[go: up one dir, main page]

JP4574897B2 - Dye-sensitized solar cell and method for producing the same - Google Patents

Dye-sensitized solar cell and method for producing the same Download PDF

Info

Publication number
JP4574897B2
JP4574897B2 JP2001152436A JP2001152436A JP4574897B2 JP 4574897 B2 JP4574897 B2 JP 4574897B2 JP 2001152436 A JP2001152436 A JP 2001152436A JP 2001152436 A JP2001152436 A JP 2001152436A JP 4574897 B2 JP4574897 B2 JP 4574897B2
Authority
JP
Japan
Prior art keywords
dye
semiconductor layer
solar cell
porous semiconductor
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001152436A
Other languages
Japanese (ja)
Other versions
JP2002343455A (en
Inventor
良亮 山中
礼元 韓
和弘 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001152436A priority Critical patent/JP4574897B2/en
Publication of JP2002343455A publication Critical patent/JP2002343455A/en
Application granted granted Critical
Publication of JP4574897B2 publication Critical patent/JP4574897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、色素増感型太陽電池およびその作製方法に関する。さらに詳しくは、本発明は、増感色素として、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素を吸着した多孔性半導体層を備えた、2つの発色系、すなわち広い光吸収波長領域を有する色素増感型太陽電池およびその作製方法に関する。
【0002】
【従来の技術】
色素増感型太陽電池(以下、「太陽電池」と称する)は、有機系太陽電池の中で高変換効率を示すため、広く注目されている。太陽電池は、半導体電極と対極との間に狭持されたキャリア輸送層から構成され、半導体電極に光が照射されると、この電極側で電子が励起され、励起された電子が電気回路を通って対極に移動し、対極に移動した電子がキャリア輸送層中をイオンとして移動して半導体電極に戻り、このようなサイクルが繰り返されることにより電気エネルギーが取り出されるものである。
【0003】
具体的には、太陽電池は次のような手順により作製される。
まず、透明支持体の表面に形成した透明導電体上に、酸化チタンなどの多孔性半導体層(半導体電極)を形成し、その多孔性半導体層に増感色素を吸着させる。他方、対極に白金などの触媒をコーティングし、多孔性半導体層と白金を対面するように透明支持体と対極を重ね合わせ、その間にキャリア輸送層として電解液を注入し、透明支持体と対極の側面をエポキシ樹脂などで封止する。
【0004】
このような太陽電池の光電変換材料として用いられる半導体電極としては、可視光領域に吸収をもつ分光増感色素を表面に吸着させた多孔性半導体が用いられている。そのような太陽電池としては、例えば、遷移金属錯体からなる分光増感色素を半導体表面に吸着させた金属酸化物半導体を用いた太陽電池が挙げられる(特許第2664194号)。しかし、このような太陽電池は、単一の増感色素を用いるために、光電交換に作用する色素の吸収波長領域が狭くなり、シリコン系太陽電池と比較して光電交換効率が低い。
【0005】
特開2000−195569号公報には、少なくとも2種の異なった色素からなる色素層を用いて、光吸収波長領域を有効に利用した太陽電池が記載されている。この色素層には、例えば、下記の式(1)および式(2)で表わされる色素を使用している。
【0006】
【化1】

Figure 0004574897
【0007】
具体的には、このような太陽電池は、所定の極性に帯電した第1の色素を含む溶液に多孔性半導体層を接触させて、前記第1の色素を吸着させる工程と、前記第1の色素とは逆極性に帯電した第2の色素を含む溶液に第1の色素を接触させて、第1の色素に第2の色素を吸着させる工程により形成される。より具体的には、酸化チタン半導体層を式(1)の色素を含むアセトニトリル溶媒中に浸漬し、余分の色素をアセトニトリルで洗浄して、酸化チタン半導体層に式(1)の色素を吸着させる。次いで、式(2)の色素を含む溶媒中に酸化チタン半導体層を浸漬し、余分の色素を前記溶媒で洗浄して、式(1)の色素に式(2)の色素を吸着させることにより、2つの異なった色素からなる色素層を酸化チタン半導体層の表面に形成している。しかし、これらの色素は互いに化学結合していない。
このような太陽電池では、異なる色素間に静電引力が生じるので、2つの色素の積層構造が容易に形成され、剥離などの問題を防止することができるが、色素間にエネルギー障壁が生じるので、太陽電池の抵抗が高くなるという問題がある。
【0008】
特開2000−268892号公報にも、少なくとも2種の異なった色素からなる色素層を用いて、光吸収波長領域を有効に利用した太陽電池が記載されている。具体的には、このような太陽電池は、各色素について吸着用の溶液を調製し、これらを用いて各色素を順番に多孔性半導体層に吸着させるか、あるいは使用するすべての色素を含む混合色素の吸着用の溶液を用いて混合色素を多孔性半導体層に吸着させることにより形成される。しかし、多数の色素を同時に吸着させる場合、各色素の吸着速度が異なるために、所定量の色素を吸着させることが困難である。また、これらの色素は互いに化学結合していない。
【0009】
また、特開2000−243466号公報には、異なる吸収波長を有する色素を担持した複数の半導体層を有する太陽電池(光電交換素子)が記載されている。太陽電池の作製を行う場合、酸化物半導体粒子に色素を吸着させ、乾燥させた後、アルコールに溶解したバインダーと混合しペースト化したものを使用して成膜・乾燥させる工程を繰り返すことにより、それぞれの色素を吸着させた酸化物半導体層を形成させている。このような作製方法では、燒結工程が行えないため、酸化物半導体粒子間の接触が悪く、抵抗が大きくなり高性能な太陽電池の作製は不可能である。
【0010】
【発明が解決しようとする課題】
本発明は、広い光吸収波長領域と高い光電交換効率を有する太陽電池を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を行った結果、太陽電池が、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素を吸着した多孔性半導体層を備えることにより、広い光吸収波長領域と高い光電交換効率を有する太陽電池が提供できることを見出し、本発明を完成するに到った。
【0012】
かくして、本発明によれば、透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔性半導体層とキャリア輸送層とを有する色素増感型太陽電池において、色素が、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素であることを特徴とする色素増感型太陽電池が提供される。
【0013】
また、本発明によれば、透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔性半導体層とキャリア輸送層とを有する色素増感型太陽電池の作製方法において、
(1)多孔性半導体層を形成した基板を最大感度波長領域が短い第1色素を溶解した溶液に浸漬して、第1色素を多孔性半導体層に吸着させるか、あるいは
透明導電膜を形成した基板を多孔性半導体層となる半導体材料と第1色素との混合溶液に浸漬し、電気化学反応により第1色素が吸着された多孔性半導体層を透明導電膜上に形成し、
次いで、第1色素が吸着された多孔性半導体層を最大感度波長領域が長い第2色素を溶解した溶液に浸漬し、第1色素と第2色素とを化学反応(化学吸着結合)させて、複合体色素を形成することを特徴とする色素増感型太陽電池の作製方法、および
(2)最大感度波長領域が短い第1色素と最大感度波長領域が長い第2色素とを化学反応(化学吸着結合)させて、複合体色素を調製し、
次いで、多孔性半導体層を形成した基板を複合体色素を溶解した溶液に浸漬して、複合体色素を多孔性半導体層に吸着させることを特徴とする色素増感型太陽電池の作製方法
が提供される。
【0014】
本発明において、「最大感度波長領域」とは、色素の光吸収スペクトルのうち、最大の吸収感度を示すピーク波長(最大光吸収波長)において、ピーク波長を中心として吸収感度がピーク波長の−20%となる波長の領域、もしくはピーク波長を中心とする50nm幅の波長領域を意味する。
【0015】
【発明の実施の形態】
本発明の太陽電池は、透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔性半導体層とキャリア輸送層とを有する色素増感型太陽電池において、色素が、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素であることを特徴とする。
【0016】
色素は、元来、染料および一部の顔料のように可視光を吸収するものとされていたが、近年、このような色素の概念が拡大され、紫外から赤外領域の光を吸収するものとされている。このような色素としては、例えば、CD−R色素、レーザー用色素、EL発光体などの機能性色素などが挙げられる(例えば、大河原、松岡等著「機能性色素」、株式会社講談社、1992年3月発行を参照)。また、天然色素以外の合成色素のほとんどは有機色素であり、π電子共役系(発色系)を有し、これらの発色系は一般的に電子供与基(ドナー)、電子吸引基(アクセプター)を有している。色素固有の発色系、すなわちπ電子共役系の長さ、電子供与基と電子吸引基の数や位置によって、その色素の光吸収波長が決まる。典型的な発色系としては、アゾ系、アントラキノン系、トリフェニルアミン系、フタロシアニン系、インジゴ系などが挙げられる。
【0017】
本発明において用いられる色素は、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素からなり、これらが多孔性半導体層に吸着されている。
本発明の太陽電池では、異なる最大光吸収波長、すなわち発色系を有する、少なくとも2種の色素がπ電子共役ではなく化学吸着により結合する会合体(複合体色素)を形成しているので、各色素の発色系が持続され、広い光吸収波長領域を実現できる。このように、本発明において「化学吸着結合」とは、色素同士が通常の化学結合によらないで、2種以上の化合物が1つの行動単位となる会合体を形成することを意味する。
少なくとも2種の色素同士の化学吸着作用が強い場合には、色素は、第3の光吸収領域となる会合体構造を形成し、太陽電池としての光吸収領域が広くなるので好ましい。
【0018】
各色素が化学吸着により結合する複合体色素を形成し、この複合体色素が多孔質半導体層に強固に化学吸着するために、少なくとも2種の色素のうち、少なくとも1種は、分子中にインターロック基を有する色素(第1色素)からなり、その他の色素は、第1色素のインターロック基以外の官能基と化学吸着し得る官能基を分子中に少なくとも1つ有する色素(第2色素)からなるのが好ましい。
【0019】
第1色素のインターロック基は、色素と多孔質半導体との強固な化学吸着、すなわち励起状態の色素と多孔質半導体の導電体との電子移動を容易にする電気的結合を提供するものであり、具体的には、カルボキシル基とその誘導体(例えば、カルボキシル基の無水基−(CO)O(CO)−、カルボキシル基と水酸基との無水基−(CO)O−、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基、アミノ基、ニトロ基などが挙げられ、これらの中でもカルボキシル基とその誘導体が好ましい。
第1色素は、このようなインターロック基を含む、同一または異種の複数の官能基を有してもよい。
【0020】
このようなインターロック基を有する第1色素としては、例えば、ルテニウムビピリジン系色素、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポリフィリン系色素、フタロシアニン系色素、ベリレン系色素、インジゴ系色素、ナフタロシアニン系色素などが挙げられる。
【0021】
第2色素は、第1色素のインターロック基ではない官能基と化学吸着結合し得る官能基(例えば、水酸基、アミノ基などが好ましい)を分子中に少なくとも1つ有する。このような第2色素としては、下記式で表わされる色素が挙げられる。
【0022】
【化2】
Figure 0004574897
【0023】
【化3】
Figure 0004574897
【0024】
【化4】
Figure 0004574897
【0025】
以上のことから、少なくとも2種の色素は、カルボキシル基および/またはその誘導体を有する色素(第1色素)と、水酸基および/またはアミノ基を有する色素(第2色素)とからなるのが好ましい。
【0026】
本発明の太陽電池において多孔性半導体層に吸着させる色素として、発色系が異なる色素を3種以上用いる場合には、第2色素には少なくとも2つ以上の官能基が必要となる。すなわち、本発明の太陽電池においては色素が多孔性半導体層に順次、化学吸着するような形態となるが、3種以上の色素の場合には、次のような構成となる。
【0027】
(1)直接、多孔性半導体層に吸着する、分子中にインターロック基を有する第1色素
(2)色素と色素とに挟持されて、両端を色素と化学吸着結合し得る、少なくとも2つ以上の官能基(インターロック基を含む)を分子中に有する第2色素
(3)多孔性半導体層からみて末端に吸着する、上記(2)の第2色素のインターロック基ではない官能基と化学吸着結合し得る官能基を分子中に少なくとも1つ有する第2色素(実施例では「第3色素」ともいう)
【0028】
本発明の太陽電池では、少なくとも2種の色素が多孔性半導体層に順次、化学吸着し、かつ色素同士が化学吸着結合する形態となるが、太陽電池が効率よく光を吸収し、光電変換するためには、最大感度波長領域が短い色素から長い色素の順に、多孔性半導体層に化学吸着するのが好ましい。このような構成にすることにより、最大感度波長領域が長波長側にある色素で吸収できなかった光を、最大感度波長領域が短波長側にある色素で吸収できる。
【0029】
上記の点から、少なくとも2種の色素は、400nm以上600nm未満の波長領域に最大光吸収波長を有する色素と、600nm以上1000nm以下の波長領域に最大光吸収波長を有する色素とからなるのが好ましい。
また、それぞれの色素のエネルギー順位(LUMO、HOMO順位)が、多孔性半導体層に化学吸着している順に高くなっていることが好ましい。
【0030】
多孔性半導体上に光増感剤として機能する色素を吸着させる方法としては、例えば、次の方法が挙げられる。
(1)多孔性半導体層を形成した基板を最大感度波長領域が短い第1色素を溶解した溶液に浸漬して、第1色素を多孔性半導体層に吸着させるか、あるいは
透明導電膜を形成した基板を多孔性半導体層となる半導体材料と第1色素との混合溶液に浸漬し、電気化学反応により第1色素が吸着された多孔性半導体層を透明導電膜上に形成し、
次いで、第1色素が吸着された多孔性半導体層を最大感度波長領域が長い第2色素を溶解した溶液に浸漬し、第1色素と第2色素とを化学反応させて、複合体色素を形成することを特徴とする色素増感型太陽電池の作製方法、および
(2)最大感度波長領域が短い第1色素と最大感度波長領域が長い第2色素とを化学反応させて、複合体色素を調製し、
次いで、多孔性半導体層を形成した基板を複合体色素を溶解した溶液に浸漬して、複合体色素を多孔性半導体層に吸着させることを特徴とする色素増感型太陽電池の作製方法
【0031】
方法(1)において、第1色素を多孔性半導体層に吸着させる方法としては、例えば、基板上に形成された多孔性半導体層を、第1色素を溶解した溶液に浸漬する方法が挙げられる。
【0032】
第1色素を溶解する溶剤は、色素を溶解するものであれば特に限定されず、例えば、エタノールなどのアルコール類、アセトンなどのケトン類、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトニトリルなどの窒素化合物類、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類、水などが挙げられる。これらの溶剤は2種以上を混合して用いることもできる。
【0033】
溶液中の色素濃度は、使用する色素および溶剤の種類により適宜調整することができるが、吸着機能を向上させるためにはできるだけ高濃度である方が好ましい。色素濃度は、例えば5×10-5モル/リットル以上であればよい。
【0034】
第1色素を溶解した溶液を多孔性半導体層に浸漬するときの条件、例えば、溶液温度、雰囲気温度および圧力は特に限定されるものではなく、例えば室温程度で、かつ大気圧下が挙げられる。浸漬時間は、使用する色素、溶剤の種類、溶液の濃度などにより適宜調整することができる。なお、浸漬を効果的に行うには、加熱下で行えばよい。これにより、多孔性半導体上に第1色素が吸着され易くなるので好ましい。また、浸漬後は公知の方法により、半導体を洗浄、乾燥すればよい。
【0035】
多孔性半導体層の形成方法については後で詳しく説明するが、第1色素を担持した多孔性半導体層を形成することにより、多孔性半導体層の形成と、多孔性半導体層への第1色素の吸着とを同時に行うこともできる。
この方法では、例えば、硝酸塩を電気化学的に還元することにより、基板上に多孔質半導体層を形成する。具体的には、硝酸塩と第1色素との混合溶液に基板を浸漬し、電気化学反応により、第1色素が担持された金属酸化物の多孔性半導体層を形成する。用いる硝酸塩により形成される金属酸化物が決定されるが、金属酸化物としては酸化亜鉛が好ましい。
【0036】
硝酸塩溶液が硝酸亜鉛水溶液である場合、その濃度は、0.01〜1モル/リットル程度が好ましく、0.1〜0.5モル/リットルが特に好ましい。また、色素の濃度としては、1×10-6〜1×10-4モル/リットルが好ましく、3×10-5〜6×10-5モル/リットルが特に好ましい。また、硝酸塩の溶媒は、水と有機溶剤の混合溶剤であってもよい。
【0037】
次に、硝酸亜鉛を用いた電気化学反応について説明する。
硝酸亜鉛水溶液と色素の混合溶液に、透明導電膜が形成された基板、対極および参照電極を浸漬し、電解電位を印加することにより、下記の反応式により透明導電膜上に酸化亜鉛が形成される。
NO3 -+H2O+2e-→NO2 -+2OH-
Zn2++2OH-→Zn(OH)2
Zn(OH)2→ZnO+H2
【0038】
電気化学反応は、電解電位−0.7〜−1.3V(vs.SCE)の範囲で行われるのが好ましい。電解電位が上記の範囲よりも高い場合には、反応が起こらず、また低い場合には、亜鉛メッキが起こるので好ましくない。
【0039】
また、電気化学反応は、反応温度0〜100℃の範囲で行われるのが好ましい。反応温度が上記の範囲よりも高温の場合には、成長速度が速くなり基板との付着性が悪くなるので好ましくない。また、反応温度が上記の範囲よりも低温の場合には、反応が起こらないので好ましくない。
【0040】
電気化学反応の方式は、2極式および3極式のいずれであってもよく、3極式の場合に用いる参照電極としては、SCE(飽和甘コウ電極)、NHE(標準水素電極)、RHE(水素圧における可逆水素電極)、NCE(標準甘コウ電極)などが挙げられる。また、用いる対極としては、白金、亜鉛が好ましい。
【0041】
上記の反応式に示すとおり、酸化亜鉛の形成は硝酸イオンの亜硝酸イオンへの還元に伴う塩基生成によるものである。この生成過程において、溶液中に色素が混在する場合、酸化亜鉛の表面のOH基と第1色素の官能基(インターロック基)の化学吸着により、酸化亜鉛が成長すると共に第1色素分子の修飾を受ける。
ここで、第1色素の化学吸着は、酸化亜鉛の(002)面に対して優先的に起こる。この結果、酸化亜鉛は(002)面の成長が抑制され、(100)方向に成長する。このようにして、色素を担持した酸化亜鉛の多孔性半導体層の作製が可能となる。(Chem.Mater.1999,11,2657−2667参照)
【0042】
次に、第1色素と第2色素とを化学吸着結合させて、複合体色素を形成する方法としては、例えば、第1色素が化学吸着している多孔性半導体層を、第2色素を溶解した溶液に浸漬し、化学反応させる方法が挙げられる。第2色素を溶解する溶剤および色素濃度は、第1色素と同様に選択することができる。
また、それぞれの色素の化学反応工程に応じて、触媒の添加、加熱、不活性ガスの注入などを行う必要がある。触媒としては、例えばアゾジカルボン酸ジエチル、トリフェニルホスフィンなどが挙げられ、加熱処理としては、例えばアルゴンガス気流中での加熱(140〜180℃程度)が挙げられる。
このように第1色素と第2色素とを化学吸着結合させた後には、公知の方法により、多孔性半導体層を洗浄、乾燥すればよい。
なお、複数の第2色素を用いる場合には、上記の工程を繰り返せばよい。
【0043】
また、第1色素と第2色素とを中間体を介して化学吸着させてもよい。このような場合には、多孔性半導体層に第1色素を化学吸着させ、次いで第1色素に中間材料を反応させ、さらに中間材料に第2色素を反応させればよい。中間材料としては、例えば、テトラメチルエチレンジアミンなどが挙げられる。
【0044】
方法(2)において、それぞれの色素を化学反応させて、複合体色素を調製する方法としては、上記と同様の溶媒および色素濃度で、触媒(例えば、アゾジカルボン酸ジエチル、トリフェニルホスフィンなどなど)を用いて第1色素と第2色素とを化学反応させて複合体色素を調製し、次いで、複合体色素の第1色素のインターロック基を介して多孔性半導体層に吸着させる方法が挙げられる。その条件は、色素を順次、化学吸着させる場合と同様である。
このように半導体層に複合体色素を吸着させた後には、公知の方法により、半導体層を洗浄、乾燥すればよい。
【0045】
上記の方法(1)および(2)の変形例として、発色系が異なる3種以上の色素(第1色素と2種の第2色素)を用いる場合には、まず第1色素を半導体層に吸着させ、次いで予め2種の第2色素を化学反応させて複合体色素を調製しておき、この複合体色素を溶解した溶液に、第1色素が吸着された半導体層を浸漬して、第1色素と2種の第2色素からなる複合体色素とを化学反応させて、第1色素と2種の第2色素とからなる複合体色素を形成してもよい。
【0046】
次に、本発明の太陽電池における他の構成要素について説明する。
本発明の太陽電池は、光増感剤として使用する色素に特徴を有するものであり、他の構成要素は、公知の材料および形態のものを用いることができ、特に限定されない。
【0047】
多孔性半導体層を構成する材料としては、先に説明した酸化亜鉛の他に、例えば、酸化チタン、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウムなどの公知の半導体が挙げられる。これらの材料は2種以上を混合して用いることもできる。これらの中でも、変換効率、安定性、安全性の点から酸化亜鉛および酸化チタンが特に好ましい。酸化チタンとしては、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの種々の酸化チタン、含酸化チタン複合体などが挙げられるが、これらはいずれであってもよい。
【0048】
多孔性半導体は、粒子状、膜状など種々の形態のものを用いることができるが、基板上に形成された膜状の多孔性半導体(多孔性半導体層)が好ましい。
多孔性半導体層を形成する場合の基板としては、例えば、ガラス基板、プラスチック基板などが挙げられ、中でも透明性の高い基板(透明基板)が特に好ましい。この基板上には、公知の方法でSnO2などの透明導電膜が形成される。
【0049】
多孔性半導体層を基板上に形成する方法としては、公知の種々の方法を使用することができる。具体的には、▲1▼基板上に半導体粒子を含有する懸濁液を塗布し、乾燥・焼成する方法、▲2▼基板上に所望の原料ガスを用いたCVD法またはMOCVD法などにより半導体膜を形成する方法、▲3▼原料固体を用いたPVD法、蒸着法、スパッタリング法またはゾル−ゲル法などにより半導体膜を形成する方法、および▲4▼電気化学的な酸化還元反応により半導体膜を形成する方法などが挙げられる。
【0050】
前記の多孔性半導体層の形成方法▲1▼における乾燥・焼成は、使用する基板や半導体粒子の種類により、温度、時間、雰囲気の条件などを適宜調整して行われる。例えば、大気下または不活性ガス雰囲気下、50〜800℃程度の範囲内で、10秒〜12時間程度行うことができる。この乾燥および焼成は、単一の温度で1回または温度を変化させて2回以上行うことができる。
【0051】
多孔性半導体層の膜厚は、特に限定されるものではないが、透過性、変換効率などの観点より、0.5〜20μm程度が好ましい。また、変換効率を向上させるためには、多孔性半導体層に後述する色素をより多く化学吸着させることが必要である。このために、多孔性半導体層は比表面積の大きなものが好ましく、具体的には、10〜200m2/g程度が好ましい。
【0052】
半導体粒子としては、市販されているもののうち適当な平均粒径、例えば1〜500nm程度の平均粒径を有する単一または化合物半導体の粒子などが挙げられる。
また、この半導体粒子を懸濁するために使用される溶媒は、エチレングリコールモノメチルエテール、ジエチレングリコールモノメチルエーテルなどのグライム系溶媒、イソプロピルアルコールなどのアルコール系溶媒、イソプロピルアルコール/トルエンなどの混合溶媒、水などが挙げられる。
【0053】
キャリア輸送層は、電解液とそれに含まれる電解質とからなる。
電解液は、一般に電池や太陽電池などにおいて使用することができるものであれば特に限定されない。さらに電解液中の電解質は酸化還元性のものがよく、これも一般に電池や太陽電池などにおいて使用することができる電解質であれば特に限定されない。具体的には、LiI、NaI、KI、CaI2などの金属ヨウ化物とヨウ素の組み合わせおよびLiBr、NaBr、KBr、CaBr2などの金属臭化物と臭素の組み合わせが好ましく、この中でも、LiIとヨウ素の組み合わせが好ましい。
【0054】
電解質濃度としては、0.1〜1.5モル/リットルの範囲が挙げられるが、この中で、0.1〜0.7モル/リットルが好ましい。また、電解質の溶媒としては、プロピレンカーボネートなどのカーボネート化合物、アセトニトリルなどのニトリル化合物、エタノールなどのアルコール類、その他、水や非プロトン極性物質などが挙げられるが、その中でも、カーボネート化合物やニトリル化合物が好ましい。
【0055】
電極として使用することができる透明導電体は、特に限定されるものではないが、例えばITO、SnO2などの透明導電膜が好ましい。これらの電極の作製方法および膜厚などは、適宜選択することができる。
【0056】
【実施例】
本発明を実施例および比較例によりさらに具体的に説明するが、これらの実施例により本発明が限定されるものではない。
【0057】
(実施例1)
本発明の実施例1を図1に基づいて説明する。
図1は、本発明の太陽電池の層構成を示す要部の概略断面図である。1は透明支持体(透明基板)、2は透明導電膜、3は多孔性半導体層、4は酸化還元性電解液(キャリア輸送層)、5は対極、6は白金膜、7は封止剤を示す。5と6を合わせて、導電性基板ともいう。
【0058】
まず、多孔性半導体層としての酸化チタン膜3を作製する塗液を調製した。すなわち、市販の酸化チタン粒子(テイカ株式会社社製、商品名:AMT-600、アナターゼ型結晶、平均粒径30nm、比表面積50m2/g)4.0gとジエチレングリコールモノメチルエーテル20mlとを、ガラスビーズを使用し、ペイントシェイカーで6時間分散処理して、酸化チタン懸濁液を調製した。
【0059】
透明支持体1としてのガラス基板上に、透明導電膜2としてSnO2膜を形成した。次いで、透明基板1の透明導電膜2側に、調製した酸化チタン懸濁液をドクターブレードで塗布し、膜厚10μm程度、面積10mm×10mm程度の塗膜を得た。塗膜を100℃で30分間予備乾燥し、さらに酸素雰囲気下、460℃で40分間焼成し、多孔性半導体層3として、膜厚8μm程度の酸化チタン膜を得た。
【0060】
次に、第1色素として、下式(15)で表されるルテニウム色素(Solaronix社製、商品名:Ruthenium535、λmax=535nm)を無水エタノールに溶解して、色素濃度4×10-4モル/リットルの第1色素の吸着用色素溶液を調製した。透明導電膜2と多孔性半導体層3とを具備した透明支持体1を、調製した第1色素の吸着用色素溶液に約30分間浸漬させて、多孔性半導体層3に第1色素を化学吸着させた。その後、透明支持体1を無水エタノールで数回洗浄し、約60℃で約20分間乾燥させた。
【0061】
【化5】
Figure 0004574897
【0062】
次に、第2色素として、式(6)で表されるユウロピウム色素(ADS(American Dye Source Inc.)社製、商品名:ADS052RE、λmax=612nm)を無水エタノールに溶解して、色素濃度2×10-4モル/リットルの第2色素の吸着用色素溶液を調製した。第1色素を化学吸着させた透明支持体1と活性化した4Åモレキュラーシーブ0.2gを、調製した第2色素の吸着用色素溶液に入れ、アルゴン気流中、150℃で約120分間保持することにより、第1色素と第2色素を化学吸着結合させた。その後、透明支持体1をジクロロメタンで数回洗浄し、さらに超音波洗浄し、溶媒を乾燥させた。
【0063】
その後、透明支持体1を無水エタノールで数回洗浄し、約60℃で約20分間乾燥させた。洗浄に用いた無水エタノールが着色しなかったことから、第1色素と第2色素が化学的に吸着結合したことが確認できた。また、第2色素を化学吸着させる前後でIR測定を行った結果、吸着前には3480cm-1に−NH2基を示すピークが得られたが、吸着後には3440cm-1に新しいピークが現われた。
【0064】
次に、酸化還元性電解液4を調製した。すなわち、ヨウ化リチウムが濃度0.5モル/リットルになるように、かつヨウ素が濃度0.05モル/リットルになるように、アセトニトリルとエチレンカーボネートの混合溶媒(体積比=1:4)に、ヨウ化リチウムとヨウ素を溶解した。
【0065】
その後、第1色素と第2色素を化学吸着させた多孔性半導体層3を具備した透明性支持体1の多孔性半導体層3側と、白金膜6を具備した対極5としてのITOガラスの白金膜6側とが対向するように設置し、その間に調製した酸化還元性電解液4を注入し、周囲をエポキシ系樹脂の封止剤7で封止して、太陽電池を完成した。
得られた太陽電池を測定条件:AM−1.5(100mW/cm2)で評価したところ、変換効率が8.5%であった。
【0066】
(比較例1)
第2色素として、ユウロピウム色素の代わりに、下式(16)で表されるフタロシアニン色素(Syntec社製、商品名:ST10/13、λmax=658nm)を用いる以外は、実施例1と同様にして太陽電池を作製し、評価した。
第1色素と第2色素を吸着させた後、透明支持体1を無水エタノールで数回洗浄し、約60℃で約20分間乾燥させた。洗浄に用いた無水エタノールが着色したことから、第2色素が化学的に吸着されていないことが確認できた。
得られた太陽電池の変換効率は7.0%であった。これは、第1色素のみを化学吸着させて作製した太陽電池の変換効率7.0%と同等レベルである。
【0067】
【化6】
Figure 0004574897
【0068】
(実施例2)
実施例2では、第1色素と第2色素とを化学吸着結合させた複合体色素を、多孔性半導体層に吸着させることにより、太陽電池を作製した。第1色素として、式(15)で表されるルテニウム色素を使用し、第2色素として、式(5)で表されるシアニン色素(ADS社製、商品名:ADS820H0、λmax=818nm)を使用した。
【0069】
等モルの第1色素とアゾジカルボン酸ジエチルとをエーテルに溶解して、色素濃度1×10-4モル/リットルの第1色素の色素溶液を調製した。また、等モルの第2色素とトリフェニルホスフィンとをエーテルに溶解して、色素濃度1×10-4モル/リットルの第2色素の色素溶液を調製した。次いで、調製した第1色素の色素溶液に、同じく調製した第2色素の色素溶液を室温で滴下することにより、第1色素と第2色素とを化学吸着結合させた。その後、トリフェニルスルフィンオキシド等の沈殿物を濾別し、複合体色素溶液を得た。
【0070】
透明導電膜2と多孔性半導体層3とを具備した透明支持体1を、調製した複合体色素溶液に約30分間浸漬させて、多孔性半導体層3に複合体色素を化学吸着させた。その後、透明支持体1を無水エタノールで数回洗浄し、約60℃で約20分間乾燥させた。
以降の工程については実施例1と同様にして、太陽電池を作製し、評価した。
得られた太陽電池の変換効率は9.8%であった。
【0071】
(実施例3)
実施例3では、酸化亜鉛からなる多孔性半導体層の形成と同時に、電気化学的酸化還元法を用いて、第1色素を吸着させ、次いで2種の第2色素からなる複合体色素を第1色素と化学吸着結合することにより、太陽電池を作製した。
第1色素として、下式(17)で表される色素(日本化薬株式会社製、商品名:Kayanol Yellow NFG、λmax=420nm)を精製したもの、第2色素として、式(15)で表されるルテニウム色素(λmax=535nm)、他の第2色素(第3色素)として、式(14)で表される色素(ACTA PHYSICO−CHEMICA SINICA Vol.15,No.4,April,1999,p293〜298を参考に合成を行ったもの、λmax=650nm)を使用した。
【0072】
【化7】
Figure 0004574897
【0073】
まず、透明支持体1としての10mm×10mmのガラス基板上に、透明導電体2としてSnO2透明導電膜を形成した。次いで、SnO2透明導電膜にリード線を取り付け、ポテンシオスタットの作用極に接続し、その対極側には白金板対極からのリード線を接続し、参照電極として飽和甘コウ電極(SCE)7をリファレンスに接続した。これらをガラス製の非導電性容器に設置した。この容器に、第1色素を0.1モル/リットルの硝酸亜鉛水溶液に溶解した色素濃度5×10-4モル/リットルの水溶液を入れた。
【0074】
容器内を70℃に設定し、安定化電源により電解電位−0.7V(vs.SCE)を60分間印加した。この電解反応により、SnO2透明導電膜上に、第1色素を担持した、膜厚8μmの酸化亜鉛の多孔性半導体層が形成された。その後、これをエタノールで洗浄し、60℃に設定した乾燥器に15分間放置して、多孔性半導体層を乾燥させた。
【0075】
等モルの第2色素とアゾジカルボン酸ジエチルとをエーテルに溶解して、色素濃度1×10-4モル/リットルの第2色素の色素溶液を調製した。また、等モルの第3色素とトリフェニルホスフィンとをエーテルに溶解して、色素濃度1×10-4モル/リットルの第3色素の色素溶液を調製した。次いで、調製した第2色素の色素溶液に、同じく調製した第3色素の色素溶液を室温で滴下することにより、第2色素と第3色素とを化学吸着結合させた。その後、トリフェニルスルフィンオキシド等の沈殿物を濾別し、複合体色素溶液を得た。
【0076】
第1色素を吸着させた多孔性半導体層3を、調製した複合体色素溶液に約30分間浸漬させて、アルゴン気流中、150℃で約120分間保持することにより、第1色素と複合体色素を化学吸着結合させた。
以降の工程については実施例1と同様にして、太陽電池を作製し、評価した。
得られた太陽電池の変換効率は10.2%であった。
【0077】
【発明の効果】
本発明の太陽電池は、増感色素として、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素を吸着した多孔性半導体層を備え、2つの発色系を有するので、従来の太陽電池に比べて、光吸収波長領域が広く、光吸収量が多く、光電交換効率の高い太陽電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の太陽電池の層構成を示す要部の概略断面図である。
【符号の説明】
1 透明支持体(透明基板)
2 透明導電膜
3 多孔性半導体層
4 酸化還元性電解液(キャリア輸送層)
5 対極
6 白金膜
7 封止剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dye-sensitized solar cell and a method for manufacturing the same. More specifically, the present invention comprises two color development systems comprising a porous semiconductor layer adsorbing a complex dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed to each other as a sensitizing dye, That is, the present invention relates to a dye-sensitized solar cell having a wide light absorption wavelength region and a method for manufacturing the same.
[0002]
[Prior art]
Dye-sensitized solar cells (hereinafter referred to as “solar cells”) have attracted widespread attention because they exhibit high conversion efficiency among organic solar cells. A solar cell is composed of a carrier transport layer sandwiched between a semiconductor electrode and a counter electrode, and when the semiconductor electrode is irradiated with light, electrons are excited on the electrode side, and the excited electrons pass through an electric circuit. Then, the electrons move to the counter electrode, the electrons moved to the counter electrode move as ions in the carrier transport layer and return to the semiconductor electrode, and electric energy is taken out by repeating such a cycle.
[0003]
Specifically, the solar cell is manufactured by the following procedure.
First, a porous semiconductor layer (semiconductor electrode) such as titanium oxide is formed on a transparent conductor formed on the surface of a transparent support, and a sensitizing dye is adsorbed on the porous semiconductor layer. On the other hand, a catalyst such as platinum is coated on the counter electrode, the transparent support and the counter electrode are overlapped so that the porous semiconductor layer and the platinum face each other, and an electrolyte is injected between them as a carrier transport layer. Seal the side with epoxy resin.
[0004]
As a semiconductor electrode used as a photoelectric conversion material of such a solar cell, a porous semiconductor in which a spectral sensitizing dye having absorption in the visible light region is adsorbed on the surface is used. Examples of such a solar cell include a solar cell using a metal oxide semiconductor in which a spectral sensitizing dye composed of a transition metal complex is adsorbed on a semiconductor surface (Japanese Patent No. 2664194). However, since such a solar cell uses a single sensitizing dye, the absorption wavelength region of the dye acting on the photoelectric exchange is narrowed, and the photoelectric exchange efficiency is lower than that of the silicon-based solar cell.
[0005]
Japanese Patent Application Laid-Open No. 2000-195569 describes a solar cell that effectively uses a light absorption wavelength region by using a dye layer composed of at least two different dyes. For the dye layer, for example, dyes represented by the following formulas (1) and (2) are used.
[0006]
[Chemical 1]
Figure 0004574897
[0007]
Specifically, such a solar cell includes a step of bringing a porous semiconductor layer into contact with a solution containing a first dye charged to a predetermined polarity to adsorb the first dye, The first dye is brought into contact with a solution containing a second dye charged to a polarity opposite to that of the dye, and the second dye is adsorbed to the first dye. More specifically, the titanium oxide semiconductor layer is immersed in an acetonitrile solvent containing the dye of the formula (1), and the excess dye is washed with acetonitrile to adsorb the dye of the formula (1) to the titanium oxide semiconductor layer. . Next, the titanium oxide semiconductor layer is immersed in a solvent containing the dye of the formula (2), the excess dye is washed with the solvent, and the dye of the formula (2) is adsorbed on the dye of the formula (1). A dye layer composed of two different dyes is formed on the surface of the titanium oxide semiconductor layer. However, these dyes are not chemically bonded to each other.
In such a solar cell, an electrostatic attractive force is generated between different dyes, so that a laminated structure of two dyes can be easily formed and problems such as peeling can be prevented, but an energy barrier is generated between the dyes. There is a problem that the resistance of the solar cell becomes high.
[0008]
Japanese Patent Application Laid-Open No. 2000-268892 also describes a solar cell that effectively uses a light absorption wavelength region by using a dye layer composed of at least two different dyes. Specifically, such a solar cell is prepared by preparing a solution for adsorption for each dye and using them to adsorb each dye in turn to the porous semiconductor layer, or a mixture containing all the dyes used. It is formed by adsorbing the mixed dye to the porous semiconductor layer using the dye adsorption solution. However, when a large number of dyes are adsorbed at the same time, it is difficult to adsorb a predetermined amount of the dye because the adsorption speed of each dye is different. These dyes are not chemically bonded to each other.
[0009]
Japanese Unexamined Patent Application Publication No. 2000-243466 describes a solar cell (photoelectric exchange element) having a plurality of semiconductor layers carrying dyes having different absorption wavelengths. When making a solar cell, by adsorbing the pigment to the oxide semiconductor particles and drying, by repeating the process of film formation and drying using a paste mixed with a binder dissolved in alcohol, An oxide semiconductor layer in which each dye is adsorbed is formed. In such a manufacturing method, since a sintering process cannot be performed, contact between oxide semiconductor particles is poor, resistance increases, and high-performance solar cells cannot be manufactured.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a solar cell having a wide light absorption wavelength region and high photoelectric exchange efficiency.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a solar cell has a porous structure in which a complex dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed to each other is adsorbed. It has been found that by providing a semiconductor layer, a solar cell having a wide light absorption wavelength region and high photoelectric exchange efficiency can be provided, and the present invention has been completed.
[0012]
Thus, according to the present invention, a dye-sensitized solar cell having a porous semiconductor layer on which a dye is adsorbed and a carrier transport layer between the transparent conductive film formed on the surface of the transparent substrate and the conductive substrate. In the above, a dye-sensitized solar cell is provided, wherein the dye is a composite dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemisorbed to each other.
[0013]
Moreover, according to the present invention, a dye-sensitized solar cell having a porous semiconductor layer adsorbed with a dye and a carrier transport layer between a transparent conductive film formed on the surface of the transparent substrate and the conductive substrate. In the production method of
(1) The substrate on which the porous semiconductor layer is formed is immersed in a solution in which the first dye having a short maximum sensitivity wavelength region is dissolved to adsorb the first dye to the porous semiconductor layer, or
A substrate on which a transparent conductive film is formed is immersed in a mixed solution of a semiconductor material to be a porous semiconductor layer and a first dye, and a porous semiconductor layer in which the first dye is adsorbed is formed on the transparent conductive film by an electrochemical reaction. And
Next, the porous semiconductor layer on which the first dye is adsorbed is immersed in a solution in which the second dye having a long maximum sensitivity wavelength region is dissolved, and the first dye and the second dye are chemically reacted (chemical adsorption bonding), A method for producing a dye-sensitized solar cell, characterized by forming a composite dye, and
(2) A first dye having a short maximum sensitivity wavelength region and a second dye having a long maximum sensitivity wavelength region are chemically reacted (chemisorption bonding) to prepare a complex dye,
Next, the substrate on which the porous semiconductor layer is formed is immersed in a solution in which the composite dye is dissolved, and the composite dye is adsorbed on the porous semiconductor layer, and a method for producing a dye-sensitized solar cell
Is provided.
[0014]
In the present invention, the “maximum sensitivity wavelength region” means a peak wavelength (maximum light absorption wavelength) showing the maximum absorption sensitivity in the light absorption spectrum of the dye, and the absorption sensitivity is −20 with the peak wavelength being the center. % Wavelength region or a wavelength region with a width of 50 nm centered on the peak wavelength.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The solar cell of the present invention is a dye-sensitized solar cell having a porous semiconductor layer on which a dye is adsorbed and a carrier transport layer between a transparent conductive film formed on the surface of a transparent substrate and a conductive substrate. The dye is a complex dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemisorbed to each other.
[0016]
Originally dyes were supposed to absorb visible light like dyes and some pigments, but in recent years the concept of such dyes has been expanded to absorb light in the ultraviolet to infrared region. It is said that. Examples of such dyes include CD-R dyes, laser dyes, and functional dyes such as EL light emitters (for example, “Functional dyes” written by Okawara, Matsuoka et al., Kodansha, 1992). (See March issue). In addition, most synthetic dyes other than natural dyes are organic dyes, and have a π-electron conjugated system (color-forming system). These color-forming systems generally have an electron-donating group (donor) and an electron-withdrawing group (acceptor) Have. The light absorption wavelength of the dye is determined by the length of the coloring system peculiar to the dye, that is, the length of the π-electron conjugated system and the number and position of the electron donating group and the electron withdrawing group. Typical color developing systems include azo series, anthraquinone series, triphenylamine series, phthalocyanine series, and indigo series.
[0017]
The dye used in the present invention is composed of a composite dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed to each other, and these are adsorbed on the porous semiconductor layer.
In the solar cell of the present invention, at least two kinds of dyes having different maximum light absorption wavelengths, that is, a coloring system, form aggregates (complex dyes) that are bonded by chemical adsorption instead of π-electron conjugation. The coloring system of the dye is maintained, and a wide light absorption wavelength region can be realized. Thus, in the present invention, “chemisorption bond” means that two or more kinds of compounds form an aggregate in which one action unit becomes a single action unit without depending on a normal chemical bond.
When the chemical adsorption action of at least two kinds of dyes is strong, the dyes are preferable because they form an aggregate structure serving as a third light absorption region, and the light absorption region as a solar cell becomes wide.
[0018]
In order for each dye to form a complex dye that is bonded by chemisorption and this complex dye is firmly chemisorbed to the porous semiconductor layer, at least one of at least two kinds of dyes is intercalated in the molecule. A dye having a lock group (first dye), and the other dyes have at least one functional group in the molecule that can be chemically adsorbed with a functional group other than the interlock group of the first dye (second dye). Preferably it consists of.
[0019]
The interlock group of the first dye provides strong chemical adsorption between the dye and the porous semiconductor, that is, an electrical bond that facilitates electron transfer between the excited dye and the conductor of the porous semiconductor. Specifically, a carboxyl group and a derivative thereof (for example, an anhydrous group of a carboxyl group-(CO) O (CO)-, an anhydrous group of a carboxyl group and a hydroxyl group-(CO) O-, an alkoxy group, a hydroxyl group, Examples thereof include a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, a phosphonyl group, an amino group, and a nitro group. Among these, a carboxyl group and a derivative thereof are preferable.
The first dye may have a plurality of the same or different functional groups including such an interlock group.
[0020]
Examples of the first dye having such an interlock group include a ruthenium bipyridine dye, an azo dye, a quinone dye, a quinone imine dye, a quinacridone dye, a squarylium dye, a cyanine dye, a merocyanine dye, Examples include phenylmethane dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, berylene dyes, indigo dyes, naphthalocyanine dyes, and the like.
[0021]
The second dye has at least one functional group (for example, a hydroxyl group, an amino group, etc.) that can be chemically adsorbed to a functional group that is not an interlock group of the first dye in the molecule. Examples of such a second dye include a dye represented by the following formula.
[0022]
[Chemical 2]
Figure 0004574897
[0023]
[Chemical Formula 3]
Figure 0004574897
[0024]
[Formula 4]
Figure 0004574897
[0025]
From the above, it is preferable that at least two kinds of dyes are composed of a dye having a carboxyl group and / or a derivative thereof (first dye) and a dye having a hydroxyl group and / or an amino group (second dye).
[0026]
In the solar cell of the present invention, when three or more dyes having different coloring systems are used as the dye to be adsorbed to the porous semiconductor layer, the second dye requires at least two or more functional groups. That is, in the solar cell of the present invention, the dye is sequentially chemisorbed on the porous semiconductor layer, but in the case of three or more kinds of dyes, the following configuration is obtained.
[0027]
(1) A first dye having an interlock group in a molecule that is directly adsorbed on a porous semiconductor layer
(2) A second dye having at least two or more functional groups (including an interlock group) in the molecule, which is sandwiched between the dyes and can be chemically adsorbed at both ends with the dye.
(3) a second dye having at least one functional group in the molecule that can be chemically adsorbed to a functional group that is not an interlock group of the second dye of the above (2) and is adsorbed to the terminal when viewed from the porous semiconductor layer. In the examples, it is also referred to as “third dye”)
[0028]
In the solar cell of the present invention, at least two kinds of dyes are sequentially chemically adsorbed on the porous semiconductor layer and the dyes are chemically adsorbed to each other. However, the solar cell efficiently absorbs light and performs photoelectric conversion. Therefore, it is preferable to chemisorb to the porous semiconductor layer in the order of a dye having a shortest maximum sensitivity wavelength region and a dye having a short maximum sensitivity wavelength region. With such a configuration, light that could not be absorbed by the dye having the maximum sensitivity wavelength region on the long wavelength side can be absorbed by the dye having the maximum sensitivity wavelength region on the short wavelength side.
[0029]
In view of the above, it is preferable that the at least two kinds of dyes include a dye having a maximum light absorption wavelength in a wavelength region of 400 nm or more and less than 600 nm and a dye having a maximum light absorption wavelength in a wavelength region of 600 nm or more and 1000 nm or less. .
Moreover, it is preferable that the energy rank (LUMO, HOMO rank) of each pigment is higher in the order of chemical adsorption to the porous semiconductor layer.
[0030]
Examples of the method for adsorbing the dye functioning as a photosensitizer on the porous semiconductor include the following methods.
(1) The substrate on which the porous semiconductor layer is formed is immersed in a solution in which the first dye having a short maximum sensitivity wavelength region is dissolved to adsorb the first dye to the porous semiconductor layer, or
A substrate on which a transparent conductive film is formed is immersed in a mixed solution of a semiconductor material to be a porous semiconductor layer and a first dye, and a porous semiconductor layer in which the first dye is adsorbed is formed on the transparent conductive film by an electrochemical reaction. And
Next, the porous semiconductor layer on which the first dye is adsorbed is immersed in a solution in which the second dye having a long maximum sensitivity wavelength region is dissolved, and the first dye and the second dye are chemically reacted to form a composite dye. A method for producing a dye-sensitized solar cell, and
(2) A first dye having a short maximum sensitivity wavelength region is chemically reacted with a second dye having a long maximum sensitivity wavelength region to prepare a composite dye,
Next, the substrate on which the porous semiconductor layer is formed is immersed in a solution in which the composite dye is dissolved, and the composite dye is adsorbed on the porous semiconductor layer, and a method for producing a dye-sensitized solar cell
[0031]
In the method (1), examples of the method of adsorbing the first dye on the porous semiconductor layer include a method of immersing the porous semiconductor layer formed on the substrate in a solution in which the first dye is dissolved.
[0032]
The solvent for dissolving the first dye is not particularly limited as long as it dissolves the dye. For example, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, and nitrogen compounds such as acetonitrile. A halogenated aliphatic hydrocarbon such as chloroform, an aliphatic hydrocarbon such as hexane, an aromatic hydrocarbon such as benzene, an ester such as ethyl acetate, and water. Two or more of these solvents can be used in combination.
[0033]
The concentration of the dye in the solution can be appropriately adjusted depending on the kind of the dye and the solvent to be used, but it is preferably as high as possible in order to improve the adsorption function. The pigment concentration is, for example, 5 × 10-FiveIt may be at least mol / liter.
[0034]
The conditions for immersing the solution in which the first dye is dissolved in the porous semiconductor layer, for example, the solution temperature, the atmospheric temperature, and the pressure are not particularly limited, and include, for example, about room temperature and under atmospheric pressure. The immersion time can be appropriately adjusted depending on the dye used, the type of solvent, the concentration of the solution, and the like. In addition, what is necessary is just to perform under heating in order to perform immersion effectively. This is preferable because the first dye is easily adsorbed on the porous semiconductor. Moreover, what is necessary is just to wash | clean and dry a semiconductor by a well-known method after immersion.
[0035]
The method for forming the porous semiconductor layer will be described in detail later. By forming the porous semiconductor layer carrying the first dye, the porous semiconductor layer is formed and the first dye is applied to the porous semiconductor layer. Adsorption can also be performed simultaneously.
In this method, for example, a porous semiconductor layer is formed on a substrate by electrochemically reducing nitrate. Specifically, the substrate is immersed in a mixed solution of nitrate and the first dye, and a metal oxide porous semiconductor layer carrying the first dye is formed by an electrochemical reaction. Although the metal oxide formed by the nitrate to be used is determined, zinc oxide is preferable as the metal oxide.
[0036]
When the nitrate solution is a zinc nitrate aqueous solution, the concentration is preferably about 0.01 to 1 mol / liter, particularly preferably 0.1 to 0.5 mol / liter. The concentration of the dye is 1 × 10-6~ 1x10-FourMole / liter is preferred 3 × 10-Five~ 6 × 10-FiveMole / liter is particularly preferred. The nitrate solvent may be a mixed solvent of water and an organic solvent.
[0037]
Next, an electrochemical reaction using zinc nitrate will be described.
By immersing the substrate on which the transparent conductive film is formed, the counter electrode and the reference electrode in a mixed solution of zinc nitrate aqueous solution and a dye, and applying an electrolytic potential, zinc oxide is formed on the transparent conductive film by the following reaction formula. The
NOThree -+ H2O + 2e-→ NO2 -+ 2OH-
Zn2++ 2OH-→ Zn (OH)2
Zn (OH)2→ ZnO + H2O
[0038]
The electrochemical reaction is preferably performed in the range of electrolysis potential −0.7 to −1.3 V (vs. SCE). When the electrolytic potential is higher than the above range, no reaction occurs, and when it is low, galvanization occurs, which is not preferable.
[0039]
Moreover, it is preferable that an electrochemical reaction is performed in the range of reaction temperature 0-100 degreeC. When the reaction temperature is higher than the above range, it is not preferable because the growth rate is increased and the adhesion to the substrate is deteriorated. Further, when the reaction temperature is lower than the above range, the reaction does not occur, which is not preferable.
[0040]
The electrochemical reaction method may be either bipolar or tripolar, and reference electrodes used in the case of the tripolar are SCE (saturated sweet potato electrode), NHE (standard hydrogen electrode), RHE. (Reversible hydrogen electrode at hydrogen pressure), NCE (standard sweet pepper electrode) and the like. The counter electrode used is preferably platinum or zinc.
[0041]
As shown in the above reaction formula, the formation of zinc oxide is due to the generation of a base accompanying the reduction of nitrate ions to nitrite ions. In this generation process, when a dye is mixed in the solution, zinc oxide grows and the first dye molecule is modified by chemical adsorption of the OH group on the surface of zinc oxide and the functional group (interlock group) of the first dye. Receive.
Here, the chemical adsorption of the first dye occurs preferentially with respect to the (002) plane of zinc oxide. As a result, the growth of the (002) plane is suppressed and the zinc oxide grows in the (100) direction. In this way, it is possible to produce a zinc oxide porous semiconductor layer carrying a dye. (See Chem. Mater. 1999, 11, 2657-2667)
[0042]
Next, as a method of forming a composite dye by chemically adsorbing the first dye and the second dye, for example, the porous dye layer chemically adsorbed with the first dye is dissolved in the second dye. The method of immersing in the solution and making it react chemically is mentioned. The solvent and dye concentration for dissolving the second dye can be selected in the same manner as in the first dye.
Moreover, it is necessary to add a catalyst, heat, inject an inert gas, etc. according to the chemical reaction process of each pigment | dye. Examples of the catalyst include diethyl azodicarboxylate and triphenylphosphine. Examples of the heat treatment include heating in an argon gas stream (about 140 to 180 ° C.).
After the first dye and the second dye are thus chemically adsorbed and bonded, the porous semiconductor layer may be washed and dried by a known method.
In addition, what is necessary is just to repeat said process, when using several 2nd pigment | dye.
[0043]
Alternatively, the first dye and the second dye may be chemically adsorbed via an intermediate. In such a case, the first dye may be chemically adsorbed on the porous semiconductor layer, then the intermediate material may be reacted with the first dye, and the second dye may be further reacted with the intermediate material. Examples of the intermediate material include tetramethylethylenediamine.
[0044]
In the method (2), each dye is chemically reacted to prepare a complex dye. A catalyst (for example, diethyl azodicarboxylate, triphenylphosphine, etc.) is used in the same solvent and dye concentration as described above. The first dye and the second dye are chemically reacted with each other to prepare a complex dye, and then adsorbed to the porous semiconductor layer via the interlock group of the first dye of the complex dye. . The conditions are the same as in the case where the dyes are sequentially chemically adsorbed.
After the complex dye is adsorbed to the semiconductor layer in this way, the semiconductor layer may be washed and dried by a known method.
[0045]
As a modification of the above methods (1) and (2), when using three or more kinds of dyes (first dye and two kinds of second dyes) having different coloring systems, the first dye is first applied to the semiconductor layer. Next, a complex dye is prepared by chemical reaction of two kinds of second dyes in advance, and the semiconductor layer on which the first dye is adsorbed is immersed in a solution in which the complex dye is dissolved. A complex dye composed of a first dye and two kinds of second dyes may be formed by chemically reacting one dye and a complex dye composed of two kinds of second dyes.
[0046]
Next, other components in the solar cell of the present invention will be described.
The solar cell of the present invention is characterized by a dye used as a photosensitizer, and other components can be made of known materials and forms, and are not particularly limited.
[0047]
Examples of the material constituting the porous semiconductor layer include known semiconductors such as titanium oxide, tungsten oxide, barium titanate, strontium titanate, and cadmium sulfide, in addition to the zinc oxide described above. These materials can be used in combination of two or more. Among these, zinc oxide and titanium oxide are particularly preferable in terms of conversion efficiency, stability, and safety. Examples of titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, various titanium oxides such as metatitanic acid and orthotitanic acid, and titanium oxide-containing composites. Also good.
[0048]
The porous semiconductor may be in various forms such as particles and films, but a film-shaped porous semiconductor (porous semiconductor layer) formed on a substrate is preferable.
Examples of the substrate for forming the porous semiconductor layer include a glass substrate and a plastic substrate. Among them, a highly transparent substrate (transparent substrate) is particularly preferable. On this substrate, SnO is formed by a known method.2A transparent conductive film is formed.
[0049]
As a method for forming the porous semiconductor layer on the substrate, various known methods can be used. Specifically, (1) a method of applying a suspension containing semiconductor particles on a substrate, drying and baking, and (2) a semiconductor by a CVD method or a MOCVD method using a desired source gas on the substrate. A method of forming a film, (3) a method of forming a semiconductor film by a PVD method using a raw material solid, a vapor deposition method, a sputtering method or a sol-gel method, and (4) a semiconductor film by an electrochemical redox reaction The method of forming is mentioned.
[0050]
Drying and firing in the porous semiconductor layer forming method {circle around (1)} is performed by appropriately adjusting temperature, time, atmosphere conditions, and the like according to the type of substrate and semiconductor particles used. For example, it can be performed for about 10 seconds to 12 hours in the range of about 50 to 800 ° C. in the air or in an inert gas atmosphere. This drying and baking can be performed once at a single temperature or twice or more at different temperatures.
[0051]
Although the film thickness of a porous semiconductor layer is not specifically limited, About 0.5-20 micrometers is preferable from viewpoints, such as permeability | transmittance and conversion efficiency. Further, in order to improve the conversion efficiency, it is necessary to chemically adsorb more dyes described later on the porous semiconductor layer. For this reason, the porous semiconductor layer preferably has a large specific surface area, specifically 10 to 200 m.2/ G is preferable.
[0052]
Examples of the semiconductor particles include single or compound semiconductor particles having an appropriate average particle size, for example, an average particle size of about 1 to 500 nm, among commercially available particles.
The solvent used for suspending the semiconductor particles is a glyme solvent such as ethylene glycol monomethyl ether and diethylene glycol monomethyl ether, an alcohol solvent such as isopropyl alcohol, a mixed solvent such as isopropyl alcohol / toluene, water, and the like. Etc.
[0053]
The carrier transport layer is composed of an electrolytic solution and an electrolyte contained therein.
The electrolytic solution is not particularly limited as long as it can be generally used in a battery, a solar battery or the like. Further, the electrolyte in the electrolytic solution is preferably redox, and is not particularly limited as long as it is an electrolyte that can generally be used in a battery or a solar battery. Specifically, LiI, NaI, KI, CaI2Combinations of metal iodides and iodine such as LiBr, NaBr, KBr, CaBr2A combination of a metal bromide such as bromine and bromine is preferred, and among these, a combination of LiI and iodine is preferred.
[0054]
Examples of the electrolyte concentration include a range of 0.1 to 1.5 mol / liter, and among these, 0.1 to 0.7 mol / liter is preferable. Examples of the electrolyte solvent include carbonate compounds such as propylene carbonate, nitrile compounds such as acetonitrile, alcohols such as ethanol, water, aprotic polar substances, and the like. Among them, carbonate compounds and nitrile compounds are included. preferable.
[0055]
The transparent conductor that can be used as the electrode is not particularly limited. For example, ITO, SnO2A transparent conductive film such as is preferable. The production method and film thickness of these electrodes can be selected as appropriate.
[0056]
【Example】
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
[0057]
Example 1
A first embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view of the main part showing the layer structure of the solar cell of the present invention. 1 is a transparent support (transparent substrate), 2 is a transparent conductive film, 3 is a porous semiconductor layer, 4 is a redox electrolyte (carrier transport layer), 5 is a counter electrode, 6 is a platinum film, and 7 is a sealant. Indicates. A combination of 5 and 6 is also referred to as a conductive substrate.
[0058]
First, a coating solution for preparing a titanium oxide film 3 as a porous semiconductor layer was prepared. That is, commercially available titanium oxide particles (manufactured by Teika Co., Ltd., trade name: AMT-600, anatase type crystal, average particle size 30 nm, specific surface area 50 m2/ G) 4.0 g and 20 ml of diethylene glycol monomethyl ether were dispersed with a paint shaker for 6 hours using glass beads to prepare a titanium oxide suspension.
[0059]
On the glass substrate as the transparent support 1, SnO as the transparent conductive film 22A film was formed. Next, the prepared titanium oxide suspension was applied to the transparent conductive film 2 side of the transparent substrate 1 with a doctor blade to obtain a coating film having a thickness of about 10 μm and an area of about 10 mm × 10 mm. The coating film was pre-dried at 100 ° C. for 30 minutes and further baked at 460 ° C. for 40 minutes in an oxygen atmosphere to obtain a titanium oxide film having a thickness of about 8 μm as the porous semiconductor layer 3.
[0060]
Next, a ruthenium dye represented by the following formula (15) (trade name: Ruthenium 535, λmax = 535 nm) represented by the following formula (15) is dissolved in absolute ethanol as a first dye, and the dye concentration is 4 × 10.-FourA dye solution for adsorbing 1 mol of the first dye was prepared. The transparent support 1 having the transparent conductive film 2 and the porous semiconductor layer 3 is immersed in the prepared dye solution for adsorption of the first dye for about 30 minutes, and the first dye is chemisorbed on the porous semiconductor layer 3. I let you. Thereafter, the transparent support 1 was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes.
[0061]
[Chemical formula 5]
Figure 0004574897
[0062]
Next, as a second dye, a europium dye represented by formula (6) (manufactured by ADS (American Dye Source Inc.), trade name: ADS052RE, λmax = 612 nm) is dissolved in absolute ethanol to obtain a dye concentration of 2 × 10-FourA dye solution for adsorbing 2 mol / liter of the second dye was prepared. The transparent support 1 chemically chemisorbed with the first dye and 0.2 g of activated 4Å molecular sieve are put into the prepared dye solution for adsorbing the second dye, and kept at 150 ° C. for about 120 minutes in an argon stream. Thus, the first dye and the second dye were chemically adsorbed and bonded. Thereafter, the transparent support 1 was washed several times with dichloromethane, further ultrasonically washed, and the solvent was dried.
[0063]
Thereafter, the transparent support 1 was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. Since the absolute ethanol used for washing was not colored, it was confirmed that the first dye and the second dye were chemically adsorbed and bonded. In addition, as a result of IR measurement before and after chemical adsorption of the second dye, 3480 cm before adsorption.-1-NH2A peak indicating the group was obtained, but after adsorption 3440 cm-1A new peak appeared.
[0064]
Next, a redox electrolyte solution 4 was prepared. That is, in a mixed solvent of acetonitrile and ethylene carbonate (volume ratio = 1: 4) so that lithium iodide has a concentration of 0.5 mol / liter and iodine has a concentration of 0.05 mol / liter, Lithium iodide and iodine were dissolved.
[0065]
Thereafter, the platinum of ITO glass as the counter electrode 5 provided with the platinum film 6 and the transparent semiconductor layer 3 side of the transparent support 1 provided with the porous semiconductor layer 3 chemically adsorbed with the first dye and the second dye. The solar cell was completed by placing it so as to face the membrane 6 side, injecting the redox electrolyte solution 4 prepared therebetween and sealing the periphery with an epoxy resin sealant 7.
Measurement conditions of the obtained solar cell: AM-1.5 (100 mW / cm2), The conversion efficiency was 8.5%.
[0066]
(Comparative Example 1)
The same procedure as in Example 1 was conducted except that a phthalocyanine dye (manufactured by Syntec, trade name: ST10 / 13, λmax = 658 nm) represented by the following formula (16) was used as the second dye instead of the europium dye. Solar cells were fabricated and evaluated.
After the first dye and the second dye were adsorbed, the transparent support 1 was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes. Since the absolute ethanol used for washing was colored, it was confirmed that the second dye was not chemically adsorbed.
The conversion efficiency of the obtained solar cell was 7.0%. This is a level equivalent to a conversion efficiency of 7.0% of a solar cell manufactured by chemical adsorption of only the first dye.
[0067]
[Chemical 6]
Figure 0004574897
[0068]
(Example 2)
In Example 2, a solar cell was produced by adsorbing a composite dye obtained by chemisorbing a first dye and a second dye to a porous semiconductor layer. A ruthenium dye represented by formula (15) is used as the first dye, and a cyanine dye represented by formula (5) (trade name: ADS820H0, λmax = 818 nm) represented by formula (5) is used as the second dye. did.
[0069]
An equimolar amount of the first dye and diethyl azodicarboxylate are dissolved in ether to obtain a dye concentration of 1 × 10-FourA dye solution of mol / liter of the first dye was prepared. Also, equimolar second dye and triphenylphosphine are dissolved in ether to give a dye concentration of 1 × 10.-FourA dye solution of mol / liter of second dye was prepared. Next, the dye solution of the second dye prepared in the same manner was dropped into the prepared dye solution of the first dye at room temperature, whereby the first dye and the second dye were chemically adsorbed and bonded. Thereafter, a precipitate such as triphenylsulfin oxide was filtered off to obtain a complex dye solution.
[0070]
The transparent support 1 having the transparent conductive film 2 and the porous semiconductor layer 3 was immersed in the prepared complex dye solution for about 30 minutes, and the complex dye was chemically adsorbed on the porous semiconductor layer 3. Thereafter, the transparent support 1 was washed several times with absolute ethanol and dried at about 60 ° C. for about 20 minutes.
For the subsequent steps, solar cells were produced and evaluated in the same manner as in Example 1.
The conversion efficiency of the obtained solar cell was 9.8%.
[0071]
(Example 3)
In Example 3, simultaneously with the formation of the porous semiconductor layer made of zinc oxide, the first dye is adsorbed using the electrochemical redox method, and then the composite dye made of two kinds of second dyes is first A solar cell was fabricated by chemical adsorption bonding with the dye.
As a 1st pigment | dye, the pigment | dye (Nippon Kayaku Co., Ltd. make, brand name: Kayanol Yellow NFG, (lambda) max = 420nm) refined | purified as a 1st pigment | dye, It represents with Formula (15) as a 2nd pigment | dye. Ruthenium dyes (λmax = 535 nm), other dyes (third dyes), dyes represented by formula (14) (ACTA PHYSICO-CHEMICA SINICA Vol. 15, No. 4, April, 1999, p293) The compound synthesized with reference to ˜298, λmax = 650 nm) was used.
[0072]
[Chemical 7]
Figure 0004574897
[0073]
First, SnO as a transparent conductor 2 on a 10 mm × 10 mm glass substrate as the transparent support 1.2A transparent conductive film was formed. Then SnO2A lead wire is attached to the transparent conductive film, connected to the working electrode of the potentiostat, a lead wire from the platinum plate counter electrode is connected to the counter electrode side, and a saturated sweet potato electrode (SCE) 7 is connected to the reference as a reference electrode did. These were installed in a nonconductive container made of glass. In this container, a dye concentration of 5 × 10 10 was prepared by dissolving the first dye in a 0.1 mol / liter zinc nitrate aqueous solution.-FourA mol / liter aqueous solution was added.
[0074]
The inside of the container was set to 70 ° C., and an electrolytic potential of −0.7 V (vs. SCE) was applied for 60 minutes from a stabilized power source. By this electrolytic reaction, SnO2On the transparent conductive film, a porous semiconductor layer of zinc oxide having a thickness of 8 μm carrying the first dye was formed. Thereafter, this was washed with ethanol and left in a drier set at 60 ° C. for 15 minutes to dry the porous semiconductor layer.
[0075]
An equimolar second dye and diethyl azodicarboxylate are dissolved in ether to give a dye concentration of 1 × 10-FourA dye solution of mol / liter of second dye was prepared. Further, equimolar third dye and triphenylphosphine are dissolved in ether to obtain a dye concentration of 1 × 10.-FourA dye solution of 3 mol / liter of third dye was prepared. Next, the dye solution of the third dye prepared in the same manner was added dropwise to the prepared dye solution of the second dye at room temperature, so that the second dye and the third dye were chemically adsorbed and bonded. Thereafter, a precipitate such as triphenylsulfin oxide was filtered off to obtain a complex dye solution.
[0076]
The first dye and the complex dye are immersed in the prepared complex dye solution for about 30 minutes and held at 150 ° C. for about 120 minutes in an argon stream. Were chemisorbed.
For the subsequent steps, solar cells were produced and evaluated in the same manner as in Example 1.
The conversion efficiency of the obtained solar cell was 10.2%.
[0077]
【The invention's effect】
Since the solar cell of the present invention includes a porous semiconductor layer that adsorbs a composite dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed to each other as a sensitizing dye, and has two coloring systems. Compared to conventional solar cells, a solar cell having a wide light absorption wavelength region, a large amount of light absorption, and high photoelectric exchange efficiency can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a main part showing a layer structure of a solar cell of the present invention.
[Explanation of symbols]
1 Transparent support (transparent substrate)
2 Transparent conductive film
3 Porous semiconductor layer
4 Redox electrolyte (carrier transport layer)
5 Counter electrode
6 Platinum membrane
7 Sealant

Claims (6)

透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔性半導体層とキャリア輸送層とを有する色素増感型太陽電池において、色素が、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素であることを特徴とする色素増感型太陽電池。In a dye-sensitized solar cell having a porous semiconductor layer adsorbed with a dye and a carrier transport layer between a transparent conductive film formed on the surface of the transparent substrate and a conductive substrate, the dye has a different maximum light A dye-sensitized solar cell, wherein the dye-sensitized solar cell is a complex dye in which at least two dyes having an absorption wavelength are chemically adsorbed to each other. 少なくとも2種の色素が、最大感度波長領域が短い色素から長い色素の順に、多孔性半導体層に吸着されてなる請求項1に記載の色素増感型太陽電池。The dye-sensitized solar cell according to claim 1, wherein at least two kinds of dyes are adsorbed on the porous semiconductor layer in the order of a dye having a shortest maximum sensitivity wavelength region to a dye having a long maximum sensitivity wavelength region. 少なくとも2種の色素が、400nm以上600nm未満の波長領域に最大光吸収波長を有する色素と、600nm以上1000nm以下の波長領域に最大光吸収波長を有する色素とからなる請求項1または2に記載の色素増感型太陽電池。The at least 2 sort (s) of pigment | dye consists of a pigment | dye which has a maximum light absorption wavelength in a wavelength range of 400 nm or more and less than 600 nm, and a pigment | dye which has a maximum light absorption wavelength in a wavelength region of 600 nm or more and 1000 nm or less. Dye-sensitized solar cell. 少なくとも2種の色素が、カルボキシル基および/またはその誘導体を有する色素と、水酸基および/またはアミノ基を有する色素とからなる請求項1〜3のいずれか1つに記載の色素増感型太陽電池。The dye-sensitized solar cell according to any one of claims 1 to 3, wherein the at least two kinds of dyes comprise a dye having a carboxyl group and / or a derivative thereof and a dye having a hydroxyl group and / or an amino group. . 透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔性半導体層とキャリア輸送層とを有する色素増感型太陽電池の作製方法において、
多孔性半導体層を形成した基板を最大感度波長領域が短い第1色素を溶解した溶液に浸漬して、第1色素を多孔性半導体層に吸着させるか、あるいは
透明導電膜を形成した基板を多孔性半導体層となる半導体材料と第1色素との混合溶液に浸漬し、電気化学反応により第1色素が吸着された多孔性半導体層を透明導電膜上に形成し、
次いで、第1色素が吸着された多孔性半導体層を最大感度波長領域が長い第2色素を溶解した溶液に浸漬し、第1色素と第2色素とを化学反応させて、複合体色素を形成することを特徴とする色素増感型太陽電池の作製方法。
In the method for producing a dye-sensitized solar cell having a porous semiconductor layer adsorbed with a dye and a carrier transport layer between the transparent conductive film formed on the surface of the transparent substrate and the conductive substrate,
The substrate on which the porous semiconductor layer is formed is immersed in a solution in which the first dye having a short maximum sensitivity wavelength region is dissolved to adsorb the first dye on the porous semiconductor layer, or the substrate on which the transparent conductive film is formed is made porous. Dipping in a mixed solution of a semiconductor material and a first dye to be a conductive semiconductor layer, and forming a porous semiconductor layer on which the first dye is adsorbed by an electrochemical reaction on a transparent conductive film,
Next, the porous semiconductor layer on which the first dye is adsorbed is immersed in a solution in which the second dye having a long maximum sensitivity wavelength region is dissolved, and the first dye and the second dye are chemically reacted to form a composite dye. A method for producing a dye-sensitized solar cell, characterized in that:
透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔性半導体層とキャリア輸送層とを有する色素増感型太陽電池の作製方法において、
最大感度波長領域が短い第1色素と最大感度波長領域が長い第2色素とを化学反応させて、複合体色素を調製し、
次いで、多孔性半導体層を形成した基板を複合体色素を溶解した溶液に浸漬して、複合体色素を多孔性半導体層に吸着させることを特徴とする色素増感型太陽電池の作製方法。
In the method for producing a dye-sensitized solar cell having a porous semiconductor layer adsorbed with a dye and a carrier transport layer between the transparent conductive film formed on the surface of the transparent substrate and the conductive substrate,
A complex dye is prepared by chemically reacting a first dye having a short maximum sensitivity wavelength region with a second dye having a long maximum sensitivity wavelength region,
Next, a method for producing a dye-sensitized solar cell, wherein the substrate on which the porous semiconductor layer is formed is immersed in a solution in which the composite dye is dissolved, and the composite dye is adsorbed on the porous semiconductor layer.
JP2001152436A 2001-05-22 2001-05-22 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP4574897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152436A JP4574897B2 (en) 2001-05-22 2001-05-22 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152436A JP4574897B2 (en) 2001-05-22 2001-05-22 Dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002343455A JP2002343455A (en) 2002-11-29
JP4574897B2 true JP4574897B2 (en) 2010-11-04

Family

ID=18997106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152436A Expired - Fee Related JP4574897B2 (en) 2001-05-22 2001-05-22 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4574897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146933A1 (en) 2012-03-30 2013-10-03 グンゼ株式会社 Dye-sensitized solar cell and method of manufacturing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102724A1 (en) * 2003-05-13 2004-11-25 Asahi Kasei Kabushiki Kaisha Photoelectric conversion element
KR100589323B1 (en) 2004-02-03 2006-06-14 삼성에스디아이 주식회사 Dye-Sensitized Solar Cell with Extended Light Absorption Wavelength and Manufacturing Method Thereof
JP4942349B2 (en) * 2006-01-25 2012-05-30 シャープ株式会社 Dye-sensitized solar cell, manufacturing method thereof, and manufacturing apparatus
AU2007270404B2 (en) 2006-07-05 2011-04-28 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
JP5240681B2 (en) * 2006-09-12 2013-07-17 国立大学法人九州工業大学 Photoelectric conversion element and manufacturing method thereof
JP2008186632A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Photoelectric conversion element and its manufacturing method
JP2009016236A (en) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc Dye-sensitized solar cell
JP5405155B2 (en) * 2008-10-29 2014-02-05 富士フイルム株式会社 Photoelectrochemical cell
JP5451165B2 (en) * 2009-04-20 2014-03-26 株式会社日本触媒 Dye-sensitized photoelectric conversion element and solar cell using the same
JP5541894B2 (en) * 2009-09-25 2014-07-09 アイシン精機株式会社 Dye and method for producing the same
JP5569091B2 (en) * 2010-03-26 2014-08-13 浩司 瀬川 Porous semiconductor and dye-sensitized solar cell
JP5572027B2 (en) * 2010-08-03 2014-08-13 富士フイルム株式会社 Photoelectric conversion element and composition for photoelectric conversion element used therefor
JP6001387B2 (en) * 2012-03-30 2016-10-05 株式会社フジクラ Photosensitizing dye and dye-sensitized solar cell having the same
EP4224497A1 (en) * 2022-02-08 2023-08-09 Studiengesellschaft Kohle gGmbH Ionic voltage effect triode cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249274A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2003249275A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249274A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method
JP2003249275A (en) * 2002-02-22 2003-09-05 Sharp Corp Dye sensitized solar cell and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146933A1 (en) 2012-03-30 2013-10-03 グンゼ株式会社 Dye-sensitized solar cell and method of manufacturing same

Also Published As

Publication number Publication date
JP2002343455A (en) 2002-11-29

Similar Documents

Publication Publication Date Title
KR101430139B1 (en) Manufacturing technology perovskite-based mesoporous thin film solar cell
US7825250B2 (en) Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery
JP4574897B2 (en) Dye-sensitized solar cell and method for producing the same
JP4177172B2 (en) Dye-sensitized solar cell
EP2296216B1 (en) Dye-sensitized solar cell, method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell module
JP5206092B2 (en) Photoelectric conversion element and solar cell
Nwanya et al. Dyed sensitized solar cells: A technically and economically alternative concept to pn junction photovoltaic devices.
KR20050078857A (en) Dye-sensitized solar cell having enlarged wavelength range of absorbed light and fabrication method thereof
JP4312991B2 (en) Method for producing dye-sensitized solar cell
JP2002222971A (en) Photoelectric converter
Nogueira et al. Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO 2 films
TW201116593A (en) Dye-sensitized solar cell and photoanode thereof
KR100696636B1 (en) Dye-sensitized solar cell dyes and dye-sensitized solar cells prepared therefrom
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
Athanassov et al. Sensitized electroluminescence on mesoporous oxide semiconductor films
JPWO2005078853A1 (en) Dye-sensitized solar cell
JP2001345124A (en) Chemically modified semiconductor electrode, method of manufacturing it, and photocell using it
JP2003100359A (en) Functional film and manufacturing method therefor, and optical semiconductor electrode and photoelectric conversion element using the film
JP2004247104A (en) Titanium oxide fine particles, manufacturing method for photoelectric conversion element, and photoelectric conversion element
US20100275988A1 (en) Photoelectric conversion element and solar cell
US20100282322A1 (en) Photoelectric conversion element and solar cell
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2002246624A (en) Dye-sensitized solar cell and method for producing the same
JP2004047264A (en) Dye-sensitized solar cell and its manufacturing method
JP5332114B2 (en) Photoelectric conversion element and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees