[go: up one dir, main page]

JP4577457B2 - Stainless steel used for oil well pipes - Google Patents

Stainless steel used for oil well pipes Download PDF

Info

Publication number
JP4577457B2
JP4577457B2 JP2010505320A JP2010505320A JP4577457B2 JP 4577457 B2 JP4577457 B2 JP 4577457B2 JP 2010505320 A JP2010505320 A JP 2010505320A JP 2010505320 A JP2010505320 A JP 2010505320A JP 4577457 B2 JP4577457 B2 JP 4577457B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel
less
content
scc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010505320A
Other languages
Japanese (ja)
Other versions
JPWO2009119048A1 (en
Inventor
尚 天谷
邦夫 近藤
秀樹 高部
太郎 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Application granted granted Critical
Publication of JP4577457B2 publication Critical patent/JP4577457B2/en
Publication of JPWO2009119048A1 publication Critical patent/JPWO2009119048A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明は、ステンレス鋼に関し、さらに詳しくは、ガス井や油井等で使用される油井管に用いられるステンレス鋼に関する。   The present invention relates to stainless steel, and more particularly to stainless steel used for oil well pipes used in gas wells and oil wells.

油井やガス井から産出される石油や天然ガスは、炭酸ガスや硫化水素といった腐食性の随伴ガスを含有する。そのため、石油や天然ガスの産出に用いられる油井管には、優れた耐食性が求められる。   Oil and natural gas produced from oil and gas wells contain corrosive associated gases such as carbon dioxide and hydrogen sulfide. Therefore, oil well pipes used for the production of oil and natural gas are required to have excellent corrosion resistance.

従来、油井管用の鋼材として、炭素鋼や低合金鋼が利用されていたが、利用される油井やガス井の腐食環境が厳しくなるにつれて、Cr含有量が13%程度であるSUS420マルテンサイト系ステンレス鋼(13%Cr系鋼)や、13%Cr系鋼にNiを添加した改良13%Cr系鋼等の耐食性に優れたステンレス鋼が利用されている。   Conventionally, carbon steel and low alloy steel have been used as steel materials for oil well pipes. However, as the corrosive environment of oil wells and gas wells used becomes severe, SUS420 martensitic stainless steel having a Cr content of about 13%. Stainless steel having excellent corrosion resistance such as steel (13% Cr steel) and improved 13% Cr steel obtained by adding Ni to 13% Cr steel is used.

ところで、最近、深層の油井やガス井の開発が進められているが、深層の油井やガス井で使用される油井管は高い強度を要求される。さらに、深層の油井やガス井では、150℃以上の高温で、かつ、硫化水素や炭酸ガスを含む高温塩化物水溶液環境となるために、従来の油井管よりもさらに優れた耐食性が要求される。このような硫化水素や炭酸ガスを含む高温塩化物水溶液環境では、従来のステンレス鋼よりも優れた耐食性及び高強度を有する2相ステンレス鋼を使用することが考えられる。しかしながら、2相ステンレス鋼は、合金元素の含有量が大きいため、製造コストが高いという問題がある。   By the way, recently, the development of deep oil wells and gas wells has been promoted, but oil well pipes used in deep oil wells and gas wells are required to have high strength. In addition, deep oil wells and gas wells are required to have higher corrosion resistance than conventional oil well pipes in order to provide a high temperature chloride aqueous solution environment containing hydrogen sulfide and carbon dioxide gas at a high temperature of 150 ° C. or higher. . In such a high-temperature chloride aqueous solution environment containing hydrogen sulfide and carbon dioxide, it is conceivable to use a duplex stainless steel having higher corrosion resistance and higher strength than conventional stainless steel. However, the duplex stainless steel has a problem that the production cost is high because the alloy element content is large.

そこで、2相ステンレス鋼よりも合金元素の含有量が少なく、高強度を有し、かつ、炭酸ガスを含む高温塩化物水溶液環境中でも高い耐食性を有するステンレス鋼管が、特開2005−336595号公報(以下、特許文献1という)、特開2006−16637号公報(以下、特許文献2という)及び特開2007−332442号公報(以下、特許文献3という)で提案されている。これらの特許文献に開示されたステンレス鋼管はいずれも、Cr含有量を従来の13%Cr系鋼よりも高くすることにより、耐食性を向上できるとしている。   Therefore, a stainless steel pipe having a lower alloy element content than duplex stainless steel, high strength, and high corrosion resistance even in a high-temperature chloride aqueous solution environment containing carbon dioxide gas is disclosed in JP-A-2005-336595 ( This is proposed in Japanese Patent Application Laid-Open No. 2006-16637 (hereinafter referred to as Patent Document 2) and Japanese Patent Application Laid-Open No. 2007-332442 (hereinafter referred to as Patent Document 3). All of the stainless steel pipes disclosed in these patent documents can improve the corrosion resistance by making the Cr content higher than that of the conventional 13% Cr steel.

具体的には、特許文献1は、ステンレス鋼管のCr含有量を、従来の13%Cr系鋼よりも多い15.5〜18%とする。また、Cr+Mo+0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N≧11.5とすることで、鋼組織をフェライト相とマルテンサイト相との二相組織とし、油井管の熱間加工性を向上する。二相組織は耐食性を低下する可能性があるが、Cr+0.65Ni+0.6Mo+0.55Cu-20C≧19.5となるように、耐食性を向上するNi、Mo、Cuを含有することで、油井管の耐食性の低下を防止する。   Specifically, Patent Document 1 sets the Cr content of the stainless steel pipe to 15.5 to 18%, which is higher than the conventional 13% Cr steel. Also, by making Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ≧ 11.5, the steel structure becomes a two-phase structure of ferrite phase and martensite phase, and hot working of oil well pipes Improve sexiness. Although the two-phase structure may decrease the corrosion resistance, the oil well pipe can contain Ni, Mo, and Cu to improve the corrosion resistance so that Cr + 0.65Ni + 0.6Mo + 0.55Cu-20C ≧ 19.5. Prevents the deterioration of corrosion resistance.

同様に、特許文献2も、ステンレス鋼のCr含有量を15.5〜18%とし、さらに、耐食性を向上するNiを含有する。この文献に開示されたステンレス鋼の化学組成は、特許文献1と類似するが、Moは必須元素ではなく、コストを抑制した合金設計となっている。さらに、Cuも任意選択元素としている。   Similarly, Patent Document 2 also includes Ni that improves the corrosion resistance by setting the Cr content of stainless steel to 15.5 to 18%. The chemical composition of the stainless steel disclosed in this document is similar to that of Patent Document 1, but Mo is not an essential element and has an alloy design that suppresses costs. Furthermore, Cu is also an optional element.

特許文献3に開示されたステンレス鋼は、14〜18%のCrを含有し、かつ、Ni、Mo、Cuを含有することで、高い耐食性を有するとしている。さらに、鋼組織が、マルテンサイト相と、体積率で3〜15%のオーステナイト相とを含有するため、靭性が向上するとしている。   The stainless steel disclosed in Patent Document 3 contains 14 to 18% Cr and contains Ni, Mo, and Cu, and thus has high corrosion resistance. Furthermore, since the steel structure contains a martensite phase and an austenite phase having a volume ratio of 3 to 15%, the toughness is improved.

確かに、上述の特許文献1〜3に開示されたステンレス鋼では、Crを従来の13%Cr系鋼よりも多く含有し、かつ、Ni、Mo、Cu等の合金元素を含有することで、高温腐食環境中での腐食速度が低下する。たとえば、特許文献1の実施例では、100気圧のCOガス雰囲気下における230℃の20重量%NaCl水溶液を用いて、腐食速度(mm/yr)が調査され、腐食速度の低下が立証されている(特許文献1中の表2参照)。Certainly, the stainless steel disclosed in the above-mentioned Patent Documents 1 to 3 contains more Cr than the conventional 13% Cr-based steel, and contains alloy elements such as Ni, Mo, Cu, Corrosion rate in high temperature corrosive environment decreases. For example, in the example of Patent Document 1, the corrosion rate (mm / yr) was investigated using a 20 wt% NaCl aqueous solution at 230 ° C. in a 100 atmospheres CO 2 gas atmosphere, and a decrease in the corrosion rate was proved. (See Table 2 in Patent Document 1).

しかしながら、本発明者らの調査により、炭酸ガスを含む高温塩化物水溶液環境でCr含有量の高いステンレス鋼を使用すれば、腐食速度は低下するものの、応力腐食割れ(SCC)が発生しやすいことが判明した。   However, according to the investigation by the present inventors, if stainless steel with a high Cr content is used in a high-temperature chloride aqueous solution environment containing carbon dioxide gas, the corrosion rate is reduced, but stress corrosion cracking (SCC) is likely to occur. There was found.

13%Cr鋼等に代表される従来のステンレス鋼では、高温塩化物水溶液環境での腐食速度が過度に高くなる。そのため、全面腐食は発生するものの、局所的な割れであるSCCは発生しない。一方、従来のステンレス鋼よりもCr含有量を増加した場合、上述の特許文献1〜3で示されるように、腐食速度は低下する。腐食速度の低下は、ステンレス鋼の表面における不動態被膜の形成による。しかしながら、高温環境下では不動態被膜が局所的に弱くなり、破壊される。破壊された部分では溶解が生じやすいため、この溶解によりSCCが発生するものと考えられる。   In conventional stainless steel represented by 13% Cr steel and the like, the corrosion rate in a high-temperature chloride aqueous solution environment becomes excessively high. Therefore, although general corrosion occurs, SCC which is a local crack does not occur. On the other hand, when the Cr content is increased as compared with the conventional stainless steel, the corrosion rate decreases as described in Patent Documents 1 to 3 described above. The decrease in corrosion rate is due to the formation of a passive film on the surface of the stainless steel. However, the passive film is locally weakened and destroyed under a high temperature environment. Since dissolution is likely to occur in the destroyed portion, it is considered that SCC is generated by this dissolution.

したがって、炭酸ガスを含む高温塩化物水溶液環境で使用されるステンレス鋼では、腐食速度を低減するだけでなく、耐SCC性を向上することが必要となる。   Therefore, in stainless steel used in a high-temperature chloride aqueous solution environment containing carbon dioxide, it is necessary not only to reduce the corrosion rate but also to improve the SCC resistance.

本発明の目的は、炭酸ガスを含む150℃以上の高温塩化物水溶液環境において、優れた耐食性を有する油井管用ステンレス鋼を提供することである。より具体的には、炭酸ガスを含む高温塩化物水溶液環境において、腐食速度が小さく、かつ、耐SCC性に優れた油井管用ステンレス鋼を提供することである。   An object of the present invention is to provide stainless steel for oil country tubular goods having excellent corrosion resistance in a high temperature chloride aqueous solution environment containing carbon dioxide gas at 150 ° C. or higher. More specifically, it is to provide a stainless steel for oil country tubular goods having a low corrosion rate and excellent SCC resistance in a high-temperature chloride aqueous solution environment containing carbon dioxide gas.

本発明者らは、炭酸ガスを含む150℃以上の高温塩化物水溶液環境において腐食速度を低減するためには、質量%で16%以上のCrと、若干量のMoとが鋼に含有される必要があると考えた。しかしながら、CrやMoは、フェライト形成元素であるため、16%以上のCrと若干量のMoとが含有されれば、鋼組織の大部分がフェライト相となり、高強度が得られない。   In order to reduce the corrosion rate in a high-temperature chloride aqueous solution environment containing carbon dioxide gas at 150 ° C. or higher, the present inventors contain 16% or more Cr by mass and a small amount of Mo in the steel. I thought it was necessary. However, since Cr and Mo are ferrite forming elements, if 16% or more of Cr and a slight amount of Mo are contained, most of the steel structure becomes a ferrite phase, and high strength cannot be obtained.

これに対して、オーステナイト形成元素であるNiを含有すれば、高温でのオーステナイト相が安定化されるため、焼入れによりマルテンサイト相が形成されて高強度の鋼組織が得られる。ただし、多量にNiを含有すれば、マルテンサイト変態開始温度(Ms点)が低下するため、常温でもマルテンサイト変態が生じずかえって高強度が得られない。Ni含有量を適正に調整すれば、主としてマルテンサイト相と体積率で10%程度以上のフェライト相とを含む組織が形成され、高い強度を得ることができる。   On the other hand, if Ni, which is an austenite forming element, is contained, the austenite phase at a high temperature is stabilized, so that a martensite phase is formed by quenching and a high strength steel structure is obtained. However, if Ni is contained in a large amount, the martensite transformation start temperature (Ms point) is lowered, so that martensite transformation does not occur even at room temperature, and high strength cannot be obtained. If the Ni content is appropriately adjusted, a structure mainly including a martensite phase and a ferrite phase having a volume ratio of about 10% or more is formed, and high strength can be obtained.

また、Cuはフェライト相の強化に有効であるため、Cuを含有すれば、高強度の組織を得ることができる。Cuはさらに、高温塩化物水溶液環境での腐食速度を低減させ、かつ耐SCC性を向上する。   Moreover, since Cu is effective for strengthening the ferrite phase, a high-strength structure can be obtained if Cu is contained. Cu further reduces the corrosion rate in a high-temperature chloride aqueous solution environment and improves the SCC resistance.

以上の検討により、本発明者らは、16%〜18%のCrと、2%よりも多く4%以下のMoと、3.5%〜7%のNiと、1.5%〜4%のCuとを含有すれば、所定の強度を有し、かつ、腐食速度が小さいステンレス鋼を提供できると考えた。   Based on the above examination, the present inventors have found that 16% to 18% Cr, Mo of more than 2% and 4% or less, 3.5% to 7% Ni, and 1.5% to 4% It was thought that if it contains Cu, a stainless steel having a predetermined strength and a low corrosion rate can be provided.

本発明者らはさらに、上記の化学組成に希土類金属(REM)を所定量以上含有すれば、炭酸ガスを含む高温塩化物水溶液環境中であっても優れた耐SCC性が得られることを見出した。以下、この点について詳述する。   Furthermore, the present inventors have found that if a rare earth metal (REM) is contained in the above chemical composition in a predetermined amount or more, excellent SCC resistance can be obtained even in a high-temperature chloride aqueous solution environment containing carbon dioxide gas. It was. Hereinafter, this point will be described in detail.

本発明者らは、表1に示す化学組成のステンレス鋼を準備し、各ステンレス鋼に対して耐SCC性を評価する試験を行った。

Figure 0004577457
The present inventors prepared stainless steels having the chemical composition shown in Table 1, and conducted a test for evaluating the SCC resistance of each stainless steel.
Figure 0004577457

表1を参照して、番号A1〜A6のステンレス鋼では、REM以外の化学成分はいずれも同等であった。また、REMは、0.0001%〜0.03%の範囲で各番号ごとに異なる含有量とした。さらに、各番号のステンレス鋼を焼入れ焼戻しして、各ステンレス鋼の降伏応力を860〜900MPaの範囲内で調整した。いずれのステンレス鋼の組織も、体積分率で60%のマルテンサイト相と、30%のフェライト相と、10%のオーステナイト相とを含有した。   Referring to Table 1, in the stainless steels of numbers A1 to A6, all chemical components other than REM were equivalent. Moreover, REM was made into different content for every number in the range of 0.0001% to 0.03%. Furthermore, each number of stainless steel was quenched and tempered, and the yield stress of each stainless steel was adjusted within the range of 860 to 900 MPa. All stainless steel structures contained 60% martensite phase, 30% ferrite phase and 10% austenite phase in volume fraction.

各番号のステンレス鋼から、長さ75mm、幅10mm、厚さ2mmの4点曲げ試験片を採取した。採取された各試験片に4点曲げによるたわみを負荷した。このとき、ASTM G39に準拠して、各試験片に与えられる応力が各試験片の降伏応力と等しくなるように、各試験片のたわみ量を決定した。   A four-point bending test piece having a length of 75 mm, a width of 10 mm, and a thickness of 2 mm was taken from each number of stainless steel. Deflection due to 4-point bending was loaded on each collected specimen. At this time, in accordance with ASTM G39, the amount of deflection of each test piece was determined so that the stress applied to each test piece was equal to the yield stress of each test piece.

たわみを負荷された各試験片を、30気圧のCOを加圧封入した204℃(400F)のオートクレーブ中で、重量%で25%のNaCl水溶液中に1ヶ月間浸漬した。1ヶ月間浸漬した後、各試験片にSCCが発生しているか否かを調査した。具体的には、試験片の長手方向断面を100倍視野の光学顕微鏡で観察し、SCCの有無を目視により判断した。Each test piece loaded with deflection was immersed in an aqueous solution of NaCl at 25% by weight for one month in an autoclave at 204 ° C. (400 F) containing 30 atm of CO 2 under pressure. After immersion for one month, it was investigated whether or not SCC occurred in each test piece. Specifically, the longitudinal section of the test piece was observed with an optical microscope having a 100-fold field of view, and the presence or absence of SCC was judged visually.

試験結果を図1に示す。図1中の横軸はREM含有量(質量%)を示し、縦軸は、SCCの発生有無を示す。縦軸の「SCC有」に点「●」がある場合、SCCが発生したことを示す。また、「SCC無」に点「●」がある場合、SCCが発生しなかったことを示す。図1に示すとおり、REM含有量が0.001%以上である場合、炭酸ガスを含む高温塩化物水溶液環境中であってもSCCが発生しないことが判明した。REMが耐SCC性を向上する理由は定かではないが、以下の理由が推定される。   The test results are shown in FIG. The horizontal axis in FIG. 1 indicates the REM content (% by mass), and the vertical axis indicates whether or not SCC is generated. A point “●” on “with SCC” on the vertical axis indicates that an SCC has occurred. Further, when there is a dot “●” in “No SCC”, it indicates that no SCC has occurred. As shown in FIG. 1, it was found that when the REM content is 0.001% or more, SCC does not occur even in a high-temperature chloride aqueous solution environment containing carbon dioxide gas. The reason why REM improves the SCC resistance is not clear, but the following reason is estimated.

上述の試験でSCCが発生したステンレス鋼をミクロ観察した結果、SCCは、ピット(孔食)を起点とし、主としてマルテンサイト組織内の旧オーステナイト粒界に沿って伝播していた。このことから、応力負荷時の旧オーステナイト粒界への転位の集積挙動とクラック伝播とは何らかの相関があると考えられる。そして、REMは、旧オーステナイト粒界への転位の集積挙動に何らかの影響を与え、その結果、0.001%以上のREMを含有したステンレス鋼の耐SCC性が向上すると推定される。なお、番号A1〜A3のステンレス鋼は、0.0008〜0.0013%のCaを含有するもののREM含有量が0.001%未満であるため、SCCが発生した。このことから、Caよりも0.001%以上の含有量のREMの方が耐SCCの向上に寄与することがわかった。   As a result of micro observation of the stainless steel in which SCC was generated in the above test, the SCC propagated mainly along the prior austenite grain boundaries in the martensite structure, starting from pits (pitting corrosion). From this, it is considered that there is some correlation between the accumulation behavior of dislocations in the prior austenite grain boundaries during stress loading and crack propagation. And REM has some influence on the accumulation behavior of dislocations in the prior austenite grain boundaries, and as a result, it is estimated that the SCC resistance of stainless steel containing 0.001% or more of REM is improved. In addition, although the stainless steel of number A1-A3 contains 0.0008-0.0013% of Ca, since REM content is less than 0.001%, SCC generate | occur | produced. From this, it was found that REM having a content of 0.001% or more than Ca contributes to the improvement of SCC resistance.

以上の知見に基づいて、本発明者らは以下の発明を完成した。   Based on the above findings, the present inventors have completed the following invention.

本発明によるステンレス鋼は、油井管に用いられる。本発明のステンレス鋼は、質量%で、C:0.001〜0.05%、Si:0.05〜1%、Mn:2%以下、P:0.03%以下、S:0.002%未満、Cr:16〜18%、Ni:3.5〜7%、Mo:2%を超え4%以下、Cu:1.5〜4%、希土類金属:0.001〜0.3%、sol.Al:0.001〜0.1%、Ca:0.0001〜0.01%、O:0.05%以下及びN:0.05%以下を含有し、残部はFe及び不純物からなる。   The stainless steel according to the present invention is used for oil country tubular goods. The stainless steel of the present invention is in mass%, C: 0.001 to 0.05%, Si: 0.05 to 1%, Mn: 2% or less, P: 0.03% or less, S: 0.002 %: Cr: 16-18%, Ni: 3.5-7%, Mo: more than 2% and 4% or less, Cu: 1.5-4%, rare earth metal: 0.001-0.3%, sol. Al: 0.001 to 0.1%, Ca: 0.0001 to 0.01%, O: 0.05% or less and N: 0.05% or less, with the balance being Fe and impurities.

好ましくは、本発明によるステンレス鋼は、Feの一部に替えてさらに、Ti:0.5%以下、Zr:0.5%以下、Hf:0.5%以下、V:0.5%以下及びNb:0.5%以下からなる群から選択される1種又は2種以上を含有する。   Preferably, in the stainless steel according to the present invention, Ti: 0.5% or less, Zr: 0.5% or less, Hf: 0.5% or less, V: 0.5% or less, instead of a part of Fe And Nb: one or more selected from the group consisting of 0.5% or less.

この場合、Cr欠乏層に起因した孔食の発生が抑制される。   In this case, the occurrence of pitting corrosion due to the Cr-deficient layer is suppressed.

好ましくは、上述のステンレス鋼は、体積分率で10〜60%のフェライト相と、2〜10%の残留オーステナイト相とを含む組織を有する。   Preferably, the above-mentioned stainless steel has a structure containing a ferrite phase of 10 to 60% and a residual austenite phase of 2 to 10% by volume fraction.

好ましくは、本発明によるステンレス鋼は、654MPa以上の降伏応力を有する。   Preferably, the stainless steel according to the present invention has a yield stress of 654 MPa or more.

ステンレス鋼の希土類金属の含有量とSCCとの関係を示す図である。It is a figure which shows the relationship between rare earth metal content of stainless steel, and SCC.

以下、本発明の実施の形態を詳しく説明する。本発明によるステンレス鋼は、炭酸ガスを含む150℃以上の高温塩化物水溶液環境で使用される油井管に利用可能である。以下、炭酸ガスを含み150℃以上の高温塩化物水溶液環境を、単に、高温塩化物水溶液環境という。   Hereinafter, embodiments of the present invention will be described in detail. The stainless steel according to the present invention can be used for oil well pipes used in a high temperature chloride aqueous solution environment containing carbon dioxide gas at 150 ° C. or higher. Hereinafter, a high-temperature chloride aqueous solution environment containing carbon dioxide and having a temperature of 150 ° C. or higher is simply referred to as a high-temperature chloride aqueous solution environment.

1.化学組成   1. Chemical composition

本発明によるステンレス鋼は、以下の化学組成を有する。以降、元素に関する%は質量%を意味する。   The stainless steel according to the present invention has the following chemical composition. Hereinafter, “%” related to elements means “% by mass”.

C:0.001〜0.05%   C: 0.001 to 0.05%

炭素(C)は、Crと炭化物を形成し、高温塩化物水溶液環境での鋼の耐食性を低下させる。そのため、C含有量はなるべく低い方が好ましい。したがって、C含有量の上限は0.05%とする。なお、実質的に制御可能なC含有量の下限は0.001%である。   Carbon (C) forms carbides with Cr and lowers the corrosion resistance of steel in a high temperature chloride aqueous solution environment. For this reason, the C content is preferably as low as possible. Therefore, the upper limit of the C content is 0.05%. The lower limit of the C content that can be substantially controlled is 0.001%.

Si:0.05〜1%   Si: 0.05 to 1%

珪素(Si)は、精錬工程で鋼を脱酸する。この効果を得るために、Si含有量の下限を0.05%とする。一方、過剰にSiを含有すれば、脱酸効果が飽和するだけでなく、鋼の熱間加工性が低下する。そのため、Si含有量の上限は1%とする。   Silicon (Si) deoxidizes steel in the refining process. In order to obtain this effect, the lower limit of the Si content is set to 0.05%. On the other hand, if Si is contained excessively, not only the deoxidation effect is saturated, but also the hot workability of the steel is lowered. Therefore, the upper limit of Si content is 1%.

Mn:2%以下   Mn: 2% or less

マンガン(Mn)は鋼の強度を向上する。しかしながら、過剰にMnを含有すれば、鋼中に偏析が生じやすくなる。鋼中の偏析は、鋼の靭性を低下し、さらに、高温塩化物水溶液環境での耐SCC性を低下する。したがって、Mn含有量は2%以下とする。強度の向上効果を得るために好ましいMn含有量は0.2%以上である。ただし、Mn含有量が0.2%未満であっても、鋼の強度はある程度向上する。   Manganese (Mn) improves the strength of the steel. However, if Mn is contained excessively, segregation is likely to occur in the steel. Segregation in steel reduces the toughness of the steel and further reduces the SCC resistance in a high-temperature chloride aqueous solution environment. Therefore, the Mn content is 2% or less. In order to obtain the effect of improving the strength, the preferable Mn content is 0.2% or more. However, even if the Mn content is less than 0.2%, the strength of the steel is improved to some extent.

P:0.03%以下   P: 0.03% or less

リン(P)は、不純物である。Pは、耐SSC(硫化物応力割れ)性や、高温塩化物水溶液環境における耐SCC性を低下させる。そのため、P含有量はなるべく低い方が好ましい。したがって、P含有量を0.03%以下にする。   Phosphorus (P) is an impurity. P decreases SSC (sulfide stress cracking) resistance and SCC resistance in a high-temperature chloride aqueous solution environment. For this reason, the P content is preferably as low as possible. Therefore, the P content is set to 0.03% or less.

S:0.002%未満   S: Less than 0.002%

硫黄(S)は、Mn等と結合して介在物を形成する。形成された介在物は、孔食やSCCの起点となり、鋼の耐食性を低下させる。また、Sは鋼の熱間加工性を低下させる。そのため、S含有量はなるべく低い方が好ましい。したがって、S含有量は0.002%未満にする。   Sulfur (S) combines with Mn and the like to form inclusions. The formed inclusion becomes a starting point of pitting corrosion and SCC, and reduces the corrosion resistance of steel. Moreover, S reduces the hot workability of steel. Therefore, the S content is preferably as low as possible. Therefore, the S content is less than 0.002%.

Cr:16〜18%   Cr: 16-18%

クロム(Cr)は、高温塩化物水溶液環境における耐食性を向上する必須の元素である。高温塩化物水溶液環境において高い耐SCC性を得るために、Cr含有量の下限は16%とする。一方、Crはフェライト形成元素であるため、過剰に含有すれば、鋼組織内でフェライト相の割合が増大して鋼の強度が低下する。さらに、残留オーステナイト相の割合が低下するため、鋼の靭性が低下する。したがって、Cr含有量の上限は18%である。好ましいCr含有量は16.5〜17.5%である。   Chromium (Cr) is an essential element that improves the corrosion resistance in a high-temperature chloride aqueous solution environment. In order to obtain high SCC resistance in a high-temperature chloride aqueous solution environment, the lower limit of the Cr content is 16%. On the other hand, since Cr is a ferrite-forming element, if it is contained excessively, the proportion of the ferrite phase increases in the steel structure, and the strength of the steel decreases. Furthermore, since the ratio of a retained austenite phase falls, the toughness of steel falls. Therefore, the upper limit of the Cr content is 18%. A preferable Cr content is 16.5 to 17.5%.

Ni:3.5〜7%   Ni: 3.5-7%

ニッケル(Ni)は、高温塩化物水溶液環境での耐食性を向上する。Niはさらに、鋼の靭性を向上する。これらの効果を得るために、Ni含有量の下限は3.5%とする。一方、Niはオーステナイト形成元素であるため、過剰に含有すれば、鋼組織内で残留オーステナイト相の割合が過剰に増加し、鋼の強度が低下する。したがって、Ni含有量の上限は7%とする。好ましいNi含有量は3.5〜6.5%であり、より好ましいNi含有量は3.8〜5.8%である。   Nickel (Ni) improves the corrosion resistance in a high-temperature chloride aqueous solution environment. Ni further improves the toughness of the steel. In order to obtain these effects, the lower limit of the Ni content is 3.5%. On the other hand, since Ni is an austenite forming element, if it is excessively contained, the proportion of the retained austenite phase is excessively increased in the steel structure, and the strength of the steel is lowered. Therefore, the upper limit of the Ni content is 7%. A preferable Ni content is 3.5 to 6.5%, and a more preferable Ni content is 3.8 to 5.8%.

Cu:1.5〜4%   Cu: 1.5 to 4%

銅(Cu)は、高温塩化物水溶液環境での鋼の溶出速度を低減する。Cuはさらに、鋼の耐SCC性を向上する。Cuはまた、鋼組織内のフェライト相を強化する。これらの効果を得るためにCu含有量の下限は1.5%にする。一方、過剰にCuを含有すれば、鋼の熱間加工性が低下する。したがって、Cu含有量の上限は4%にする。好ましいCu含有量は1.5〜3.0%であり、より好ましいCu含有量は1.5〜2.5%である。   Copper (Cu) reduces the elution rate of steel in a high temperature chloride aqueous environment. Cu further improves the SCC resistance of the steel. Cu also strengthens the ferrite phase in the steel structure. In order to obtain these effects, the lower limit of the Cu content is 1.5%. On the other hand, if Cu is contained excessively, the hot workability of the steel is lowered. Therefore, the upper limit of the Cu content is 4%. A preferable Cu content is 1.5 to 3.0%, and a more preferable Cu content is 1.5 to 2.5%.

Mo:2%を超え4%以下   Mo: more than 2% and less than 4%

モリブデン(Mo)は、Crとの共存下において鋼の耐孔食性及び耐SCC性を向上する。この効果を得るために、Mo含有量は2%よりも多くする。一方、Moはフェライト形成元素であるため、過剰にMoを含有すれば、鋼組織内のフェライト相の割合が増大し、強度が低下する。したがって、Mo含有量は4%以下にする。好ましいMo含有量は2.1〜3.3%であり、より好ましいMo含有量は2.3〜3.0%である。   Molybdenum (Mo) improves the pitting corrosion resistance and SCC resistance of steel in the presence of Cr. In order to obtain this effect, the Mo content is more than 2%. On the other hand, since Mo is a ferrite-forming element, if Mo is contained excessively, the proportion of the ferrite phase in the steel structure increases and the strength decreases. Therefore, the Mo content is 4% or less. A preferable Mo content is 2.1 to 3.3%, and a more preferable Mo content is 2.3 to 3.0%.

Sol.Al:0.001〜0.1%   Sol. Al: 0.001 to 0.1%

アルミニウム(Al)は、精錬工程で鋼を脱酸する。この効果を得るために、Al含有量の下限は0.001%にする。一方、過剰にAlを含有すれば、アルミナ介在物が鋼中に多量に生成され、鋼の靭性が低下する。したがって、Al含有量の上限は0.1%にする。なお、本明細書でいうAl含有量は、酸可溶Al(Sol.Al:Soluble Aluminum)の含有量を意味する。   Aluminum (Al) deoxidizes steel in the refining process. In order to obtain this effect, the lower limit of the Al content is 0.001%. On the other hand, if Al is contained excessively, alumina inclusions are produced in a large amount in the steel and the toughness of the steel is lowered. Therefore, the upper limit of the Al content is 0.1%. In addition, Al content said by this specification means content of acid-soluble Al (Sol.Al:Soluble Aluminum).

Ca:0.0001〜0.01%   Ca: 0.0001 to 0.01%

カルシウム(Ca)は、精錬工程で鋼を脱酸する。Caはさらに、熱間加工性を向上する。これらの効果を得るために、Ca含有量の下限は0.0001%にする。一方、過剰にCaを含有すれば、CaO等の介在物が鋼中に多量に生成され、鋼の靭性が低下する。さらに、CaO等の介在物は、孔食の起点にもなる。そのため、Ca含有量の上限は0.01%にする。   Calcium (Ca) deoxidizes steel in the refining process. Ca further improves hot workability. In order to obtain these effects, the lower limit of the Ca content is 0.0001%. On the other hand, if Ca is contained excessively, inclusions such as CaO are produced in a large amount in the steel, and the toughness of the steel is lowered. Furthermore, inclusions such as CaO also serve as starting points for pitting corrosion. Therefore, the upper limit of the Ca content is 0.01%.

N:0.05%以下   N: 0.05% or less

窒素(N)はオーステナイト相を安定化する。Nはさらに、耐孔食性を向上する。一方、過剰にNを含有すれば、鋼中に種々の窒化物が形成され、鋼の靭性が低下する。したがって、N含有量は0.05%以下にする。上述の効果を有効に得るためのN含有量の好ましい下限は0.005%である。   Nitrogen (N) stabilizes the austenite phase. N further improves pitting corrosion resistance. On the other hand, if N is contained excessively, various nitrides are formed in the steel and the toughness of the steel is lowered. Therefore, the N content is 0.05% or less. The minimum with preferable N content for acquiring the above-mentioned effect effectively is 0.005%.

O:0.05%以下   O: 0.05% or less

酸素(O)は不純物である。Oは他の元素と結合して酸化物を形成し、鋼の靭性及び耐食性を低下する。そのため、O含有量はなるべく少ない方が好ましい。したがって、O含有量は0.05%以下である。   Oxygen (O) is an impurity. O combines with other elements to form oxides, reducing the toughness and corrosion resistance of the steel. Therefore, it is preferable that the O content is as small as possible. Therefore, the O content is 0.05% or less.

希土類金属:0.001〜0.3%   Rare earth metal: 0.001-0.3%

希土類金属(Rare Earth Metals:REM)は、本発明において重要な元素である。REMは、上述のとおり、高温塩化物水溶液環境中での耐SCC性を向上する。この効果を得るために、REM含有量の下限は0.001%にする。一方、過剰にREMを含有しても、その効果は飽和する。そのため、REM含有量の上限は0.3%にする。好ましいREM含有量は0.001〜0.1%であり、より好ましいREM含有量は0.001〜0.01%である。   Rare Earth Metals (REM) is an important element in the present invention. As described above, REM improves the SCC resistance in a high-temperature chloride aqueous solution environment. In order to obtain this effect, the lower limit of the REM content is 0.001%. On the other hand, even if REM is excessively contained, the effect is saturated. Therefore, the upper limit of the REM content is 0.3%. A preferable REM content is 0.001 to 0.1%, and a more preferable REM content is 0.001 to 0.01%.

なお、本発明でいうREMとは、原子番号39番のイットリウム(Y)及び、原子番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイドである。   In addition, REM as used in the field of this invention is lanthanoid from yttrium (Y) of atomic number 39 and lanthanum (La) of atomic number 57 to lutetium (Lu) of 71.

本発明によるステンレス鋼は、上述のREMのうち1種又は2種以上を含有する。したがって、REM含有量は、上述の複数のREMから選択された1種又は2種以上の総含有量である。   The stainless steel according to the present invention contains one or more of the above REMs. Accordingly, the REM content is a total content of one or more selected from the above-described plurality of REMs.

なお、化学組成の残部はFe及び不純物である。   The balance of the chemical composition is Fe and impurities.

本発明のステンレス鋼はさらに、必要に応じて、Feの一部に替えて、Ti、Zr、Hf、V及びNbからなる群から選択される1種又は2種以上を含有する。   The stainless steel of the present invention further contains one or more selected from the group consisting of Ti, Zr, Hf, V and Nb in place of part of Fe as required.

Ti:0.5%以下   Ti: 0.5% or less

Zr:0.5%以下   Zr: 0.5% or less

Hf:0.5%以下   Hf: 0.5% or less

V:0.5%以下   V: 0.5% or less

Nb:0.5%以下   Nb: 0.5% or less

チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)及びニオブ(Nb)は、必須の元素ではなく、任意に添加される元素である。これらの元素はいずれもCを固定し、Cr炭化物の生成を抑制する。そのため、Cr炭化物周辺に形成されるCr欠乏層に起因した孔食の発生が抑制され、SCC感受性が低減される。しかしながら、これらの元素を過剰に含有すれば、鋼の靭性が低下する。したがって、これらの元素の含有量の上限は、いずれも0.5%にする。なお、上述の効果を顕著に得るために、これらの元素の含有量の好ましい下限は、いずれの元素も0.005%である。ただし、これらの元素の含有量が好ましい下限未満であっても、上述の効果をある程度得ることができる。   Titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), and niobium (Nb) are not essential elements but are elements that are arbitrarily added. All of these elements fix C and suppress the formation of Cr carbides. Therefore, the occurrence of pitting caused by the Cr-deficient layer formed around the Cr carbide is suppressed, and the SCC sensitivity is reduced. However, if these elements are contained excessively, the toughness of the steel is lowered. Accordingly, the upper limit of the content of these elements is 0.5%. In order to obtain the above-mentioned effects remarkably, the lower limit of the content of these elements is preferably 0.005% for all elements. However, even if the content of these elements is less than the preferable lower limit, the above-described effects can be obtained to some extent.

2.製造方法   2. Production method

本発明によるステンレス鋼は、焼入れ焼戻しの熱処理を行うことにより後述の組織を有することができ、目的とする耐食性と、油井管用途に必要な強度を得ることができる。以下、一例として、本発明のステンレス鋼管の製造方法について説明する。   The stainless steel according to the present invention can have the structure described later by performing a heat treatment of quenching and tempering, and can obtain the desired corrosion resistance and the strength required for oil well pipe use. Hereinafter, the manufacturing method of the stainless steel pipe of this invention is demonstrated as an example.

上記化学組成の鋼を溶製し、ビレットを製造する。製造されたビレットを熱間加工してステンレス鋼管とする。熱間加工として、たとえばマンネスマン法を実施して継目無鋼管を製造する。なお、熱間加工として熱間押出を実施してもよいし、熱間鍛造を実施してもよい。   A billet is produced by melting steel having the above chemical composition. The manufactured billet is hot-worked into a stainless steel pipe. As hot working, for example, the Mannesmann method is performed to manufacture a seamless steel pipe. In addition, you may implement hot extrusion as hot processing, and you may implement hot forging.

製造されたステンレス鋼管に対して、焼入れ及び焼戻し処理を実施する。このとき、好ましい焼入れ温度は900〜1200℃であり、好ましい焼戻し温度は450〜650℃である。   Quenching and tempering treatment is performed on the manufactured stainless steel pipe. At this time, a preferable quenching temperature is 900-1200 degreeC, and a preferable tempering temperature is 450-650 degreeC.

3.組織   3. Organization

上述の製造方法により製造されたステンレス鋼の組織は、体積分率で10〜60%のフェライト相と、2〜10%の残留オーステナイト相とを含む。   The structure of stainless steel manufactured by the above-described manufacturing method includes a ferrite phase of 10 to 60% and a residual austenite phase of 2 to 10% by volume fraction.

ここで、フェライト相の体積分率は、以下の方法で求められる。表面を研磨した試験片を王水とグリセリンとの混合溶液を用いてエッチングする。エッチングされた試験片を用いて、試験片表面におけるフェライト相の面積率を、JISG0555に基づく点算法で測定する。測定された面積率を体積分率とする。また、残留オーステナイト相の体積分率は、X線回折法により測定される。   Here, the volume fraction of the ferrite phase is obtained by the following method. The test piece whose surface has been polished is etched using a mixed solution of aqua regia and glycerin. Using the etched specimen, the area ratio of the ferrite phase on the specimen surface is measured by a point calculation method based on JISG0555. Let the measured area ratio be the volume fraction. The volume fraction of the retained austenite phase is measured by an X-ray diffraction method.

なお、ステンレス鋼の組織のうち、フェライト相及び残留オーステナイト相以外の他の部分は、主として焼戻しされたマルテンサイト相である。マルテンサイト相以外に、炭化物や、窒化物、硼化物、Cu相が含まれていてもよい。   In the stainless steel structure, the part other than the ferrite phase and the retained austenite phase is mainly a tempered martensite phase. In addition to the martensite phase, carbides, nitrides, borides, and Cu phases may be included.

本発明によるステンレス鋼は、上述の組織を有することにより、降伏応力が654MPa(95ksiに相当)以上になる。更には758MPa(110ksiに相当)以上、更には862MPa(125ksiに相当)以上に調整できる。ここでいう降伏応力とは、ASTM規格に基づく0.2%オフセット耐力である。   Since the stainless steel according to the present invention has the above-described structure, the yield stress becomes 654 MPa (corresponding to 95 ksi) or more. Furthermore, it can be adjusted to 758 MPa (corresponding to 110 ksi) or more, and further to 862 MPa (corresponding to 125 ksi) or more. The yield stress here is 0.2% offset proof stress based on the ASTM standard.

また、本発明のステンレス鋼は、組織内に上記体積分率の残留オーステナイト相を含有するため、高い靭性を有する。   In addition, the stainless steel of the present invention has high toughness because it contains the retained austenite phase having the above volume fraction in the structure.

種々の化学組成を有する複数のステンレス鋼を製造し、高温塩化物水溶液環境中での耐SCC性を調査した。   A plurality of stainless steels having various chemical compositions were produced, and the SCC resistance in a high temperature chloride aqueous solution environment was investigated.

[試験材の製造]
表2に示す化学組成を有する複数のステンレス鋼を溶製した。

Figure 0004577457
[Manufacture of test materials]
A plurality of stainless steels having the chemical composition shown in Table 2 were melted.
Figure 0004577457

表2中の各数値は、該当する元素の含有量(質量%)を示す。また、各鋼の化学組成のうち、表1に記載された元素以外の残部はFe及び不純物である。「REM」欄中の数値の横に付された記号a)〜c)は、各鋼に含有されたREMの種類を示す。具体的には、a)は、含有されたREMがネオジム(Nd)であることを示す。b)は、含有されたREMがイットリウム(Y)であることを示す。c)は、含有されたREMがミッシュメタルであることを示す。ミッシュメタルは、質量%で51.0%のセリウム(Ce)と、25.5%のランタン(La)と、18.6%のネオジム(Nd)と、4.8%のプラセオジム(Pr)と、0.1%のサマリウム(Sm)とを含有する。   Each numerical value in Table 2 indicates the content (% by mass) of the corresponding element. Moreover, among the chemical composition of each steel, the remainder other than the elements described in Table 1 is Fe and impurities. Symbols a) to c) attached to the side of the numerical value in the “REM” column indicate the type of REM contained in each steel. Specifically, a) indicates that the contained REM is neodymium (Nd). b) shows that the contained REM is yttrium (Y). c) shows that the contained REM is misch metal. Misch metal is composed of 51.0% cerium (Ce), 25.5% lanthanum (La), 18.6% neodymium (Nd), and 4.8% praseodymium (Pr). 0.1% samarium (Sm).

表2を参照して、番号1〜12の鋼に関しては、いずれも化学組成が本発明で定義された範囲内であった。一方、番号13の鋼に関しては、Mo含有量が本発明で定義された範囲の下限未満であった。番号14の鋼に関しては、Cr含有量が本発明で定義された範囲の下限未満であった。番号15の鋼に関しては、Cu含有量が本発明で定義された範囲の下限未満であった。番号16の鋼に関しては、REMが含有されなかった。番号17の鋼に関しては、Ni含有量が本発明で定義された範囲の下限未満であった。   Referring to Table 2, regarding the steels of Nos. 1 to 12, the chemical compositions were all within the range defined in the present invention. On the other hand, regarding the steel of No. 13, the Mo content was less than the lower limit of the range defined in the present invention. Regarding the steel of No. 14, the Cr content was less than the lower limit of the range defined in the present invention. Regarding the steel of No. 15, the Cu content was less than the lower limit of the range defined in the present invention. Regarding the steel of No. 16, REM was not contained. Regarding the steel of No. 17, the Ni content was less than the lower limit of the range defined in the present invention.

各番号の鋼を熱間鍛造及び熱間圧延して、厚さ12mmの鋼板を製造した。各番号の鋼板に対して焼入れ焼戻しを実施した。焼入れ処理では、各番号の鋼板を980〜1200℃の焼入れ温度で15分間加熱した後、水冷した。また、焼戻し処理では、焼戻し温度を500〜650℃とした。以上の工程により、各鋼板の降伏強度が800〜950MPaの範囲内となるように調整した。   Each number of steel was hot forged and hot rolled to produce a 12 mm thick steel plate. Quenching and tempering were performed on each number of steel plates. In the quenching treatment, each number of steel plates was heated at a quenching temperature of 980 to 1200 ° C. for 15 minutes and then cooled with water. In the tempering treatment, the tempering temperature was set to 500 to 650 ° C. By the above process, it adjusted so that the yield strength of each steel plate might be in the range of 800-950 MPa.

[組織観察及び引張試験]
各番号の鋼板のフェライト相及び残留オーステナイト相の体積分率(%)を上記3.に記載した測定方法により求めた。
[Structural observation and tensile test]
The volume fractions (%) of the ferrite phase and the retained austenite phase of the steel plates of the respective numbers are described in the above 3. It was determined by the measurement method described in 1.

さらに、各番号の鋼板から、丸棒引張試験片を採取し、引張試験を実施した。丸棒引張試験片の長手方向は鋼板の圧延方向とし、丸棒引張試験片の平行部の直径は14mm、長さは20mmとした。引張試験は常温で実施した。   Furthermore, a round bar tensile test piece was collected from each number of steel plates, and a tensile test was performed. The longitudinal direction of the round bar tensile test piece was the rolling direction of the steel sheet, the diameter of the parallel part of the round bar tensile test piece was 14 mm, and the length was 20 mm. The tensile test was performed at room temperature.

[SCC評価試験]
各番号の鋼板から、長さ75mm、幅10mm、厚さ2mmの4点曲げ試験片を採取した。採取された各試験片に4点曲げによるたわみを負荷した。このとき、ASTM G39に準拠して、各試験片に与えられる応力が各試験片の降伏応力と等しくなるように、各試験片のたわみ量を決定した。
[SCC evaluation test]
Four-point bending test pieces having a length of 75 mm, a width of 10 mm, and a thickness of 2 mm were collected from each number of steel plates. Deflection due to 4-point bending was loaded on each collected specimen. At this time, in accordance with ASTM G39, the amount of deflection of each test piece was determined so that the stress applied to each test piece was equal to the yield stress of each test piece.

たわみを負荷された各試験片を、30気圧のCOを加圧封入した204℃(400F)のオートクレーブ中で、重量%で25%のNaCl水溶液中に1ヶ月間浸漬した。1ヶ月間浸漬した後、各試験片にSCCが発生しているか否かを調査した。具体的には、試験片の長手方向断面を100倍視野の光学顕微鏡で観察し、SCCの有無を目視により判断した。また、試験前後の各試験片の重量を測定した。測定された重量の変化から各試験片の腐食減量を求め、腐食減量に基づいて腐食速度を求めた。Each test piece loaded with deflection was immersed in an aqueous solution of NaCl at 25% by weight for one month in an autoclave at 204 ° C. (400 F) containing 30 atm of CO 2 under pressure. After immersion for one month, it was investigated whether or not SCC occurred in each test piece. Specifically, the longitudinal section of the test piece was observed with an optical microscope having a 100-fold field of view, and the presence or absence of SCC was judged visually. Moreover, the weight of each test piece before and after the test was measured. The corrosion weight loss of each test piece was obtained from the change in the measured weight, and the corrosion rate was obtained based on the corrosion weight loss.

[試験結果]
表3に試験結果を示す。

Figure 0004577457
[Test results]
Table 3 shows the test results.
Figure 0004577457

表3中の「YS」欄は、引張試験により得られた各番号の鋼板の降伏応力(MPa)を示す。また、「フェライト相」及び「残留オーステナイト相」欄には、各番号の鋼板のフェライト相及び残留オーステナイト相の体積分率(%)を示す。「SCC評価結果」欄中の「SCC無」は、4点曲げ試験片にSCCが発生しなかったことを示し、「SCC有」は、SCCが発生したことを示す。「腐食速度」欄中の「<0.1」は、腐食速度が0.1g/(m・hr)未満であったことを示し、「≧0.1」は、腐食速度が0.1g/(m・hr)以上であったことを示す。The “YS” column in Table 3 indicates the yield stress (MPa) of each numbered steel plate obtained by a tensile test. In the “ferrite phase” and “residual austenite phase” columns, the volume fractions (%) of the ferrite phase and the retained austenite phase of the steel plates of the respective numbers are shown. “No SCC” in the “SCC evaluation result” column indicates that no SCC occurred in the four-point bending test piece, and “With SCC” indicates that SCC occurred. “<0.1” in the “Corrosion Rate” column indicates that the corrosion rate was less than 0.1 g / (m 2 · hr), and “≧ 0.1” indicates that the corrosion rate was 0.1 g. / (M 2 · hr) or more.

表3を参照して、番号1〜12の鋼は、いずれもSCCが発生せず、腐食速度も0.1g/(m・hr)未満であった。また、降伏応力はいずれも654MPa以上であった。Referring to Table 3, none of the steels of Nos. 1 to 12 had SCC and the corrosion rate was less than 0.1 g / (m 2 · hr). Moreover, all yield stress was 654 MPa or more.

一方、番号13、15及び17の鋼では、Mo、Cu、Ni含有量がそれぞれ少なかったため、SCCが発生した。また、番号14の鋼では、Cr含有量が少なかったため、SCCが発生し、さらに、腐食速度が0.1g/(m・hr)以上であった。さらに、番号16の鋼では、REMが含有されなかったため、SCCが発生した。On the other hand, in the steels of Nos. 13, 15, and 17, SCC occurred because the contents of Mo, Cu, and Ni were small. Moreover, in the steel of No. 14, since there was little Cr content, SCC generate | occur | produced and also the corrosion rate was 0.1 g / (m < 2 > * hr) or more. Furthermore, in the steel of No. 16, since REM was not contained, SCC occurred.

以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。   While the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

本発明によるはステンレス鋼は、油井管として利用可能であり、特に、炭酸ガスを含む150℃以上の高温塩化物水溶液環境中で使用される油井管への利用に適する。   The stainless steel according to the present invention can be used as an oil well pipe, and is particularly suitable for use in an oil well pipe used in a high-temperature chloride aqueous solution environment containing carbon dioxide gas at 150 ° C. or higher.

Claims (5)

油井管に用いられるステンレス鋼であって、
質量%で、C:0.001〜0.05%、Si:0.05〜1%、Mn:2%以下、P:0.03%以下、S:0.002%未満、Cr:16〜18%、Ni:3.5〜7%、Mo:2%を超え4%以下、Cu:1.5〜4%、希土類金属:0.001〜0.3%、sol.Al:0.001〜0.1%、Ca:0.0001〜0.01%、O:0.05%以下及びN:0.05%以下を含有し、残部はFe及び不純物からなることを特徴とするステンレス鋼。
Stainless steel used for oil well pipes,
In mass%, C: 0.001 to 0.05%, Si: 0.05 to 1%, Mn: 2% or less, P: 0.03% or less, S: less than 0.002%, Cr: 16 to 18%, Ni: 3.5-7%, Mo: more than 2% and 4% or less, Cu: 1.5-4%, rare earth metal: 0.001-0.3%, sol. Al: 0.001 to 0.1%, Ca: 0.0001 to 0.01%, O: 0.05% or less and N: 0.05% or less, with the balance being Fe and impurities Features stainless steel.
請求項1に記載のステンレス鋼であって、
前記Feの一部に替えてさらに、Ti:0.5%以下、Zr:0.5%以下、Hf:0.5%以下、V:0.5%以下及びNb:0.5%以下からなる群から選択される1種又は2種以上を含有することを特徴とするステンレス鋼。
The stainless steel according to claim 1,
In place of a part of Fe, Ti: 0.5% or less, Zr: 0.5% or less, Hf: 0.5% or less, V: 0.5% or less, and Nb: 0.5% or less Stainless steel characterized by containing one or more selected from the group consisting of:
請求項1に記載のステンレス鋼であって、
体積分率で10〜60%のフェライト相と、2〜10%の残留オーステナイト相とを含む組織を有することを特徴とするステンレス鋼。
The stainless steel according to claim 1,
A stainless steel having a structure containing a ferrite phase of 10 to 60% by volume fraction and a residual austenite phase of 2 to 10%.
請求項2に記載のステンレス鋼であって、
体積分率で10〜60%のフェライト相と、2〜10%の残留オーステナイト相とを含む組織を有することを特徴とするステンレス鋼。
The stainless steel according to claim 2,
A stainless steel having a structure containing a ferrite phase of 10 to 60% by volume fraction and a residual austenite phase of 2 to 10%.
請求項1〜請求項4のいずれか1項に記載のステンレス鋼であって、
654MPa以上の降伏応力を有することを特徴とするステンレス鋼。
The stainless steel according to any one of claims 1 to 4,
Stainless steel characterized by having a yield stress of 654 MPa or more.
JP2010505320A 2008-03-28 2009-03-19 Stainless steel used for oil well pipes Active JP4577457B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008087643 2008-03-28
JP2008087643 2008-03-28
PCT/JP2009/001238 WO2009119048A1 (en) 2008-03-28 2009-03-19 Stainless steel for use in oil well tube

Publications (2)

Publication Number Publication Date
JP4577457B2 true JP4577457B2 (en) 2010-11-10
JPWO2009119048A1 JPWO2009119048A1 (en) 2011-07-21

Family

ID=41113259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010505320A Active JP4577457B2 (en) 2008-03-28 2009-03-19 Stainless steel used for oil well pipes

Country Status (12)

Country Link
US (1) US20110014083A1 (en)
EP (1) EP2256225B1 (en)
JP (1) JP4577457B2 (en)
CN (1) CN101981215A (en)
AR (1) AR070745A1 (en)
AU (1) AU2009230545B2 (en)
BR (1) BRPI0909042B8 (en)
CA (1) CA2717104C (en)
ES (1) ES2674255T3 (en)
MX (1) MX2010010435A (en)
RU (1) RU2449046C1 (en)
WO (1) WO2009119048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179667A1 (en) 2012-05-31 2013-12-05 Jfeスチール株式会社 High-strength stainless steel seamless pipe for use as oil well piping, and manufacturing method therefor
WO2014030392A1 (en) 2012-08-24 2014-02-27 エヌケーケーシームレス鋼管株式会社 Highly strong, highly tough and highly corrosion-resistant martensitic stainless steel

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR076669A1 (en) 2009-05-18 2011-06-29 Sumitomo Metal Ind STAINLESS STEEL FOR PETROLEUM WELLS, STAINLESS STEEL TUBE FOR PETROLEUM WELLS, AND STAINLESS STEEL MANUFACTURING METHOD FOR PETROLEUM WELLS
EP2565287B1 (en) * 2010-04-28 2020-01-15 Nippon Steel Corporation High-strength stainless steel for oil well and high-strength stainless steel pipe for oil well
JP5528986B2 (en) * 2010-11-09 2014-06-25 株式会社日立製作所 Precipitation hardening type martensitic stainless steel and steam turbine member using the same
US9783876B2 (en) * 2012-03-26 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
US20150176727A1 (en) * 2012-06-18 2015-06-25 Jfe Steel Corporation Thick, high-strength, sour-resistant line pipe and method for producing same
JPWO2014010150A1 (en) * 2012-07-09 2016-06-20 Jfeスチール株式会社 Thick and high strength sour line pipe and method for manufacturing the same
RU2522914C1 (en) * 2013-02-27 2014-07-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Austenite-ferrite high-strength steel
CN103194683B (en) * 2013-04-24 2016-01-13 内蒙古包钢钢联股份有限公司 Containing rare earth oil well pipe coupling material weldless steel tube material and preparation method thereof
CN103484785A (en) * 2013-08-16 2014-01-01 广东华鳌合金新材料有限公司 High-strength alloy containing rare-earth elements and preparation method thereof
BR102014005015A8 (en) 2014-02-28 2017-12-26 Villares Metals S/A martensitic-ferritic stainless steel, manufactured product, process for producing forged or rolled bars or parts of martensitic-ferritic stainless steel and process for producing all seamless martensitic-ferritic stainless steel
JP6229794B2 (en) * 2015-01-15 2017-11-15 Jfeスチール株式会社 Seamless stainless steel pipe for oil well and manufacturing method thereof
RU2686727C2 (en) * 2015-08-04 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Stainless steel and article from stainless steel for oil well
US11066718B2 (en) 2016-01-13 2021-07-20 Nippon Steel Corporation Method of manufacturing stainless pipe for oil wells and stainless steel pipe for oil wells
US12257769B2 (en) 2018-10-16 2025-03-25 Desktop Metal, Inc. Compositions comprising a binder and a powder, and associated methods
US11945943B2 (en) 2019-08-23 2024-04-02 Desktop Metal, Inc. Binder composition for additive manufacturing
US12023733B2 (en) * 2019-10-21 2024-07-02 Desktop Metal, Inc. Binder compositions for additive manufacturing comprising low molecular weight polymers including acrylic acid repeat units
US12257623B2 (en) 2019-12-03 2025-03-25 Desktop Metal, Inc. Additive manufacturing techniques using noble metals and/or copper metal and related methods and compositions
CN111560566A (en) * 2020-05-18 2020-08-21 江苏京成机械制造有限公司 Corrosion-resistant alloy material and desulfurization pipe fitting based on same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375335A (en) * 1989-08-16 1991-03-29 Nippon Steel Corp Martensitic stainless steel with excellent corrosion resistance and its manufacturing method
JPH1025549A (en) * 1996-07-12 1998-01-27 Nippon Steel Corp Martensitic stainless steel with excellent hot workability
JPH10503809A (en) * 1994-07-21 1998-04-07 新日本製鐵株式会社 Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
WO2005007915A1 (en) * 2003-07-22 2005-01-27 Sumitomo Metal Industries, Ltd. Martensitic stainless steel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993858A (en) * 1982-11-18 1984-05-30 Hitachi Metals Ltd Precipitation hardening type ferrite-free stainless steel
RU2016133C1 (en) * 1991-07-03 1994-07-15 Институт проблем литья АН Украины Corrosion-resistant steel
WO2004001082A1 (en) * 2002-06-19 2003-12-31 Jfe Steel Corporation Stainless-steel pipe for oil well and process for producing the same
AR042494A1 (en) * 2002-12-20 2005-06-22 Sumitomo Chemical Co HIGH RESISTANCE MARTENSITIC STAINLESS STEEL WITH EXCELLENT PROPERTIES OF CORROSION RESISTANCE BY CARBON DIOXIDE AND CORROSION RESISTANCE BY FISURES BY SULFIDE VOLTAGES
EP1650320B1 (en) * 2003-06-10 2011-03-16 Sumitomo Metal Industries Limited Method for producing steel for hydrogen gas environment
JP5109222B2 (en) * 2003-08-19 2012-12-26 Jfeスチール株式会社 High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
EP1683885B1 (en) * 2003-10-31 2013-05-29 JFE Steel Corporation High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP4470617B2 (en) 2004-06-30 2010-06-02 Jfeスチール株式会社 High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
DE602005021286D1 (en) * 2004-09-15 2010-07-01 Sumitomo Metal Ind Steel pipe with excellent resistance to flaking on the inner surface
JP4978073B2 (en) 2006-06-16 2012-07-18 Jfeスチール株式会社 High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
CA2661655C (en) * 2006-08-31 2014-05-27 Sumitomo Metal Industries, Ltd. Martensitic stainless steel for welded structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375335A (en) * 1989-08-16 1991-03-29 Nippon Steel Corp Martensitic stainless steel with excellent corrosion resistance and its manufacturing method
JPH10503809A (en) * 1994-07-21 1998-04-07 新日本製鐵株式会社 Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
JPH1025549A (en) * 1996-07-12 1998-01-27 Nippon Steel Corp Martensitic stainless steel with excellent hot workability
WO2005007915A1 (en) * 2003-07-22 2005-01-27 Sumitomo Metal Industries, Ltd. Martensitic stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179667A1 (en) 2012-05-31 2013-12-05 Jfeスチール株式会社 High-strength stainless steel seamless pipe for use as oil well piping, and manufacturing method therefor
WO2014030392A1 (en) 2012-08-24 2014-02-27 エヌケーケーシームレス鋼管株式会社 Highly strong, highly tough and highly corrosion-resistant martensitic stainless steel

Also Published As

Publication number Publication date
CA2717104A1 (en) 2009-10-01
CA2717104C (en) 2014-01-07
AR070745A1 (en) 2010-05-05
MX2010010435A (en) 2010-11-05
AU2009230545A1 (en) 2009-10-01
BRPI0909042B8 (en) 2020-05-05
RU2449046C1 (en) 2012-04-27
JPWO2009119048A1 (en) 2011-07-21
CN101981215A (en) 2011-02-23
WO2009119048A1 (en) 2009-10-01
US20110014083A1 (en) 2011-01-20
AU2009230545B2 (en) 2011-12-15
BRPI0909042A2 (en) 2016-06-07
EP2256225B1 (en) 2018-04-25
EP2256225A1 (en) 2010-12-01
BRPI0909042B1 (en) 2020-03-24
EP2256225A4 (en) 2017-01-04
ES2674255T3 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP4577457B2 (en) Stainless steel used for oil well pipes
JP4930654B2 (en) Stainless steel for oil well, stainless steel pipe for oil well, and method for producing stainless steel for oil well
JP4911266B2 (en) High strength oil well stainless steel and high strength oil well stainless steel pipe
JP5348354B1 (en) Stainless steel for oil wells and stainless steel pipes for oil wells
JP6432683B2 (en) Stainless steel and stainless steel for oil wells
RU2649919C2 (en) Oil and gas field seamless tube or pipe made of high-strength stainless steel and method for manufacturing same
JPWO2018181404A1 (en) Martensitic stainless steel
JP6372070B2 (en) Ferritic / martensitic duplex steel and oil well steel pipe
JP6672620B2 (en) Stainless steel for oil well and stainless steel tube for oil well
JP7248894B2 (en) duplex stainless steel
JP6524440B2 (en) Martensite steel
JP2017075343A (en) Martensitic steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4577457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350