JP4598709B2 - Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method - Google Patents
Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method Download PDFInfo
- Publication number
- JP4598709B2 JP4598709B2 JP2006094186A JP2006094186A JP4598709B2 JP 4598709 B2 JP4598709 B2 JP 4598709B2 JP 2006094186 A JP2006094186 A JP 2006094186A JP 2006094186 A JP2006094186 A JP 2006094186A JP 4598709 B2 JP4598709 B2 JP 4598709B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- oriented electrical
- annealing
- electrical steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、電気機器の鉄心材料として使用される無方向性電磁鋼板およびその製造方法に関し、特に歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板に関するものである。 The present invention relates to a non-oriented electrical steel sheet used as an iron core material for electrical equipment and a manufacturing method thereof, and particularly to a non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing.
近年、世界的な電気機器の省エネルギー化の高まりにより、回転機の鉄心材料として用いられる無方向性電磁鋼板に対しても、より高性能な特性が要求されてきている。 In recent years, due to the increase in energy saving of electric appliances worldwide, non-oriented electrical steel sheets used as iron core materials for rotating machines have been required to have higher performance characteristics.
周知の通り、SiやAl含有量を増加させて固有抵抗を高め、かつ結晶粒径を大きくすることは低鉄損化を図る主要な方法である。近年、小型汎用モータやコンプレッサーモータに至るまで、SiやAl含有量の高く、結晶粒径の大きい無方向性電磁鋼板が使用されるようになってきた。しかし、結晶粒径を大きくすることはダレやカエリが大きくなって、モータコアの打抜き加工性を著しく悪化させる問題があった。 As is well known, increasing the Si and Al contents to increase the specific resistance and increasing the crystal grain size are the main methods for reducing the iron loss. In recent years, non-oriented electrical steel sheets having a high Si and Al content and a large crystal grain size have been used up to small general-purpose motors and compressor motors. However, increasing the crystal grain size increases the sagging and burrs, and has the problem of significantly deteriorating the punching processability of the motor core.
打抜き加工性を改善する手法については、鋼中の不純物であるSとTiを低減あるいは無害化した上で、加工に供する歪取焼鈍前の結晶粒径を小さくし、歪取焼鈍で結晶粒成長させることで低鉄損との両立を図る以下の方法が提案されている。 Regarding the technique to improve the punching workability, the impurities in the steel, S and Ti, are reduced or made harmless, and the grain size before strain relief annealing to be processed is reduced, and grain growth is achieved by strain relief annealing. The following methods have been proposed for achieving both low iron loss and low iron loss.
特許文献1ではREMを添加する方法、特許文献2ではCa合金と脱硫フラックスを混合添加する方法、特許文献3ではCa合金を添加する方法、特許文献4ではMgあるいは、Mg,Ca,REMを複合添加する方法である。これらの方法は、いずれもSiやAl等の成分調整が完了した溶鋼に、脱硫フラックス、あるいはREMやCa合金、Mg合金を添加して溶鋼中のSを低減するとともに、鋼中に残存したSと粗大な硫化物を生成させるものである。ところが、これらの添加元素は酸化力が強く、スラグ中のTiO2を還元して溶鋼のTiが著しく増加する場合があった。これでは折角、製造コストをかけて硫化物の低減と粗大化が達成できても、歪取焼鈍後の結晶粒成長はむしろ悪化するという問題が新たに発生した。 Patent Document 1 adds REM, Patent Document 2 mixes and adds Ca alloy and desulfurization flux, Patent Document 3 adds Ca alloy, Patent Document 4 combines Mg or Mg, Ca, and REM. It is a method of adding. All of these methods add desulfurized flux, REM, Ca alloy, and Mg alloy to molten steel that has been adjusted for components such as Si and Al to reduce S in the molten steel, while remaining in the steel. And produces coarse sulfides. However, these additive elements have strong oxidizing power, and in some cases, Ti in the molten steel is remarkably increased by reducing TiO 2 in the slag. In this case, even if the reduction and the coarsening of the sulfide can be achieved at an angle and manufacturing cost, a new problem arises that the crystal grain growth after the stress relief annealing is rather deteriorated.
そこで、本出願人は特許文献5に示す通り、MnSとTi析出物の複合化を図ることで析出物を粗大化させて歪取焼鈍後の結晶粒成長を改善する方法を提案してきたが、Tiの析出が十分でない場合があり、その効果が十分に発揮されない場合があった。また、特許文献6ではTi:15〜50ppmの混入を許容しても歪取焼鈍後の粒成長を改善する方法が開示されているが、そのためには最終冷間圧延前までに700〜900℃で30分〜10時間もの長時間焼鈍と500℃まで50℃/分以下の緩冷却が必要であり、生産性を著しく悪化させるという問題があった。 Therefore, as shown in Patent Document 5, the present applicant has proposed a method for improving the grain growth after strain relief annealing by coarsening the precipitate by combining MnS and Ti precipitate, In some cases, precipitation of Ti is not sufficient, and the effect is not sufficiently exhibited. Further, Patent Document 6 discloses a method for improving grain growth after strain relief annealing even if mixing of Ti: 15 to 50 ppm is allowed, but for that purpose, 700 to 900 ° C. before the final cold rolling. Therefore, annealing for 30 minutes to 10 hours and slow cooling to 500 ° C. at 50 ° C./min or less are necessary, and the productivity is remarkably deteriorated.
一方、特許文献7に示す通り、結晶粒成長を著しく悪化させるTi析出物の析出と再固溶を活用して、歪取焼鈍後の結晶粒成長を改善する方法を本出願人は提案してきた。この方法では異常粒成長した粗大粒によって低鉄損が得られるものの、粒成長そのものが不安定であり、また磁束密度が低下するという新たな問題が発生した。 On the other hand, as shown in Patent Document 7, the present applicant has proposed a method for improving grain growth after strain relief annealing by utilizing precipitation and re-solidification of Ti precipitates that significantly worsen grain growth. . Although this method provides low iron loss due to coarse grains grown abnormally, new problems arise that the grain growth itself is unstable and the magnetic flux density decreases.
本発明は、前述の問題に鑑み、ある程度のTi含有を許容しながら生産性を阻害することなく、歪取焼鈍後の結晶粒成長と磁気特性に優れた無方向性電磁鋼板を安定的に得る方法を提供するものである。 In view of the above-mentioned problems, the present invention stably obtains a non-oriented electrical steel sheet excellent in crystal grain growth and magnetic properties after strain relief annealing without inhibiting productivity while allowing a certain amount of Ti content. A method is provided.
本発明は、上記課題を解決するためになされたもので、以下を要旨とするものである。
(1)質量%で、Si:3.5%以下、Mn:0.15%以下、Al:0 .1%以上3.0%以下、C:0.0050%以下、Ti:0.0020%以上0.010%以下、S:0.0010%以上0.0050%以下を含有し、残部Fe及び不可避不純物からなる無方向性電磁鋼板において、歪取焼鈍前の鋼板における固溶Tiが0.0020質量%未満であり、歪取焼鈍前の平均結晶粒径が40μm以下で、かつTiとSの双方を含むTi硫化物あるいはTi炭硫化物の析出物を有し、歪取焼鈍後の平均結晶粒径が60μm以上であることを特徴とする無方向性電磁鋼板。
(2)更に、質量%でSn:0.0050%以上0.20%以下を含有することを特徴とする(1)に記載の無方向性電磁鋼板。
(3)(1)または(2)に記載の無方向性電磁鋼板を製造するに際し、製鋼、熱延、熱延板焼鈍、酸洗、冷延、仕上焼鈍からなる製造工程において、製鋼における成分調整後の溶鋼に脱硫フラックス、Ca合金、Mg合金、またはREMのいずれか1種以上で脱硫処理を行なわないことを特徴とする無方向性電磁鋼板の製造方法。
(4)熱延前のスラブ加熱温度を1000℃ 以上1150℃以下にすることを特徴とする(3)に記載の無方向性電磁鋼板の製造方法。
(5)酸洗に先立ち、熱延板焼鈍を900℃以上1150℃以下で行うことを特徴とする(3)または(4)に記載の無方向性電磁鋼板の製造方法。
The present invention has been made to solve the above-described problems, and has the following gist.
(1) By mass%, Si: 3.5% or less, Mn: 0.15% or less, Al: 0. 1% to 3.0%, C: 0.0050% or less, Ti: 0.0020% to 0.010%, S: 0.0010% to 0.0050%, the balance Fe and inevitable In the non-oriented electrical steel sheet made of impurities, the solid solution Ti in the steel sheet before strain relief annealing is less than 0.0020% by mass , the average crystal grain size before strain relief annealing is 40 μm or less, and both Ti and S A non-oriented electrical steel sheet having a precipitate of Ti sulfide or Ti carbosulfide containing at least 60 μm in average grain size after strain relief annealing.
(2) The non-oriented electrical steel sheet according to (1) , further containing Sn: 0.0050% to 0.20% by mass.
(3) When producing the non-oriented electrical steel sheet according to (1) or (2) , in the production process comprising steelmaking, hot rolling, hot-rolled sheet annealing, pickling, cold rolling, and finish annealing, components in steelmaking A method for producing a non-oriented electrical steel sheet, wherein the molten steel after adjustment is not subjected to desulfurization treatment with any one or more of desulfurization flux, Ca alloy, Mg alloy, or REM.
(4) The method for producing a non-oriented electrical steel sheet according to (3) , wherein the slab heating temperature before hot rolling is 1000 ° C. or higher and 1150 ° C. or lower.
(5) The method for producing a non-oriented electrical steel sheet according to (3) or (4) , wherein hot-rolled sheet annealing is performed at 900 ° C. or higher and 1150 ° C. or lower prior to pickling.
本発明は、低Ti化や長時間焼鈍を施さなくても歪取焼鈍後の結晶粒成長および磁気特性を改善せしめるもので、コスト増加や生産性低下の問題を解消しうる。 The present invention improves crystal grain growth and magnetic properties after strain relief annealing without reducing Ti or annealing for a long time, and can solve the problems of increased cost and reduced productivity.
本発明者らは、Tiを極度に低減することなく、また製造の途中工程で長時間焼鈍を施すことなく、歪取焼鈍後の結晶粒成長を改善する方法について鋭意研究を行なった。その結果、歪取焼鈍前に相当量のTiが固溶しており、それが歪取焼鈍時にTi炭化物として微細析出し、結晶粒成長を著しく阻害していることを突き止めた。この固溶Tiを低減する方法についてさらに研究を進めた結果、Ti硫化物あるいはTi炭硫化物を生成することで固溶Ti量が低減して歪取焼鈍後の結晶粒成長が改善することを知見し、本発明を完成させた。 The inventors of the present invention have conducted intensive research on a method for improving crystal grain growth after strain relief annealing without extremely reducing Ti and without annealing for a long time during the manufacturing process. As a result, it was found that a considerable amount of Ti was dissolved before strain relief annealing, and that it was finely precipitated as Ti carbide during strain relief annealing, which markedly hindered crystal grain growth. As a result of further research on the method of reducing this solid solution Ti, it was found that the generation of Ti sulfide or Ti carbon sulfide reduces the amount of solid solution Ti and improves the grain growth after strain relief annealing. As a result, the present invention has been completed.
以下に本発明による無方向性電磁鋼板における鋼成分組成の数値限定理由について述べる。 The reason for limiting the numerical values of the steel composition in the non-oriented electrical steel sheet according to the present invention will be described below.
Siは電気抵抗を増加させるために有効な元素であるが、過度に添加すると冷延性を著しく悪くするため3.5%を上限とした。 Si is an effective element for increasing the electric resistance, but if added excessively, the cold rolling property is remarkably deteriorated, so the upper limit was made 3.5%.
Mnは硫化物(MnS)を生成する元素であり、無方向性電磁鋼板では一般的に0.2%程度かそれ以上添加される。ところがTi硫化物あるいはTi炭硫化物を形成させる本発明においてはMnSの生成を抑制する必要があり、Mnの上限を0.15%と規定した。更に望ましくは0.10%以下である。 Mn is an element that generates sulfide (MnS), and is generally added to about 0.2% or more in a non-oriented electrical steel sheet. However, in the present invention for forming Ti sulfide or Ti carbon sulfide, it is necessary to suppress the formation of MnS, and the upper limit of Mn is defined as 0.15%. More desirably, it is 0.10% or less.
