[go: up one dir, main page]

JP4593890B2 - Manufacturing method of semiconductor light emitting device - Google Patents

Manufacturing method of semiconductor light emitting device Download PDF

Info

Publication number
JP4593890B2
JP4593890B2 JP2003202737A JP2003202737A JP4593890B2 JP 4593890 B2 JP4593890 B2 JP 4593890B2 JP 2003202737 A JP2003202737 A JP 2003202737A JP 2003202737 A JP2003202737 A JP 2003202737A JP 4593890 B2 JP4593890 B2 JP 4593890B2
Authority
JP
Japan
Prior art keywords
sapphire substrate
light emitting
layer
single crystal
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003202737A
Other languages
Japanese (ja)
Other versions
JP2005047718A (en
Inventor
健一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003202737A priority Critical patent/JP4593890B2/en
Publication of JP2005047718A publication Critical patent/JP2005047718A/en
Application granted granted Critical
Publication of JP4593890B2 publication Critical patent/JP4593890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子用単結晶サファイア基板の製造方法に関するものであり、特にその半導体発光素子が青色LED、紫外LED、白色LED等のLED素子を含むGaN系半導体結晶の製造方法に関する。
【0002】
【従来の技術】
LEDにおいては、発光層で生じた光をどれだけ効率良く外界に取り出せるか(所謂、光取り出し効率)は重要な問題である。そのために従来は、発光層から上方に向かった光については、外界へ障害物とならないよう、上部電極を透明電極としたり、発光層から下方に向かった光については、反射層を設けて上方に返すなど、種々の工夫が施されている。
【0003】
発光層から上下の方向に発せられた光については、上記のように電極の透明化や反射層を設けることによって、外界への光取り出し効率を向上させることが可能であるが、発光層から横方向に向かって生じた光の内、屈折率差で規定される全反射角以内で側壁に達する光は外部に放射され得るが、その他の多くの光は、例えば側壁で反射を繰り返すなどして、素子内で吸収され減衰し消滅するのみである。このような横方向の光は、上下のクラッド層あるいは基板(サファイア基板)と上側のクラッド層、あるいは基板と上部電極(更には素子外部のコーティング物質など)によって閉じ込められ、横方向に伝播する光である。該横方向に伝播する光は、発光層で生じる全光量のうちの多くを占めており、全体の60%に達する場合もある。
【0004】
この様な横方向に伝搬する光を効率良く外界に取り出す手段として、半導体層を成長させるための第一の結晶層表面に凹凸が加工され、その上に、前記結晶層とは異なる屈折率を有する半導体材料からなる第二の結晶層が、バッファ層を介してまたは直接的に、該凹凸を埋め込んで成長しており、その上に、発光層を含む半導体結晶層が積層された素子構造とする半導体発光素子が提案されている(特許文献1、非特許文献1参照)。
【0005】
同様の目的のために、発光領域層から基板に入射する光を散乱させる光散乱層を設け、発光領域層から基板に入射する光が全反射する割合を減少させる半導体発光素子も提案されている(特許文献2参照)。
【0006】
また、上記の方法で横方向に伝搬し、発光素子の側面から出た光を有効に利用して、高効率の白色LEDを作成する方法として半導体発光素子を囲んでリフレクター部を透明樹脂で作製し、そのリフレクター部には半導体発光素子からの発光によって励起されて発光する蛍光物質を分散する方法が提案されている(特許文献3参照)。
【0007】
【特許文献1】
特開2002−280611
【0008】
【特許文献2】
特開2003−60227
【0009】
【特許文献3】
特開2003−142737
【0010】
【非特許文献1】
日経エレクトロニクス2003年3月31日号p128〜P133
【0011】
【発明が解決しようとする課題】
前記凹凸の形成方法はサファイア基板の主面にフォトレジストを形成し、フォトリソグラフィによってフォトレジストに開口を形成し、フォトレジストをマスクとしてその下側のサファイア基板本体を選択的にエッチングして凹凸を形成した後、フォトレジストを除去する方法であり、このエッチングはイオンビームエッチングあるいは、反応性イオンエッチングのようなドライエッチングによる方法が主であった。
【0012】
しかし、イオンビームエッチングあるいは、反応性イオンエッチングは加工速度が非常に遅く、さらに一度に処理できる枚数にも限りがあるという問題があり量産には適さなかった。また、マスクを使ってドライエッチングを行うため、エッチング中にマスク自体もエッチングされるため、マスクの端部が不規則に波打ち、ドライエツチングによって形成された凹凸の端部も波打つ結果となり、その後の窒化物半導体のエピ成長に悪影響を与えるという問題が有った。
【0013】
本発明の課題は、上記問題を解決するため、サファイア基板の主面に効率良く量産に適した方法で凹凸を作製した半導体発光素子用サファイア基板およびその製造方法を提供することである。
【0014】
【課題を解決するための手段】
上記問題を解決するため、本発明は、角錐形状の複数のエッチピットが、少なくとも一方主面に形成された単結晶サファイア基板と、前記単結晶サファイア基板の前記一方主面の前記エッチピット上に積層された、発光層を含む複数の半導体層と、を有する半導体発光素子の製造方法であって、熱リン酸または熱リン酸と熱硫酸の混酸または熱溶融水酸化カリウムを用いて、単結晶サファイア基板をウェットエッチングし、前記単結晶サファイア基板の少なくとも一方主面に角錐形状の複数の前記エッチピットを形成する工程を備えることを特徴とする半導体発光素子の製造方法を提供する。
【0015】
また、前記ウェットエッチングに先がけて、前記単結晶サファイア基板に熱または圧力を加え、前記単結晶サファイア基板に結晶欠陥を誘起する工程を備えることが好ましい。
【0016】
【発明の実施の形態】
以下、GaN系材料を用いたLED(GaN系LED)を例として挙げ、本発明の実施の形態を説明する。
【0017】
図1に示すように本発明の製造方法に用いられる単結晶サファイア基板1は主面1a上に、角錐状のエッチピット1bを複数形成したものである。この様な単結晶サファイア基板1は、初めにEFG法によって面方位、軸方位の定まったサファイア素材を引き上げ、次に、この素材を適宜切断、研削加工、研磨加工、洗浄を施し、窒化物半導体を成膜するための基板を作製し、引き続き、当該基板を熱リン酸中等でウェットエッチング処理を行うと、条件により上記エッチピット1bを形成できる。このエッチング処理は、適切な治具を用いることにより、一度に多数枚を処理できるため、非常に生産性が高く、量産に適している。
【0018】
従来のエッチング方法では、マスクを使ってドライエッチングを行うため、生産性が悪いだけでなく、エッチング中にマスク自体もエッチングされるため、マスクの端部が不規則に波打ち、ドライエツチングによって形成された凹凸の端部も波打つ結果となり、その後の窒化物半導体のエピ成長に悪影響を与えるという問題が有った。これに対して、本発明の製造方法で用いられるエッチピット1bは、ウェットエッチングにより結晶本来の性質によって出来る凹部であり、このエッチピット1bを利用することで、ドライエッチングに依る場合のように端面が波打つという不具合が無い。
【0019】
この時に出来るエッチピット1bの形状は、角錐状であることが特徴であり、条件によって変わるが、通常は三角錐である。この角錐状の形状は、この単結晶サファイア基板1を利用して作製するLED等の発光素子の光取り出し効率を高めるために有効である。
【0020】
このエッチピット1bの大きさは一辺が300μm以下となるように温度と時間の条件を調整することが好ましい。これは、LED素子の大きさが通常300μm×300μm程度であり、横方向の光を効率よく取り出すためにはエッチピットの大きさが少なくともこのサイズ以下に成るようにコントロールする必要が有るためである。ここでエッチピットの深さの好ましい範囲は、幾何学的な考察から250μm以下が好ましく、また、LEDの製造工程で、一般的にダイシング工程の前に基板をバックグラインドを行い、厚みを薄くすることからもエッチピットの深さは250μm以下が好ましい。
【0021】
また、エッチピット1bの数も同様に横方向の光を効率よく取り出すために、10個/cm以上、1010個/cm以下であることが好ましい。なお、エッチピットの数をコントロールするために、単結晶サファイア基板1に熱や圧力を加えて故意に結晶欠陥を導入した後、エッチング処理を行っても良い。例えば、1200℃〜1400℃で20気圧を加えた後、更に熱処理を行う等の処理を行っても良い。
【0022】
また、エッチピット1bを主面1aに垂直な方向から見た時の底辺の少なくとも1辺がサファイアのA軸に平行または垂直であるか、もしくはM軸に平行または垂直であることにより、当該基板の上に成長させるGaNなどの欠陥の低減に有効である。これはサファイア基板1を適切な条件でエッチングを行うことにより達成できる。
【0023】
エッチピット1bの数と大きさは熱リン酸等の温度と処理時間に依って決まる。また、エッチピット1bの向きは単結晶サファイア基板1の結晶方位と軸方位とによって決まる。このエッチピット1bの向きと形状を一定にするために前記主面1aはC面±2°以内、A面±2°以内、R面±2°以内、M面±2°以内またはM面から30°±2°以内のいずれかを満たす必要がある。
【0024】
また、以上の説明ではウェットエッチングに熱リン酸を用いたが、エッチング液はこれに限定されず、熱リン酸と熱硫酸の混酸でも良く、また、熱溶融水酸化カリウムなどその他の薬品を用いても良い。
【0025】
なお、熱リン酸によるサファイアのエッチングレートは各温度で図3のようになった。本発明に於いて、熱リン酸または熱リン酸と熱硫酸の混酸または熱溶融水酸化カリウムを用いるのは、例えば図3の様にエッチングレートが温度によって正確にコントロールできるため、エッチピット1bの作製に最も適しているためである。
【0026】
また、本発明にEFG法によって作製したサファイア基板1を用いるのは、EFG法はサファイアの製造方法の内、最も成長スピードを速くすることが出来るため、エッチピットを有効に利用するのに適した条件を作り出すことが可能であるためである。
【0027】
以上のように本発明の製造方法によれば、サファイア基板に特別なマスクの形成を必要とせず、200℃〜400℃の熱リン酸等でウェットエッチングを行うという比較的簡単な工程でエッチピット1bを備えたサファイア基板1を比較的安価に量産することが出来る。即ち、適切な治具を用いることにより、一度に多数枚を処理できるため、従来の反応性イオンエッチングによる方法に比べて非常に生産性が高く、量産に適している。
【0028】
次に本発明のエッチピット1bを備えたサファイア基板1を用いた製造方法で作製された半導体発光素子について説明する。
【0029】
上記サファイア基板1の主面1aに窒化物半導体をエピタキシャル成長させると、窒化物半導体の縦方向の成長と横方向の成長が合体して平坦な表面を有する窒化物半導体膜が形成される。この窒化物半導体を成膜した基板を用いて発光素子を作製する。この時、角錐状のエッチピット1bは窒化物半導体で完全に埋まっていても良く、あるいはエッチピットと窒化物半導体の間に空洞が有っても構わないが、好ましくは完全に埋まっている方が良い。
【0030】
このようにして作製されたLEDの例を図2に示す。
【0031】
単結晶サファイア基板1のエッチピット1bを形成した主面1a上に、AlGaN低温バッファ層2を介してn型GaNコンタクト層3、n型AlGaNクラッド層4、GaN系半導体発光層(MQW構造)5、p型AlGaNクラッド層6、p型GaNコンタクト層7を形成し、この上に上部電極(通常はp型電極)8を、上記n型GaNコンタクト層3上に下部電極(通常はn型電極)9を形成したものである。
【0032】
上記エッチピット1bを有する主面1aは光散乱層を成し、これにより、GaN系半導体発光層5から出た光の内、下方に向かう光は主面1aの光散乱層で散乱され、図2の矢印で示す横方向に光を取り出すことが出来る。これにより、GaN系半導体発光層5から出た光はGaN層内で反射を繰り返して減衰することが無く、LED全体の光取り出し効率の改善が出来る。
【0033】
なお、前記単結晶サファイア基板1の主面1bから、第二の結晶層であるAlGaN低温バッファ層2等が実質的にファセット構造を形成しながら成長していることが好ましい。
【0034】
また、前記GaN系半導体発光層5から発せられる光の波長における、単結晶サファイア基板1の屈折率と第二の結晶層であるAlGaN低温バッファ層2等の屈折率との差が0.05以上であることが好ましい。
【0035】
なお、上記バッファ層としてはGaN系またはAlN系のいずれを用いてもよく、その上に形成する半導体結晶層としてはGaN系を用いる。
【0036】
さらに他の実施形態として、図示していないが、前記単結晶サファイア基板1の主面1a上に、第一のGaN系半導体結晶がエッチピット1bを覆って凹凸をなすように成長し、該凹凸の少なくとも一部を覆って、第一のGaN系半導体結晶とは異なる屈折率を有する第二のGaN系半導体結晶が成長し、さらに第三のGaN系半導体結晶が前記凹凸を平坦化するまで成長し、その上に発光層を含む半導体結晶層が積層された素子構造とすることもできる。
【0037】
あるいは、単結晶サファイア基板1の主面1a上に、第一のGaN系半導体結晶がエッチピット1bを覆って凹凸をなすように成長し、該凹凸の少なくとも凸部を膜状に覆って第二のGaN系半導体結晶が成長し、さらにこれを覆って第三のGaN系半導体結晶が前記凹凸を平坦化するまで成長し、その上に発光層を含む半導体結晶層が積層された素子構造を有し、前記第二のGaN系半導体結晶が多層膜構造を有するようにしても良い。
【0038】
なお、通常はこの半導体発光素子は上記エッチピット1bを有するサファイア基板1上に作製され、サファイア基板1と共にダイシングなどの切断を行い、パッケージングを行い半導体発光素子としての機能を果たす。しかし、場合によっては半導体発光素子部分をサファイア基板1から剥離してさらに高効率のLEDとする方法も提案されている。その様な場合にも当該エッチピット1bを有するサファイア基板1は、エッチピット1bと窒化物半導体膜との間に空洞を有する構造とすることにより、半導体発光素子をサファイア基板から剥離することが容易であるという効果を有する。
【0039】
さらに、本発明の製造方法で使用されるエッチピット1bを有するサファイア基板1は、半導体発光素子の製造以外の用途として、当該エッチピット1bを有するサファイア基板1上に低転転位の窒化物半導体層を形成した後、サファイア基板から低転位の窒化物半導体を剥離して独立した窒化物半導体基板を作製する場合にも剥離が容易であるという効果も有する。
【0040】
さらに、本発明の製造方法で使用されるエッチピット1bを有するサファイア基板1は、半導体発光素子用の基板としてだけでなく、窒化物半導体を用いた電子デバイス用の基板として用いることも出来る。
【0041】
【実施例】
実施例1
本実施例では半導体素子用のエッチピットを有するサファイア基板の製造方法を説明する。
【0042】
初めにEFG法によって面方位、軸方位の定まったサファイア素材を引き上げた。本実施例では特にサファイア基板1の主面1aがC面となるようにしたが、主面1aの面方位はC面だけでなく、A面、M面、R面、M面から30度回転した面などにも適応できる。
また、これらの面から±2°以内でオフアングルしていても良い。なお、引き上げ方法は様々な方法を用いことが出来るが、特にEFG法で引き上げたサファイア基板は本発明に適している。
【0043】
次に、この素材を適宜切断、研削加工、研磨加工、洗浄を施し、窒化物半導体を成膜するための基板を作製した。引き続き、当該基板を熱リン酸中300℃で30分間エッチング処理を行ったところ、当該基板の主面1aに多数のエッチピット1bが形成された。この時、サファイア基板1の主面1a上に形成されたエッチピット1bの形状は三角錐であった。
【0044】
尚、この時エッチピットの大きさは一辺が300μm以下となるように温度と時間の条件を調整した。これは、LED素子の大きさが通常300μm×300μm程度であり、横方向の光を効率よく取り出すためにはエッチピットの大きさが少なくともこのサイズ以下に成るようにコントロールする必要が有るためである。また、エッチピットの数も同様に横方向の光を効率よく取り出すために、10個/cm以上、1010個/cm以下とした。
【0045】
なお、エッチピットの数をコントロールするために、サファイア基板に熱や圧力を加えて故意に結晶欠陥を導入した後、エッチング処理を行っても良い。
例えば、1200℃〜1400℃で20気圧を加えた後、更に熱処理を行う等の処理を行っても良い。
【0046】
また、当該エッチピットを主面に垂直な方向から見た時の底辺の少なくとも1辺がA軸に平行または垂直とすることが、当該基板の上に成長させる窒化ガリウムの欠陥の低減に有効であるが、これはサファイア基板を適切な条件でエッチングを行うことにより達成できた。
【0047】
この製造工程に於いて、サファイア基板に特別なマスクの形成を必要とせず、200℃〜400℃の熱リン酸でウェットエッチングを行うという比較的簡単な工程でエッチピット付きの基板を比較的安価に量産することが出来ることができた。即ち、適切な治具を用いることにより、一度に多数枚を処理できるため、従来の反応性イオンエッチングによる方法に比べて非常に生産性が高く、量産に適している。
【0048】
実施例2
本実施例では、図2に示すように、ファセット成長法によってサファイア基板1のエッチピット1bを埋め込んで凹凸状の光散乱面とし、GaN系LEDを製作した。
【0049】
先ず、実施例1の工程により、C面サファイア基板上にエッチピットを形成した。当該基板を洗浄後、MOVPE装置に基板を装着し、窒素ガス主成分雰囲気下で1100℃まで昇温し、サーマルクリーニングを行った。温度を500℃まで下げ、周期率表第3族原料としてトリメチルガリウム(以下TMG)を、N原料としてアンモニアを流し、厚さ30nmのAlGaN低温バッファ層2を成長させた。
【0050】
続いて温度を1000℃に昇温し原料としてTMG、アンモニアを、ドーパントとしてシランを流しn型GaN層(コンタクト層)3を成長させた。このときのGaN層の成長は、凸部の上面、凹部の底面から、断面山形でファセット面を含む尾根状の結晶として発生した後、凹部内に空洞を形成することなく、全体を埋め込む成長であった。
【0051】
ファセット構造成長において、GaN結晶のC面が完全に消滅し頂部が尖った凸状となった時点で、成長条件を横方向成長が優勢になる条件(成長温度を上昇させるなど)に切り替え、サファイア基板の上面から厚さ5μmまでGaN結晶を成長させた。上面が平坦な埋め込み層を得るためには5μmの厚膜成長が必要であった。
【0052】
続いて、n型AlGaNクラッド層4、InGaN発光層(MQW構造)5、p型AlGaNクラッド層6、p型GaNコンタクト層7を順に形成し、発光波長370nmの紫外線LED用エピ基板とし、さらに、n型コンタクト層を表出させるためのエッチング加工、電極(8,9)形成、素子分離を行い、LED素子とした。
【0053】
【発明の効果】
以上のように本発明によれば、サファイア基板の主面に効率良く量産に適した方法で凹凸を作製することが出来る。また、ウェットエッチングにより結晶本来の性質によって出来るエッチピットを利用することにより、端面が波打つという不具合の無い凹凸を形成することが出来る。さらに、この方法で作成されたサファイア基板を用いて作製されたLEDは横方向に向かう光を効率よく取り出すことが出来るので、従来よりも外部量子効率の高いLEDを提供することが出来る。
【0054】
【図面の簡単な説明】
【図1】(a)は本発明の製造方法で用いる単結晶サファイア基板の斜視図、(b)は(a)中のA部の拡大図、(c)はA部の断面図である。
【図2】本発明の製造方法で作製された半導体発光素子の構成を示す断面図である。
【図3】サファイアのエッチングレートの温度依存性を示すグラフである。
【符号の説明】
1:サファイア基板1a:主面1b:エッチピット2:AlGaN低温バッファ層3:n型GaNコンタクト層4:n型AlGaNクラッド層5:GaN系半導体発光層(MQW構造)6:p型AlGaNクラッド層7:p型GaNコンタクト層8:上部電極9:下部電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to method for producing a single-crystal sapphire substrate for semiconductor device, especially its semiconductor light emitting element is a blue LED, UV LED, a method for manufacturing a GaN-based semiconductor crystal containing an LED element, such as a white LED.
[0002]
[Prior art]
In an LED, how efficiently the light generated in the light emitting layer can be extracted to the outside (so-called light extraction efficiency) is an important problem. Therefore, conventionally, the upper electrode is a transparent electrode so that the light directed upward from the light emitting layer does not become an obstacle to the outside, or the reflective layer is provided upward for the light directed downward from the light emitting layer. Various measures are taken, such as returning.
[0003]
For light emitted in the vertical direction from the light emitting layer, it is possible to improve the light extraction efficiency to the outside world by providing a transparent electrode or a reflective layer as described above. Of the light generated in the direction, the light that reaches the side wall within the total reflection angle defined by the refractive index difference can be emitted to the outside, but many other lights are repeatedly reflected on the side wall, for example. They are only absorbed and attenuated in the device and disappear. Such lateral light is confined by the upper and lower cladding layers or the substrate (sapphire substrate) and the upper cladding layer, or the substrate and the upper electrode (and coating material outside the device, etc.) and propagates in the lateral direction. It is. The light propagating in the lateral direction occupies most of the total amount of light generated in the light emitting layer, and may reach 60% of the total.
[0004]
As a means for efficiently taking out the light propagating in the lateral direction to the outside, the surface of the first crystal layer for growing the semiconductor layer is processed to have unevenness, and a refractive index different from that of the crystal layer is formed thereon. An element structure in which a second crystal layer made of a semiconductor material having a semiconductor layer including a light-emitting layer is grown on the second crystal layer through the buffer layer or directly, while embedding the unevenness; A semiconductor light emitting device has been proposed (see Patent Document 1 and Non-Patent Document 1).
[0005]
For the same purpose, a semiconductor light emitting device is also proposed in which a light scattering layer that scatters light incident on the substrate from the light emitting region layer is provided to reduce the ratio of total reflection of light incident on the substrate from the light emitting region layer. (See Patent Document 2).
[0006]
In addition, as a method of creating a high-efficiency white LED by effectively utilizing the light that has propagated in the lateral direction by the above method and emitted from the side surface of the light-emitting element, the reflector part is made of a transparent resin by surrounding the semiconductor light-emitting element. And the method of disperse | distributing the fluorescent substance which is excited by the light emission from a semiconductor light-emitting element and light-emits is proposed in the reflector part (refer patent document 3).
[0007]
[Patent Document 1]
JP 2002-280611 A
[0008]
[Patent Document 2]
JP2003-60227
[0009]
[Patent Document 3]
JP2003-142737
[0010]
[Non-Patent Document 1]
Nikkei Electronics March 31, 2003 issue p128-P133
[0011]
[Problems to be solved by the invention]
In the method for forming the unevenness, a photoresist is formed on the main surface of the sapphire substrate, an opening is formed in the photoresist by photolithography, and the underlying sapphire substrate body is selectively etched using the photoresist as a mask. After the formation, the photoresist is removed. This etching is mainly performed by dry etching such as ion beam etching or reactive ion etching.
[0012]
However, ion beam etching or reactive ion etching has a problem that the processing speed is very slow and the number of sheets that can be processed at one time is limited, and is not suitable for mass production. In addition, since dry etching is performed using the mask, the mask itself is also etched during the etching, so that the edge of the mask is irregularly undulated, and the edge of the unevenness formed by dry etching also results in undulation. There was a problem of adversely affecting the epitaxial growth of nitride semiconductors.
[0013]
In order to solve the above problems, an object of the present invention is to provide a sapphire substrate for a semiconductor light-emitting element in which irregularities are efficiently formed on a main surface of a sapphire substrate by a method suitable for mass production, and a method for manufacturing the same.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a single crystal sapphire substrate in which a plurality of pyramid-shaped etch pits are formed on at least one main surface, and the etch pits on the one main surface of the single crystal sapphire substrate. A method of manufacturing a semiconductor light-emitting element having a plurality of semiconductor layers including a light-emitting layer, wherein a single crystal is formed using hot phosphoric acid or a mixed acid of hot phosphoric acid and hot sulfuric acid or hot molten potassium hydroxide. Provided is a method for manufacturing a semiconductor light emitting device, comprising the step of wet etching a sapphire substrate to form a plurality of pyramid-shaped etch pits on at least one main surface of the single crystal sapphire substrate.
[0015]
In addition, prior to the wet etching, it is preferable to include a step of applying heat or pressure to the single crystal sapphire substrate to induce crystal defects in the single crystal sapphire substrate.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment using the LED using a GaN-based material (GaN-based LED) will be described as an example.
[0017]
As shown in FIG. 1, a single crystal sapphire substrate 1 used in the manufacturing method of the present invention has a plurality of pyramidal etch pits 1b formed on a main surface 1a. Such a single crystal sapphire substrate 1 is obtained by first pulling up a sapphire material whose plane orientation and axial orientation are determined by the EFG method, and then subjecting this material to appropriate cutting, grinding, polishing, and cleaning, and a nitride semiconductor. When the substrate for forming a film is manufactured and subsequently the substrate is subjected to wet etching treatment in hot phosphoric acid or the like, the etch pit 1b can be formed depending on conditions. Since this etching process can process a large number of sheets at a time by using an appropriate jig, it is very productive and suitable for mass production.
[0018]
In the conventional etching method, since the mask is used for dry etching, not only the productivity is poor, but also the mask itself is etched during the etching, so that the edges of the mask are irregularly waved and formed by dry etching. As a result, the edges of the irregularities also wavy, which adversely affects the subsequent epitaxial growth of the nitride semiconductor. On the other hand, the etch pit 1b used in the manufacturing method of the present invention is a recess formed by the original nature of the crystal by wet etching, and by using this etch pit 1b, the end face as in the case of dry etching is used. There is no problem of waving.
[0019]
The shape of the etch pit 1b formed at this time is characterized by a pyramid shape, and is usually a triangular pyramid although it varies depending on conditions. This pyramid shape is effective for increasing the light extraction efficiency of a light emitting element such as an LED manufactured using the single crystal sapphire substrate 1.
[0020]
It is preferable to adjust the conditions of temperature and time so that the size of the etch pit 1b is 300 μm or less on one side. This is because the size of the LED element is usually about 300 μm × 300 μm, and it is necessary to control the size of the etch pit to be at least smaller than this size in order to efficiently extract the light in the lateral direction. . Here, the preferable range of the depth of the etch pit is preferably 250 μm or less from a geometrical viewpoint, and in the LED manufacturing process, generally the substrate is back-ground before the dicing process to reduce the thickness. Therefore, the depth of the etch pit is preferably 250 μm or less.
[0021]
Similarly, the number of etch pits 1b is preferably 10 3 / cm 2 or more and 10 10 / cm 2 or less in order to efficiently extract light in the lateral direction. In order to control the number of etch pits, the single crystal sapphire substrate 1 may be subjected to an etching process after intentionally introducing crystal defects by applying heat or pressure. For example, after applying 20 atmospheres at 1200 ° C. to 1400 ° C., a treatment such as further heat treatment may be performed.
[0022]
Further, when the etch pit 1b is viewed from a direction perpendicular to the main surface 1a, at least one side of the bottom is parallel or perpendicular to the A axis of sapphire, or parallel or perpendicular to the M axis, so that the substrate This is effective for reducing defects such as GaN grown on the substrate. This can be achieved by etching the sapphire substrate 1 under appropriate conditions.
[0023]
The number and size of the etch pits 1b are determined depending on the temperature and processing time of hot phosphoric acid or the like. The direction of the etch pit 1b is determined by the crystal orientation and the axial orientation of the single crystal sapphire substrate 1. In order to make the direction and shape of the etch pit 1b constant, the main surface 1a is within C surface ± 2 °, A surface ± 2 °, R surface ± 2 °, M surface ± 2 ° or from the M surface. It is necessary to satisfy any one of 30 ° ± 2 °.
[0024]
In the above description, hot phosphoric acid is used for wet etching, but the etching solution is not limited to this, and a mixed acid of hot phosphoric acid and hot sulfuric acid may be used, and other chemicals such as hot molten potassium hydroxide may be used. May be.
[0025]
The etching rate of sapphire with hot phosphoric acid was as shown in FIG. 3 at each temperature. In the present invention, the use of hot phosphoric acid, a mixed acid of hot phosphoric acid and hot sulfuric acid, or hot molten potassium hydroxide allows the etching rate to be accurately controlled depending on the temperature as shown in FIG. This is because it is most suitable for production.
[0026]
Further, the use of the sapphire substrate 1 produced by the EFG method in the present invention is suitable for the effective use of etch pits because the EFG method can increase the growth speed among the sapphire production methods. This is because it is possible to create conditions.
[0027]
As described above, according to the manufacturing method of the present invention, etch pits are performed in a relatively simple process of performing wet etching with hot phosphoric acid at 200 ° C. to 400 ° C. without forming a special mask on the sapphire substrate. The sapphire substrate 1 having 1b can be mass-produced at a relatively low cost. That is, since a large number of sheets can be processed at a time by using an appropriate jig, the productivity is very high as compared with the conventional reactive ion etching method, which is suitable for mass production.
[0028]
Next, a semiconductor light emitting device manufactured by a manufacturing method using the sapphire substrate 1 provided with the etch pit 1b of the present invention will be described.
[0029]
When a nitride semiconductor is epitaxially grown on the main surface 1a of the sapphire substrate 1, the growth of the nitride semiconductor in the vertical direction and the growth in the horizontal direction are combined to form a nitride semiconductor film having a flat surface. A light emitting element is manufactured using the substrate on which the nitride semiconductor is formed. At this time, the pyramid-shaped etch pit 1b may be completely filled with a nitride semiconductor, or there may be a cavity between the etch pit and the nitride semiconductor, but preferably it is completely filled. Is good.
[0030]
An example of the LED thus manufactured is shown in FIG.
[0031]
An n-type GaN contact layer 3, an n-type AlGaN cladding layer 4, and a GaN-based semiconductor light emitting layer (MQW structure) 5 are formed on the main surface 1 a on which the etch pit 1 b of the single crystal sapphire substrate 1 is formed via an AlGaN low-temperature buffer layer 2. , A p-type AlGaN cladding layer 6 and a p-type GaN contact layer 7 are formed, an upper electrode (usually a p-type electrode) 8 is formed thereon, and a lower electrode (usually an n-type electrode is disposed on the n-type GaN contact layer 3. ) 9 is formed.
[0032]
The main surface 1a having the etch pits 1b forms a light scattering layer, and thus, the light traveling downward from the light emitted from the GaN-based semiconductor light emitting layer 5 is scattered by the light scattering layer on the main surface 1a. Light can be extracted in the lateral direction indicated by the arrow 2. Thereby, the light emitted from the GaN-based semiconductor light emitting layer 5 is not repeatedly attenuated by reflection in the GaN layer, and the light extraction efficiency of the entire LED can be improved.
[0033]
In addition, it is preferable that the AlGaN low-temperature buffer layer 2 or the like as the second crystal layer grows from the main surface 1b of the single crystal sapphire substrate 1 while substantially forming a facet structure.
[0034]
Further, the difference between the refractive index of the single crystal sapphire substrate 1 and the refractive index of the AlGaN low-temperature buffer layer 2 as the second crystal layer in the wavelength of light emitted from the GaN-based semiconductor light emitting layer 5 is 0.05 or more. It is preferable that
[0035]
The buffer layer may be either GaN-based or AlN-based, and the semiconductor crystal layer formed thereon is GaN-based.
[0036]
As still another embodiment, although not shown, the first GaN-based semiconductor crystal is grown on the main surface 1a of the single crystal sapphire substrate 1 so as to cover the etch pit 1b so as to form unevenness. A second GaN-based semiconductor crystal having a refractive index different from that of the first GaN-based semiconductor crystal is grown, covering at least a part of the first GaN-based semiconductor crystal, and further grown until the third GaN-based semiconductor crystal flattens the unevenness. In addition, an element structure in which a semiconductor crystal layer including a light emitting layer is stacked thereon can also be used.
[0037]
Alternatively, on the main surface 1a of the single crystal sapphire substrate 1, the first GaN-based semiconductor crystal grows so as to form irregularities covering the etch pits 1b, and at least the convex portions of the irregularities are covered in a film shape. An element structure in which a GaN-based semiconductor crystal is grown, and a third GaN-based semiconductor crystal is grown until the concavo-convex surface is flattened and a semiconductor crystal layer including a light emitting layer is stacked thereon. The second GaN-based semiconductor crystal may have a multilayer structure.
[0038]
Normally, this semiconductor light emitting element is fabricated on the sapphire substrate 1 having the etch pits 1b, and the semiconductor light emitting element is cut together with the sapphire substrate 1 by cutting such as dicing, and functions as a semiconductor light emitting element. However, in some cases, a method of separating the semiconductor light emitting element portion from the sapphire substrate 1 to obtain a more efficient LED has been proposed. Even in such a case, the sapphire substrate 1 having the etch pit 1b has a structure having a cavity between the etch pit 1b and the nitride semiconductor film, so that the semiconductor light emitting element can be easily peeled from the sapphire substrate. It has the effect of being.
[0039]
Furthermore, the sapphire substrate 1 having the etch pits 1b used in the manufacturing method of the present invention has a low dislocation nitride semiconductor layer on the sapphire substrate 1 having the etch pits 1b for uses other than the manufacture of the semiconductor light emitting device. After the formation of, a low dislocation nitride semiconductor is peeled from the sapphire substrate to produce an independent nitride semiconductor substrate.
[0040]
Furthermore, the sapphire substrate 1 having the etch pit 1b used in the manufacturing method of the present invention can be used not only as a substrate for a semiconductor light emitting element but also as a substrate for an electronic device using a nitride semiconductor.
[0041]
【Example】
Example 1
In this embodiment, a method for manufacturing a sapphire substrate having etch pits for a semiconductor element will be described.
[0042]
First, a sapphire material with a fixed plane orientation and axial orientation was pulled up by the EFG method. In the present embodiment, the main surface 1a of the sapphire substrate 1 is made to be the C-plane, but the surface orientation of the main surface 1a is not limited to the C-plane, but is rotated by 30 degrees from the A-plane, M-plane, R-plane, and M-plane. It can also be applied to surfaces that have been cut.
Further, it may be off-angled within ± 2 ° from these surfaces. Various pulling methods can be used, and a sapphire substrate lifted by the EFG method is particularly suitable for the present invention.
[0043]
Next, this material was appropriately cut, ground, polished, and washed to produce a substrate for forming a nitride semiconductor film. Subsequently, when the substrate was etched in hot phosphoric acid at 300 ° C. for 30 minutes, a large number of etch pits 1b were formed on the main surface 1a of the substrate. At this time, the shape of the etch pit 1b formed on the main surface 1a of the sapphire substrate 1 was a triangular pyramid.
[0044]
At this time, the temperature and time conditions were adjusted so that the size of the etch pits was 300 μm or less on one side. This is because the size of the LED element is usually about 300 μm × 300 μm, and it is necessary to control the size of the etch pit to be at least smaller than this size in order to efficiently extract the light in the lateral direction. . Similarly, the number of etch pits was set to 10 3 pieces / cm 2 or more and 10 10 pieces / cm 2 or less in order to efficiently extract light in the lateral direction.
[0045]
In order to control the number of etch pits, an etching process may be performed after intentionally introducing crystal defects by applying heat or pressure to the sapphire substrate.
For example, after applying 20 atmospheres at 1200 ° C. to 1400 ° C., a treatment such as further heat treatment may be performed.
[0046]
In addition, it is effective for reducing defects of gallium nitride grown on the substrate that at least one side of the etch pit viewed from a direction perpendicular to the main surface is parallel or perpendicular to the A axis. However, this could be achieved by etching the sapphire substrate under appropriate conditions.
[0047]
In this manufacturing process, it is not necessary to form a special mask on the sapphire substrate, and the substrate with etch pits is relatively inexpensive with a relatively simple process of performing wet etching with hot phosphoric acid at 200 ° C. to 400 ° C. Could be mass-produced. That is, since a large number of sheets can be processed at a time by using an appropriate jig, the productivity is very high as compared with the conventional reactive ion etching method, which is suitable for mass production.
[0048]
Example 2
In this example, as shown in FIG. 2, the etched pits 1b of the sapphire substrate 1 were buried by a facet growth method to form a concavo-convex light scattering surface, and a GaN-based LED was manufactured.
[0049]
First, etch pits were formed on the C-plane sapphire substrate by the process of Example 1. After cleaning the substrate, the substrate was mounted on a MOVPE apparatus, and the temperature was raised to 1100 ° C. in a nitrogen gas main component atmosphere to perform thermal cleaning. The temperature was lowered to 500 ° C., trimethylgallium (hereinafter referred to as TMG) was flown as the Group 3 raw material of the periodic table, and ammonia was flowed as the N raw material to grow the AlGaN low temperature buffer layer 2 having a thickness of 30 nm.
[0050]
Subsequently, the temperature was raised to 1000 ° C., and TMG and ammonia were flown as raw materials and silane was flowed as a dopant to grow an n-type GaN layer (contact layer) 3. The growth of the GaN layer at this time is a growth in which the entire surface is formed without forming a cavity in the concave portion after generating from a top surface of the convex portion and a bottom surface of the concave portion as a ridge-like crystal having a mountain-shaped cross section and including a facet surface. there were.
[0051]
In facet growth, when the C-plane of the GaN crystal is completely extinguished and the top is pointed and convex, the growth conditions are switched to conditions in which lateral growth becomes dominant (e.g., raising the growth temperature), and sapphire A GaN crystal was grown from the upper surface of the substrate to a thickness of 5 μm. In order to obtain a buried layer having a flat upper surface, a thick film growth of 5 μm was necessary.
[0052]
Subsequently, an n-type AlGaN cladding layer 4, an InGaN light-emitting layer (MQW structure) 5, a p-type AlGaN cladding layer 6, and a p-type GaN contact layer 7 are formed in this order to obtain an ultraviolet LED epi-substrate with an emission wavelength of 370 nm, Etching for exposing the n-type contact layer, electrode (8, 9) formation, and element isolation were performed to obtain an LED element.
[0053]
【The invention's effect】
As described above, according to the present invention, irregularities can be produced on the main surface of a sapphire substrate by a method suitable for mass production efficiently. Further, by using etch pits that are formed by wet etching and depending on the nature of the crystal, it is possible to form irregularities that do not have the problem that the end face is wavy. Furthermore, since the LED produced using the sapphire substrate produced by this method can efficiently extract light traveling in the lateral direction, an LED having higher external quantum efficiency than the conventional one can be provided.
[0054]
[Brief description of the drawings]
1A is a perspective view of a single crystal sapphire substrate used in the manufacturing method of the present invention, FIG. 1B is an enlarged view of a portion A in FIG. 1A, and FIG. 1C is a sectional view of the portion A;
FIG. 2 is a cross-sectional view showing a configuration of a semiconductor light emitting device manufactured by the manufacturing method of the present invention.
FIG. 3 is a graph showing the temperature dependence of the etching rate of sapphire.
[Explanation of symbols]
1: Sapphire substrate 1a: Main surface 1b: Etch pit 2: AlGaN low-temperature buffer layer 3: n-type GaN contact layer 4: n-type AlGaN cladding layer 5: GaN-based semiconductor light emitting layer (MQW structure) 6: p-type AlGaN cladding layer 7: p-type GaN contact layer 8: upper electrode 9: lower electrode

Claims (2)

角錐形状の複数のエッチピットが、少なくとも一方主面に形成された単結晶サファイア基板と、前記単結晶サファイア基板の前記一方主面の前記エッチピット上に積層された、発光層を含む複数の半導体層と、を有する半導体発光素子の製造方法であって、
熱リン酸または熱リン酸と熱硫酸の混酸または熱溶融水酸化カリウムを用いて、単結晶サファイア基板をウェットエッチングし、前記単結晶サファイア基板の少なくとも一方主面に角錐形状の複数の前記エッチピットを形成する工程を備えることを特徴とする半導体発光素子の製造方法。
A plurality of semiconductors including a single crystal sapphire substrate in which a plurality of pyramid-shaped etch pits are formed on at least one main surface and a light emitting layer stacked on the etch pits on the one main surface of the single crystal sapphire substrate A method of manufacturing a semiconductor light emitting device having a layer ,
A single crystal sapphire substrate is wet etched using hot phosphoric acid, a mixed acid of hot phosphoric acid and hot sulfuric acid, or hot molten potassium hydroxide, and at least one main surface of the single crystal sapphire substrate has a plurality of pyramid-shaped etch pits. The manufacturing method of the semiconductor light-emitting device characterized by including the process of forming.
前記ウットエッチングに先がけて、前記単結晶サファイア基板に熱または圧力を加え、前記単結晶サファイア基板に結晶欠陥を誘起する工程を備えることを特徴とする請求項記載の半導体発光素子の製造方法。Prior to the U E Tsu preparative etching, the heat or pressure on the single crystal sapphire substrate addition, a method of manufacturing a semiconductor light emitting device according to claim 1, further comprising a step of inducing crystal defects in the single crystal sapphire substrate .
JP2003202737A 2003-07-28 2003-07-28 Manufacturing method of semiconductor light emitting device Expired - Fee Related JP4593890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202737A JP4593890B2 (en) 2003-07-28 2003-07-28 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202737A JP4593890B2 (en) 2003-07-28 2003-07-28 Manufacturing method of semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2005047718A JP2005047718A (en) 2005-02-24
JP4593890B2 true JP4593890B2 (en) 2010-12-08

Family

ID=34262334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202737A Expired - Fee Related JP4593890B2 (en) 2003-07-28 2003-07-28 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4593890B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7803648B2 (en) * 2005-03-09 2010-09-28 Showa Denko K.K. Nitride semiconductor light-emitting device and method for fabrication thereof
KR100650990B1 (en) 2005-03-21 2006-11-29 주식회사 이츠웰 Nitride semiconductor light emitting diode and method of manufacturing the same
JP4742360B2 (en) * 2005-05-26 2011-08-10 並木精密宝石株式会社 Method for arranging micro holes in an array, AFM standard sample, and AFM stage
TWI288491B (en) * 2006-03-02 2007-10-11 Nat Univ Chung Hsing High extraction efficiency of solid-state light emitting device
TW200807760A (en) * 2006-05-23 2008-02-01 Alps Electric Co Ltd Method for manufacturing semiconductor light emitting element
JP5082752B2 (en) 2006-12-21 2012-11-28 日亜化学工業株式会社 Manufacturing method of substrate for semiconductor light emitting device and semiconductor light emitting device using the same
JP4799528B2 (en) * 2007-10-31 2011-10-26 泰谷光電科技股▲ふん▼有限公司 Structure of light emitting diode and manufacturing method thereof
WO2011058890A1 (en) * 2009-11-11 2011-05-19 京セラ株式会社 Light emitting element
CN106067500B (en) 2010-08-06 2019-03-12 日亚化学工业株式会社 Sapphire substrate and semiconductor light-emitting element
CN102130260B (en) * 2010-09-30 2013-09-18 映瑞光电科技(上海)有限公司 Luminous device and manufacturing method thereof
KR20130035658A (en) 2011-09-30 2013-04-09 서울옵토디바이스주식회사 Method for fabricating a substrate for light emitting diode device
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9221289B2 (en) 2012-07-27 2015-12-29 Apple Inc. Sapphire window
CN103014875B (en) * 2012-11-30 2015-10-21 甘肃虹光电子有限责任公司 A kind for the treatment of process of synthetic sapphire wafer
US9232672B2 (en) 2013-01-10 2016-01-05 Apple Inc. Ceramic insert control mechanism
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure
KR101679241B1 (en) * 2015-05-19 2016-11-24 영남대학교 산학협력단 A patterned substrate for flip-chip type gallium nitride-based light emitting diode and the light emitting diode using the same
US9899569B2 (en) 2015-04-23 2018-02-20 Research Cooperation Foundation Of Yeungnam University Patterned substrate for gallium nitride-based light emitting diode and the light emitting diode using the same
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components
CN112640303B (en) 2018-09-06 2024-09-20 京瓷株式会社 Composite substrate, piezoelectric element, and method for manufacturing composite substrate

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017926A (en) * 1983-07-08 1985-01-29 Matsushita Electronics Corp Crystal defect detecting method of sapphire
JPH09235197A (en) * 1996-02-29 1997-09-09 Kyocera Corp Single crystal sapphire substrate, method for dividing single crystal sapphire, and single crystal sapphire body
JPH10270754A (en) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd Semiconductor light-emitting device and light-emitting lamp
JP2000164929A (en) * 1998-11-26 2000-06-16 Sony Corp Semiconductor thin film, semiconductor element, semiconductor device, and manufacturing method thereof
JP2000269142A (en) * 1999-03-17 2000-09-29 Sony Corp Formation of gallium nitride epitaxial layer and light emitting element
JP2001322892A (en) * 2000-05-10 2001-11-20 Namiki Precision Jewel Co Ltd Method of producing single crystal material, seed substrate, die and device for producing single crystal material
JP2002280611A (en) * 2001-03-21 2002-09-27 Mitsubishi Cable Ind Ltd Semiconductor light-emitting element
JP2002368261A (en) * 2001-06-05 2002-12-20 Sharp Corp Nitride compound semiconductor light-emitting device
JP2003133587A (en) * 2001-10-29 2003-05-09 Kyocera Corp Light emitting diode
JP2004056088A (en) * 2002-05-31 2004-02-19 Toyoda Gosei Co Ltd Group III nitride compound semiconductor light emitting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017926A (en) * 1983-07-08 1985-01-29 Matsushita Electronics Corp Crystal defect detecting method of sapphire
JPH09235197A (en) * 1996-02-29 1997-09-09 Kyocera Corp Single crystal sapphire substrate, method for dividing single crystal sapphire, and single crystal sapphire body
JPH10270754A (en) * 1997-03-24 1998-10-09 Sanyo Electric Co Ltd Semiconductor light-emitting device and light-emitting lamp
JP2000164929A (en) * 1998-11-26 2000-06-16 Sony Corp Semiconductor thin film, semiconductor element, semiconductor device, and manufacturing method thereof
JP2000269142A (en) * 1999-03-17 2000-09-29 Sony Corp Formation of gallium nitride epitaxial layer and light emitting element
JP2001322892A (en) * 2000-05-10 2001-11-20 Namiki Precision Jewel Co Ltd Method of producing single crystal material, seed substrate, die and device for producing single crystal material
JP2002280611A (en) * 2001-03-21 2002-09-27 Mitsubishi Cable Ind Ltd Semiconductor light-emitting element
JP2002368261A (en) * 2001-06-05 2002-12-20 Sharp Corp Nitride compound semiconductor light-emitting device
JP2003133587A (en) * 2001-10-29 2003-05-09 Kyocera Corp Light emitting diode
JP2004056088A (en) * 2002-05-31 2004-02-19 Toyoda Gosei Co Ltd Group III nitride compound semiconductor light emitting device

Also Published As

Publication number Publication date
JP2005047718A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4593890B2 (en) Manufacturing method of semiconductor light emitting device
JP2005064492A (en) Single crystal sapphire substrate, manufacturing method thereof, and semiconductor light emitting device
JP5054366B2 (en) MANUFACTURING METHOD FOR SUBSTRATE WITH NANOSTRUCTURE, LIGHT EMITTING ELEMENT AND ITS MANUFACTURING METHOD
JP3471685B2 (en) Semiconductor substrate and manufacturing method thereof
US9041005B2 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
US7042150B2 (en) Light-emitting device, method of fabricating the device, and LED lamp using the device
JP3595277B2 (en) GaN based semiconductor light emitting diode
JP4154731B2 (en) Light emitting device manufacturing method and light emitting device
JP4092658B2 (en) Method for manufacturing light emitting device
JP5250856B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2005136106A (en) Single crystal sapphire substrate, manufacturing method thereof, and semiconductor light emitting device
JP5671982B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
CN102201512B (en) Patterned substrate
TWI525664B (en) A crystalline film, a device, and a method for producing a crystalline film or device
CA2422624A1 (en) Semiconductor base material and method of manufacturing the material
EP1555686A2 (en) High quality nitride semiconductor thin film and method for growing the same
JP5306779B2 (en) Light emitting device and manufacturing method thereof
CN102034907A (en) Graph masking method for improving luminous efficiency of GaN base LED (light-emitting diode)
JP2006066442A (en) Single crystal sapphire substrate for semiconductor device, manufacturing method thereof, and semiconductor light emitting device
CN102255010B (en) A kind of manufacturing method of gallium nitride light-emitting diode
CN110112271A (en) A kind of bottom has the LED epitaxial structure and preparation method thereof of recessed nano graph
TWI354382B (en) Semiconductor substrate with electromagnetic-wave-
JP2005328073A (en) Method for manufacturing semiconductor light-emitting element
KR101097888B1 (en) Patterned substrate for gan-based semiconductor light emitting diode and manufacturing method
CN101420003A (en) Structure of light emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees