JP4590532B2 - Production method of low yield ratio high strength steel - Google Patents
Production method of low yield ratio high strength steel Download PDFInfo
- Publication number
- JP4590532B2 JP4590532B2 JP2000292993A JP2000292993A JP4590532B2 JP 4590532 B2 JP4590532 B2 JP 4590532B2 JP 2000292993 A JP2000292993 A JP 2000292993A JP 2000292993 A JP2000292993 A JP 2000292993A JP 4590532 B2 JP4590532 B2 JP 4590532B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- yield ratio
- low
- ratio high
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 76
- 239000010959 steel Substances 0.000 title claims description 76
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 229910000859 α-Fe Inorganic materials 0.000 claims description 45
- 229910001566 austenite Inorganic materials 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 15
- 230000009466 transformation Effects 0.000 claims description 15
- 238000005496 tempering Methods 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 229910000734 martensite Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910001563 bainite Inorganic materials 0.000 claims description 5
- 230000001186 cumulative effect Effects 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 4
- 238000005336 cracking Methods 0.000 claims description 3
- 238000003754 machining Methods 0.000 claims description 3
- 239000000047 product Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 6
- 230000000171 quenching effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
この出願の発明は、低降伏比高張力鋼の製造方法に関するものである。さらに詳しくは、この出願の発明は、土木・建築、船舶、ラインパイプ等の一般溶接構造用材料として有用で、特殊な添加元素を必要とせず、また焼入・焼戻しの工程を必要としない簡便で経済的な低降伏比高張力鋼の製造方法に関するものである。
【0002】
【従来の技術とその課題】
一般に、鋼材の降伏比は引張強さが上昇するに連れて加速的に上昇し、例えば引張強さ680MPa以上の鋼では降伏比が98%となるなど、限りなく100%に近いものであった。このことは、溶接構造物として低降伏比高を特に必要とする土木・建築構造物および石油天然ガスパイプライン等の構造物の破壊安全性の面において深刻な問題とされており、低降伏比鋼の開発がつとに求められてきた。
【0003】
これに対して、従来より、種々の合金元素の添加や焼入・焼戻しを基本とする熱処理によって低降伏比を可能とする技術が提案されてきたが、これらの技術では製造コストの増大が避けられず、降伏比の低下にも限界があった。
【0004】
そこで、この出願の発明は、以上の通りの事情に鑑みてなされたものであり、従来技術の問題点を解消し、土木・建築、船舶、ラインパイプ等の一般溶接構造用材料として有用で、特殊な添加元素を必要とせず、また焼入・焼戻しの工程を必要としない、簡便な低降伏比高張力鋼の製造方法を提供することを課題としている。
【0005】
【課題を解決するための手段】
そこで、この出願の発明は、上記の課題を解決するものとして、以下の通りの発明を提供する。
【0006】
すなわち、まず第1には、この出願の発明は、粒径1μm未満のフェライトコロニー、粒径1μm以上10μm以下のフェライト粒およびマルテンサイト/ベイナイトの低温変態生成物の3相複合組織を有し、引張強さが680MPa以上で降伏比が0.50以上0.85以下の低降伏比高張力鋼の製造方法であって、重量%でC:0.15%以下,Si:0.6%以下,Mn:2.0%以下,P:0.030%以下,S:0.005%以下,N:0.0060%以下,Al:0.010%以上0.040%以下,Ti:0.030%以下(0を含む)を含有し、残部がFeおよび不可避不純物からなり、次式(1)、
【0007】
【数3】
【0008】
(ただし、式中の元素記号は、その元素の重量%を示す。)で表される溶接割れ感受性指数Pcmが0.28以下である鋼を、Ac1点以上1250℃以下の温度に加熱して、フェライト+オーステナイトの2相温度領域でオーステナイト分率を5〜50%とした状態で、次式(2)、
【0009】
【数4】
【0010】
(ただし、式中のεx,i,εy,i,εz,iは、それぞれi番目の加工パスにおけるx、y、z成分の塑性歪(真歪)を示す。)で表される累積相当塑性歪εeqが1.4以上となるような塑性加工を施すことを特徴とする低降伏比高張力鋼の製造方法を提供する。
【0011】
そして、第2には、この出願の発明は、上記第1の発明において、鋼が上記成分に加えて重量%でNb:0.005〜0.060%,V:0.010〜0.10%のうちの1種あるいは2種を含むとき、その鋼を1050℃以上1250℃以下の温度に加熱した後に塑性加工を施すことを特徴とする低降伏比高張力鋼の製造方法を、第3には、塑性加工の後、1℃/s以上の冷却速度で500℃未満にまで加速冷却することを特徴とする低降伏比高張力鋼の製造方法を、第4には、塑性加工の後、400℃〜Ac1点の温度範囲に再加熱する焼き戻し処理を施すことを特徴とする低降伏比高張力鋼の製造方法を、第5には、塑性加工の後、冷却を中断して等温保持するか徐冷することにより、400℃〜Ac1点の温度範囲に1時間以上滞留させることを特徴とする低降伏比高張力鋼の製造方法を提供する。
【0012】
【発明の実施の形態】
この出願の発明は、上記の通りの特徴を持つものであるが、以下にその実施の形態について説明する。
【0013】
まず、この出願の発明の方法によって提供される低降伏比高張力鋼は、粒径1μm未満のフェライトコロニー、粒径1μm以上10μm以下のフェライト粒およびマルテンサイト/ベイナイトの低温変態生成物の3相複合組織を有し、引張強さが680MPa以上で降伏比が0.50以上0.85以下である。
【0014】
この低降伏比高張力鋼においては、粒径1μm未満のフェライト粒からなるコロニーが、これまでにない高硬度と低降伏比の両立を実現するための必要条件とされており、この出願の発明によってはじめて提案されるものである。この粒径1μm未満のフェライト粒からなるコロニーは、フェライト粒の加工−再結晶を利用して粒径1μm未満に微細化されたフェライト粒のコロニーであって、軟鋼におけるパーライトコロニーが降伏比に及ぼすのと類似した効果、つまり鋼材の低降伏比を実現するものである。粒径1μm以上10μm以下の比較的大きなフェライト粒は、超微細粒コロニーよりも低い応力で先に降伏するため、材料全体として低い降伏比を実現している。
【0015】
さらに、この低降伏比高張力鋼は、上記粒径1μm未満のフェライトコロニーと粒径1μm以上10μm以下のフェライト粒に加えて、マルテンサイト/ベントナイト等の硬質な低温変態生成物を組織に複合化することによって、これまでにない高強度化を実現している。
【0016】
またこの低降伏比高張力鋼は、現在大量に用いられている溶接溶鋼を出発材料とし、その優れた特性(溶接性と低降伏比)はそのままにして、強度を約2倍の高張力鋼へと造り込むものである。これによって、例えば、構造物の建設コストの大幅な削減をもたらすことや、溶接構造物として低降伏比高張力を特に必要とする土木・建築構造物および石油天然ガスパイプラインの建設技術等が飛躍的に進歩することが期待される。
【0017】
上記のような低降伏比高張力鋼は、以下のようにして製造することが可能となる。すなわち、この出願の第1の発明が提供する低降伏比高張力鋼の製造方法は、上記の粒径1μm未満のフェライトコロニー、粒径1μm以上10μm以下のフェライト粒およびマルテンサイト/ベイナイトの低温変態生成物の3相複合組織を有し、引張強さが680MPa以上で降伏比が0.50以上0.85以下の低降伏比高張力鋼の製造方法であって、重量%でC:0.15%以下,Si:0.6%以下,Mn:2.0%以下,P:0.030%以下,S:0.005%以下,N:0.0060%以下,Al:0.010%以上0.040%以下,Ti:0.030%以下(0を含む)を含有し、残部がFeおよび不可避不純物からなり、次式(1)、
【0018】
【数5】
【0019】
(ただし、式中の元素記号は、その元素の重量%を示す。)で表される溶接割れ感受性指数Pcmが0.28以下である鋼を、Ac1点以上1250℃以下の温度に加熱して、フェライト+オーステナイト(α+γ)の2相温度領域でオーステナイト(γ)分率を5〜50%とした状態で、次式(2)、
【0020】
【数6】
【0021】
(ただし、式中のεx,i,εy,i,εz,iは、それぞれi番目の加工パスにおけるx、y、z成分の塑性歪(真歪)を示す。)で表される累積相当塑性歪εeqが1.4以上となるような塑性加工を施すことを特徴としている。
【0022】
この出願の発明において出発材料として用いる鋼は、必ずしも特別な添加元素を必要とせず、一般的かつ安価な軟鋼あるいは溶接構造用低合金鋼等が適用できる。具体的には、重量%でC:0.15%以下,Si:0.6%以下,Mn:2.0%以下,P:0.030%以下,S:0.005%以下,N:0.0060%以下,Al:0.010%以上0.040%以下,Ti:0.030%以下(0を含む)を含有し、残部がFeおよび不可避不純物からなる鋼を用いることができる。ただし、予熱なしでの溶接を可能とするために、溶接割れ感受性Pcmが0.28以下のものに限定した。
【0023】
このような鋼を、Ac1点以上1250℃以下の温度に加熱して、α+γの2相温度領域でγ分率を5〜50%とする。最終組成として、この出願の発明の特徴である3相複合組織を得るためには、α+γの2相共存状態で次工程である塑性加工を施すことが重要である。そのためには、塑性加工の前の鋼をAc1〜Ac3点の温度範囲に加熱することで、鋼の組織をα+γの二相状態に調整することができる。また、このときのγ分率は、あとで理由を述べるが、5〜50%となるようにする。
【0024】
Ac1〜Ac3点の温度範囲への加熱は、鋼を直接Ac1〜Ac3点の温度範囲へ加熱してもよいし、一旦、Ac3点以上に加熱してオーステナイト単相としたあとにAr3点以下に冷却し、変態によってフェライトを生成させてα+γの二相状態にしてもよい。また、このような組織においては、フェライトおよびオーステナイトの粒径はできるだけ微細としておくことが望ましい。そのために、オーステナイト再結晶温度範囲で鋼に加工を施してよりオーステナイト粒を微細にすることや、オーステナイト未再結晶温度範囲で加工を施すことにより、続く変態時に微細なフェライトを生成させること等が好適な手段として示される。
【0025】
さらには、微細かつ均一な最終組織を有する低降伏比高張力鋼を得るために、組成加工を施される前のα+γの2相組織をできるだけ微細かつ均一にしておくことが望ましい。そこで、粗大化しやすいオーステナイト粒の成長を抑制するために、加熱温度の最終的な値は1250℃以下に限定することとした。
【0026】
このように調整された状態の鋼に対し、上記累積相当塑性歪εeqが1.4以上となるような塑性加工を施す。この出願の発明では、α+γの2相組織に塑性加工を施すことにより、フェライト部分に動的回復・再結晶を誘起させて超微細フェライト粒コロニーを生成させるとともに、フェライト部分に加わる塑性歪の分布を不均一化させて一部のフェライト粒のみが再結晶後に優先的に成長することを助長させるようにして、粒径1μm未満の超微細フェライト粒コロニーおよび1μm以上10μm以下のフェライト粒からなる混合組織を生成させている。また、オーステナイト部分については、塑性加工によってC(炭素)等のオーステナイト安定化元素が濃縮し、マルテンサイトやベイナイト等の低温変態生成物が生成される。これによって、この出願の発明の低降伏比高張力鋼に特徴的な3相複合組織を実現している。
【0027】
ここで、フェライト部分に粒径1μm未満の超微細粒からなるコロニーを形成させるためには、累積歪量を1.4以上とすることが必要であり、歪量が1.4未満の場合、結晶粒の微細化が不十分となり、1μm未満の超微細粒コロニーを生成させることができなくなってしまう。したがって、このような塑性加工は、この出願の発明で最も重要な3相複合組織を造り込むために必須の条件である。
【0028】
また、1〜10μmに成長したフェライト粒は、周囲の超微細フェライト粒コロニー部分と比べて変形しやすいことから降伏比を低下させる機能を持ち、その生成にはオーステナイト相の存在が不可欠である。
【0029】
塑性加工前のα+γの2相組織におけるγ分率は、その値が高い程、オーステナイト部分からの硬質の低温変態生成物量が増加し、得られる低降伏比高張力鋼の引張強さを高めることができる。しかしながら、γ分率が50%を超えると、オーステナイト相への安定化元素の濃化が不十分となるため、その後の冷却時にフェライトあるいはパーライトが生成してしまい、硬質の低温変態生成物を得ることができない。そのため、十分な引張強さを有する低降伏比高張力鋼が得られなくなってしまう。また逆に、γ分率が5%に満たない場合にも、低温変態生成物が少量しか得られないため、十分な引張強さを有する低降伏比高張力鋼が得られない。そのため、塑性加工前のα+γの2相組織におけるγ分率は、5%以上50%未満とする。
【0030】
すなわち、低温変態生成物を生成し、かつ超微細フェライト粒および一部成長したフェライト粒からなる混粒組織を得るためには、γ分率が5〜50%の2相状態の鋼に、累積相当塑性歪εeqが1.4以上塑性加工を加えることが必要である。
【0031】
なお、塑性加工終了時の温度については、必ずしもオーステナイト分率が5〜50%となる2相温度領域である必要はなく、オーステナイト分率が5%未満となる2相温度領域あるいはフェライト温度域でもよい。
【0032】
以上詳しく述べたように、鋼の組織を3相複合組織に調整する加工熱処理技術によって、焼入・焼戻しによらず、50〜80%という広範囲の低降伏比高張力鋼を製造することが可能となった。
【0033】
この出願の第2の発明が提供する低降伏比高張力鋼の製造方法は、上記第1の発明において、鋼が上記成分に加えて重量%でNb:0.005〜0.060%,V:0.010〜0.10%のうちの1種あるいは2種を含むとき、その鋼を1050℃以上1250℃以下の温度に加熱した後に塑性加工を施すようにしている。
【0034】
この出願の発明の低降伏比高張力鋼に、用途に応じた多様な特性を付与するために、重量%でNb:0.005〜0.060%,V:0.010〜0.10%のうちの1種あるいは2種の元素を添加することができる。
【0035】
鋼にNb,V等を添加すると、鋼中に微細な炭窒化物が析出し、塑性加工による再結晶後のフェライト粒の成長を好適に抑制することができる。しかし、0.060%を超過するNbや、0.10%を超過するVを添加すると、完全にフェライト粒の成長を抑えてしまい、フェライト粒の混粒組織を得ることができなくなってしまう。Nb:0.005〜0.060%,V:0.010〜0.10%のうちの1種あるいは2種といった微量のNb,V元素の添加により、フェライト粒の成長を完全に抑えることなく、一部の粒だけが優先的に成長して微細粒部分との粒径差が拡大するようになり、比較的大きな数μm〜10μm程度のフェライト粒と、1μm未満の超微細粒との混粒組織を容易に形成させることができるのである。
【0036】
特にNbについては、再結晶抑制の効果が著しく大きいため、温間圧延による塑性加工でのフェライト粒超微細化効果が大きく、また、未再結晶オーズテナイト領域を拡大して加工歪を有効に蓄積するため、組織微細化効果が大きいという利点がある。
【0037】
ただし、Nb,V等を添加する場合には、これらの元素をオーステナイト粒に十分に固溶させて微細な炭窒化物として析出させるために、1050℃以上に加熱する必要がある。
【0040】
この出願の第3の発明が提供する低降伏比高張力鋼の製造方法は、上記第1または第2の発明において、塑性加工の後、1℃/s以上の冷却速度で500℃未満にまで加速冷却する。
【0041】
塑性加工後の鋼の冷却については、α+γの2相領域での塑性加工後に1℃/s以上の冷却速度で加速冷却することによって、未変態オーステナイトをマルテンサイト等の硬質の低温変態生成物にすることができる。これによって、より一層この出願の発明の低降伏比高張力鋼の引っ張り強度を増加させることができ、また、降伏比を低下させることが可能となる。
【0042】
この出願の第4の発明が提供する低降伏比高張力鋼の製造方法は、上記第1ないし第3いずれかの発明において、塑性加工の後、400℃〜Ac1点の温度範囲に再加熱する焼き戻し処理を施し、この出願の第5の発明が提供する低降伏比高張力鋼の製造方法は、塑性加工の後、冷却を中断して等温保持するか徐冷することにより、400℃〜Ac1点の温度範囲に1時間以上滞留させるようにしている。
【0043】
この出願の発明においては、鋼の組織を3相複合組織に調整することで、50〜80%という広範囲の低降伏比高張力鋼を実現するものであり、焼入・焼戻しの工程は必ずしも必要とはしていない。ただし、塑性加工の後に、400℃〜Ac1点の温度範囲に再加熱する焼き戻し処理を施すことや、冷却を中断して等温保持するか徐冷することにより、400℃〜Ac1点の温度範囲に1時間以上滞留させることは、この出願の発明の低降伏比高張力鋼の引っ張り強度をより一層の増加させ、降伏比を低下させるために、効果的な手段として考慮することができる。
【0044】
以下、添付した図面に沿って実施例を示し、この発明の実施の形態についてさらに詳しく説明する。
【0045】
【実施例】
表1に示した組成の鋼材A〜Dを用いて18mm角の供試鋼を作製し、表2に示した各種の製造条件で、加熱,塑性加工,冷却,焼戻しを施し、試料A1〜D1を得た。
【0046】
【表1】
【0047】
【表2】
【0048】
なお、表2中の加速冷却は冷却速度10℃/sでの冷却である。
(A) 得られた試料の最終組織を観察した結果を表2に、引張試験により得た機械的特性を表3に示した。
【0049】
【表3】
【0050】
表3より、この出願の発明の方法によって、引張強さが680MPa以上で降伏比が0.50以上0.85以下の低降伏比高張力鋼が得られたことが確認された。特に、試料A2では、引張強さが865MPaと強い上に、降伏比が0.56と低く、優れた低降伏比高張力鋼であることが示された。
【0051】
この出願の発明の低降伏比高張力鋼である試料A1と比較例としての試料B2についての応力−ひずみ特性を図1に示した。図1より、試料B2に比べてこの出願の発明の試料A1の方が、引張強さが高いにもかかわらず降伏比が低くなっていることが示された。
(B) また、上記試料A1および試料B2の組織を光学顕微鏡で観察した結果を図2に、走査型電子顕微鏡(SEM)で観察した結果を図3に示した。さらに、試料A1のSEM像(図3のA1)における各組織の分布を、図4に模式的に示した。
【0052】
図2および図3より、比較例である試料B2については、低温変態生成物組織および1μm以上の成長したフェライト粒組織は確認されたものの、フェライト粒組織に超微細フェライト粒が生成されていないことが確認された。また、この出願の発明の低降伏比高張力鋼である試料A1については、図2〜図4より、低温変態生成物組織と、超微細フェライト粒と一部成長したフェライト粒からなる混粒組織とが存在することが確認された。
【0053】
もちろん、この発明は以上の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
【0054】
【発明の効果】
以上詳しく説明した通り、この発明によって、土木・建築、船舶、ラインパイプ等の一般溶接構造用材料として有用な低降伏比高張力鋼と、特殊な添加元素を必要とせず、また焼入・焼戻しの工程を必要としないその低降伏比高張力鋼の製造方法が提供される。
【図面の簡単な説明】
【図1】実施例における低降伏比高張力鋼試料(A1)および比較例試料(B2)の応力−ひずみ特性を例示した図である。
【図2】実施例における試料A1および試料B2の組織を観察した光学顕微鏡像を例示した図である。
【図3】実施例における試料A1および試料B2の組織を観察したSEM像を例示した図である。
【図4】試料A1のSEM像(図3のA1)における各組織の分布を模式的に示した図である。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for producing a low yield ratio high strength steel. More specifically, the invention of this application is useful as a material for general welded structures such as civil engineering / architecture, ships, line pipes, etc., and does not require special additive elements and does not require a quenching / tempering process. The present invention relates to an economical and low yield ratio high tensile steel manufacturing method.
[0002]
[Prior art and its problems]
In general, the yield ratio of steel materials accelerated as the tensile strength increased. For example, the yield ratio was 98% for steels with a tensile strength of 680 MPa or more, which was almost as high as 100%. . This is a serious problem in terms of fracture safety of civil engineering and building structures that require a particularly low yield ratio as a welded structure and structures such as petroleum natural gas pipelines. The development of has been sought after.
[0003]
On the other hand, technologies that enable a low yield ratio by heat treatment based on the addition of various alloy elements and quenching / tempering have been proposed in the past, but these technologies avoid an increase in manufacturing costs. The yield ratio was limited.
[0004]
Therefore, the invention of this application was made in view of the circumstances as described above, solves the problems of the prior art, and is useful as a material for general welded structures such as civil engineering / architecture, ships, line pipes, It is an object of the present invention to provide a simple method for producing a low-yield ratio high-strength steel that does not require any special additive elements and does not require a quenching / tempering process.
[0005]
[Means for Solving the Problems]
Therefore, the invention of this application provides the following invention as a solution to the above-mentioned problems.
[0006]
That is, first of all, the invention of this application has a three-phase composite structure of a ferrite colony having a particle size of less than 1 μm, a ferrite particle having a particle size of 1 μm or more and 10 μm or less, and a low-temperature transformation product of martensite / bainite, A method for producing a low yield ratio high tensile steel having a tensile strength of 680 MPa or more and a yield ratio of 0.50 or more and 0.85 or less, wherein C: 0.15% or less and Si: 0.6% or less by weight. , Mn: 2.0% or less, P: 0.030% or less, S: 0.005% or less, N: 0.0060% or less, Al: 0.010% or more and 0.040% or less, Ti: 0. Containing 030% or less (including 0) , the balance consisting of Fe and inevitable impurities,
[0007]
[Equation 3]
[0008]
(However, the element symbol in the formula represents the weight% of the element.) Steel having a weld cracking sensitivity index P cm of 0.28 or less is heated to a temperature of not less than A c1 and not more than 1250 ° C. In the state where the austenite fraction is 5 to 50% in the two-phase temperature range of ferrite + austenite,
[0009]
[Expression 4]
[0010]
(However, ε x, i , ε y, i , ε z, i in the equation represents the plastic strain (true strain) of the x, y, and z components in the i-th machining pass, respectively). Provided is a method for producing a low-yield-ratio high-tensile steel, characterized by performing plastic working such that the cumulative equivalent plastic strain ε eq is 1.4 or more.
[0011]
And second, the invention of this application is that, in the first invention, the steel is Nb: 0.005 to 0.060% in weight% in addition to the above components, and V: 0.010 to 0.10. A method for producing a low yield ratio high strength steel, characterized in that the steel is heated to a temperature of 1050 ° C. or higher and 1250 ° C. or lower and then subjected to plastic working . the, after the plastic working, a method for manufacturing a low yield ratio high-strength steel, characterized by accelerated cooling to below 500 ° C. at 1 ° C. / s or more cooling rate, the fourth, after plastic working , A method of producing a low yield ratio high strength steel characterized by performing a tempering process that is reheated to a temperature range of 400 ° C. to A c1 point. Fifth , after plastic working, cooling is interrupted. by either slow cooling to isothermal hold, allowed to stay for 1 hour or more in a temperature range of 400 ° C. to a c1 point To provide a method of manufacturing a low yield ratio high-strength steel, characterized in that.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
[0013]
First, the low yield ratio high strength steel provided by the method of the invention of this application is a three-phase structure comprising ferrite colonies having a grain size of less than 1 μm, ferrite grains having a grain size of 1 μm to 10 μm, and martensite / bainite low-temperature transformation products. It has a composite structure, a tensile strength of 680 MPa or more, and a yield ratio of 0.50 or more and 0.85 or less.
[0014]
In this low-yield ratio high-tensile steel, colonies composed of ferrite grains with a grain size of less than 1 μm are considered a necessary condition for realizing both unprecedented high hardness and low yield ratio. Is proposed for the first time. The colony composed of ferrite grains having a grain size of less than 1 μm is a ferrite grain colony refined to a grain size of less than 1 μm using processing and recrystallization of ferrite grains, and the pearlite colony in mild steel affects the yield ratio. This achieves an effect similar to the above, that is, a low yield ratio of steel. Since relatively large ferrite grains having a grain size of 1 μm or more and 10 μm or less yield first with a lower stress than that of the ultrafine grain colony, the material as a whole achieves a low yield ratio.
[0015]
Furthermore, this low yield ratio high-tensile steel is composed of a hard low temperature transformation product such as martensite / bentonite in the structure in addition to the ferrite colony having a particle size of less than 1 μm and ferrite particles having a particle size of 1 μm to 10 μm. By doing so, unprecedented high strength has been realized.
[0016]
This low-yield ratio high-strength steel is a high-strength steel that is about twice as strong as the starting material, which is a welded steel that is currently used in large quantities, while maintaining its excellent properties (weldability and low yield ratio). It is something to build into. As a result, for example, the construction cost of the structure will be greatly reduced, and the construction technology of civil engineering / building structures and oil / natural gas pipelines that particularly require low yield ratio and high tension as welded structures will be dramatically improved. Is expected to progress.
[0017]
The low yield ratio high tensile steel as described above can be manufactured as follows. That is, the low yield ratio high strength steel manufacturing method provided by the first invention of this application includes the above-described ferrite colony having a particle size of less than 1 μm, ferrite particles having a particle size of 1 μm to 10 μm, and low-temperature transformation of martensite / bainite. A method for producing a low yield ratio high tensile steel having a three-phase composite structure of a product, a tensile strength of 680 MPa or more, and a yield ratio of 0.50 or more and 0.85 or less, wherein C: 0. 15% or less, Si: 0.6% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0.005% or less, N: 0.0060% or less, Al: 0.010% 0.040% or less, Ti: 0.030% or less (including 0) , with the balance being Fe and inevitable impurities,
[0018]
[Equation 5]
[0019]
(However, the element symbol in the formula represents the weight% of the element.) Steel having a weld cracking sensitivity index P cm of 0.28 or less is heated to a temperature of not less than A c1 and not more than 1250 ° C. In the state where the austenite (γ) fraction is 5 to 50% in the two-phase temperature range of ferrite + austenite (α + γ),
[0020]
[Formula 6]
[0021]
(However, ε x, i , ε y, i , ε z, i in the equation represents the plastic strain (true strain) of the x, y, and z components in the i-th machining pass, respectively). It is characterized by performing plastic working so that the cumulative equivalent plastic strain ε eq is 1.4 or more.
[0022]
The steel used as a starting material in the invention of this application does not necessarily require a special additive element, and general and inexpensive mild steel or low alloy steel for welded structures can be applied. Specifically, by weight C: 0.15% or less, Si: 0.6% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0.005% or less, N: A steel containing 0.0060% or less, Al: 0.010% or more and 0.040% or less, Ti: 0.030% or less (including 0) , with the balance being Fe and inevitable impurities can be used. However, in order to enable welding without preheating, the weld crack sensitivity P cm is limited to 0.28 or less.
[0023]
Such steel is heated to a temperature not lower than the A c1 point and not higher than 1250 ° C., and the γ fraction is set to 5 to 50% in the two-phase temperature range of α + γ. In order to obtain a three-phase composite structure that is a feature of the invention of this application as a final composition, it is important to perform plastic processing, which is the next step, in a two-phase coexistence state of α + γ. For this purpose, the steel structure can be adjusted to a α + γ two-phase state by heating the steel before plastic working to a temperature range of A c1 to A c3 points. The γ fraction at this time is set to 5 to 50%, as will be described later.
[0024]
After heating to a temperature range of A c1 to A c3 point is to steel may be heated to a temperature range of direct A c1 to A c3 point, once that the single-phase austenite by heating above A c3 point Then, it may be cooled to the Ar 3 point or lower, and ferrite may be generated by transformation to form an α + γ two-phase state. In such a structure, it is desirable that the particle diameters of ferrite and austenite be as fine as possible. For this purpose, the steel is processed in the austenite recrystallization temperature range to make the austenite grains finer, or by processing in the austenite non-recrystallization temperature range, fine ferrite can be generated during the subsequent transformation. Shown as a preferred means.
[0025]
Furthermore, in order to obtain a low yield ratio high strength steel having a fine and uniform final structure, it is desirable to make the α + γ two-phase structure before composition processing as fine and uniform as possible. Therefore, in order to suppress the growth of austenite grains that are likely to be coarsened, the final value of the heating temperature is limited to 1250 ° C. or less.
[0026]
The steel thus adjusted is subjected to plastic working such that the cumulative equivalent plastic strain ε eq is 1.4 or more. In the invention of this application, by applying plastic working to the α + γ two-phase structure, dynamic recovery and recrystallization are induced in the ferrite portion to generate ultrafine ferrite grain colonies, and the distribution of plastic strain applied to the ferrite portion In which only a portion of ferrite grains is preferentially grown after recrystallization, and a mixture of ultrafine ferrite grains having a grain size of less than 1 μm and ferrite grains having a diameter of 1 μm to 10 μm The organization is generated. As for the austenite portion, austenite stabilizing elements such as C (carbon) are concentrated by plastic working, and low-temperature transformation products such as martensite and bainite are generated. Thus, a three-phase composite structure characteristic of the low yield ratio high tensile steel of the invention of this application is realized.
[0027]
Here, in order to form a colony composed of ultrafine grains having a particle size of less than 1 μm in the ferrite portion, the cumulative strain amount needs to be 1.4 or more, and when the strain amount is less than 1.4 , The refinement of crystal grains becomes insufficient, and it becomes impossible to generate ultrafine grain colonies of less than 1 μm. Therefore, such plastic working is an essential condition for building the most important three-phase composite structure in the invention of this application.
[0028]
The ferrite grains grown to 1 to 10 μm have a function of lowering the yield ratio because they are more easily deformed than the surrounding ultrafine ferrite grain colony, and the presence of the austenite phase is indispensable for the formation thereof.
[0029]
The higher the value of the γ fraction in the α + γ two-phase structure before plastic working, the higher the amount of hard low-temperature transformation products from the austenite part, and the higher the tensile strength of the resulting low yield ratio high strength steel. Can do. However, if the γ fraction exceeds 50%, the concentration of the stabilizing element into the austenite phase becomes insufficient, so that ferrite or pearlite is generated during subsequent cooling, and a hard low-temperature transformation product is obtained. I can't. Therefore, a low yield ratio high strength steel having sufficient tensile strength cannot be obtained. Conversely, even when the γ fraction is less than 5%, only a small amount of low-temperature transformation product can be obtained, so that a low yield ratio high-tensile steel having sufficient tensile strength cannot be obtained. Therefore, the γ fraction in the α + γ two-phase structure before plastic working is 5% or more and less than 50%.
[0030]
That is, in order to produce a low temperature transformation product and to obtain a mixed grain structure composed of ultrafine ferrite grains and partially grown ferrite grains, it is accumulated in a two-phase steel with a γ fraction of 5 to 50%. It is necessary to apply plastic working with an equivalent plastic strain ε eq of 1.4 or more.
[0031]
Note that the temperature at the end of plastic working is not necessarily a two-phase temperature range in which the austenite fraction is 5 to 50%, and even in a two-phase temperature range or a ferrite temperature range in which the austenite fraction is less than 5%. Good.
[0032]
As described in detail above, it is possible to produce a wide range of low-yield-ratio high-strength steels of 50 to 80%, regardless of quenching and tempering, by the heat treatment technology that adjusts the steel structure to a three-phase composite structure. It became.
[0033]
According to the second invention of the present application, the low yield ratio high-tensile steel manufacturing method according to the first invention is characterized in that the steel is Nb: 0.005 to 0.060%, : When one or two of 0.010 to 0.10% are included, the steel is heated to a temperature of 1050 ° C. or higher and 1250 ° C. or lower and then subjected to plastic working.
[0034]
Nb: 0.005 to 0.060% by weight%, V: 0.010 to 0.10% in order to give various characteristics according to the application to the low yield ratio high tensile steel of the invention of this application One or two of these elements can be added.
[0035]
When Nb, V or the like is added to the steel, fine carbonitrides precipitate in the steel, and the growth of ferrite grains after recrystallization by plastic working can be suitably suppressed. However, if Nb exceeding 0.060% or V exceeding 0.10% is added, the growth of ferrite grains is completely suppressed, and a mixed grain structure of ferrite grains cannot be obtained. Addition of trace amounts of Nb and V elements such as Nb: 0.005 to 0.060%, V: 0.010 to 0.10%, without completely suppressing the growth of ferrite grains , Only some of the grains grow preferentially and the particle size difference from the fine grains increases, and a relatively large mixture of ferrite grains of several μm to 10 μm and ultrafine grains of less than 1 μm A grain structure can be easily formed.
[0036]
Especially for Nb, the effect of suppressing recrystallization is remarkably large, so the effect of ultrafine ferrite grains in plastic working by warm rolling is large, and the unrecrystallized austenite region is expanded to effectively accumulate processing strain. Therefore, there is an advantage that the effect of refining the structure is great.
[0037]
However, when adding Nb, V or the like, it is necessary to heat to 1050 ° C. or higher in order to sufficiently dissolve these elements in the austenite grains and precipitate them as fine carbonitrides.
[0040]
According to the third invention of the present application, the low yield ratio high strength steel manufacturing method is the method of the first or second invention, wherein the plastic working is performed at a cooling rate of 1 ° C./s or less to less than 500 ° C. Accelerate cooling.
[0041]
Regarding cooling of steel after plastic working, untransformed austenite is converted into a hard low-temperature transformation product such as martensite by accelerated cooling at a cooling rate of 1 ° C./s or more after plastic working in the α + γ two-phase region. can do. As a result, the tensile strength of the low yield ratio high tensile steel of the invention of this application can be further increased, and the yield ratio can be lowered.
[0042]
According to a fourth aspect of the present invention, there is provided a method for producing a low yield ratio high tensile steel according to any one of the first to third aspects of the present invention, which is reheated to a temperature range of 400 ° C. to A c1 after plastic working. The manufacturing method of the low yield ratio high strength steel provided by the fifth invention of this application is 400 ° C by interrupting cooling and holding it isothermally or gradually cooling after plastic working. It is made to stay in the temperature range of ~ A c1 point for 1 hour or more.
[0043]
In the invention of this application, by adjusting the steel structure to a three-phase composite structure, a wide range of low-yield ratio high-tensile steel of 50 to 80% is realized, and the steps of quenching and tempering are necessarily required. It is not. However, after the plastic working, 400 ° C. and is subjected to tempering reheating to a temperature range of to A c1 point, by either slow cooling is interrupted cooling isothermal holding, the 400 ° C. to A c1 point Retaining in the temperature range for 1 hour or more can be considered as an effective means for further increasing the tensile strength of the low yield ratio high strength steel of the invention of this application and lowering the yield ratio. .
[0044]
Hereinafter, embodiments will be described with reference to the accompanying drawings, and embodiments of the present invention will be described in more detail.
[0045]
【Example】
Sample steels A to D having the compositions shown in Table 1 were prepared, and 18 mm square test steels were produced. Under various production conditions shown in Table 2, heating, plastic working, cooling, and tempering were performed. Got.
[0046]
[Table 1]
[0047]
[Table 2]
[0048]
The accelerated cooling in Table 2 is cooling at a cooling rate of 10 ° C./s.
(A) The results of observing the final structure of the obtained sample are shown in Table 2, and the mechanical properties obtained by the tensile test are shown in Table 3.
[0049]
[Table 3]
[0050]
From Table 3, it was confirmed that low yield ratio high tensile steel having a tensile strength of 680 MPa or more and a yield ratio of 0.50 or more and 0.85 or less was obtained by the method of the invention of this application. In particular, Sample A2 has a high tensile strength of 865 MPa and a low yield ratio of 0.56, indicating that it is an excellent low yield ratio high strength steel.
[0051]
FIG. 1 shows the stress-strain characteristics of sample A1 which is a low yield ratio high tensile steel of the invention of this application and sample B2 as a comparative example. FIG. 1 shows that the yield ratio of the sample A1 of the invention of this application is lower than that of the sample B2, although the tensile strength is higher.
(B) Moreover, the result of having observed the structure | tissue of the said sample A1 and sample B2 with the optical microscope was shown in FIG. 2, and the result of having observed with the scanning electron microscope (SEM) was shown in FIG. Furthermore, the distribution of each tissue in the SEM image of sample A1 (A1 in FIG. 3) is schematically shown in FIG.
[0052]
From FIG. 2 and FIG. 3, the sample B2, which is a comparative example, was confirmed to have a low-temperature transformation product structure and a ferrite grain structure grown to 1 μm or more, but no ultrafine ferrite grains were generated in the ferrite grain structure. Was confirmed. Moreover, about sample A1 which is the low yield ratio high-tensile steel of the invention of this application, from FIG. 2 to FIG. 4, a low-temperature transformation product structure, a mixed grain structure composed of ultrafine ferrite grains and partially grown ferrite grains And were confirmed to exist.
[0053]
Of course, the present invention is not limited to the above examples, and it goes without saying that various aspects are possible in detail.
[0054]
【The invention's effect】
As described above in detail, according to the present invention, low yield ratio high-tensile steel useful as a general welded structure material for civil engineering / architecture, ships, line pipes, etc., and no special additive elements are required, and quenching / tempering is performed. A method for producing the low yield ratio high-tensile steel that does not require this step is provided.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating stress-strain characteristics of a low yield ratio high tensile steel sample (A1) and a comparative sample (B2) in an example.
FIG. 2 is a diagram illustrating an optical microscope image obtained by observing the structures of Sample A1 and Sample B2 in Examples.
FIG. 3 is a diagram illustrating SEM images obtained by observing the structures of sample A1 and sample B2 in an example.
4 is a diagram schematically showing the distribution of each tissue in an SEM image (A1 in FIG. 3) of a sample A1.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000292993A JP4590532B2 (en) | 2000-09-26 | 2000-09-26 | Production method of low yield ratio high strength steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000292993A JP4590532B2 (en) | 2000-09-26 | 2000-09-26 | Production method of low yield ratio high strength steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002105533A JP2002105533A (en) | 2002-04-10 |
JP4590532B2 true JP4590532B2 (en) | 2010-12-01 |
Family
ID=18775842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000292993A Expired - Fee Related JP4590532B2 (en) | 2000-09-26 | 2000-09-26 | Production method of low yield ratio high strength steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4590532B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5095958B2 (en) * | 2006-06-01 | 2012-12-12 | 本田技研工業株式会社 | High strength steel plate and manufacturing method thereof |
US8177924B2 (en) | 2006-06-01 | 2012-05-15 | Honda Motor Co., Ltd. | High-strength steel sheet and process for producing the same |
US8263234B2 (en) | 2007-12-05 | 2012-09-11 | Honda Motor Co., Ltd. | High-strength steel sheet, strength member for vehicles using the same, and method for producing strength member for vehicles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0860239A (en) * | 1994-08-23 | 1996-03-05 | Nippon Steel Corp | Method for manufacturing thick steel plate with excellent low temperature toughness |
JPH08295982A (en) * | 1995-04-26 | 1996-11-12 | Nippon Steel Corp | Steel plate excellent in low temperature toughness and method of manufacturing the same |
-
2000
- 2000-09-26 JP JP2000292993A patent/JP4590532B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0860239A (en) * | 1994-08-23 | 1996-03-05 | Nippon Steel Corp | Method for manufacturing thick steel plate with excellent low temperature toughness |
JPH08295982A (en) * | 1995-04-26 | 1996-11-12 | Nippon Steel Corp | Steel plate excellent in low temperature toughness and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2002105533A (en) | 2002-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006282412B2 (en) | Seamless steel pipe for line pipe and a process for its manufacture | |
US6183573B1 (en) | High-toughness, high-tensile-strength steel and method of manufacturing the same | |
CA2752741C (en) | Method for manufacturing seamless pipes | |
JP5880787B2 (en) | Steel tube for low alloy oil well and manufacturing method thereof | |
CN108342655B (en) | Quenched and tempered acid-resistant pipeline steel and manufacturing method thereof | |
CN101233253A (en) | Seamless steel pipe and its manufacturing method | |
WO2009125863A1 (en) | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both | |
CN110114494B (en) | High strength steel material with enhanced brittle crack propagation resistance and fracture initiation resistance at low temperature and method of making the same | |
JP7218533B2 (en) | Steel material and its manufacturing method | |
JP2020509181A (en) | Sour-resistant thick steel plate excellent in low-temperature toughness and post-heat treatment characteristics and method for producing the same | |
JP2020510749A (en) | High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same | |
JP2005179703A (en) | High strength steel sheet having excellent elongation and stretch-flange formability | |
EP3330398B1 (en) | Steel pipe for line pipe and method for manufacturing same | |
JP3417878B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method | |
JP2019525994A (en) | Microalloy steel and production method of the steel | |
JP2011246784A (en) | Rolled non-heat treated steel bar having excellent strength and toughness and method for producing the same | |
JPH10121200A (en) | Steel material for high strength shear reinforcement and method for producing the same | |
JP4590532B2 (en) | Production method of low yield ratio high strength steel | |
JP5390922B2 (en) | Low yield ratio high toughness steel plate | |
JP2008057007A (en) | Low alloy steel and method for producing the same | |
JP3077567B2 (en) | Method of manufacturing steel for low-temperature rebar | |
CA3093397C (en) | Low alloy third generation advanced high strength steel and process for making | |
JPH059576A (en) | Production of non-heattreated bar steel excellent in toughness at low temperature | |
JP3255937B2 (en) | Manufacturing method of quenched steel for hot forging | |
JP2020509206A (en) | Thick steel plate excellent in low-temperature impact toughness and CTOD characteristics and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20010110 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20010418 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040129 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070607 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100817 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130924 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |