[go: up one dir, main page]

JP4602178B2 - Cleaning method - Google Patents

Cleaning method Download PDF

Info

Publication number
JP4602178B2
JP4602178B2 JP2005197318A JP2005197318A JP4602178B2 JP 4602178 B2 JP4602178 B2 JP 4602178B2 JP 2005197318 A JP2005197318 A JP 2005197318A JP 2005197318 A JP2005197318 A JP 2005197318A JP 4602178 B2 JP4602178 B2 JP 4602178B2
Authority
JP
Japan
Prior art keywords
cleaning
chlorine
agent
cleaning liquid
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005197318A
Other languages
Japanese (ja)
Other versions
JP2006043695A (en
Inventor
勝彦 朝守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005197318A priority Critical patent/JP4602178B2/en
Publication of JP2006043695A publication Critical patent/JP2006043695A/en
Application granted granted Critical
Publication of JP4602178B2 publication Critical patent/JP4602178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • External Artificial Organs (AREA)

Description

本発明は、医療機器、各種工業設備等の洗浄方法に関し、特に人工透析装置の洗浄方法に関する。   The present invention relates to a cleaning method for medical equipment, various industrial facilities, and the like, and more particularly to a cleaning method for an artificial dialysis apparatus.

医薬品や食品を製造するための設備や医療機器を洗浄する場合に、次亜塩素酸ナトリウム水溶液等の塩素系消毒洗浄剤による洗浄と酸性水溶液による酸洗浄とを組み合わせて行うことが一般的に行われている。また水処理等のために限外濾過膜や精密濾過膜が介装された配管とこれらの膜の洗浄は、酸性水溶液による酸洗浄とアルカリ性水溶液によるアルカリ洗浄を組み合わせて行われている。さらに人工透析装置等の医療機器を消毒洗浄する場合、現在最も多く使われている洗浄剤として次亜塩素酸ナトリウムや酢酸が知られている。   When cleaning equipment and medical equipment for producing pharmaceuticals and foods, it is common practice to combine cleaning with a chlorine-based disinfectant cleaner such as sodium hypochlorite aqueous solution and acid cleaning with an acidic aqueous solution. It has been broken. In addition, pipes provided with an ultrafiltration membrane or a microfiltration membrane for water treatment and the cleaning of these membranes are performed by combining acid cleaning with an acidic aqueous solution and alkali cleaning with an alkaline aqueous solution. Further, when disinfecting and cleaning medical equipment such as an artificial dialysis machine, sodium hypochlorite and acetic acid are known as the most frequently used cleaning agents.

なかでも、次亜塩素酸ナトリウムに代表される塩素系消毒洗浄剤は、その強い殺菌力と共にたんぱく質や脂質等の有機物汚れを除去する力を有することから、人工透析装置の洗浄等、幅広い用途に使用されている。   In particular, chlorinated disinfectants such as sodium hypochlorite have the ability to remove organic contaminants such as proteins and lipids as well as their strong bactericidal power, so they can be used in a wide range of applications such as washing of artificial dialysis machines. in use.

塩素系消毒洗浄剤を用いた洗浄排水は、環境への影響から、活性な塩素を極力低減して廃棄することが望まれる。こうした背景から、特許文献1には、被消毒器具を次亜塩素酸ナトリウム水溶液で消毒した後、該水溶液に還元剤を添加して次亜塩素酸ナトリウムを還元剤で分解する消毒方法が開示されている。また、特許文献2には、水溶液がアルカリ性となる還元剤を塩素系漂白除菌剤の無害化処理剤として用いることが開示されている。一方、酢酸等の有機酸を用いた酸洗浄はスケール除去の目的で行われるが、その排水はBOD値が高く、環境への影響が懸念されるだけでなく、コンクリート建造物を溶解破壊することで重大な事故を引き起こす危険性を有している。
特開昭64−11552号公報 特開平10−235335号公報
Cleaning wastewater using a chlorine-based disinfectant cleaner is desired to be disposed of with reduced active chlorine as much as possible due to environmental impact. From such a background, Patent Document 1 discloses a disinfection method in which a disinfectant is disinfected with an aqueous sodium hypochlorite solution, and then a reducing agent is added to the aqueous solution to decompose sodium hypochlorite with the reducing agent. ing. Patent Document 2 discloses that a reducing agent that makes an aqueous solution alkaline is used as a detoxifying agent for chlorine bleach disinfectant. On the other hand, acid cleaning using an organic acid such as acetic acid is performed for the purpose of scale removal, but the wastewater has a high BOD value and is not only concerned about the impact on the environment, but also dissolves and destroys concrete structures. There is a risk of causing serious accidents.
Japanese Patent Laid-Open No. 64-11552 Japanese Patent Laid-Open No. 10-235335

各種医療器具や工業設備等の中で、人工透析装置の洗浄においては、除菌性の他にスケール除去性、蛋白質除去性、防錆性にも優れること、更には、これらを満たした上で、十分な排水処理を行うことが望まれるが、上記特許文献1、2の技術はこうした要望に十分に応えるものとは言い難い。   Among various medical equipment and industrial equipment, in the cleaning of artificial dialysis machines, in addition to sterilization, it is excellent in scale removability, protein removability, and rust prevention, and after satisfying these requirements Although it is desired to perform sufficient wastewater treatment, it is difficult to say that the techniques of Patent Documents 1 and 2 sufficiently meet such demands.

従って本発明の課題は、高い洗浄性を維持したまま、次亜塩素酸塩等の塩素系消毒洗浄剤を用いた洗浄液や酢酸等の有機酸を用いた酸性洗浄液の洗浄排水が環境へ与える影響を低減できる洗浄方法を提供することである。   Therefore, the problem of the present invention is that the influence of the cleaning wastewater of the cleaning liquid using a chlorine-based disinfectant cleaning agent such as hypochlorite and the acidic cleaning liquid using an organic acid such as acetic acid on the environment while maintaining high cleaning performance. It is providing the washing | cleaning method which can reduce.

本発明は、下記の工程1を行った後に工程2を行う被洗浄物の洗浄方法に関する。
工程1:塩素系消毒洗浄剤を含有する洗浄液1による被洗浄物の消毒洗浄
工程2:該洗浄液1に還元剤を添加することによりpHを4以下に調整した洗浄液2による被洗浄物の酸洗浄
The present invention relates to a method for cleaning an object to be cleaned, in which step 2 is performed after performing step 1 below.
Step 1: Disinfecting and cleaning the object to be cleaned with the cleaning liquid 1 containing a chlorine-based disinfecting cleaning agent Step 2: Acid cleaning of the object to be cleaned with the cleaning liquid 2 whose pH is adjusted to 4 or less by adding a reducing agent to the cleaning liquid 1

また、本発明は、上記本発明の洗浄方法に用いられる塩素系消毒洗浄剤と還元剤とから構成される洗浄剤キットに関する。   The present invention also relates to a cleaning agent kit comprising a chlorine-based disinfecting cleaning agent and a reducing agent used in the cleaning method of the present invention.

本発明は、人工透析装置等の医療機器や各種工業設備等に対して、高い洗浄性を示し、且つ排水の環境への負荷を低減できる洗浄方法を提供する。本発明は、塩素系消毒洗浄剤を含有する洗浄液1による被洗浄物の消毒洗浄を行った後、該洗浄液1に還元剤を添加することによりpH4以下に調整した洗浄液2による被洗浄物の酸洗浄を行う。この方法は、病院等で用いられている人工透析装置の洗浄方法として効果的に適用できる。   The present invention provides a cleaning method that exhibits high detergency for medical devices such as an artificial dialysis apparatus, various industrial facilities, and the like, and that can reduce the environmental load of drainage. In the present invention, after the object to be cleaned is sterilized and cleaned with the cleaning liquid 1 containing a chlorine-based disinfecting cleaning agent, the acid of the object to be cleaned with the cleaning liquid 2 adjusted to pH 4 or less by adding a reducing agent to the cleaning liquid 1. Wash. This method can be effectively applied as a cleaning method for an artificial dialysis apparatus used in hospitals and the like.

本発明の洗浄方法は、従来、人工透析装置等の医療機器や各種工業設備の酸洗浄に用いられていた酢酸等の有機酸を使用しなくても、十分な洗浄が可能で、且つ環境への活性塩素の排出問題と酸洗浄液の排水の問題を同時に解決することができる。   The cleaning method of the present invention can be sufficiently cleaned without using an organic acid such as acetic acid, which has been conventionally used for acid cleaning of medical equipment such as an artificial dialysis machine and various industrial facilities, and to the environment. The active chlorine discharge problem and the acid cleaning liquid drainage problem can be solved simultaneously.

<洗浄液1>
洗浄液1は、塩素系消毒洗浄剤を含有する。塩素系消毒洗浄剤としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム等の次亜塩素酸アルカリ土類金属塩、塩素化イソシアヌル酸ナトリウム、塩素化イソシアヌル酸カリウム等の塩素化イソシアヌル酸アルカリ金属塩、塩素化イソシアヌル酸カルシウム等の塩素化イソシアヌル酸アルカリ土類金属塩が挙げられる。これらの中でも次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩が好ましく、次亜塩素酸ナトリウムがより好ましい。一般に、次亜塩素酸ナトリウムは、水酸化ナトリウム水溶液に塩素ガスを吹き込んで製造され、水溶液の形態で用いられるが、その水溶液の安定化のため水酸化ナトリウムが存在している。こうした水酸化ナトリウム等のアルカリ成分は、工程2での還元剤によるpHの低下に影響を及ぼさない範囲であれば、洗浄液1に残存したまま使用しても問題はないため、本発明では、通常、工程2で還元剤が添加される洗浄液1にはアルカリ成分が存在する。
<Cleaning liquid 1>
The cleaning liquid 1 contains a chlorine-based disinfectant cleaning agent. Chlorine disinfectants include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth metal hypochlorites such as calcium hypochlorite, chlorinated isocyanuric acid Examples include chlorinated isocyanuric acid alkali metal salts such as sodium and potassium chlorinated isocyanurate, and chlorinated isocyanuric acid alkaline earth metal salts such as calcium chlorinated isocyanurate. Of these, alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite are preferred, and sodium hypochlorite is more preferred. In general, sodium hypochlorite is produced by blowing chlorine gas into an aqueous sodium hydroxide solution and used in the form of an aqueous solution. Sodium hydroxide is present for stabilization of the aqueous solution. In the present invention, such an alkali component such as sodium hydroxide can be used while remaining in the cleaning liquid 1 as long as it does not affect the decrease in pH due to the reducing agent in step 2. The alkaline component is present in the cleaning liquid 1 to which the reducing agent is added in Step 2.

また、洗浄液1は、有効塩素濃度が50〜5000ppm、更に200〜2500ppmであることが、消毒洗浄効果の点で好ましく、上記塩素系消毒洗浄剤は、この濃度を満たすように配合することが好ましい。なお、有効塩素濃度は、工程1の開始から終了までの何れかで上記濃度であれば良いが、少なくとも工程1の開始時の濃度(初期濃度)が上記範囲であることが好ましい。   In addition, the cleaning liquid 1 preferably has an effective chlorine concentration of 50 to 5000 ppm, more preferably 200 to 2500 ppm, from the viewpoint of the disinfecting cleaning effect, and the chlorine-based disinfecting cleaning agent is preferably blended to satisfy this concentration. . The effective chlorine concentration may be the above concentration from the start to the end of step 1, but at least the concentration at the start of step 1 (initial concentration) is preferably in the above range.

また、洗浄液1は、pHが7以上、更に9以上で用いることが、蛋白質除去性の点で好ましい。pHの調整は、適当なアルカリ剤を添加しその含有量を調整することにより行うことができる。   Moreover, it is preferable from the point of protein removability that the washing | cleaning liquid 1 uses pH 7 or more, and also 9 or more. The pH can be adjusted by adding an appropriate alkaline agent and adjusting its content.

<洗浄液2>
洗浄液2は、上記工程1で用いた洗浄液1、すなわち、工程1を終えた洗浄液1に還元剤を添加することにより、pHを4以下、好ましくは3以下に調整したものである。この範囲のpHの洗浄液2を用いることで、酸洗浄の効果が得られる。
<Cleaning liquid 2>
The cleaning liquid 2 has a pH adjusted to 4 or less, preferably 3 or less, by adding a reducing agent to the cleaning liquid 1 used in Step 1 above, that is, the cleaning liquid 1 that has completed Step 1. By using the cleaning liquid 2 having a pH in this range, an acid cleaning effect can be obtained.

還元剤としては、チオ硫酸塩、重亜硫酸塩、次亜硫酸塩及びアスコルビン酸塩から選ばれる1種以上が挙げられる。チオ硫酸塩がより好ましい。塩はナトリウム、カリウム等のアルカリ金属塩が好ましい。工程2で添加される還元剤は、洗浄液1中の有効塩素に対して、20〜200モル%、更に25〜150モル%、特に30〜100モル%の割合で用いられることが、得られる洗浄液2のpHが低下しやすく、また優れた酸洗浄効果が得られるという観点から好ましい。25〜30モル%もより好ましい。   Examples of the reducing agent include one or more selected from thiosulfate, bisulfite, hyposulfite, and ascorbate. More preferred is thiosulfate. The salt is preferably an alkali metal salt such as sodium or potassium. The reducing agent added in step 2 is 20 to 200 mol%, more preferably 25 to 150 mol%, particularly 30 to 100 mol% of the effective chlorine in the cleaning solution 1 and the resulting cleaning solution 2 is preferable from the viewpoint that the pH of 2 is easily lowered and an excellent acid cleaning effect is obtained. 25-30 mol% is also more preferable.

例えば還元剤がチオ硫酸ナトリウムの場合、次亜塩素酸ナトリウム水溶液に添加すると、下記反応式(1)と反応式(2)の反応によって塩素が不活化される。洗浄液1には、前述したようにアルカリ成分(水酸化ナトリウム等)が存在しているので、反応式(1)が進行する。次亜塩素酸ナトリウム水溶液には平衡で微量の塩素が存在するが、反応式(1)でpHが低下すると塩素が増加し、反応式(2)が進行する。適当にチオ硫酸ナトリウムの添加量を制御すると、反応式(2)で発生する酸によってpHの低下が起こるため、これを酸洗浄に用いることができる。すなわち、本発明では、塩素の不活化と酸洗浄を同時に実現できる。
Na2S2O3+4NaClO+2NaOH → 2Na2SO4+4NaCl+H2O 反応式(1)
Na2S2O3+4Cl2+5H2O → 2NaCl+2H2SO4+6HCl 反応式(2)
For example, when the reducing agent is sodium thiosulfate, when it is added to an aqueous sodium hypochlorite solution, chlorine is inactivated by the reaction of the following reaction formula (1) and reaction formula (2). As described above, since the alkaline component (such as sodium hydroxide) is present in the cleaning liquid 1, the reaction formula (1) proceeds. A trace amount of chlorine is present in equilibrium in the aqueous sodium hypochlorite solution, but when pH decreases in reaction formula (1), chlorine increases and reaction formula (2) proceeds. When the amount of sodium thiosulfate added is appropriately controlled, the pH is lowered by the acid generated in the reaction formula (2), and this can be used for acid cleaning. That is, in the present invention, chlorine inactivation and acid cleaning can be realized simultaneously.
Na 2 S 2 O 3 + 4NaClO + 2NaOH → 2Na 2 SO 4 + 4NaCl + H 2 O Reaction formula (1)
Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O → 2NaCl + 2H 2 SO 4 + 6HCl reaction formula (2)

<その他の成分>
上記洗浄液1及び洗浄液2は、界面活性剤、キレート剤及び防錆剤を含有することができる。これらの成分は、予め各洗浄液に添加してもよいし、各工程の途中において添加してもよい。
<Other ingredients>
The cleaning liquid 1 and the cleaning liquid 2 can contain a surfactant, a chelating agent, and a rust inhibitor. These components may be added to each cleaning solution in advance, or may be added during each step.

界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルフェニルエーテル硫酸塩、アルキルジフェニルエーテルジスルフォン酸塩、アルキルスルフォン酸塩、ポリオキシエチレンアルキルエーテル酢酸塩の陰イオン界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルグリセリルエーテル、アルキルグリセリルエーテル、アルキルポリグリコシド、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンソルビタン脂肪酸エステル、テトラ脂肪酸ポリオキシエチレンソルビット、アルキルアミンオキシド等の非イオン界面活性剤;アルキルジメチルアミノ酢酸ベタイン、アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、脂肪酸アミドプロピルベタイン、アルキルヒドロキシスルホベタイン等の両性界面活性剤が挙げられる。界面活性剤としては、ポリオキシエチレンアルキルエーテル硫酸塩、アルキルフェニルエーテル硫酸塩、アルキルジフェニルエーテルジスルフォン酸塩が好ましい。なお、被洗浄物が界面活性剤を吸着するフィルターを含む場合、界面活性剤は使用しない方が好ましい。   As the surfactant, anionic surfactants of alkyl sulfate, polyoxyethylene alkyl ether sulfate, alkylphenyl ether sulfate, alkyl diphenyl ether disulfonate, alkyl sulfonate, polyoxyethylene alkyl ether acetate; Non-polyoxyethylene alkyl ether, polyoxyethylene alkyl glyceryl ether, alkyl glyceryl ether, alkyl polyglycoside, polyoxyethylene polyoxypropylene block copolymer, polyoxyethylene sorbitan fatty acid ester, tetra fatty acid polyoxyethylene sorbite, alkylamine oxide, etc. Ionic surfactants; alkyldimethylaminoacetic acid betaines, alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium Betaines, fatty acid amidopropyl betaine, and amphoteric surfactants such as alkyl hydroxy sulfobetaine. As the surfactant, polyoxyethylene alkyl ether sulfate, alkylphenyl ether sulfate, and alkyl diphenyl ether disulfonate are preferable. When the object to be cleaned includes a filter that adsorbs the surfactant, it is preferable not to use the surfactant.

界面活性剤を各工程の途中で添加する場合、各工程のできるだけ早い段階で添加する方が高い洗浄効果が得られる。界面活性剤の含有量は、洗浄液1中又は洗浄液2中では、1〜1000ppm、更に10〜1000ppm、特に50〜500ppmが好ましい。   When the surfactant is added in the middle of each step, a higher cleaning effect can be obtained by adding it at the earliest stage of each step. The surfactant content in the cleaning liquid 1 or in the cleaning liquid 2 is preferably 1 to 1000 ppm, more preferably 10 to 1000 ppm, and particularly preferably 50 to 500 ppm.

キレート剤としては、縮合リン酸塩(ピロリン酸塩、トリポリリン酸塩、テトラポリリン酸塩、ヘキサポリリン酸塩)、ポリアクリル酸塩、アクリル酸塩−マレイン酸塩共重合体、有機フォスホン酸塩(アミノトリ(メチレンフォスホン酸)塩、1−ヒドロキシエチリデン1,1−ジフォスホン酸塩、エチレンジアミンテトラ(メチレンフォスホン酸)塩、ジエチレントリアミンペンタ(メチレンフォスホン酸)塩、フォスホノブタントリカルボン酸塩)等が挙げられる。キレート剤としては、縮合リン酸塩、有機フォスホン酸塩が好ましい。また、キレート剤の含有量は、洗浄液1中又は洗浄液2中では、1〜1000ppm、更に10〜500ppm、特に20〜200ppmが好ましい。   Chelating agents include condensed phosphates (pyrophosphates, tripolyphosphates, tetrapolyphosphates, hexapolyphosphates), polyacrylates, acrylate-maleate copolymers, organic phosphonates ( Aminotri (methylenephosphonic acid) salt, 1-hydroxyethylidene 1,1-diphosphonate, ethylenediaminetetra (methylenephosphonic acid) salt, diethylenetriaminepenta (methylenephosphonic acid) salt, phosphonobutanetricarboxylate), etc. Can be mentioned. As the chelating agent, condensed phosphates and organic phosphonates are preferable. Further, the content of the chelating agent is preferably 1 to 1000 ppm, more preferably 10 to 500 ppm, and particularly preferably 20 to 200 ppm in the cleaning liquid 1 or the cleaning liquid 2.

防錆剤(キレート剤として機能するものもある)としては、珪酸塩(オルソ珪酸塩、メタ珪酸塩、1号珪酸塩など)、リン酸塩、硝酸塩、上記有機フォスホン酸塩、シュウ酸塩、ホウ酸塩等が挙げられる。防錆剤としては、珪酸塩や、上記有機フォスホン酸塩が好ましい。また、防錆剤の含有量は、洗浄液1中又は洗浄液2中では、0.001〜200ppm、更に0.01〜50ppm、特に0.1〜20ppmが好ましい。   Antirust agents (some of which function as chelating agents) include silicates (orthosilicates, metasilicates, No. 1 silicates), phosphates, nitrates, the above organic phosphonates, oxalates, Examples thereof include borates. As a rust preventive agent, silicate and the said organic phosphonate are preferable. Further, the content of the rust inhibitor is preferably 0.001 to 200 ppm, more preferably 0.01 to 50 ppm, and particularly preferably 0.1 to 20 ppm in the cleaning liquid 1 or the cleaning liquid 2.

<洗浄方法>
工程1及び工程2:
本発明では、塩素系消毒洗浄剤を含有する上記洗浄液1による被洗浄物の消毒洗浄(工程1)を行った後に、該洗浄液1、すなわち、工程1を終えた洗浄液1に還元剤を添加することによりpHを4以下に調整した洗浄液2により被洗浄物の酸洗浄(工程2)を行う。何れの工程においても、洗浄液の温度は、15〜95℃とすることができる。なかでも、工程1は15〜60℃が好ましく、工程2は30〜60℃が好ましい。洗浄液と被洗浄物は充分に接触させることが重要で、浸漬する方法の他、ライン洗浄等の場合、通液時の流速を調整する方法や通液後の滞留時間を調整する方法が利用できる。被洗浄物が送液ライン等を含む閉鎖系の場合には、適当な流速(例えば0.1〜50リットル/分)で循環洗浄する方法が好ましい。またエアーバブリングや超音波を併用することもできる。
<Washing method>
Step 1 and Step 2:
In the present invention, after the object to be cleaned is sterilized and cleaned with the cleaning liquid 1 containing a chlorine-based disinfecting cleaning agent (step 1), a reducing agent is added to the cleaning liquid 1, that is, the cleaning liquid 1 that has completed step 1. Thus, the object to be cleaned is subjected to acid cleaning (step 2) with the cleaning liquid 2 adjusted to pH 4 or lower. In any step, the temperature of the cleaning liquid can be 15 to 95 ° C. Especially, 15-60 degreeC is preferable for process 1, and 30-60 degreeC is preferable for process 2. It is important that the cleaning solution and the object to be cleaned are in sufficient contact. In addition to the immersion method, in the case of line cleaning, a method of adjusting the flow rate at the time of passing and a method of adjusting the residence time after passing the solution can be used. . When the object to be cleaned is a closed system including a liquid feed line, a method of circulating and cleaning at an appropriate flow rate (for example, 0.1 to 50 liters / minute) is preferable. Air bubbling and ultrasonic waves can also be used in combination.

また、本発明では、前記工程2を行った後に、更に下記の工程3を行うことが好ましい。
工程3:工程2を終えた前記洗浄液2に還元剤及び/又はアルカリ剤を添加することによるpH5〜9の範囲への調整
Moreover, in this invention, after performing the said process 2, it is preferable to perform the following process 3 further.
Step 3: Adjustment to pH 5 to 9 by adding a reducing agent and / or an alkaline agent to the cleaning liquid 2 that has finished Step 2.

工程3におけるpHの調整は、前記還元剤や、アルカリ剤を用いることができ、還元剤を用いる場合、洗浄液1中の有効塩素に対して、20〜200モル%、更に25〜150モル%、特に30〜100モル%の割合で用いることが、pHの調整のしやすさと排水のCOD値の観点から好ましい。30〜45モル%もより好ましい。   The pH in Step 3 can be adjusted using the reducing agent or alkali agent. When a reducing agent is used, it is 20 to 200 mol%, more preferably 25 to 150 mol%, based on the effective chlorine in the cleaning liquid 1, In particular, it is preferably used in a proportion of 30 to 100 mol% from the viewpoint of ease of pH adjustment and COD value of waste water. 30-45 mol% is also more preferable.

工程3にアルカリ剤を用いる場合、洗浄液1中の有効塩素に対して、10〜100モル%、更に好ましくは12〜75モル%、特に15〜50モル%の割合で用いる事が、pHの調整のしやすさの観点から好ましい。   When an alkaline agent is used in step 3, the pH can be adjusted by using 10 to 100 mol%, more preferably 12 to 75 mol%, particularly 15 to 50 mol%, based on the effective chlorine in the cleaning liquid 1. It is preferable from the viewpoint of ease of handling.

工程3によりpHが5〜9の範囲に調整された洗浄液2は、そのまま廃棄できるため、好ましい。したがって、本発明では、工程3によりpHが調整された洗浄液を廃棄することを含んでいても良い。   The cleaning liquid 2 whose pH is adjusted in the range of 5 to 9 in the step 3 is preferable because it can be discarded as it is. Accordingly, the present invention may include discarding the cleaning liquid whose pH has been adjusted in step 3.

また、アルカリ剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、及び炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩から選ばれる1種以上が挙げられる。これらアルカリ剤は、工程3において、洗浄液2のpHを5〜9の中性付近に調整するのに有効であり、洗浄液1の有効塩素濃度と還元剤の添加量に応じて添加量を調整すればよい。工程3では還元剤又はアルカリ剤だけを添加してもよいし、還元剤とアルカリ剤の両方を添加してもよい。   Moreover, as an alkali agent, 1 or more types chosen from alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates, such as sodium carbonate and potassium carbonate, are mentioned. These alkaline agents are effective in adjusting the pH of the cleaning liquid 2 to about 5 to 9 neutral in Step 3, and the amount of the alkaline agent can be adjusted according to the effective chlorine concentration of the cleaning liquid 1 and the amount of reducing agent added. That's fine. In step 3, only the reducing agent or the alkaline agent may be added, or both the reducing agent and the alkaline agent may be added.

なお、本発明を実施するにあたり、工程2における還元剤、工程3における還元剤及び/又はアルカリ剤は、それぞれ、これらの成分を含有する水溶液として、供給タンク等から各洗浄液に供給されることが好ましい。その際、工程3では、洗浄液2中の塩素が既に不活化されており、少量のアルカリ成分でもpHを容易に上昇できることから、比較的低濃度でアルカリ成分を含有する水溶液を用いることができる。一方、上記の通り、工程2においても少量のアルカリ成分の存在は許容できるため、還元剤とアルカリ剤とを含む水溶液を、工程2及び工程3に共通して用いることができ、これにより設備をより簡易化できるため好ましい。例えば、還元剤がチオ硫酸ナトリウムで、アルカリ剤が水酸化ナトリウムの場合、重量比で還元剤/アルカリ剤は10/1〜5/1が好ましい。もちろん、工程2におけるpHの調整という観点では本質的にアルカリ剤は不要であるため、工程2における還元剤、工程3における還元剤、工程3におけるアルカリ剤のそれぞれの供給手段を設けて、別々に供給することも可能である。工程3の温度は、好ましくは15〜95℃、更に好ましくは15〜60℃とすることができる。   In carrying out the present invention, the reducing agent in step 2 and the reducing agent and / or alkali agent in step 3 may be supplied to each cleaning liquid from a supply tank or the like as an aqueous solution containing these components, respectively. preferable. At that time, in step 3, chlorine in the cleaning liquid 2 has already been inactivated, and the pH can be easily increased even with a small amount of an alkaline component, so that an aqueous solution containing an alkaline component at a relatively low concentration can be used. On the other hand, as described above, the presence of a small amount of an alkaline component is acceptable also in Step 2, and thus an aqueous solution containing a reducing agent and an alkaline agent can be used in common in Step 2 and Step 3, thereby providing equipment. This is preferable because it can be further simplified. For example, when the reducing agent is sodium thiosulfate and the alkaline agent is sodium hydroxide, the reducing agent / alkaline agent is preferably 10/1 to 5/1 by weight ratio. Of course, since an alkali agent is essentially unnecessary in terms of adjusting the pH in step 2, each means for supplying the reducing agent in step 2, the reducing agent in step 3, and the alkali agent in step 3 is provided separately. It is also possible to supply. The temperature of step 3 is preferably 15 to 95 ° C, more preferably 15 to 60 ° C.

上記で説明した塩素系消毒洗浄剤と、これを含有する洗浄液1に添加してpHを4以下に調整し得る還元剤とから、上記本発明の洗浄方法のための洗浄剤キットを構成することができる。   A cleaning agent kit for the cleaning method of the present invention is composed of the chlorine-based disinfecting cleaning agent described above and a reducing agent that can be added to the cleaning liquid 1 containing the chlorine-based disinfecting cleaning agent and adjust the pH to 4 or less. Can do.

本発明の洗浄方法は、工程1で塩素系消毒洗浄剤を含有する洗浄液1を用いることで強い殺菌力と優れたたんぱく汚れ除去力が得られること、及び工程2でpH4以下の洗浄液2を用いることで良好な炭酸カルシウムの溶解除去力が得られることから、人工透析装置の洗浄に好適である。   In the cleaning method of the present invention, strong sterilizing power and excellent protein stain removing power can be obtained by using the cleaning liquid 1 containing a chlorine-based disinfectant cleaning agent in Step 1, and the cleaning liquid 2 having a pH of 4 or less is used in Step 2. Therefore, it is suitable for washing of an artificial dialysis apparatus because a good dissolving power of calcium carbonate can be obtained.

<実施例1>
被洗浄物として日機装製個人用透析装置DBG−01を用いて洗浄性を評価した。該装置のラインの一部を、下記の条件で汚染させたシリコンチューブに置き換え、工程1、2及び3の終了時点でそのシリコンチューブを取り外し、該チューブ内部の汚染具合を下記のように評価した。
<Example 1>
Detergency was evaluated using a Nikkiso personal dialyzer DBG-01 as an object to be cleaned. A part of the line of the apparatus was replaced with a silicon tube contaminated under the following conditions, the silicon tube was removed at the end of steps 1, 2 and 3, and the contamination inside the tube was evaluated as follows. .

(1)シリコンチューブの汚染条件
約40cmのシリコンチューブ内に標準的な透析液(扶桑薬品工業株式会社、キンダリー液AF−1号)を満たして、横置きにして1週間静置した。炭酸カルシウムが析出したのを確認して上澄み液を廃棄した。更に馬血清の0.5mLをシリコンチューブ内面に落として、50℃で24時間横置きにして馬血清を熱劣化させ固着させた。この操作で得られた汚染シリコンチューブの炭酸カルシウム付着量は、該チューブ1m当たりに換算して6.0〜7.0mg/mであった。
(1) Contamination condition of silicon tube About 40 cm of silicon tube was filled with a standard dialysate (Fuso Pharmaceutical Co., Ltd., kinderly solution AF-1), and was placed horizontally and allowed to stand for one week. After confirming the precipitation of calcium carbonate, the supernatant was discarded. Further, 0.5 mL of horse serum was dropped on the inner surface of the silicon tube, and the horse serum was thermally deteriorated and fixed by placing it horizontally at 50 ° C. for 24 hours. The amount of calcium carbonate deposited on the contaminated silicon tube obtained by this operation was 6.0 to 7.0 mg / m in terms of 1 m of the tube.

(2)評価法
(2−1)たんぱく汚れの評価法
洗浄終了後シリコンチューブを取り外し、血液(馬血清)汚れの部分を含む約5cmを縦に割断し、アミドブラック染色法でたんぱく付着状態を目視で評価した。
(2) Evaluation method (2-1) Evaluation method for protein stains After cleaning, the silicone tube is removed, and approximately 5 cm including the blood (horse serum) stain is vertically cut, and the protein adhesion state is confirmed by the amide black staining method. Visually evaluated.

(2−2)炭酸カルシウム付着量の評価法
残りのシリコンチューブ約30cmの内部に0.1N塩酸溶液を満たし、付着している炭酸カルシウム分を溶出し、その溶出液のCa濃度を測定して、付着炭酸カルシウム量を求めた。付着量はシリコンチューブ1m当たりに換算してmg/mの単位で示した。
(2-2) Evaluation method of calcium carbonate adhesion amount Fill the remaining silicon tube about 30cm with 0.1N hydrochloric acid solution, elute the adhered calcium carbonate, and measure the Ca concentration of the eluate. The amount of attached calcium carbonate was determined. The amount of adhesion was shown in units of mg / m in terms of 1 m of silicon tube.

(3)洗浄及び評価結果
以下において、各工程の洗浄液pHや有効塩素濃度の測定は、汚れ評価用シリコンチューブの直前にサンプリングポートを設置し、循環中の洗浄液を注射器でサンプリングして行った。
(3) Cleaning and Evaluation Results In the following, the measurement of the cleaning solution pH and effective chlorine concentration in each step was performed by installing a sampling port immediately before the dirt evaluation silicon tube and sampling the circulating cleaning solution with a syringe.

次亜塩素酸ナトリウムを7.2重量%(有効塩素として)、メタ珪酸ナトリウムを0.02重量%、トリポリリン酸ナトリウムを1.4重量%含有する塩素系洗浄剤原液水溶液を水で1.4倍に希釈した一次希釈液を、塩素系洗浄剤タンクに充填した。逆浸透法で精製された水(以下RO水という)で満たされた被洗浄物ラインに塩素系洗浄剤一次希釈液を供給し、有効塩素濃度1010ppmの洗浄液1を調製した。塩素系洗浄剤タンク中の一次希釈液の重量減少は10.57gであった。この洗浄液1のpHは10.6であった。この洗浄液1を被洗浄物ラインに流速0.5リットル/分で40分間循環させて36℃で洗浄を行った(工程1)。   Chlorine-based detergent stock solution containing 7.2% by weight of sodium hypochlorite (as effective chlorine), 0.02% by weight of sodium metasilicate, and 1.4% by weight of sodium tripolyphosphate is 1.4% in water. The chlorine-based cleaning agent tank was filled with the primary diluted solution diluted twice. A chlorine-based cleaning agent primary dilution was supplied to a line to be cleaned filled with water purified by reverse osmosis (hereinafter referred to as RO water) to prepare cleaning liquid 1 having an effective chlorine concentration of 1010 ppm. The weight reduction of the primary diluent in the chlorine-based detergent tank was 10.57 g. The pH of the cleaning liquid 1 was 10.6. The cleaning liquid 1 was circulated through the line to be cleaned at a flow rate of 0.5 l / min for 40 minutes to perform cleaning at 36 ° C. (Step 1).

その後、還元剤供給タンクから、チオ硫酸ナトリウムを20.0重量%、NaOHを3.2重量%含有する還元剤原液水溶液の1.94g(チオ硫酸ナトリウムが洗浄液1中の有効塩素に対して32.1モル%)を同じ被洗浄物ラインに注入した。50分後の洗浄液のpHは2.75に低下し、有効塩素濃度は検出下限の0.05ppm未満になっていることを確認した。この酸性液を洗浄液2として、炭酸カルシウム等のスケール成分を除去する目的で、流速0.5リットル/分で30分間循環させて36℃で酸洗浄を行った(工程2)。   Thereafter, 1.94 g of a reducing agent stock solution containing 20.0% by weight of sodium thiosulfate and 3.2% by weight of NaOH from the reducing agent supply tank (sodium thiosulfate is 32% of available chlorine in the cleaning liquid 1). .1 mol%) was injected into the same line to be cleaned. After 50 minutes, it was confirmed that the pH of the cleaning solution dropped to 2.75, and the effective chlorine concentration was below the detection lower limit of 0.05 ppm. This acidic solution was used as the washing solution 2 and circulated for 30 minutes at a flow rate of 0.5 l / min for acid washing at 36 ° C. for the purpose of removing scale components such as calcium carbonate (step 2).

その後、同じ還元剤原液水溶液1.90gを同じ被洗浄物ラインに注入し、上記と同じ条件で循環させた。5分後の洗浄液pHは6.12で、有効塩素濃度は検出下限の0.05ppm未満であった。この洗浄液は2時間後のpHが6.05であった(工程3)。   Thereafter, 1.90 g of the same reducing agent stock solution aqueous solution was injected into the same line to be cleaned and circulated under the same conditions as described above. The cleaning solution pH after 5 minutes was 6.12, and the effective chlorine concentration was less than the detection lower limit of 0.05 ppm. This washing solution had a pH of 6.05 after 2 hours (Step 3).

上記工程3の後、汚れ評価用シリコンチューブを取り外し、上記の方法でたんぱく付着と炭酸カルシウム付着量を測定した結果、たんぱく付着は認められず、炭酸カルシウム付着量は0.01mg/mであり、洗浄前に付着していたほとんどの炭酸カルシウムが除去されていた。   After step 3 above, the silicon tube for dirt evaluation was removed, and as a result of measuring protein adhesion and calcium carbonate adhesion amount by the above method, protein adhesion was not recognized, and calcium carbonate adhesion amount was 0.01 mg / m, Most of the calcium carbonate adhering before washing was removed.

<実施例2>
以下の方法で実施例1同様に、評価を行った。次亜塩素酸ナトリウム7.0重量%(有効塩素として)、メタ珪酸ナトリウムを0.02重量%含有する塩素系洗浄剤原液水溶液を水で1.4倍に希釈した一次希釈液を、塩素系洗浄剤タンクに充填した。RO水で満たされた被洗浄物ラインに塩素系洗浄剤一次希釈液を10.68g供給し、有効塩素濃度992ppmの洗浄液1を調製した。この洗浄液のpHは10.6で、被洗浄物ラインに流速0.5リットル/分で40分間循環させながら60℃に加温して洗浄を行った(工程1)
<Example 2>
Evaluation was performed in the same manner as in Example 1 by the following method. A primary diluted solution obtained by diluting an aqueous solution of a chlorine-based cleaning agent containing 7.0% by weight of sodium hypochlorite (as effective chlorine) and 0.02% by weight of sodium metasilicate 1.4 times with water, The detergent tank was filled. 10.68 g of a chlorine-based cleaning agent primary dilution was supplied to the line to be cleaned filled with RO water to prepare Cleaning Solution 1 having an effective chlorine concentration of 992 ppm. The pH of this cleaning liquid was 10.6, and cleaning was performed by heating to 60 ° C. while circulating through the line to be cleaned at a flow rate of 0.5 l / min for 40 minutes (step 1).

その後、還元剤供給タンクから、チオ硫酸ナトリウムを20.0重量%、NaOHを3.2重量%含有する還元剤原液水溶液の1.94g(チオ硫酸ナトリウムが洗浄液1中の有効塩素に対して32.6モル%)を同じ被洗浄物ラインに注入した。5分後の洗浄液pHは2.75に低下し、有効塩素濃度は検出下限の0.05ppm未満になっていることを確認した。この酸性液を洗浄液2として、炭酸カルシウム等のスケール成分を除去する目的で、流速0.5リットル/分で30分間循環させて60℃で酸洗浄を行った(工程2)。   Thereafter, 1.94 g of a reducing agent stock solution containing 20.0% by weight of sodium thiosulfate and 3.2% by weight of NaOH from the reducing agent supply tank (sodium thiosulfate is 32% of available chlorine in the cleaning liquid 1). .6 mol%) was injected into the same workpiece line. After 5 minutes, the pH of the cleaning solution was lowered to 2.75, and it was confirmed that the effective chlorine concentration was less than the detection lower limit of 0.05 ppm. This acidic liquid was used as the washing liquid 2 and circulated for 30 minutes at a flow rate of 0.5 liter / min for acid washing at 60 ° C. for the purpose of removing scale components such as calcium carbonate (step 2).

その後、同じ還元剤原液水溶液1.90gを同じ被洗浄物ラインに注入し、上記と同じ条件で循環させた。5分後の洗浄液pHは6.12で、有効塩素濃度は検出下限の0.05ppm未満であった。この洗浄液は2時間後のpHが6.15であった(工程3)。   Thereafter, 1.90 g of the same reducing agent stock solution aqueous solution was injected into the same line to be cleaned and circulated under the same conditions as described above. The cleaning solution pH after 5 minutes was 6.12, and the effective chlorine concentration was less than the detection lower limit of 0.05 ppm. This washing solution had a pH of 6.15 after 2 hours (Step 3).

上記工程3の後、汚れ評価用シリコンチューブを取り外し、上記の方法でたんぱく付着と炭酸カルシウム付着量を測定した結果、たんぱく付着は認められず、炭酸カルシウム付着量は0.01mg/mであり、洗浄前に付着していたほとんどの炭酸カルシウムが除去されていた。   After step 3 above, the silicon tube for dirt evaluation was removed, and as a result of measuring protein adhesion and calcium carbonate adhesion amount by the above method, protein adhesion was not recognized, and calcium carbonate adhesion amount was 0.01 mg / m, Most of the calcium carbonate adhering before washing was removed.

<実施例3>
実施例1と同じ塩素系洗浄剤原液水溶液を水で1.4倍に希釈した一次希釈液を、塩素系洗浄剤タンクに充填した。RO水で満たされた被洗浄物ラインに塩素系洗浄剤一次希釈液を供給し、有効塩素濃度480ppmの洗浄液1を調製した。塩素系洗浄剤タンク中の一次希釈液の重量減少は5.02gであった。この洗浄液のpHは10.4であった。この洗浄液1を被洗浄物ラインに流速0.5リットル/分で40分間循環させて25℃で洗浄を行った(工程1)。
<Example 3>
A chlorine-based cleaning agent tank was filled with a primary diluent obtained by diluting the same aqueous chlorine-based cleaning solution solution as in Example 1 with water 1.4 times. A cleaning solution 1 having an effective chlorine concentration of 480 ppm was prepared by supplying a chlorine-based cleaning agent primary dilution to a line to be cleaned filled with RO water. The weight reduction of the primary diluent in the chlorine-based detergent tank was 5.02 g. The pH of this cleaning solution was 10.4. The cleaning liquid 1 was circulated through the line to be cleaned at a flow rate of 0.5 l / min for 40 minutes to perform cleaning at 25 ° C. (Step 1).

その後、還元剤供給タンクから、チオ硫酸ナトリウムを10.0重量%、NaOHを1.5重量%、重亜硫酸ナトリウムを3.0重量%含有する還元剤原液水溶液の1.61g(チオ硫酸ナトリウムが洗浄液1中の有効塩素に対して28.0モル%)を同じ被洗浄物ラインに注入した。5分後の洗浄液pHは3.02に低下し、有効塩素濃度は検出下限の0.05ppm未満になっていることを確認した。この酸性液を洗浄液2として、炭酸カルシウム等のスケール成分を除去する目的で、流速0.5リットル/分で30分間循環させて25℃で酸洗浄を行った(工程2)。   Thereafter, 1.61 g of a reducing agent stock solution containing 10.0% by weight of sodium thiosulfate, 1.5% by weight of NaOH, and 3.0% by weight of sodium bisulfite from the reducing agent supply tank (sodium thiosulfate 28.0 mol% with respect to available chlorine in the cleaning liquid 1) was injected into the same line to be cleaned. After 5 minutes, the pH of the cleaning solution was lowered to 3.02, and it was confirmed that the effective chlorine concentration was less than the detection lower limit of 0.05 ppm. This acidic liquid was used as the washing liquid 2 and circulated for 30 minutes at a flow rate of 0.5 liter / min for acid washing at 25 ° C. for the purpose of removing scale components such as calcium carbonate (step 2).

その後、同じ還元剤原液水溶液1.60gを同じ被洗浄物ラインに注入し、上記と同じ条件で循環させた。15分後の洗浄液pHは5.95で、有効塩素濃度は検出下限の0.05ppm未満であった(工程3)。   Then, 1.60 g of the same reducing agent stock solution aqueous solution was injected into the same line to be cleaned and circulated under the same conditions as described above. The pH of the washing solution after 15 minutes was 5.95, and the effective chlorine concentration was less than the detection lower limit of 0.05 ppm (step 3).

上記工程3の後、汚れ評価用シリコンチューブを取り外し、上記の方法でたんぱく付着と炭酸カルシウム付着量を測定した結果、たんぱく付着は認められず、炭酸カルシウム付着量は0.01mg/mであり、洗浄前に付着していたほとんどの炭酸カルシウムが除去されていた。   After step 3 above, the silicon tube for dirt evaluation was removed, and as a result of measuring protein adhesion and calcium carbonate adhesion amount by the above method, protein adhesion was not recognized, and calcium carbonate adhesion amount was 0.01 mg / m, Most of the calcium carbonate adhering before washing was removed.

<実施例4>
実施例1と同じ方法で工程1及び工程2を行った。工程2の後、汚れ評価用シリコンチューブを取り外し、上記の方法でたんぱく付着と炭酸カルシウム付着量を測定した結果、たんぱく付着は認められず、炭酸カルシウム付着量は0.01mg/mであり、洗浄前に付着していたほとんどの炭酸カルシウムが除去されていた。
<Example 4>
Steps 1 and 2 were performed in the same manner as in Example 1. After Step 2, the silicon tube for dirt evaluation was removed, and the amount of protein adhering and calcium carbonate adhering was measured by the above method. As a result, protein adhering was not observed and the amount of calcium carbonate adhering was 0.01 mg / m Most of the calcium carbonate that had previously adhered was removed.

<実施例5>
実施例2と同じ方法で工程1及び工程2を行った。工程2の後、汚れ評価用シリコンチューブを取り外し、上記の方法でたんぱく付着と炭酸カルシウム付着量を測定した結果、たんぱく付着は認められず、炭酸カルシウム付着量は0.01mg/mであり、洗浄前に付着していたほとんどの炭酸カルシウムが除去されていた。
<Example 5>
Steps 1 and 2 were performed in the same manner as in Example 2. After Step 2, the silicon tube for dirt evaluation was removed, and the amount of protein adhering and calcium carbonate adhering was measured by the above method. As a result, protein adhering was not observed and the amount of calcium carbonate adhering was 0.01 mg / m Most of the calcium carbonate that had previously adhered was removed.

<実施例6>
実施例1と同じ塩素系洗浄剤原液水溶液を水で1.4倍に希釈した一次希釈液を、塩素系洗浄剤タンクに充填した。RO水で満たされた被洗浄物ラインに塩素系洗浄剤一次希釈液を供給し、有効塩素濃度1030ppmの洗浄液1を調製した。塩素系洗浄剤タンク中の一次希釈液の重量減少は10.80gであった。この洗浄液のpHは10.6であった。この洗浄液1を被洗浄物ラインに流速0.5リットル/分で40分間循環させて40℃で洗浄を行った(工程1)。
<Example 6>
A chlorine-based cleaning agent tank was filled with a primary diluent obtained by diluting the same aqueous chlorine-based cleaning solution solution as in Example 1 with water 1.4 times. A cleaning solution 1 having an effective chlorine concentration of 1030 ppm was prepared by supplying a chlorine-based cleaning agent primary dilution to an object line to be cleaned filled with RO water. The weight reduction of the primary diluent in the chlorine-based detergent tank was 10.80 g. The pH of this cleaning solution was 10.6. This cleaning liquid 1 was circulated through the line to be cleaned at a flow rate of 0.5 l / min for 40 minutes to perform cleaning at 40 ° C. (step 1).

その後、還元剤供給タンクから、チオ硫酸ナトリウム2.9重量%、NaOHを0.4重量%含有する還元剤原液水溶液の11.07g(チオ硫酸ナトリウムが洗浄液1中の有効塩素に対して26.0モル%)を同じ被洗浄物ラインに注入した。25分後の洗浄液pHは2.78に低下し、有効塩素濃度は検出下限の0.05ppm未満になっていることを確認した。この酸性液を洗浄液2として、炭酸カルシウム等のスケール成分を除去する目的で、流速0.5リットル/分で30分間循環させて、40℃で酸洗浄を行った(工程2)。   Thereafter, from the reducing agent supply tank, 11.07 g of a reducing agent stock solution containing 2.9% by weight of sodium thiosulfate and 0.4% by weight of NaOH (26. 0 mol%) was injected into the same workpiece line. After 25 minutes, it was confirmed that the pH of the washing solution dropped to 2.78, and the effective chlorine concentration was less than the detection lower limit of 0.05 ppm. In order to remove scale components such as calcium carbonate, the acidic liquid was used as the cleaning liquid 2 and circulated for 30 minutes at a flow rate of 0.5 liter / min, and acid cleaning was performed at 40 ° C. (step 2).

その後、同じ還元剤原液水溶液8.53gを同じ被洗浄物ラインに注入し、上記と同じ条件で循環させた。15分後のpHは6.52で、有効塩素濃度は検出下限の0.05ppm未満であった(工程3)。   Thereafter, 8.53 g of the same reducing agent stock solution aqueous solution was injected into the same line to be cleaned and circulated under the same conditions as described above. The pH after 15 minutes was 6.52 and the effective chlorine concentration was less than the detection lower limit of 0.05 ppm (step 3).

<実施例7>
実施例1と同じ塩素系洗浄剤原液水溶液を水で2.0倍に希釈した一次希釈液を、塩素系洗浄剤タンクに充填した。RO水で満たされた被洗浄物ラインに塩素系洗浄剤一次希釈液を供給し、有効塩素濃度880ppmの洗浄液1を調製した。塩素系洗浄剤タンク中の一次希釈液の重量減少は13.18gであった。この洗浄液のpHは10.2であった。この洗浄液1を被洗浄物ラインに流速0.5リットル/分で40分間循環させて40℃で洗浄を行った(工程1)。
<Example 7>
A chlorine-based cleaning agent tank was filled with a primary diluent obtained by diluting the same aqueous chlorine-based cleaning solution solution as in Example 1 2.0 times with water. A cleaning liquid 1 having an effective chlorine concentration of 880 ppm was prepared by supplying a chlorine-based cleaning agent primary dilution to a line to be cleaned filled with RO water. The weight reduction of the primary diluent in the chlorine-based detergent tank was 13.18 g. The pH of this cleaning solution was 10.2. This cleaning liquid 1 was circulated through the line to be cleaned at a flow rate of 0.5 l / min for 40 minutes to perform cleaning at 40 ° C. (step 1).

その後、還元剤供給タンクから、チオ硫酸ナトリウムを0.8重量%、NaOHを0.11重量%含有する還元剤原液水溶液の33.0g(チオ硫酸ナトリウムが洗浄液1中の有効塩素に対して25.0モル%)を同じ被洗浄物ラインに注入した。25分後の洗浄液pHは2.95に低下し、有効塩素濃度は検出下限の0.05ppm未満になっていることを確認した。この酸性液を洗浄液2として、炭酸カルシウム等のスケール成分を除去する目的で、流速0.5リットル/分で30分間循環させて40℃で酸洗浄を行った(工程2)。   Thereafter, from the reducing agent supply tank, 33.0 g of a reducing agent stock solution containing 0.8% by weight of sodium thiosulfate and 0.11% by weight of NaOH (sodium thiosulfate is 25% of the effective chlorine in the cleaning solution 1). 0.0 mol%) was injected into the same line to be cleaned. It was confirmed that the pH of the washing solution after 25 minutes was lowered to 2.95, and the effective chlorine concentration was less than the detection lower limit of 0.05 ppm. This acidic liquid was used as the washing liquid 2 and circulated for 30 minutes at a flow rate of 0.5 liter / min for acid washing at 40 ° C. for the purpose of removing scale components such as calcium carbonate (step 2).

その後、同じ還元剤原液水溶液26.0gを同じ被洗浄物ラインに注入し、上記と同じ条件で循環させた。15分後の洗浄液pHは5.80で、有効塩素濃度は検出下限の0.05ppm未満であった(工程3)。   Thereafter, 26.0 g of the same reducing agent stock solution aqueous solution was poured into the same line to be cleaned and circulated under the same conditions as described above. The washing solution pH after 15 minutes was 5.80, and the effective chlorine concentration was less than the detection lower limit of 0.05 ppm (step 3).

<試験例1>
次亜塩素酸ナトリウムを有効塩素濃度として1000ppm含有する水溶液に対して、工程2で用いる還元剤の添加量(モル%)と還元剤添加後の水溶液のpHと有効塩素濃度を測定した。結果を表1に示す。
<Test Example 1>
With respect to an aqueous solution containing 1000 ppm of sodium hypochlorite as an effective chlorine concentration, the amount (mol%) of the reducing agent used in Step 2 and the pH and effective chlorine concentration of the aqueous solution after adding the reducing agent were measured. The results are shown in Table 1.

Figure 0004602178
Figure 0004602178

*1:水溶液中の有効塩素に対するモル%
*2:還元剤添加後のpH
*3:還元剤添加後の有効塩素濃度
* 1: mol% with respect to available chlorine in aqueous solution
* 2: pH after addition of reducing agent
* 3: Effective chlorine concentration after addition of reducing agent

チオ硫酸ナトリウムの場合、前記反応式(1)及び反応式(2)からわかるように、有効塩素に対して25モル%の添加で、塩素分を不活化できる。表1の結果でも、25モル%以上の添加により塩素が検出されなくなるのが確認できる。重亜硫酸ナトリウム、次亜硫酸ナトリウム又はアスコルビン酸では、各々100モル%、50モル%又は100モル%の添加量で、塩素分を不活化できる。pH4以下の酸性液を得るために、必ずしも全部の塩素を不活化するまで還元剤を添加する必要はない。工程2の還元剤がチオ硫酸ナトリウムの場合、有効塩素に対して20〜35モル%の添加量が好ましい。工程2の還元剤が重亜硫酸ナトリウム、次亜硫酸ナトリウム又はアスコルビン酸の場合、有効塩素に対して各々90〜130モル%、40〜60モル%又は90〜130モル%の添加量が好ましい。また、上記水溶液のうち、pHが4以下のものは本発明の洗浄液2として使用できるが、工程2の後は、最終的に全ての塩素を不活化する上記のモル%以上の還元剤を添加することが好ましい(工程3)。なお、還元剤が過剰に添加されていても、浄化槽等の曝気により簡単に消失するので、環境面に重大な悪影響を与えることはない。   In the case of sodium thiosulfate, as can be seen from the reaction formulas (1) and (2), the chlorine content can be inactivated by adding 25 mol% with respect to the effective chlorine. Even in the results of Table 1, it can be confirmed that chlorine is not detected by addition of 25 mol% or more. With sodium bisulfite, sodium hyposulfite or ascorbic acid, the chlorine content can be inactivated by the addition amount of 100 mol%, 50 mol% or 100 mol%, respectively. In order to obtain an acidic liquid having a pH of 4 or less, it is not always necessary to add a reducing agent until all chlorine is inactivated. When the reducing agent in step 2 is sodium thiosulfate, an addition amount of 20 to 35 mol% with respect to effective chlorine is preferable. When the reducing agent in step 2 is sodium bisulfite, sodium hyposulfite or ascorbic acid, the addition amount is preferably 90 to 130 mol%, 40 to 60 mol% or 90 to 130 mol%, respectively, based on the effective chlorine. Of the aqueous solutions, those having a pH of 4 or less can be used as the cleaning liquid 2 of the present invention, but after step 2, the above-described reducing agent of at least mol% that finally inactivates all chlorine is added. Preferably (step 3). Even if the reducing agent is added excessively, it is easily lost by aeration in a septic tank or the like, so that there is no serious adverse effect on the environment.

<試験例2>
次亜塩素酸ナトリウムを有効塩素濃度として5020ppm含有する水溶液(水溶液1)に対して、還元剤のチオ硫酸ナトリウムを20モル%(対有効塩素)とアルカリ剤のNaOHを19.7モル%(対有効塩素)添加し(水溶液2)、更に同量のチオ硫酸ナトリウムとNaOHを添加した(水溶液3)場合のpHの経時的な変動を測定した。結果を表2に示す。
<Test Example 2>
With respect to an aqueous solution (aqueous solution 1) containing 5020 ppm of sodium hypochlorite as an effective chlorine concentration, 20 mol% of reducing agent sodium thiosulfate (vs. effective chlorine) and 19.7 mol% of alkaline agent NaOH (vs. Effective chlorine) was added (aqueous solution 2), and the pH variation over time was measured when the same amounts of sodium thiosulfate and NaOH were added (aqueous solution 3). The results are shown in Table 2.

Figure 0004602178
Figure 0004602178

上記表2の水溶液1、水溶液2を用いて実施例1と同様の評価を行ったところ、炭酸カルシウムとたんぱく汚れをほぼ完全に除去できた。   When the same evaluation as in Example 1 was performed using the aqueous solution 1 and the aqueous solution 2 in Table 2, calcium carbonate and protein stains were almost completely removed.

Claims (10)

下記の工程1を行った後に工程2を行う被洗浄物の洗浄方法。
工程1:塩素系消毒洗浄剤を含有する洗浄液1による被洗浄物の消毒洗浄
工程2:該洗浄液1に還元剤を添加することによりpHを4以下に調整した洗浄液2による被洗浄物の酸洗浄
A method for cleaning an object to be cleaned, wherein Step 2 is performed after performing Step 1 below.
Step 1: Disinfecting and cleaning the object to be cleaned with the cleaning liquid 1 containing a chlorine-based disinfecting cleaning agent Step 2: Acid cleaning of the object to be cleaned with the cleaning liquid 2 whose pH is adjusted to 4 or less by adding a reducing agent to the cleaning liquid 1
前記工程2を行った後に、更に下記の工程3を行う請求項1記載の洗浄方法。
工程3:工程2を終えた前記洗浄液2に還元剤及び/又はアルカリ剤を添加することによるpH5〜9の範囲への調整
The cleaning method according to claim 1, wherein after the step 2 is performed, the following step 3 is further performed.
Step 3: Adjustment to pH 5 to 9 by adding a reducing agent and / or an alkaline agent to the cleaning liquid 2 that has finished Step 2.
前記塩素系消毒洗浄剤が、次亜塩素酸塩及び塩素化イソシアヌル酸塩から選ばれる1種以上である請求項1又は2記載の洗浄方法。 The cleaning method according to claim 1 or 2, wherein the chlorine-based disinfectant cleaning agent is at least one selected from hypochlorite and chlorinated isocyanurate. 前記還元剤が、チオ硫酸塩、重亜硫酸塩、次亜硫酸塩及びアスコルビン酸塩から選ばれる1種以上である請求項1〜3の何れか1項記載の洗浄方法。 The cleaning method according to any one of claims 1 to 3, wherein the reducing agent is at least one selected from thiosulfate, bisulfite, hyposulfite, and ascorbate. 工程2での還元剤の添加量が、前記洗浄液1中の有効塩素に対して、20〜200モル%である請求項1〜4の何れか1項記載の洗浄方法。 The cleaning method according to any one of claims 1 to 4, wherein an addition amount of the reducing agent in step 2 is 20 to 200 mol% with respect to the effective chlorine in the cleaning liquid 1. 工程3での還元剤の添加量が、前記洗浄液1中の有効塩素に対して、20〜200モル%である請求項2〜5の何れか1項記載の洗浄方法。 The cleaning method according to any one of claims 2 to 5, wherein an addition amount of the reducing agent in step 3 is 20 to 200 mol% with respect to the effective chlorine in the cleaning liquid 1. 工程3でのアルカリ剤の添加量が、前記洗浄液1中の有効塩素に対して、10〜100モル%である請求項2〜6の何れか1項記載の洗浄方法。 The cleaning method according to any one of claims 2 to 6, wherein the addition amount of the alkaline agent in step 3 is 10 to 100 mol% with respect to the effective chlorine in the cleaning liquid 1. 前記被洗浄物が人工透析装置である請求項1〜7の何れか1項記載の洗浄方法。 The cleaning method according to claim 1, wherein the object to be cleaned is an artificial dialysis apparatus. 前記洗浄液1及び前記洗浄液2の何れか1つ以上に、防錆剤及び/又はキレート剤を含有する請求項1〜8の何れか1項記載の洗浄方法。 The cleaning method according to any one of claims 1 to 8, wherein any one or more of the cleaning liquid 1 and the cleaning liquid 2 contains a rust inhibitor and / or a chelating agent. 請求項1〜9の何れか1項記載の洗浄方法に用いられる塩素系消毒洗浄剤と還元剤とから構成される洗浄剤キット。 A cleaning agent kit comprising a chlorine-based disinfecting cleaning agent and a reducing agent used in the cleaning method according to claim 1.
JP2005197318A 2004-07-08 2005-07-06 Cleaning method Active JP4602178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197318A JP4602178B2 (en) 2004-07-08 2005-07-06 Cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004201894 2004-07-08
JP2005197318A JP4602178B2 (en) 2004-07-08 2005-07-06 Cleaning method

Publications (2)

Publication Number Publication Date
JP2006043695A JP2006043695A (en) 2006-02-16
JP4602178B2 true JP4602178B2 (en) 2010-12-22

Family

ID=36022857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197318A Active JP4602178B2 (en) 2004-07-08 2005-07-06 Cleaning method

Country Status (1)

Country Link
JP (1) JP4602178B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266661B2 (en) * 2006-04-13 2013-08-21 三菱瓦斯化学株式会社 Detergent for artificial dialysis machine
JP4674907B2 (en) * 2006-08-22 2011-04-20 株式会社エスエヌディ Cleaning apparatus and method
CN105983556B (en) * 2015-02-25 2020-07-17 东莞新科技术研究开发有限公司 Cleaning method of water temperature machine
JP6768126B1 (en) * 2019-08-01 2020-10-14 恭治 栗木 Cleaning agent for dialysis equipment and method for removing calcium scale in dialysis equipment using it
CN113061495B (en) * 2021-03-11 2022-09-13 山东省食品药品检验研究院 A cleaning solution for liquid chromatography online filter element and one-way valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507134A (en) * 1993-12-24 1997-07-22 ジー・ダブリュー・ケミカルズ・リミテッド Method and kit for cleaning beverage dispensing lines
JPH1081610A (en) * 1996-09-06 1998-03-31 Clean Chem Kk Production of sterilizing antispetic solution and sterilizing disinfectant
JP2001269670A (en) * 2000-03-24 2001-10-02 Nikkiso Co Ltd Neutralization treatment device for waste liquid derived from artificial dialysis
JP2002360689A (en) * 2001-06-13 2002-12-17 Clean Chemical Kk Cleaning method of artificial dialyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411552A (en) * 1987-07-06 1989-01-17 Asahi Denka Kogyo Kk Disinfection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507134A (en) * 1993-12-24 1997-07-22 ジー・ダブリュー・ケミカルズ・リミテッド Method and kit for cleaning beverage dispensing lines
JPH1081610A (en) * 1996-09-06 1998-03-31 Clean Chem Kk Production of sterilizing antispetic solution and sterilizing disinfectant
JP2001269670A (en) * 2000-03-24 2001-10-02 Nikkiso Co Ltd Neutralization treatment device for waste liquid derived from artificial dialysis
JP2002360689A (en) * 2001-06-13 2002-12-17 Clean Chemical Kk Cleaning method of artificial dialyzer

Also Published As

Publication number Publication date
JP2006043695A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JPH09125097A (en) Washing and sanitating treatment structure containing activated aqueous ozone and used for removing dirt from surface
US20110021399A1 (en) Cleaning compositions containing water soluble magnesium compounds and methods of using them
JPWO2006057311A1 (en) Hypochlorous acid type germicide composition
JP5584613B2 (en) Cleaning method for medical equipment
JP3053550B2 (en) How to clean medical equipment
JP2002360689A (en) Cleaning method of artificial dialyzer
JP4244190B2 (en) Cleaning and disinfection of surgical and medical equipment and instruments
JP4602178B2 (en) Cleaning method
WO2001087358A1 (en) Method of removing microbial contamination
JPH07233396A (en) Sterilizing detergent for medical equipment
JP3758417B2 (en) Dialysis machine cleaning method
JP2576033B2 (en) Endoscope cleaning method and apparatus
JP2001161811A (en) Detergent for artificial dialyzing apparatus
KR101182990B1 (en) Cleaning method
JP2838730B2 (en) Disinfection cleaning agent for medical equipment for artificial dialysis
JP2023029086A (en) Aide for preparing medical machine washing composition by blending with chlorine-based oxidant and medical machine washing composition using the same
JP4130378B2 (en) Disinfectant for medical equipment
JP7457364B2 (en) Cleaning agent for dialysis equipment and method for removing calcium scale in dialysis equipment using the same
JPH0975688A (en) Cleaning agent for dialyzer
JP2009112551A (en) Sterilizing method for food processing apparatus
JP4137432B2 (en) Disinfectant for medical equipment
JP4290640B2 (en) Artificial dialysis machine
JP2002301149A (en) Disinfectant/detergent composition for artificial dialyzer and method for disinfecting and washing artificial dialyzer
KR101621088B1 (en) Cleaning composition
JP2004049786A (en) Composition for disinfecting and washing artificial dialyzer and method for disinfecting and washing artificial dialyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4602178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250