Alは脱酸と鋼中の窒素を固定するために必要な元素であり、その目的のためには0.1%以上添加する必要がある。またSi同様に電気抵抗を増加させるのに有効な元素であるが、添加量が3.0%を超えるとSi同様に硬度上昇を招くのに加え、鋳造性を悪化させるため、生産性を考慮して3.0%を上限とした。 Al is an element necessary for deoxidation and fixing nitrogen in steel, and for that purpose, it is necessary to add 0.1% or more. In addition, it is an element effective for increasing electrical resistance like Si, but if the added amount exceeds 3.0%, it causes hardness increase like Si and deteriorates castability. The upper limit was 3.0%.
Cは磁気時効を起こすことがよく知られているため0.0050%以下に規定した。ただしTi炭硫化物の生成に必要な元素であることから、好ましくは0.0010%以上である。 Since C is well known to cause magnetic aging, it is defined as 0.0050% or less. However, since it is an element necessary for the production of Ti carbon sulfide, it is preferably 0.0010% or more.
Tiは本発明の必須元素であり硫化物あるいは炭硫化物を生成させる観点から、0.0020%以上に規定した。ただしTi含有量が多くなりすぎるとその制御にかかわらず結晶粒成長が悪くなるため、上限を0.010%とした。 Ti is an essential element of the present invention, and is specified to be 0.0020% or more from the viewpoint of producing sulfide or carbon sulfide. However, if the Ti content becomes too high, the crystal grain growth becomes worse regardless of the control, so the upper limit was made 0.010%.
Sは本発明の必須元素である。0.0010%未満ではTi硫化物あるいはTi炭硫化物の生成が不十分であることから、0.0010%以上に規定した。より安定的に析出物を生成するために好ましくは0.0020%以上、さらに好ましくは0.0030%以上である。ただしS含有量が多くなりすぎると、その制御にかかわらず結晶粒成長が悪化するため、上限を0.0050%とした。 S is an essential element of the present invention. If it is less than 0.0010%, Ti sulfide or Ti carbon sulfide is insufficiently produced, so it was specified to be 0.0010% or more. In order to produce a precipitate more stably, it is preferably 0.0020% or more, and more preferably 0.0030% or more. However, if the S content becomes too large, the crystal grain growth deteriorates regardless of the control, so the upper limit was made 0.0050%.
固溶Ti量については、0.0020%以上では結晶粒成長を著しく抑制するため、0.0020%未満と規定した。さらに好ましくは0.0015%未満、より好ましくは0.0010%未満である。ここで規定する固溶Ti量とは、歪取焼鈍前の鋼板サンプルを機械研磨あるいは熱アルカリで表面コーティング除去後、電解処理にて採取した抽出残渣のTi濃度を求め、鋼板中のTi総量から差し引いて求めたものである。 The amount of solid solution Ti was specified to be less than 0.0020% because 0.0020% or more significantly suppresses crystal grain growth. More preferably, it is less than 0.0015%, More preferably, it is less than 0.0010%. The solute Ti amount specified here is obtained by obtaining the Ti concentration of the extraction residue collected by electrolytic treatment after removing the surface coating with mechanical polishing or hot alkali on the steel plate sample before strain relief annealing, and from the total amount of Ti in the steel plate It is obtained by subtracting.
Snは磁性に好ましくない{111}系の方位を減少させて磁束密度の向上効果がある。また仕上焼鈍や歪取焼鈍時に焼鈍雰囲気に含まれる窒素が鋼板中に侵入するのを抑制して、鉄損劣化を防ぐ効果がある。これらの目的のために積極的に添加してもよい。その場合、効果が得られる0.0050%を下限、効果が飽和する0.20%を上限として規定した。 Sn has the effect of improving the magnetic flux density by reducing the {111} -type orientation which is undesirable for magnetism. Moreover, it has the effect of suppressing iron loss deterioration by suppressing the nitrogen contained in the annealing atmosphere from entering the steel sheet during finish annealing or strain relief annealing. You may add actively for these purposes. In that case, 0.0050% at which the effect was obtained was defined as the lower limit, and 0.20% at which the effect was saturated was defined as the upper limit.
Ti硫化物あるいはTi炭硫化物は本発明における重要な析出物である。本発明の発案に際し、Ti炭化物の析出温度が800℃付近であること、一方でTi硫化物あるいはTi炭硫化物の析出温度が1000℃付近であることを見出した。前述の通り、歪取焼鈍前の固溶Ti量を0.0020%以下にすることで歪取焼鈍時の結晶粒成長が改善することを知見したが、製造工程を考慮した場合、両者の析出温度の違いは大きい。すなわち、Ti炭化物の析出処理を行なうとすれば800℃程度で行なう必要があるが、このような低温で十分な析出量を得るためには10分以上の長時間焼鈍が必要となる。また、従来の製造工程を増やさないようにするためには、例えば熱延板焼鈍を兼ねる必要があるが、焼鈍温度800℃で熱延板焼鈍の目的である熱延板の結晶粒径を大きくするためには30分以上の長時間焼鈍が必要となる。従って、実際の製造プロセスとしては、例えば、熱延板焼鈍を箱焼鈍で行なう等の制約が生じてしまう。一方、Ti硫化物あるいはTi炭硫化物の場合、1000℃程度と比較的高温であるために析出処理は短時間で十分である。例えば、熱延板焼鈍は1000℃で60秒程度の連続焼鈍で十分であり、余計な工程付与や長時間焼鈍は不要である。このような効果が得られる鋼板として、歪取焼鈍前にTi硫化物あるいはTi炭硫化物が鋼板内部に存在することが必要である。その存在の確認方法の一例としては、歪取焼鈍前サンプルから抽出レプリカを採取し、透過型電子顕微鏡(TEM)によって析出物観察し、EDS分析によってTiとSの双方のピークが確認することができる。 Ti sulfide or Ti carbon sulfide is an important precipitate in the present invention. In the idea of the present invention, it has been found that the precipitation temperature of Ti carbide is around 800 ° C., while the precipitation temperature of Ti sulfide or Ti carbon sulfide is around 1000 ° C. As mentioned above, it was found that the grain growth during strain relief annealing was improved by making the solid solution Ti amount before strain relief annealing 0.0020% or less, but when considering the manufacturing process, the precipitation temperature of both The difference is big. That is, if the Ti carbide precipitation treatment is performed, it is necessary to perform the treatment at about 800 ° C. However, in order to obtain a sufficient precipitation amount at such a low temperature, a long annealing time of 10 minutes or more is required. In order not to increase the number of conventional manufacturing processes, for example, it is necessary to double the hot-rolled sheet annealing, but the crystal grain size of the hot-rolled sheet, which is the purpose of hot-rolled sheet annealing at an annealing temperature of 800 ° C, is increased. In order to do so, annealing for 30 minutes or more is required. Therefore, as an actual manufacturing process, for example, restrictions such as performing hot-rolled sheet annealing by box annealing may occur. On the other hand, in the case of Ti sulfide or Ti carbosulfide, since it is a relatively high temperature of about 1000 ° C., the precipitation treatment is sufficient in a short time. For example, continuous annealing for about 60 seconds at 1000 ° C. is sufficient for hot-rolled sheet annealing, and it is not necessary to add an extra process or to anneal for a long time. In order to obtain such an effect, it is necessary that Ti sulfide or Ti carbosulfide be present inside the steel plate before strain relief annealing. An example of a method for confirming the presence is to extract an extract replica from a sample before strain relief annealing, observe the precipitate with a transmission electron microscope (TEM), and confirm both Ti and S peaks by EDS analysis. it can.
歪取焼鈍前の平均結晶粒径については、打抜き加工性を改善するために40μm以下と規定した。40μmを超える結晶粒径では打ち抜き端面のダレやカエリが大きくなって、鋼板がうまく積層できない。このような結晶粒径を得るため、仕上焼鈍温度および焼鈍時間は適宜調整できるものとする。なお歪取焼鈍後の結晶粒径については60μm未満では十分な鉄損改善が得られないため、60μm以上に規定した。 The average grain size before strain relief annealing was specified to be 40 μm or less in order to improve the punching workability. When the crystal grain size exceeds 40 μm, the sagging and burrs of the punched end face become large, and the steel sheets cannot be laminated successfully. In order to obtain such a crystal grain size, the finish annealing temperature and the annealing time can be adjusted as appropriate. The crystal grain size after strain relief annealing was set to 60 μm or more because sufficient iron loss improvement could not be obtained if it was less than 60 μm.
次に本発明における無方向性電磁鋼板の製造条件の限定理由を示す。 Next, the reasons for limiting the production conditions of the non-oriented electrical steel sheet in the present invention will be shown.
成分調整が完了した溶鋼に脱硫フラックス、Ca合金、Mg合金やREMを添加することは、鋼中のS低減あるいは粗大析出させる有効手段であるが、これらの処理によってTi硫化物あるいはTi炭硫化物を生成するSが枯渇してしまっては意味がないので、これらの脱硫処理は行なわないようにすることが必要である。 Adding desulfurized flux, Ca alloy, Mg alloy and REM to the molten steel whose component adjustment has been completed is an effective means to reduce S or coarse precipitates in the steel. By these treatments, Ti sulfide or Ti carbon sulfide Since there is no point in depleting the S that produces, it is necessary not to perform these desulfurization treatments.
熱延前のスラブ加熱では、Ti硫化物あるいはTi炭硫化物の生成と粗大化を図ることが好ましい。1150℃を超えると固溶してしまうため、上限を1150℃以下とした。なお下限は熱延性を考慮して1000℃以上とした。 In the slab heating before hot rolling, it is preferable to produce and coarsen Ti sulfide or Ti carbosulfide. The upper limit was set to 1150 ° C. or lower because it would dissolve at a temperature exceeding 1150 ° C. The lower limit was set to 1000 ° C. or higher in consideration of hot ductility.
熱延板焼鈍も熱延同様、析出物制御の観点から900℃以上1150℃以下に規定した。900℃未満では析出および粗大化に時間を要するし、1150℃を超えると析出物の固溶が進んでしまい、結晶粒成長が逆に悪化してしまうからである。 Similarly to hot rolling, hot-rolled sheet annealing was set to 900 ° C or higher and 1150 ° C or lower from the viewpoint of precipitate control. When the temperature is lower than 900 ° C., it takes time for precipitation and coarsening, and when the temperature exceeds 1150 ° C., solid solution of the precipitate advances, and the crystal grain growth worsens.
冷延前の結晶粒径は特に磁束密度を左右する重要因子であることから、所要の冷延前粒径を得るためにこの温度範囲で適宜調整できるものとする。焼鈍時間についても結晶粒成長に応じて適宜調整可能なものとする。 Since the crystal grain size before cold rolling is an important factor that particularly affects the magnetic flux density, it can be appropriately adjusted in this temperature range in order to obtain the required grain size before cold rolling. The annealing time can be appropriately adjusted according to the crystal grain growth.
実験室の真空溶解炉にて、質量%で、C:0.0015%、Si:1.5%、Al:0.6%、S:0.0029%、Ti:0.0032%、Sn:0.02%を含有し、残部Feおよび不可避的不純物からなる鋼で、Mnを質量%で0.05〜0.5%まで8水準変化させた鋼片を作製した。これらの鋼片に対し、1100℃で60分の加熱を施した後、直ちに熱延して板厚2.5mmとし、1000℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとした。このようにして得られた冷延板に800℃で30秒間の仕上焼鈍を施した後、750℃で2時間の歪取焼鈍を行なった。なお、歪取焼鈍前の結晶粒径はいずれの試料ともに30μm以下であった。表1に示す通り、本発明の条件を満たすMn:0.15%以下の試料A1〜A4において、歪取焼鈍後の結晶粒径が60μm以上で3.0W/kg以下の良好な鉄損が得られた。 In a laboratory vacuum melting furnace, it contains, in mass%, C: 0.0015%, Si: 1.5%, Al: 0.6%, S: 0.0029%, Ti: 0.0032%, Sn: 0.02%, the remaining Fe and inevitable A steel slab made of steel impurities with Mn changed from 0.05 to 0.5% by mass in 8 levels was prepared. These steel slabs were heated at 1100 ° C for 60 minutes, then immediately hot rolled to a sheet thickness of 2.5mm, and subjected to hot rolled sheet annealing at 1000 ° C for 60 seconds, with a single cold rolling. The plate thickness was 0.50 mm. The cold-rolled sheet thus obtained was subjected to finish annealing at 800 ° C. for 30 seconds and then subjected to strain relief annealing at 750 ° C. for 2 hours. The crystal grain size before strain relief annealing was 30 μm or less for all samples. As shown in Table 1, in Mn: 0.15% or less of samples A1 to A4 that satisfy the conditions of the present invention, a good iron loss of 3.0 W / kg or less was obtained when the crystal grain size after strain relief annealing was 60 μm or more. .
実験室の真空溶解炉にて、質量%で、C:0.0032%、Si:2.1%、Mn:0.10%、Al:0.3%、Ti:0.0037%を含有し、残部Feおよび不可避的不純物からなる鋼で、Sを0.0005〜0.0080%まで変化させた鋼片を作製した。これらの鋼片に対し、1050℃で60分の加熱を施した後、直ちに熱延して板厚2.0mmとし、950℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとした。このようにして得られた冷延板に770℃で30秒間の仕上焼鈍を施した後、750℃で2時間の歪取焼鈍を行なった。なお、歪取焼鈍前の結晶粒径はいずれの試料ともに40μm以下であった。表2に示す通り、本発明の条件を満たすS:0.0010%以上0.0050%以下の試料B3〜B6において、歪取焼鈍後の結晶粒径が60μm以上で3.0W/kg以下の良好な鉄損が得られた。 In a laboratory vacuum melting furnace, steel containing mass: C: 0.0032%, Si: 2.1%, Mn: 0.10%, Al: 0.3%, Ti: 0.0037%, the balance being Fe and inevitable impurities And the steel piece which changed S to 0.0005 to 0.0080% was produced. These steel slabs were heated at 1050 ° C for 60 minutes, and then immediately hot-rolled to a thickness of 2.0 mm, and subjected to hot-rolled sheet annealing at 950 ° C for 60 seconds, with a single cold rolling. The plate thickness was 0.50 mm. The cold-rolled sheet thus obtained was subjected to finish annealing at 770 ° C. for 30 seconds and then subjected to strain relief annealing at 750 ° C. for 2 hours. The crystal grain size before strain relief annealing was 40 μm or less for all samples. As shown in Table 2, S: 0.0010% or more and 0.0050% or less of sample B3 to B6 satisfying the conditions of the present invention, the grain size after strain relief annealing is 60 μm or more and good iron loss of 3.0 W / kg or less. Obtained.
実験室の真空溶解炉にて、質量%で、C:0.0032%、Si:2.1%、Mn:0.10%、Al:0.3%、Ti:0.0037%を含有し、残部Feおよび不可避的不純物からなる鋼で、Sを0.0005〜0.0080%まで変化させ、成分調整後の溶鋼に脱硫フラックス、Ca合金、Mg合金やREMのいずれか1以上による脱硫処理を行なったものと、脱硫処理を行わないのもで鋼片を作製した。これらの鋼片に対し、900〜1250℃で60分の加熱を施した後、直ちに熱延して板厚2.0mmとし、800〜1250℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとした。このようにして得られた冷延板に770℃で30秒間の仕上焼鈍を施した後、750℃で2時間の歪取焼鈍を行なった。表3に示す通り、本発明の条件を満たす試料において、歪取焼鈍後の結晶粒径が60μm以上で3.0W/kg以下の良好な鉄損が得られた。 In a laboratory vacuum melting furnace, steel containing mass: C: 0.0032%, Si: 2.1%, Mn: 0.10%, Al: 0.3%, Ti: 0.0037%, the balance being Fe and inevitable impurities In this case, the S was changed from 0.0005 to 0.0080%, and the molten steel after the component adjustment was subjected to desulfurization treatment with one or more of desulfurization flux, Ca alloy, Mg alloy and REM, and desulfurization treatment was not performed. A steel piece was prepared. These steel slabs were heated at 900-1250 ° C for 60 minutes, and then immediately hot-rolled to a sheet thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 800-1250 ° C for 60 seconds. The plate thickness was 0.50 mm by cold rolling. The cold-rolled sheet thus obtained was subjected to finish annealing at 770 ° C. for 30 seconds and then subjected to strain relief annealing at 750 ° C. for 2 hours. As shown in Table 3, in the sample satisfying the conditions of the present invention, a good iron loss was obtained in which the crystal grain size after strain relief annealing was 60 μm or more and 3.0 W / kg or less.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006094186A JP4598709B2 (en) | 2006-03-30 | 2006-03-30 | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006094186A JP4598709B2 (en) | 2006-03-30 | 2006-03-30 | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007270177A JP2007270177A (en) | 2007-10-18 |
JP4598709B2 true JP4598709B2 (en) | 2010-12-15 |
Family
ID=38673283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006094186A Active JP4598709B2 (en) | 2006-03-30 | 2006-03-30 | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4598709B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269532A (en) * | 1995-03-31 | 1996-10-15 | Kawasaki Steel Corp | Method of refining steel for nonoriented silicon steel sheet |
JP2003105508A (en) * | 2001-09-27 | 2003-04-09 | Nippon Steel Corp | Non-oriented electrical steel sheet with excellent workability and method for producing the same |
JP2003113451A (en) * | 2001-10-05 | 2003-04-18 | Kawasaki Steel Corp | Non-oriented electromagnetic steel sheet for electromotive power steering motor and manufacturing therefor |
JP2005179710A (en) * | 2003-12-17 | 2005-07-07 | Nippon Steel Corp | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method |
-
2006
- 2006-03-30 JP JP2006094186A patent/JP4598709B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08269532A (en) * | 1995-03-31 | 1996-10-15 | Kawasaki Steel Corp | Method of refining steel for nonoriented silicon steel sheet |
JP2003105508A (en) * | 2001-09-27 | 2003-04-09 | Nippon Steel Corp | Non-oriented electrical steel sheet with excellent workability and method for producing the same |
JP2003113451A (en) * | 2001-10-05 | 2003-04-18 | Kawasaki Steel Corp | Non-oriented electromagnetic steel sheet for electromotive power steering motor and manufacturing therefor |
JP2005179710A (en) * | 2003-12-17 | 2005-07-07 | Nippon Steel Corp | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2007270177A (en) | 2007-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101682284B1 (en) | Non-oriented electrical steel sheet | |
EP3404124B1 (en) | Non-oriented electrical steel sheet and production method thereof | |
KR101963056B1 (en) | Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet | |
KR101508082B1 (en) | Method of producing non-oriented electrical steel sheet | |
KR102530719B1 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
WO2014168136A1 (en) | Non-oriented magnetic steel sheet and method for producing same | |
JP4586741B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
TW200422408A (en) | Non-oriented electromagnetic steel plate with excellent iron loss property and the production method thereof | |
US11142813B2 (en) | Non-oriented electrical steel sheet and manufacturing method therefor | |
KR101457839B1 (en) | Non-oriented electromagnetic steel sheet | |
TWI550104B (en) | Non-directional electromagnetic steel sheet with excellent high frequency iron loss characteristics | |
JP5263012B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
KR102740117B1 (en) | Non-oriented electrical steel sheet and method for manufacturing the same | |
JP4589747B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method | |
JP4267437B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method | |
CN119698491A (en) | High-strength non-oriented electromagnetic steel sheet and method for producing same | |
JP4598709B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method | |
EP4317475A1 (en) | Non-oriented electromagnetic steel sheet and manufacturing method therefor | |
KR100872607B1 (en) | Nonoriented electromagnetic steel sheet excellent in blankability and magnetic characteristics after strain removal annealing, and method for production thereof | |
JP4267439B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method | |
CN112930408A (en) | Method for producing non-oriented electromagnetic steel sheet | |
JP7492163B2 (en) | Non-oriented electrical steel sheet, manufacturing method thereof, and hot-rolled steel sheet | |
TWI718670B (en) | Non-directional electromagnetic steel sheet and method for manufacturing slab cast piece as its raw material | |
JPH1112699A (en) | Non-oriented electrical steel sheet excellent in magnetic properties and method of manufacturing the same | |
JP2000248344A (en) | Nonoriented silicon steel sheet excellent in magnetic characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100914 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100924 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4598709 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |