得偏差ΔGが正となる場合には、PI係数調整回路16は第1の対数変換回路9から信号Vinを入力し、さらに式(5)に基づいて目標比例係数0を算出する(図4のS1、S2)。そして、PI係数調整回路16は、比例回路14のDCP14aの可変抵抗14cの抵抗値R2を調整して比例係数kと目標比例係数0の差がδの絶対値以下になるようにし、さらに調整された比例係数kを使用して比例回路14はkΔGの算出値を加算回路17に出力する(図4のS7〜S14)。 That is , in the above optical amplifying apparatus, when the optical input power Pin increases and the gain deviation ΔG becomes positive as shown by the broken line X 1 in FIG. inputs the signal Vin from the first logarithmic converter 9, further calculates the target proportional coefficient k 0 according to equation (5) (S1 in FIG. 4, S2). Then, PI coefficient adjustment circuit 16, as the difference between the proportional coefficient k and target proportional coefficient k 0 by adjusting the resistance value R2 of the variable resistor 14c of DCP14a proportional circuit 14 falls below the absolute value of [delta], further adjustment Using the proportional coefficient k, the proportional circuit 14 outputs a calculated value of kΔG to the adder circuit 17 (S7 to S14 in FIG. 4).

これに対し、図5の破線X2に示すように光入力パワーPinが減少する場合であって利得偏差ΔGが負となる場合には、PI係数調整回路16は第1の対数変換回路9から信号Vinを入力し、さらに式(5)に基づいて比例係数の目標比例係数0を算出した後に、その目標比例係数0を所定倍した値を新たな目標比例係数0とし(図4のS1〜S6)、さらに、新たな目標比例係数0となるように比例回路14のDCP14aの可変抵抗14cの抵抗値R2を調整して比例係数kと目標比例係数0の差がδの絶対値以下になるようにし、さらに調整された比例係数kを使用して比例回路14はkΔGの算出値を加算回路17に出力する(図4のS7〜S14)。 On the other hand, when the optical input power Pin decreases and the gain deviation ΔG becomes negative as indicated by the broken line X 2 in FIG. 5, the PI coefficient adjustment circuit 16 starts from the first logarithmic conversion circuit 9. inputs the signal Vin, further after calculating the target proportional coefficient k 0 of the proportional coefficient based on the equation (5), as its target proportionality coefficient k 0 a new a predetermined multiple value target proportional coefficient k 0 (FIG. 4 of S1 to S6), further, the difference by adjusting the resistance value R2 of the new target proportional coefficient k 0 and becomes as DCP14a of the variable resistor 14c of the proportional circuit 14 proportionality coefficient k and target proportional coefficient k 0 is δ The proportional circuit 14 outputs the calculated value of kΔG to the adder circuit 17 using the adjusted proportionality coefficient k so as to be equal to or smaller than the absolute value (S7 to S14 in FIG. 4).

次に、光増幅器3に入力する光入力パワーPinが変化した場合のEDF1内の残存光の利得変動をシミュレートした結果を従来技術との比較において説明する。
まず、PI係数調整回路16の機能を停止させ、光入出力パワーの変化によらず比例回路14の比例係数kと積分回路15の積分係数γをそれぞれ一定とした従来技術を用いたところ、図5に示したように光増幅器3への光入力パワーが変化した場合の残存光の利得変動は図6(a)に示すようになった。図6(a)において、光入力パワーが増加したときの残存光の利得の過渡的変化が0.50dB、光入力パワーが減少したときの残存光の利得の過渡的変化が0.56dBであり、どちらの場合も過渡的変化が0.5dB以上という結果になった。
ここで目標利得Gは27dBで、図6の縦軸の利得は、(1)式の(Vout−Vin)を示す。(1)式は、
(Vout-Vin)=G−△G=27−△G
と変形でき、図6(a)の光入力が減少した時における0.56dBの山は、△Gが負であることを示す。この縦軸の利得の表示については、以下で説明する図7、図8、図10、図12においても同様である。
Next, the result of simulating the gain fluctuation of the residual light in the EDF 1 when the optical input power Pin input to the optical amplifier 3 is changed will be described in comparison with the prior art.
First, the function of the PI coefficient adjustment circuit 16 is stopped, and the conventional technique is used in which the proportionality coefficient k of the proportional circuit 14 and the integral coefficient γ of the integration circuit 15 are made constant regardless of changes in the optical input / output power. As shown in FIG. 5, the gain fluctuation of the residual light when the optical input power to the optical amplifier 3 is changed is as shown in FIG. In FIG. 6A, the transient change in the residual light gain when the optical input power increases is 0.50 dB, and the transient change in the residual light gain when the optical input power decreases is 0.56 dB. In both cases, the transient change was 0.5 dB or more.
Here, the target gain G 0 is 27 dB, and the gain on the vertical axis in FIG. 6 represents (Vout−Vin) in the equation (1). Equation (1) is
(Vout−Vin) = G 0 −ΔG = 27−ΔG
6 when the optical input in FIG . A 56 dB peak indicates that ΔG is negative. The display of the gain on the vertical axis is the same in FIGS. 7, 8, 10, and 12 described below.

過渡的変化を抑制するにはPI係数を大きくする必要があるが、PI係数を図6(a)の場合の4倍にした場合のシミュレーション結果は図6(b)のようになり、過渡的変化は抑制できたが、PI係数が大きすぎるために光入力パワーに変化が無い状態でも振動がみられ、やや発振気味となっている。
一方、PI係数調整回路16を動作させ、利得偏差ΔGの絶対値と符号を考慮せずに、光入力パワーの変化に応じて比例回路14の比例係数kと積分回路15の積分係数γをそれぞれ変化させる図14に示す従来技術を用いたところ、光増幅器3への光入力パワーが変化した場合の残存光の利得の変動は図7(a)に示すようになった。図7(a)において、PI係数を一定にした図6(a)と比較して、光入力パワーが減少したときの残存光の利得の過渡的変化が大きくなった。これは、EDF1内1の光入力パワーが減少してもその直前の励起状態が変化しにくいからである。
In order to suppress the transient change, it is necessary to increase the PI coefficient, but the simulation result when the PI coefficient is quadrupled as in FIG. 6A is as shown in FIG. Although the change could be suppressed, since the PI coefficient is too large, vibration was observed even in a state where there was no change in the optical input power.
On the other hand, the PI coefficient adjusting circuit 16 is operated, and the proportional coefficient k of the proportional circuit 14 and the integral coefficient γ of the integrating circuit 15 are respectively changed according to the change of the optical input power without considering the absolute value and sign of the gain deviation ΔG. When the conventional technique shown in FIG. 14 is used, the change in the gain of the residual light when the optical input power to the optical amplifier 3 changes is as shown in FIG. In FIG. 7A, the transient change of the gain of the residual light when the optical input power is decreased is larger than that in FIG. 6A in which the PI coefficient is constant. This is because even if the optical input power in the EDF 1 decreases, the excitation state immediately before that hardly changes.

過渡的変化を抑制するためにはPI係数を大きくすることが考えられるが、PI係数を図7(a)に示す場合の条件の4倍に変化させると、図7(b)に示すようなシミュレーション結果が得られるが、PI係数が大きすぎるために光入力パワーに変化が無い状態で振動がみられ、やや発振気味となっている。
これに対し、本実施形態のように、PI係数調整回路16を動作させ、利得偏差ΔGの絶対値、符号および光入力パワーの変化に応じて比例回路14の比例係数kと積分回路15の積分係数γをそれぞれ変化させたところ、図8(a)、図8(b)に示すようなシミュレーション結果が得られた。
In order to suppress the transient change, it is conceivable to increase the PI coefficient. However, when the PI coefficient is changed to four times the condition shown in FIG. 7A, as shown in FIG. 7B. Although a simulation result is obtained, since the PI coefficient is too large, vibration is observed in a state where there is no change in the optical input power.
On the other hand, as in this embodiment, the PI coefficient adjustment circuit 16 is operated, and the proportional coefficient k of the proportional circuit 14 and the integration of the integration circuit 15 are changed according to changes in the absolute value, sign, and optical input power of the gain deviation ΔG. When the coefficient γ was changed, simulation results as shown in FIGS. 8A and 8B were obtained.

図8(a)は、利得偏差ΔGが負で、PI係数を図7(a)の条件の4倍にし、且つ利得偏差ΔGの絶対値が0.1dBより大きい場合にPI係数をさらに2倍の8倍とした場合の結果であり、光入力パワーの増加だけでなく減少の時にも残存光の利得の過渡的変化が従来技術に比べて小さくなった。
また、図8(b)は、利得偏差ΔGが負で、PI係数を図7(a)の条件の4倍にし、且つ利得偏差ΔGの絶対値が0.1dBより大きい場合にPI係数をさらに2倍の8倍とし、これに加えて利得偏差ΔGの絶対値が2dBより大きいときはPI係数をさらに2倍の16倍とした結果であり、光入力パワーの増加だけでなく減少の時にも残存光の過渡的変化が図8(a)よりもさらに小さくなった。これにより、利得偏差ΔGの絶対値判定の条件(図4のS4)を複数設定することにより、残存光の利得変動がより小さくなることがわかる。
FIG. 8A shows that when the gain deviation ΔG is negative, the PI coefficient is four times the condition of FIG. 7A, and the absolute value of the gain deviation ΔG is larger than 0.1 dB, the PI coefficient is further doubled. As a result, the transient change in the gain of the residual light is smaller than that in the prior art not only when the optical input power is increased but also when the optical input power is decreased.
FIG. 8B shows that the PI coefficient is further increased when the gain deviation ΔG is negative, the PI coefficient is four times the condition of FIG. 7A, and the absolute value of the gain deviation ΔG is greater than 0.1 dB. When the absolute value of the gain deviation ΔG is larger than 2 dB, the PI coefficient is further doubled to 16 times, and not only when the optical input power is increased but also decreased. The transient change of the residual light became even smaller than that in FIG. Accordingly, it is understood that the gain fluctuation of the residual light becomes smaller by setting a plurality of conditions for determining the absolute value of the gain deviation ΔG (S4 in FIG. 4) .

(第2の実施の形態)
図9は、図1に示す光増幅装置を使用した本発明の第2実施形態に係る光増幅方法におけるPI係数の調整を示すフローチャートを示している。
図9に示すフローチャートは、図1におけるPI係数調整回路16における比例回路14の比例係数kを調整するフローを示している。
まず、式(1)に基づいて差動回路13によって算出された利得偏差ΔGは、PI係数調整回路16に入力される(図9のS21)。
(Second Embodiment)
FIG. 9 is a flowchart showing adjustment of the PI coefficient in the optical amplification method according to the second embodiment of the present invention using the optical amplification device shown in FIG.
The flowchart shown in FIG. 9 shows a flow for adjusting the proportionality coefficient k of the proportional circuit 14 in the PI coefficient adjustment circuit 16 in FIG.
First, the gain deviation ΔG calculated by the differential circuit 13 based on the equation (1) is input to the PI coefficient adjustment circuit 16 (S21 in FIG. 9).

続いて、PI係数調整回路16は、光入出力パワーに関係無く目標比例係数0を設定するとともに(図9のS22)、ΔGの絶対値が一定の値αよりも大きいか否かを判断し、大きい場合にのみ目標比例係数0をM倍に設定し直した後に(図9のS23、S24)、比例係数kを目標比例係数0に一致又は所定範囲より小さくする動作を行う(図9のS7〜S14)。
比例係数目標比例係数0に一致又は所定範囲内に設定させる動作は次のような処理により行われる。
Subsequently, the PI coefficient adjustment circuit 16 sets the target proportionality coefficient k 0 regardless of the optical input / output power (S22 in FIG. 9) and determines whether or not the absolute value of ΔG is larger than a certain value α. and, only the target proportionality coefficient k 0 after resetting M times is greater (S23 in FIG. 9, S24), performs an operation to be smaller than matched or predetermined range proportionality factor k in the target proportional coefficient k 0 ( (S7 to S14 in FIG. 9).
Operation for setting the proportional coefficient k in the match or a predetermined range to the target proportionality coefficient k 0 is performed by the following process.

即ち、比例回路14を構成する図2に示すDCP14aに接続した可変抵抗14cの抵抗値R2を読み(図9のS7)、これを固定抵抗14bの抵抗値R1の値で割って暫定的に比例係数k=R1/R2を演算する(図9のS8)。さらに、求めた比例係数kから目標比例係数0を引いた値Δkを求め(図9のS9)、Δkが所定範囲δの絶対値よりも大きいか否かを判定し(図9のS10、S12)、−δ<Δkの条件を満たさない場合にはPI係数調整回路16は比例回路14に対して可変抵抗14cの抵抗値R2を1ステップ増加させる動作を行わせる一方(図9のS10、S11)、Δk<+δの条件を満たさない場合にはPI係数調整回路16は比例回路14に対して可変抵抗14cの抵抗値R2を1ステップ減少させる動作を行わせる(図9のS12、S13)。この動作は、Δkが所定範囲δの絶対値よりも小さくなるまで繰り返される。 That is, the resistance value R2 of the variable resistor 14c connected to the DCP 14a shown in FIG. 2 constituting the proportional circuit 14 is read (S7 in FIG. 9), and divided by the resistance value R1 of the fixed resistor 14b to tentatively proportionally. The coefficient k = R1 / R2 is calculated (S8 in FIG. 9). Further, a value Δk obtained by subtracting the target proportionality coefficient k 0 from the obtained proportionality coefficient k is obtained (S9 in FIG. 9), and it is determined whether Δk is larger than the absolute value of the predetermined range δ (S10 in FIG. 9). S12), if the condition −δ <Δk is not satisfied, the PI coefficient adjustment circuit 16 causes the proportional circuit 14 to increase the resistance value R2 of the variable resistor 14c by one step (S10 in FIG. 9). S11), if the condition of Δk <+ δ is not satisfied, the PI coefficient adjustment circuit 16 causes the proportional circuit 14 to perform an operation of decreasing the resistance value R2 of the variable resistor 14c by one step (S12 and S13 in FIG. 9). . This operation is repeated until Δk becomes smaller than the absolute value of the predetermined range δ.

Δkが所定範囲δの絶対値よりも小さくなった時点で、比例回路14は演算値kΔGを加算回路17に出力する(図9のS14)。
以上のような処理は、比例係数の調整が必要な場合に連続して行われることになる(図9のS15)。
以上のように本実施形態では、過渡的変化を抑制し、かつ入力パワーの変化が小さい通常時の安定性も確保するために、利得偏差ΔGがある一定値αよりも大きい場合のみPI制御の係数を大きくしてシミュレーションを行った。例えば、利得偏差ΔGの絶対値がα=0.03dBより大きい時に比例係数の目標比例係数0にM=2を掛けた場合のEDF1の残存光の利得の変化を調べたところ、図10(a)に示すような結果が得られ、過渡的変化が図6(a)に比べて抑制されている。さらに、利得偏差ΔGの絶対値が0.3dBより大きいときにPI係数をさらに2倍のM=4としたときの残存光の利得の過渡的変化は図10(b)に示すような結果となり、利得偏差ΔGの絶対値の大きさに応じてPI係数を変えない場合に比べて、光入力パワーが増加したときの残存光の利得の過渡的変化が0.17dB、光入力パワーが減少したときの残存光の過渡的変化が0.25dBまで抑制され、かつ入力パワーが変化しない通常時の安定性をも確保できた。
When Δk becomes smaller than the absolute value of the predetermined range δ, the proportional circuit 14 outputs the calculated value kΔG to the adder circuit 17 (S14 in FIG. 9).
The above processing is continuously performed when the proportionality coefficient k needs to be adjusted (S15 in FIG. 9).
As described above, in this embodiment, in order to suppress the transient change and to ensure the stability at the normal time when the change of the input power is small, the PI control is performed only when the gain deviation ΔG is larger than a certain value α. The simulation was performed with a large coefficient. For example, when the absolute value of the gain deviation ΔG is larger than α = 0.03 dB, the change in the gain of the residual light in the EDF 1 when M = 2 is multiplied by the target proportional coefficient k 0 of the proportional coefficient is examined. The result as shown to a) is obtained and the transitional change is suppressed compared with Fig.6 (a). Further, when the absolute value of the gain deviation ΔG is larger than 0.3 dB, the transient change in the residual light gain when the PI coefficient is further doubled to M = 4 has a result as shown in FIG. Compared with the case where the PI coefficient is not changed according to the absolute value of the gain deviation ΔG, the transient change in the gain of the residual light when the optical input power is increased is 0.17 dB, and the optical input power is decreased. The transient change of the residual light at that time was suppressed to 0.25 dB, and the stability at the normal time when the input power did not change could be secured.

(第3の実施の形態)
図11は、図1に示す光増幅装置を使用した本発明の第3実施形態に係る光増幅方法におけるPI係数の調整を示すフローチャートを示している。
図11に示すフローチャートは、図1におけるPI係数調整回路16における比例回路14の比例係数kを調整するフローを示している。
まず、光増幅器3の光入力パワーPinに対応する入力側電圧値Vinが第1の対数変換回路9からPI係数調整回路16に入力され(図11のS31)。また、差動回路13が式(1)により算出した利得偏差ΔGは、PI係数調整回路16に入力される(図11のS31)。
続いて、PI係数調整回路16は、式(1)に基づいて目標比例係数0を計算するとともに(図11のS32)、利得偏差ΔGが負か否かを判断し(図11のS33)、ΔGが正の場合には比例係数kを目標比例係数0に一致させるか所定範囲内にする処理を行う一方(図11のS7〜S14)、ΔGが負の場合には目標比例係数0を初期のM(Mは正数)倍に設定し直した後に(図11のS34)、比例係数kを目標比例係数0に一致させるか所定値範囲内に設定する処理を行う(図11のS7〜S14)。
(Third embodiment)
FIG. 11 is a flowchart showing the adjustment of the PI coefficient in the optical amplification method according to the third embodiment of the present invention using the optical amplification device shown in FIG.
The flowchart shown in FIG. 11 shows a flow for adjusting the proportional coefficient k of the proportional circuit 14 in the PI coefficient adjustment circuit 16 in FIG.
First, the input-side voltage value Vin corresponding to the optical input power Pin of the optical amplifier 3 are entered from the first logarithmic converter 9 into PI coefficient adjusting circuit 16 (S31 in FIG. 11). Further, the gain deviation ΔG calculated by the differential circuit 13 using the equation (1) is input to the PI coefficient adjustment circuit 16 (S31 in FIG. 11).
Subsequently, the PI coefficient adjustment circuit 16 calculates the target proportionality coefficient k 0 based on the equation (1) (S32 in FIG. 11) and determines whether the gain deviation ΔG is negative (S33 in FIG. 11). When ΔG is positive, the proportional coefficient k is matched with the target proportional coefficient k 0 or within a predetermined range (S7 to S14 in FIG. 11), while when ΔG is negative, the target proportional coefficient k After resetting 0 to the initial M (M is a positive number) times (S34 in FIG. 11), the proportional coefficient k is matched with the target proportional coefficient k 0 or set within a predetermined value range (FIG. 11). 11 S7 to S14).

比例係数kを目標比例係数0に一致させる処理は次のように行われる。
即ち、図2に示した比例回路14の可変抵抗14cの抵抗値R2を読み(図11のS7)、これを固定抵抗14bの抵抗値R1で割って暫定的に比例係数k=R1/R2を演算する(図11のS8)。さらに、求めた比例係数kから目標比例係数0を引いた値Δkを求め(図11のS9)、Δkが所定範囲δの絶対値よりも大きいか否かを判定し(図11のS10、S12)、−δ<Δを満たさない場合にはPI係数調整回路16は比例回路14に対して可変抵抗14cの抵抗値R2を1ステップ増加させる動作を行わせる一方(図11のS10、S11)、Δ<+δを満たさない場合にはPI係数調整回路16は比例回路14に対して可変抵抗14cの抵抗値R2を1ステップ減少させる動作を行わせる(図11のS12、S13)。この動作は、Δkが所定範囲δの絶対値よりも小さくなるまで繰り返される。
Process of matching the proportionality factor k in the target proportional coefficient k 0 is performed as follows.
That is, the resistance value R2 of the variable resistor 14c of the proportional circuit 14 shown in FIG. 2 is read (S7 in FIG. 11), and this is divided by the resistance value R1 of the fixed resistor 14b to temporarily calculate the proportional coefficient k = R1 / R2. Calculation is performed (S8 in FIG. 11). Further, a value Δk obtained by subtracting the target proportionality coefficient k 0 from the obtained proportionality coefficient k is obtained (S9 in FIG. 11), and it is determined whether Δk is larger than the absolute value of the predetermined range δ (S10 in FIG. 11). S12), - δ <S10 of Δ one a non PI coefficient adjusting circuit 16 when satisfied k to perform an operation to increase in the resistance R2 a step variable resistor 14c relative to the proportional circuit 14 (FIG. 11, S11 ), When Δ k <+ δ is not satisfied, the PI coefficient adjustment circuit 16 causes the proportional circuit 14 to perform an operation of decreasing the resistance value R2 of the variable resistor 14c by one step (S12 and S13 in FIG. 11). This operation is repeated until Δk becomes smaller than the absolute value of the predetermined range δ.

Δkが所定範囲δの絶対値よりも小さくなった時点で、比例回路14は演算値ΔGを加算回路17に出力する(図11のS14)。
以上のような処理は、比例係数kの調整が必要な状態で連続して行われることになる(図11のS15)。
利得偏差ΔGが負の場合、即ち光入力パワーが所定条件で減少したときの残存光の利得の過渡的変化のみを抑制するために、利得偏差ΔGが負の場合には正の場合に比べてPI係数を3倍、4倍、5倍して残存光の利得をシミュレートしたところ、図12(a)、図12(b)、図12(c)に示すような結果が得られた。図12(a)〜(c)によれば、利得偏差ΔGの符号を考慮しない場合のシミュレーション結果を示す図7(a)に比べて光入力パワーが減少したときの残存光の利得の過渡的変化が抑制され、かつ光入力パワーの変化が小さい通常の安定性も確保することができた。
なお、上記の各実施形態に係る光増幅装置は、光伝送路に少なくとも1つ接続されることもある。
When Δk becomes smaller than the absolute value of the predetermined range δ, the proportional circuit 14 outputs the calculated value k ΔG to the adder circuit 17 (S14 in FIG. 11).
The above processing is continuously performed in a state where the proportional coefficient k needs to be adjusted (S15 in FIG. 11).
When the gain deviation ΔG is negative, that is, in order to suppress only a transient change in the gain of the residual light when the optical input power is reduced under a predetermined condition, the gain deviation ΔG is negative compared to the positive case. When the PI coefficient was increased by 3 times, 4 times, and 5 times to simulate the gain of the residual light, the results shown in FIGS. 12 (a), 12 (b), and 12 (c) were obtained. 12 (a) to 12 (c), the transient of the gain of the residual light when the optical input power is reduced as compared with FIG. 7 (a) showing the simulation result when the sign of the gain deviation ΔG is not considered. The normal stability in which the change was suppressed and the change in the optical input power was small could be secured.
Note that at least one optical amplifying device according to each of the above embodiments may be connected to the optical transmission line.

この発明は、これら実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々の変形実施が可能である。例えば、この発明では、AGC制御回路がアナログ回路による実施の形態を説明しているが、これに限らずAGC制御回路がデジタル回路であってもよい。 The present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in the present invention, the embodiment in which the AGC control circuit is an analog circuit has been described. However, the present invention is not limited to this, and the AGC control circuit may be a digital circuit.

図1は、本発明の実施形態に係る光増幅装置を示す構成図である。FIG. 1 is a configuration diagram illustrating an optical amplifying device according to an embodiment of the present invention. 図2は、本発明の実施形態に係る光増幅装置のAGC制御回路を構成する比例回路の回路図である。FIG. 2 is a circuit diagram of a proportional circuit constituting the AGC control circuit of the optical amplifying device according to the embodiment of the present invention. 図3は、本発明の実施形態に係る光増幅装置のAGC制御回路を構成する比例回路の比例係数と光入力パワーの関係を示す図である。FIG. 3 is a diagram showing the relationship between the proportional coefficient of the proportional circuit constituting the AGC control circuit of the optical amplifying device according to the embodiment of the present invention and the optical input power. 図4は、本発明の第1実施形態に係る比例積分係数の制御を示すフローチャートである。FIG. 4 is a flowchart showing control of the proportional integration coefficient according to the first embodiment of the present invention. 図5は、本発明の実施形態に係る光増幅装置での光入力パワーの変化を示す波形図である。FIG. 5 is a waveform diagram showing a change in optical input power in the optical amplifying apparatus according to the embodiment of the present invention. 図6は、従来の光増幅装置において光入力パワーが変化した場合の残存光の利得変動を示す波形図である。FIG. 6 is a waveform diagram showing the gain fluctuation of the residual light when the optical input power changes in the conventional optical amplifying apparatus. 図7は、別の従来の光増幅装置において光入力パワーが変化した場合の残存光の利得変動を示す波形図である。FIG. 7 is a waveform diagram showing the gain fluctuation of the residual light when the optical input power changes in another conventional optical amplifying device. 図8は、本発明の第1実施形態に係る光増幅装置において光入力パワーが変化した場合の残存光の利得変動を示す波形図である。FIG. 8 is a waveform diagram showing the gain fluctuation of the residual light when the optical input power changes in the optical amplifying device according to the first embodiment of the present invention. 図9は、本発明の第2実施形態に係る光増幅方法における比例積分係数の制御を示すフローチャートである。FIG. 9 is a flowchart showing control of the proportional integration coefficient in the optical amplification method according to the second embodiment of the present invention. 図10は、本発明の第2実施形態に係る光増幅方法において光入力パワーが変化した場合の残存光の利得変動を示す波形図である。FIG. 10 is a waveform diagram showing the gain fluctuation of the residual light when the optical input power changes in the optical amplification method according to the second embodiment of the present invention. 図11は、本発明の第3実施形態に係る比例積分係数の制御を示すフローチャートである。FIG. 11 is a flowchart showing control of the proportional integration coefficient according to the third embodiment of the present invention. 図12は、本発明の第3実施形態に係る光増幅方法において光入力パワーが変化した場合の残存光の利得変動を示す波形図である。FIG. 12 is a waveform diagram showing gain variation of residual light when the optical input power changes in the optical amplification method according to the third embodiment of the present invention. 図13は、第1の従来の光増幅装置を示す構成図である。FIG. 13 is a block diagram showing a first conventional optical amplifying device. 図14は、図13に示した光増幅装置における光入力パワー、光出力パワー、1波当たりの光出力パワーの波形図である。FIG. 14 is a waveform diagram of optical input power, optical output power, and optical output power per wave in the optical amplifying device shown in FIG. 図15は、第2の従来の光増幅装置を示す構成図である。FIG. 15 is a block diagram showing a second conventional optical amplifying device. 図16は、図15に示す光増幅装置のAGC制御回路を構成する比例回路の比例係数と光入力パワーの関係を示す図である。FIG. 16 is a diagram showing the relationship between the proportional coefficient of the proportional circuit constituting the AGC control circuit of the optical amplifying device shown in FIG. 15 and the optical input power. 図17は、図15に示す光増幅装置において光入力パワーが変化した場合の残留波長出力の変化を示す波形図である。FIG. 17 is a waveform diagram showing changes in residual wavelength output when the optical input power changes in the optical amplifying apparatus shown in FIG.

EDF
2、5、7 光カプラ
増幅器
6、8 フォトダイオード
励起レーザダイオード
9、10 対数変換回路
11 AGC制御回路
12 目標利得設定回路
13 差動回路
14 比例回路
15 積分回路
16 PI係数調整回路
17 加算回路
18 LD電流制御回路
1 EDF
2, 5, 7 Optical coupler 3 Amplifier 6, 8 Photodiode 4 Excitation laser diodes 9, 10 Logarithmic conversion circuit 11 AGC control circuit 12 Target gain setting circuit 13 Differential circuit 14 Proportional circuit 15 Integration circuit 16 PI coefficient adjustment circuit 17 Adder circuit 18 LD current control circuit

Claims (8)

入力された光信号を励起光源からの励起光に基づいて増幅して出力する光増幅器と、
前記光増幅器に入力される入力光信号および前記光増幅器から出力される出力光信号のそれぞれの光パワーを検出する検出手段と、
前記検出手段によって検出された入力光信号および出力光信号の光パワーから前記光増幅器の利得を算出する算出手段と、
前記算出手段によって算出された前記利得が、利得一定制御のための固定値としての目標利得と等しくなるように前記励起光源から出力される前記励起光の光パワーをフィードバック制御する制御手段と、を有し、
前記制御手段は、前記入力光信号の光パワーの過渡的な減少伴って、前記算出手段によって算出された前記利得が前記目標利得よりも大きくなった場合は、前記フィードバック制御の比例係数を前記利得と前記目標利得が略等しくなるまでの間増加させることを特徴とする光増幅装置。
An optical amplifier that amplifies and outputs an input optical signal based on pumping light from a pumping light source; and
Detecting means for detecting respective optical powers of an input optical signal input to the optical amplifier and an output optical signal output from the optical amplifier;
Calculating means for calculating the gain of the optical amplifier from the optical power of the input optical signal and the output optical signal detected by the detecting means;
Control means for feedback-controlling the optical power of the pumping light output from the pumping light source so that the gain calculated by the calculating means is equal to a target gain as a fixed value for constant gain control; Have
It said control means, along with the transient decrease of the optical power of the input optical signal, when the gain calculated by the calculating means is larger than the target gain is a proportional coefficient of the feedback control An optical amplifying device characterized in that the gain is increased until the target gain becomes substantially equal.
前記比例係数は、前記目標利得から前記利得を減算することで得られる利得偏差が負のときに増加されることを特徴とする請求項1に記載の光増幅装置。The optical amplification apparatus according to claim 1, wherein the proportionality coefficient is increased when a gain deviation obtained by subtracting the gain from the target gain is negative. 前記制御手段は、前記フィードバック制御の前記比例係数を調整するために、フィードバックループ中に設けられた定数倍回路を有し、当該定数倍回路の定数値を調整することにより、前記比例係数を増加させることを特徴とする請求項1または2に記載の光増幅装置。The control means includes a constant multiplier circuit provided in a feedback loop to adjust the proportional coefficient of the feedback control, and increases the proportional coefficient by adjusting a constant value of the constant multiplier circuit. The optical amplifying device according to claim 1 or 2, wherein 前記定数倍回路の前記定数値は、前記検出手段によって検出された前記入力光信号の光パワーに比例して増減する値に設定されることを特徴とする請求項3に記載の光増幅装置。4. The optical amplifying apparatus according to claim 3, wherein the constant value of the constant multiplying circuit is set to a value that increases or decreases in proportion to the optical power of the input optical signal detected by the detecting means. 前記制御手段は、前記目標利得と前記利得の差分値を積分する積分回路と、前記積分回路の出力値と前記定数倍回路の出力値とを加算する加算回路と、を有し、The control means includes an integration circuit that integrates the target gain and a difference value between the gains, and an addition circuit that adds the output value of the integration circuit and the output value of the constant multiplication circuit,
前記加算回路の出力値に応じて前記励起光源が制御されるとともに、前記入力光信号の光パワーの過渡的な減少に伴って、前記算出手段によって算出された前記利得が前記目標利得よりも大きくなった場合には、前記積分回路の積分定数を調整することにより積分係数を前記利得と前記目標利得が略等しくなるまでの間増加させることを特徴とする請求項3または4に記載の光増幅装置。The pumping light source is controlled according to the output value of the adding circuit, and the gain calculated by the calculating means is larger than the target gain with a transient decrease in the optical power of the input optical signal. 5. The optical amplification according to claim 3, wherein when the gain is reached, the integration coefficient is increased until the gain and the target gain are substantially equal by adjusting an integration constant of the integration circuit. apparatus.
前記制御手段は、前記目標利得と前記利得との差分値が所定の値よりも大きくなった場合には、前記比例係数をさらに増加させることを特徴とする請求項1乃至5のいずれか1項に記載の光増幅装置。6. The control unit according to claim 1, wherein the control means further increases the proportionality coefficient when a difference value between the target gain and the gain becomes larger than a predetermined value. The optical amplifying device described in 1. 前記制御手段は、前記目標利得と前記利得との利得差が0.03dBより大きいときは前記比例係数を一時的に2倍にし、前記目標利得と前記利得との利得差が0.3dBより大きいときは前記比例係数を一時的に4倍にすることを特徴とする請求項6に記載の光増幅装置。The control means temporarily doubles the proportionality factor when the gain difference between the target gain and the gain is greater than 0.03 dB, and the gain difference between the target gain and the gain is greater than 0.3 dB. 7. The optical amplifying apparatus according to claim 6, wherein the proportionality coefficient is temporarily quadrupled. 入力された光信号を励起光源からの励起光に基づいて増幅して出力する光増幅器を有する光増幅装置の光増幅方法において、In an optical amplification method of an optical amplification device having an optical amplifier that amplifies an input optical signal based on excitation light from an excitation light source and outputs the amplified optical signal,
前記光増幅器に入力される入力光信号および前記光増幅器から出力される出力光信号のそれぞれの光パワーを検出する検出工程と、A detection step of detecting respective optical powers of an input optical signal input to the optical amplifier and an output optical signal output from the optical amplifier;
前記検出工程によって検出された入力光信号および出力光信号の光パワーから前記光増幅器の利得を算出する算出工程と、A calculation step of calculating the gain of the optical amplifier from the optical power of the input optical signal and the output optical signal detected by the detection step;
前記算出工程によって算出された前記利得が、利得一定制御のための固定値としての目標利得と等しくなるように前記励起光源から出力される前記励起光の光パワーをフィードバック制御する制御工程と、を有し、A control step of feedback-controlling the optical power of the pumping light output from the pumping light source so that the gain calculated by the calculating step is equal to a target gain as a fixed value for constant gain control; Have
前記制御工程は、前記入力光信号の光パワーの過渡的な減少に伴って、前記算出工程によって算出された前記利得が前記目標利得よりも大きくなった場合には、前記フィードバック制御の比例係数を前記利得と前記目標利得が略等しくなるまでの間増加させることを特徴とする光増幅方法。In the control step, when the gain calculated in the calculation step becomes larger than the target gain with a transient decrease in the optical power of the input optical signal, the proportional coefficient of the feedback control is set. An optical amplification method, wherein the gain is increased until the target gain becomes substantially equal.
JP2005379323A 2005-12-28 2005-12-28 Optical amplification method and optical amplification device Expired - Fee Related JP4615438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005379323A JP4615438B2 (en) 2005-12-28 2005-12-28 Optical amplification method and optical amplification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005379323A JP4615438B2 (en) 2005-12-28 2005-12-28 Optical amplification method and optical amplification device

Publications (2)

Publication Number Publication Date
JP2007180409A JP2007180409A (en) 2007-07-12
JP4615438B2 true JP4615438B2 (en) 2011-01-19

Family

ID=38305275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005379323A Expired - Fee Related JP4615438B2 (en) 2005-12-28 2005-12-28 Optical amplification method and optical amplification device

Country Status (1)

Country Link
JP (1) JP4615438B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999109B2 (en) * 2008-03-28 2012-08-15 古河電気工業株式会社 Optical device control method and optical device control apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040719A1 (en) * 2002-11-01 2004-05-13 Fujitsu Limited Controlling device of optical amplifier and controlling method
JP2004266251A (en) * 2003-02-12 2004-09-24 Furukawa Electric Co Ltd:The Method and apparatus for optical amplification, and optically amplifying relay system using the apparatus
JP2005277061A (en) * 2004-03-24 2005-10-06 Furukawa Electric Co Ltd:The Gain control method for light amplifying device and light amplifying device using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465892A (en) * 1987-09-07 1989-03-13 Mitsubishi Electric Corp Laser output controlling apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004040719A1 (en) * 2002-11-01 2004-05-13 Fujitsu Limited Controlling device of optical amplifier and controlling method
JP2004266251A (en) * 2003-02-12 2004-09-24 Furukawa Electric Co Ltd:The Method and apparatus for optical amplification, and optically amplifying relay system using the apparatus
JP2005277061A (en) * 2004-03-24 2005-10-06 Furukawa Electric Co Ltd:The Gain control method for light amplifying device and light amplifying device using same

Also Published As

Publication number Publication date
JP2007180409A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
EP1283567B1 (en) Automatic gain control device of optical fiber amplifier
CN101479896B (en) Variable Gain Optical Amplifier
US7511883B2 (en) Optical amplifying method, optical amplifying apparatus, and optical amplified transmission system using the apparatus
US6377394B1 (en) Optical amplifier gain control
JP2007081405A (en) Optical amplification device with channel output flattening function
US20120050845A1 (en) Reducing transients in an optical amplifier
CN1965510A (en) Multistage optical amplifier and method to compensate for amplified spontaneous emission
JP2003531498A (en) How to control the performance of an optical amplifier
JP4603361B2 (en) Optical amplifier control device
JP4615438B2 (en) Optical amplification method and optical amplification device
EP2018689B1 (en) Variable gain optical amplifiers
JP4101155B2 (en) Optical amplifier
JP3628206B2 (en) Fiber optic amplifier
KR100567317B1 (en) Optical fiber amplification method and apparatus for controlling gain
JP6012579B2 (en) Optical amplifier
JP4580404B2 (en) Optical amplifier
JP2014236208A (en) Control method of optical amplifier and optical amplifier
JP4773703B2 (en) Optical amplifier
JP4774846B2 (en) Optical amplification device and control method thereof
WO2005117215A1 (en) Optical amplifier and its gain controlling method
JP2004186217A (en) Optical amplifier
JP2009188110A (en) Optical amplifying device
JP2006121110A (en) Optical amplification method and its equipment
JP2010258367A (en) Output power control method for optical amplifier and optical amplifier device
JP2012009528A (en) Optical fiber amplifier and charging device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees