[go: up one dir, main page]

JP4573613B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4573613B2
JP4573613B2 JP2004289183A JP2004289183A JP4573613B2 JP 4573613 B2 JP4573613 B2 JP 4573613B2 JP 2004289183 A JP2004289183 A JP 2004289183A JP 2004289183 A JP2004289183 A JP 2004289183A JP 4573613 B2 JP4573613 B2 JP 4573613B2
Authority
JP
Japan
Prior art keywords
compression
refrigerant gas
cylinder
support member
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004289183A
Other languages
Japanese (ja)
Other versions
JP2006104949A (en
Inventor
弘丞 小笠原
剛弘 西川
学 竹中
吉久 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004289183A priority Critical patent/JP4573613B2/en
Publication of JP2006104949A publication Critical patent/JP2006104949A/en
Application granted granted Critical
Publication of JP4573613B2 publication Critical patent/JP4573613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、冷媒ガス等の流体を圧縮して吐出する密閉型の圧縮機であって、特に回転軸と共に同心軸回転してシリンダ内の冷媒ガス等を圧縮する圧縮部材に特徴を有する圧縮機に関するものである。   The present invention is a hermetic compressor that compresses and discharges a fluid such as a refrigerant gas, and particularly has a compression member that rotates concentrically with a rotating shaft to compress the refrigerant gas or the like in a cylinder. It is about.

圧縮機としては、従来種々の方式・形態のものが知られており、そのうち回転式圧縮機(ロータリ圧縮機)は密閉容器内に駆動要素と圧縮要素とが配置され、駆動要素のステータに通電してロータを軸回転させ、このロータに軸着されている回転軸によって圧縮要素のシリンダ内でローラを偏心回転させ、このローラの外周面に常時当接しているベーンによりシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するように構成したものである(例えば、特許文献1)。   Various types of compressors are known as compressors. Among them, a rotary compressor (rotary compressor) has a drive element and a compression element arranged in a sealed container, and the stator of the drive element is energized. Then, the rotor is axially rotated, the roller is eccentrically rotated in the cylinder of the compression element by the rotation shaft attached to the rotor, and the inside of the cylinder is separated from the low pressure chamber by the vane that is always in contact with the outer peripheral surface of the roller. It is divided into a high-pressure chamber, and the refrigerant gas sucked into the low-pressure chamber is compressed and discharged into the sealed container, and the high-pressure refrigerant gas is discharged from the sealed container and supplied to the refrigerant circuit. There is (for example, Patent Document 1).

上記従来の回転式圧縮機は、前記駆動要素のロータに軸着された回転軸の端部近傍に偏心円盤部を設け、この偏心円盤部の外周にローラを回転自在に配設している。そして、前記のように回転軸が軸回転すると、偏心円盤部の偏心回転に伴ってローラがシリンダの圧縮空間内を偏心回転し、シリンダ内の冷媒ガスを低圧室から高圧室に移動させながら圧縮するのである。   In the conventional rotary compressor, an eccentric disk portion is provided in the vicinity of the end of the rotating shaft that is pivotally attached to the rotor of the drive element, and a roller is rotatably disposed on the outer periphery of the eccentric disk portion. When the rotating shaft rotates as described above, the roller rotates eccentrically in the compression space of the cylinder along with the eccentric rotation of the eccentric disk portion, and compresses while moving the refrigerant gas in the cylinder from the low pressure chamber to the high pressure chamber. To do.

このような構造の回転式圧縮機では、回転軸に偏心円盤部を形成しなければならず、且つこの偏心円盤部の外周にローラを回転自在に設ける必要があることから、加工性が低下し且つ部品が増えてコストアップの原因の一つになっている。又、偏心円盤部を介してローラが偏心回転するため、振動とトルク変動が大きくなる傾向がある。   In the rotary compressor having such a structure, an eccentric disk portion must be formed on the rotation shaft, and a roller must be rotatably provided on the outer periphery of the eccentric disk portion. In addition, the number of parts increases, which is one of the causes of cost increase. Further, since the roller rotates eccentrically via the eccentric disk portion, vibration and torque fluctuation tend to increase.

上記従来構造の回転圧縮機における加工性の低下、部品の増大及び振動とトルク変動の増大を防止するために、回転軸の偏心円盤部とローラとの組み合わせを用いず、回転軸に対して同心軸に圧縮部材を取り付け、この圧縮部材をシリンダの圧縮空間内を回転させることで吸入した冷媒ガスを圧縮できるようにした圧縮機が知られている(例えば、特許文献2)。   In order to prevent deterioration in workability, increase in parts, and increase in vibration and torque fluctuation in the conventional rotary compressor, the combination of the eccentric disk portion and the roller of the rotary shaft is not used, but concentric with the rotary shaft. There is known a compressor in which a compression member is attached to a shaft and the refrigerant gas sucked by compressing the compression member in a compression space of a cylinder can be compressed (for example, Patent Document 2).

回転軸と同心軸回転する圧縮部材を備えた上記圧縮機は、圧縮部材として傾斜板が用いられており、この傾斜板の両面側で冷媒ガスを圧縮するためシリンダの圧縮空間に冷媒ガスを導く吸入路及び圧縮後の冷媒ガスを吐出するための吐出路を2つずつ設けなければならない。このような構造であると、シリンダ内全域において傾斜板の上下で高圧室と低圧室とが隣接する形となるため、高低圧差が大きくなり、冷媒ガスリークによる効率悪化が問題となる。これを防止するために、本出願人は圧縮部材を比較的肉厚な部材で形成し、片面側で冷媒ガスを圧縮するようにした圧縮機を開発して先に特許出願した(特願2004−003142号)。
特開平6−307363号公報 特願2004−003142号
In the compressor provided with a compression member that rotates concentrically with the rotation shaft, an inclined plate is used as the compression member, and the refrigerant gas is guided to the compression space of the cylinder in order to compress the refrigerant gas on both sides of the inclined plate. Two suction paths and two discharge paths for discharging the compressed refrigerant gas must be provided. With such a structure, since the high pressure chamber and the low pressure chamber are adjacent to each other above and below the inclined plate in the entire area of the cylinder, the difference between the high pressure and the low pressure becomes large, and the efficiency deterioration due to refrigerant gas leakage becomes a problem. In order to prevent this, the present applicant has developed a compressor in which the compression member is formed of a relatively thick member and the refrigerant gas is compressed on one side, and a patent application has been filed earlier (Japanese Patent Application 2004). -003142).
JP-A-6-307363 Japanese Patent Application No. 2004-003142

上記先行出願に係る圧縮機は、回転軸に対してほぼ円柱状の圧縮部材を同心軸に設け、この圧縮部材の上面に特殊形状の傾斜面を形成することにより冷媒ガスを圧縮できるようにしたもので、駆動要素のステータに通電してロータを回転させ、このロータに軸着されている回転軸によって圧縮要素におけるシリンダ内で圧縮部材を同心軸回転させ、この圧縮部材の傾斜面に常時当接しているベーンを介してシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するものである。   In the compressor according to the above prior application, a substantially cylindrical compression member is provided on the concentric shaft with respect to the rotating shaft, and a specially shaped inclined surface is formed on the upper surface of the compression member so that the refrigerant gas can be compressed. Thus, the rotor of the drive element is energized to rotate the rotor, the rotation shaft mounted on the rotor rotates the compression member concentrically within the cylinder of the compression element, and is constantly applied to the inclined surface of the compression member. The inside of the cylinder is divided into a low-pressure chamber and a high-pressure chamber through the vanes that are in contact with each other. The refrigerant gas sucked into the low-pressure chamber is compressed and discharged into the sealed container, and the high-pressure refrigerant gas is discharged from the sealed container. To be supplied to the refrigerant circuit.

この先行出願に係る圧縮機の構成を概略説明すると、前記圧縮要素は密閉容器に固定されて駆動要素のロータに固定した回転軸を貫通させて軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、回転軸に同心軸固定されてシリンダの圧縮空間内を回転し一面が回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにコイルバネを介して装着され先端が圧縮部材の傾斜面に常時当接して圧縮空間内を低圧室と高圧室とに区分するベーンとを備えている。   Schematically explaining the configuration of the compressor according to this prior application, the compression element is fixed to a hermetic container and is supported by a support member that is pivotally supported by a rotary shaft fixed to a rotor of a drive element, and is fixed to the support member. The cylinder that forms the compression space and the shaft that is fixed concentrically to the rotation shaft and rotates in the compression space of the cylinder and goes up from the highest dead center to the lowest dead center when one surface makes a round around the rotation axis. A compression member formed on a substantially sinusoidal inclined surface that returns to the dead center, and a vane slot provided in the support member is mounted via a coil spring, and the tip always contacts the inclined surface of the compression member so that the inside of the compression space Is provided with a vane for classifying the chamber into a low pressure chamber and a high pressure chamber.

しかしながら、上記圧縮機はシリンダの高圧室から密閉容器内に吐出される高圧冷媒ガスに起因する騒音が発生し、又高圧冷媒ガスに対する流路抵抗により圧縮機としての性能が低下する問題があった。   However, the compressor has a problem in that noise due to high-pressure refrigerant gas discharged from the high-pressure chamber of the cylinder into the hermetic container is generated, and the performance as the compressor is deteriorated due to flow path resistance against the high-pressure refrigerant gas. .

本発明は、上記の問題を解決するためになされたもので、圧縮機の騒音を抑えると共に、高圧冷媒ガスに対する流路抵抗を抑えて圧縮機としての性能を向上させるようにした圧縮機を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a compressor that suppresses noise of the compressor and suppresses flow path resistance against high-pressure refrigerant gas to improve the performance as a compressor. The purpose is to do.

上記の目的を達成するために、本発明に係る請求項1の圧縮機は、密閉容器(1)内に駆動要素(2)と、この駆動要素(2)により駆動される圧縮要素(3)とが配置され、前記圧縮要素(3)は前記密閉容器(1)に固定され前記駆動要素(2)のロータ(6)に固定した回転軸(5)を貫通させて軸支する支持部材(7)と、この支持部材(7)に固定されて圧縮空間(20)を形成するシリンダ(8)と、前記回転軸(5)に同軸心に固定されて前記シリンダ(8)の圧縮空間内を回転し一面が前記回転軸(5)を中心として一周すると最も高くなる上死点(P)から最も低くなる下死点(Q)を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材(9)と、前記支持部材(7)に設けられたベーンスロット(16)にバネ(18)を介して装着され先端が前記圧縮部材(9)の傾斜面に常時接触して前記圧縮空間(20)内を低圧室と高圧室とに区分するベーン(11)とを備え、前記低圧室に吸入した冷媒ガスを前記圧縮部材(9)により圧縮して前記高圧室から吐出する圧縮機であって、前記圧縮要素(3)の側部に、シリンダ(8)の側部に設けた切欠部(8b)と、このシリンダ(8)の上に位置する支持部材(7)の側部に前記切欠部(8b)に対応させて設けた切欠部(7e)と、前記シリンダ(8)の底面に取り付けた仕切板(24)と、前記密閉容器(1)の側壁と、前記支持部材(7)の天井板とで囲まれた空間により構成され、前記高圧室から吐出される前記冷媒ガスを消音するためのマフラ(23)を設けるとともに、前記マフラ(23)を構成する空間内に前記冷媒ガスとともに流入するオイルが、前記空間から排出される出口(7f)を前記支持部材(7)の天井にのみ設け、前記密閉容器(1)の上部領域で、冷媒ガスと分離されたオイルが流下する隙間(10)を前記密閉容器(1)とこれに対向するステータ(4)との間に有するとともに、前記駆動要素(2)のステータ(4)とロータ(6)との間に僅かな隙間(S)を設け、マフラ(23)の出口(7f)、前記僅かな隙間(S)の下方位置の前記支持部材(7)において、前記隙間(10)に対するよりも前記僅かな隙間(S)に対する方が近接した状態となるように設け、前記駆動要素(2)の隙間(S)を介する流路の方が、前記オイルの戻り流路である隙間(10)よりも、密閉容器(1)内の上部領域に導く際の高圧冷媒ガスに対する流路抵抗が低くなっている、ことを特徴とする。 In order to achieve the above object, a compressor according to claim 1 of the present invention comprises a drive element (2) in a hermetic container (1) and a compression element (3) driven by the drive element (2). bets are placed, the compression element (3) comprises a support member for rotatably supporting by penetrating the rotary shaft (5) fixed to the rotor (6) of the drive element is fixed to the closed container (1) (2) (7), a cylinder (8) fixed to the support member (7) to form a compression space (20), and a compression space of the cylinder (8) fixed coaxially to the rotating shaft (5). A substantially sinusoidal inclined surface that rotates inside and returns to the top dead center through the bottom dead center (Q) that becomes the highest from the top dead center (P) that goes up around the rotation axis (5). And the vane slot (16) provided in the support member (7). A vane (11) that is mounted via a net (18) and whose tip always contacts the inclined surface of the compression member (9) to divide the compression space (20) into a low pressure chamber and a high pressure chamber, A compressor that compresses refrigerant gas sucked into the low-pressure chamber by the compression member (9) and discharges the refrigerant gas from the high-pressure chamber, on the side of the compression element (3), on the side of the cylinder (8) The provided notch (8b), the notch (7e) provided on the side of the support member (7) positioned above the cylinder (8) corresponding to the notch (8b), and the cylinder ( 8) It is comprised by the space enclosed by the partition plate (24) attached to the bottom face, the side wall of the said airtight container (1), and the ceiling plate of the said supporting member (7), and is discharged from the said high pressure chamber. provided with a muffler (23) for muting the refrigerant gas, the muffler ( 3) Oil that flows into the space constituting the refrigerant gas together with the refrigerant gas is provided with an outlet (7f) that is discharged from the space only on the ceiling of the support member (7), and in the upper region of the sealed container (1). A gap (10) through which oil separated from the refrigerant gas flows is provided between the hermetic container (1) and the stator (4) opposed thereto, and the stator (4) of the driving element (2) A slight gap (S) is provided between the rotor (6) and an outlet (7f) of the muffler (23) is connected to the gap (S) at the support member (7) below the slight gap (S). 10), the flow path through the gap (S) of the drive element (2) is a return flow path for the oil. Above the gap (10) and in the closed container (1) The flow path resistance with respect to the high-pressure refrigerant gas at the time of guiding to the partial area is low .

上記請求項1の発明によれば、圧縮機の密閉容器内における圧縮要素の側部にマフラを設けたので、シリンダの高圧室から吐出される冷媒ガスを消音することができる。これにより、圧縮機の騒音を低く抑えることができる。   According to the first aspect of the present invention, since the muffler is provided on the side of the compression element in the hermetic container of the compressor, the refrigerant gas discharged from the high pressure chamber of the cylinder can be silenced. Thereby, the noise of a compressor can be suppressed low.

また、上記請求項の発明によれば、シリンダの側部に設けた切欠部と、このシリンダの上に位置する支持部材の側部に前記切欠部に対応させて設けた切欠部と、前記シリンダの底面に取り付けた仕切板と、前記密閉容器の側壁とで囲まれた空間によりマフラを容易に構成することができる。 Also, the according to the invention of claim 1, and a notch provided on the side of the cylinder, and the notch portion provided in correspondence with the notch on the side of the support member located on top of the cylinder, the The muffler can be easily configured by the space surrounded by the partition plate attached to the bottom surface of the cylinder and the side wall of the sealed container.

さらに、上記請求項の発明によれば、マフラの出口を、支持部材に駆動要素のステータとロータとの僅かな隙間の下方位置に近接させて設けたので、マフラ出口から吐出される高圧冷媒ガスを、高圧冷媒ガスに対する流路抵抗の低い駆動要素の僅かな隙間を介して密閉容器内の上部領域に導くことができる。これにより、密閉容器上端の吐出配管から吐出すべき高圧冷媒ガスを十分確保することができ、且つ吐出ガスに含まれるオイルを効率良く分離でき、圧縮機としての性能を向上させることが可能となる。 Furthermore, according to the first aspect of the present invention, since the outlet of the muffler is provided close to the lower position of the slight gap between the stator and the rotor of the drive element on the support member, the high-pressure refrigerant discharged from the muffler outlet The gas can be guided to the upper region in the hermetic container through a slight gap of the driving element having a low flow resistance against the high-pressure refrigerant gas. As a result, sufficient high-pressure refrigerant gas to be discharged from the discharge pipe at the upper end of the sealed container can be secured, oil contained in the discharge gas can be separated efficiently, and the performance as a compressor can be improved. .

次に、本発明に係る圧縮機の実施形態を添付図面に基づいて説明する。
図1は本発明に係る圧縮機の実施形態を示す概略縦断面図である。図2は本発明に係る圧縮機の実施形態におけるベーンの箇所を通る概略縦断面図である。図3は本発明に係る圧縮機の実施形態における概略横断面図である。各図において、1は密閉容器であり、有底円筒状の鉄製収納部材の上端部に、有蓋略円筒状の鉄製被覆部材を溶接することで構成され、この密閉容器1内の上方部には駆動要素2が、下方部には駆動要素2により駆動される圧縮要素3がそれぞれ配置されている。
Next, an embodiment of a compressor according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic longitudinal sectional view showing an embodiment of a compressor according to the present invention. FIG. 2 is a schematic longitudinal sectional view passing through a vane in the compressor according to the embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of the compressor according to the embodiment of the present invention. In each figure, 1 is an airtight container, which is constructed by welding an iron cover member having a substantially cylindrical shape with a lid to an upper end portion of a bottomed cylindrical iron storage member. The driving element 2 is disposed at a lower portion thereof, and a compression element 3 driven by the driving element 2 is disposed at a lower portion thereof.

上記駆動要素2は、密閉容器1の内壁に固定されたステータ4と、このステータ4の内側に配設されたロータ6とから電動モータが構成されており、ロータ6の中心軸部には回転軸5の上端部が軸着されている。この駆動要素2のステータ4の外周部と密閉容器1との間には上下の空間部を連通する隙間10が複数箇所に形成されている。尚、図示は省略したが、前記密閉容器1における鉄製被覆部材には取付部材を介して端子が装着され、この端子とステータ4とが内部リード線で接続される。そして、端子には外部電源からの外部リード線が接続されて、ステータ4に通電するように構成される。   The drive element 2 includes an electric motor including a stator 4 fixed to the inner wall of the hermetic container 1 and a rotor 6 disposed inside the stator 4. The upper end portion of the shaft 5 is attached to the shaft. Between the outer peripheral part of the stator 4 of the drive element 2 and the sealed container 1, a plurality of gaps 10 communicating the upper and lower spaces are formed at a plurality of locations. Although not shown, a terminal is attached to the iron covering member of the sealed container 1 via an attachment member, and the terminal and the stator 4 are connected by an internal lead wire. Then, an external lead wire from an external power source is connected to the terminal so that the stator 4 is energized.

上記圧縮要素3は、密閉容器1の内壁に固定された支持部材7と、この支持部材7の下にボルト(図略)により取り付けられたシリンダ8と、このシリンダ8内に配置された圧縮部材9(本実施形態では、スワッシュ部材と称する)と、支持部材7に対して上下動可能に装着されたベーン11と、シリンダ8の切欠部8b(図3)の側面に取り付けられた吐出バルブ12等から構成されている。又、支持部材7の上面中央部は同心円柱状に上方に突出して回転軸5の主軸受け部13が形成され、下面中央部は同心円柱状に下方へ突出して突出部14が形成されており、その下面14aは平滑面になっている。   The compression element 3 includes a support member 7 fixed to the inner wall of the sealed container 1, a cylinder 8 attached by bolts (not shown) below the support member 7, and a compression member disposed in the cylinder 8. 9 (referred to as a swash member in the present embodiment), a vane 11 attached to the support member 7 so as to be movable up and down, and a discharge valve 12 attached to the side surface of the notch 8b (FIG. 3) of the cylinder 8. Etc. Further, the central portion of the upper surface of the support member 7 protrudes upward in a concentric cylindrical shape to form a main bearing portion 13 of the rotating shaft 5, and the central portion of the lower surface protrudes downward in a concentric cylindrical shape to form a protruding portion 14. The lower surface 14a is a smooth surface.

上記支持部材7にはベーンスロット16が設けられ、このベーンスロット16内に前記ベーン11が上下動可能に装着されている。このベーンスロット16の上部にはベーン11に密閉容器1内の高圧を背圧として印加するための背圧孔15が形成されると共に、ベーンスロット16の中央部にはバネ装着孔17が設けられ、ベーン11を下方に常時付勢するためのコイルバネ18が装着されている。   The support member 7 is provided with a vane slot 16, and the vane 11 is mounted in the vane slot 16 so as to be movable up and down. A back pressure hole 15 for applying a high pressure in the sealed container 1 as a back pressure to the vane 11 is formed in the upper portion of the vane slot 16, and a spring mounting hole 17 is provided in the center of the vane slot 16. A coil spring 18 for constantly biasing the vane 11 downward is mounted.

前記シリンダ8の中央部は下方に凹陥しており、この凹陥部19内に圧縮空間20が構成されている。又、シリンダ8の凹陥部19の底面中央部には回転軸5を支持する副軸受け部21が開口状態にて形成されている。尚、図6に示すように、シリンダ8の中央部に上面から下面に貫通する空所を設け、シリンダ8の下面にカバー板部材27を取り付けて上記圧縮空間20を構成し、且つカバー板部材27の中央部に副軸受け部となる軸孔27aを設けて回転軸5の下端部を回転自在に軸支するように構成してもよい。   A central portion of the cylinder 8 is recessed downward, and a compression space 20 is formed in the recessed portion 19. A sub-bearing portion 21 that supports the rotating shaft 5 is formed in an open state at the center of the bottom surface of the recessed portion 19 of the cylinder 8. As shown in FIG. 6, a space penetrating from the upper surface to the lower surface is provided in the central portion of the cylinder 8, the cover plate member 27 is attached to the lower surface of the cylinder 8 to constitute the compression space 20, and the cover plate member A shaft hole 27a serving as a sub-bearing portion may be provided in the central portion of 27 so that the lower end portion of the rotating shaft 5 is rotatably supported.

図1に示すように、前記支持部材7の内部には管接続口7aと、この管接続口7aに連通する通路7b及び吸入口7cが設けられ、吸入口7cの端部は前記圧縮空間20に開口している。又、密閉容器1に取り付けた吸込配管22の端部が支持部材7の管接続口7aに挿入固定されている。これにより、吸込配管22から供給される冷媒ガスは、支持部材7の通路7bを通って吸入口7cから圧縮空間20内に吸い込まれる。   As shown in FIG. 1, a pipe connection port 7 a and a passage 7 b and a suction port 7 c communicating with the pipe connection port 7 a are provided inside the support member 7, and the end of the suction port 7 c is connected to the compression space 20. Is open. Further, the end portion of the suction pipe 22 attached to the sealed container 1 is inserted and fixed to the pipe connection port 7 a of the support member 7. Thereby, the refrigerant gas supplied from the suction pipe 22 is sucked into the compression space 20 from the suction port 7 c through the passage 7 b of the support member 7.

図3に示すように、支持部材7における突出部14の下端縁部には、突出部14の下面14a側から外周面側に抜ける吐出口7dが設けられ、この吐出口7dの下面側は前記圧縮空間20に開口し、吐出口7dの外周面側はシリンダ8の内部に設けられた通路8aに連通している。図1のように、シリンダ8の通路8aは前記切欠部8bに開口している。そして、シリンダ8の切欠部8bの側面には前記吐出バルブ12が取り付けられており、この吐出バルブ12によって通路8aが開閉される。これにより、圧縮空間20内で圧縮された高圧冷媒ガスは、支持部材7の吐出口7cからシリンダ8の通路8aを通り、吐出バルブ12を介してマフラ23内に吐出される。   As shown in FIG. 3, the lower end edge of the protrusion 14 in the support member 7 is provided with a discharge port 7d that passes from the lower surface 14a side of the protrusion 14 to the outer peripheral surface side. It opens into the compression space 20, and the outer peripheral surface side of the discharge port 7 d communicates with a passage 8 a provided inside the cylinder 8. As shown in FIG. 1, the passage 8a of the cylinder 8 opens into the notch 8b. The discharge valve 12 is attached to the side surface of the notch 8 b of the cylinder 8, and the passage 8 a is opened and closed by the discharge valve 12. Thereby, the high-pressure refrigerant gas compressed in the compression space 20 passes through the passage 8 a of the cylinder 8 from the discharge port 7 c of the support member 7 and is discharged into the muffler 23 through the discharge valve 12.

上記マフラ23は圧縮要素3の側部に設けられており、図4に示すようにシリンダ8の切欠部8bに対応させて支持部材7に切欠部7eを設け、シリンダ8の底面に仕切板24を取り付けることにより、シリンダ8の切欠部8bと、支持部材7の切欠部7eと、仕切板24と、密閉容器1の側壁とで囲まれた空間により構成されている(図1参照)。そして、支持部材7に出口7fを設けることで、マフラ23内の空間と密閉容器1内の空間とを連通させてある。又、支持部材7の出口7fは、前記駆動要素2のステータ4とロータ6との僅かな隙間Sの下方位置に近接させて設けてある。これにより、前記吐出バルブ12を介してマフラ23内に吐出される高圧冷媒ガスは、このマフラ23により消音されると共に支持部材7の出口7fから密閉容器1内に吐出され、大部分はステータ4とロータ6との僅かな隙間Sを通って密閉容器1内の上部領域に流入することになる。   The muffler 23 is provided on the side of the compression element 3. As shown in FIG. 4, the support member 7 is provided with a notch 7 e corresponding to the notch 8 b of the cylinder 8, and the partition plate 24 is provided on the bottom surface of the cylinder 8. Is formed by a space surrounded by the notch 8b of the cylinder 8, the notch 7e of the support member 7, the partition plate 24, and the side wall of the sealed container 1 (see FIG. 1). Then, by providing the support member 7 with an outlet 7f, the space in the muffler 23 and the space in the sealed container 1 are communicated with each other. Further, the outlet 7f of the support member 7 is provided close to a position below the slight gap S between the stator 4 and the rotor 6 of the drive element 2. Thus, the high-pressure refrigerant gas discharged into the muffler 23 through the discharge valve 12 is silenced by the muffler 23 and discharged into the sealed container 1 from the outlet 7f of the support member 7, and most of the stator 4 Then, the air flows into the upper region in the sealed container 1 through a slight gap S between the rotor 6 and the rotor 6.

前記ベーン11は略矩形の板状に形成されており、図3に示すように圧縮空間20に開口している支持部材7の吸入口7cと吐出口7dとの中間に位置しており、このベーン11によって圧縮空間20内が低圧室と高圧室とに区分されている。   The vane 11 is formed in a substantially rectangular plate shape, and is located in the middle of the suction port 7c and the discharge port 7d of the support member 7 opening in the compression space 20, as shown in FIG. The compression space 20 is divided into a low pressure chamber and a high pressure chamber by the vane 11.

前記回転軸5の下部にはスワッシュ部材9が一体に設けられ、このスワッシュ部材9は、全体形状としては回転軸5と同心軸の略円柱状を呈している。図5(a)、(b)はスワッシュ部材9を含む回転軸5の側面図をそれぞれ示しており、一側の肉厚部9aとこれに対向する他側の肉薄部9bとを有し、円周方向に沿う上面9cは肉厚部9aにて高く、肉薄部9bにて低い連続する傾斜面に形成されている。即ち、スワッシュ部材9の上面9cは、回転軸5を中心として円周方向に一周すると最も高くなる上死点Pから最も低くなる下死点Qを経て上死点Pに戻る略正弦波形状を呈している。又、回転軸5を通る上面9cの断面形状は、回転軸5を中心として360度何れの角度の切断面においても前記支持部材7における突出部14の下面14aと平行であり、この上面9cと突出部14の下面14aとの間が前記圧縮空間20となる。   A swash member 9 is integrally provided at a lower portion of the rotating shaft 5, and the swash member 9 has a substantially cylindrical shape concentric with the rotating shaft 5 as an overall shape. 5 (a) and 5 (b) respectively show side views of the rotating shaft 5 including the swash member 9, and it has a thick part 9a on one side and a thin part 9b on the other side opposite thereto. The upper surface 9c along the circumferential direction is formed as a continuous inclined surface that is high at the thick portion 9a and low at the thin portion 9b. That is, the upper surface 9c of the swash member 9 has a substantially sine wave shape that returns from the highest dead center P to the highest dead center Q through the lowest dead center Q when it goes around the rotation axis 5 in the circumferential direction. Presents. The cross-sectional shape of the upper surface 9c passing through the rotating shaft 5 is parallel to the lower surface 14a of the protruding portion 14 of the support member 7 at any angle of 360 degrees with respect to the rotating shaft 5, and the upper surface 9c The space between the lower surface 14 a of the protruding portion 14 is the compression space 20.

上記スワッシュ部材9の上死点Pが支持部材7の突出部14の下面14aに微少なクリアラスを介して移動自在に対向する。このクリアランスは密閉容器1内に封入されたオイルによってシールされる。又、前記ベーン11は下端が先鋭の矢型に形成されて、板幅方向に沿って直線状の稜線となっており、その直線状の稜線がスワッシュ部材9の上面9cに常時当接している。前記コイルバネ18はベーン11を常時下向きに押圧することで、ベーン11の下端がスワッシュ部材9の上面9cから離れないように保持し、且つベーン11が支持部材7のベーンスロット16に沿って円滑に上下動するのを制御する作用をなす。   The top dead center P of the swash member 9 faces the lower surface 14a of the protruding portion 14 of the support member 7 so as to be movable through a minute clear lath. This clearance is sealed by the oil enclosed in the sealed container 1. Further, the vane 11 is formed in an arrow shape having a sharp lower end, and has a linear ridge line along the plate width direction, and the linear ridge line is always in contact with the upper surface 9c of the swash member 9. . The coil spring 18 always presses the vane 11 downward to hold the lower end of the vane 11 so as not to be separated from the upper surface 9c of the swash member 9, and the vane 11 smoothly moves along the vane slot 16 of the support member 7. Acts to control vertical movement.

又、図2のように、スワッシュ部材9の外周面はシリンダ8における凹陥部19の内壁面との間に微少なクリアランスを形成し、スワッシュ部材9が回転自在とされている。このクリアランスも、密閉容器1内に封入されたオイルによってシールされる。冷媒ガスのリークを防止するためである。   Further, as shown in FIG. 2, a slight clearance is formed between the outer peripheral surface of the swash member 9 and the inner wall surface of the recessed portion 19 in the cylinder 8 so that the swash member 9 is rotatable. This clearance is also sealed by the oil enclosed in the sealed container 1. This is to prevent leakage of the refrigerant gas.

前記密閉容器1の上端には、図1及び図2に示すように吐出配管25が取り付けられており、前記密閉容器1内の上部領域に溜まる高圧冷媒ガスを外部に吐出する。この吐出配管25から吐出された高圧冷媒ガスは、図示を省略した冷媒回路に供給され、この冷媒回路を循環して低圧となった冷媒ガスは、前記吸込配管22から圧縮機に戻される。   As shown in FIGS. 1 and 2, a discharge pipe 25 is attached to the upper end of the sealed container 1, and discharges high-pressure refrigerant gas accumulated in the upper region in the sealed container 1 to the outside. The high-pressure refrigerant gas discharged from the discharge pipe 25 is supplied to a refrigerant circuit (not shown), and the refrigerant gas circulated through the refrigerant circuit and having a low pressure is returned from the suction pipe 22 to the compressor.

尚、密閉容器1の内底部にはオイル溜め26が構成され、このオイル溜め26内のオイルが回転軸5を介して圧縮要素3の所要部位に供給される。更に、密閉容器1内には例えば二酸化炭素、R134a、或はHC系の冷媒ガスが所定量封入される。   An oil reservoir 26 is formed at the inner bottom of the sealed container 1, and the oil in the oil reservoir 26 is supplied to a required portion of the compression element 3 via the rotary shaft 5. Furthermore, a predetermined amount of, for example, carbon dioxide, R134a, or HC refrigerant gas is sealed in the sealed container 1.

以上のように構成された本発明に係る圧縮機の動作に付いて説明する。この圧縮機は、駆動要素2のステータ4のコイルに通電するとロータ6が回転する。このロータ6の回転は、回転軸5を介してスワッシュ部材9に伝達され、これによりスワッシュ部材9はシリンダ8内において回転軸5と同心軸回転する。そして、スワッシュ部材9の上面9cの上死点Pがベーン11を境にして吐出側にある時、ベーン11を境にして吸入口7c側でシリンダ8、支持部材7、スワッシュ部材9及びベーン11で囲まれた空間(低圧室)内に吸込配管22、支持部材7の通路7b及び吸入口7cを介して冷媒ガスが吸い込まれる。   The operation of the compressor according to the present invention configured as described above will be described. In this compressor, when the coil of the stator 4 of the drive element 2 is energized, the rotor 6 rotates. The rotation of the rotor 6 is transmitted to the swash member 9 through the rotating shaft 5, whereby the swash member 9 rotates concentrically with the rotating shaft 5 in the cylinder 8. When the top dead center P of the upper surface 9c of the swash member 9 is on the discharge side with the vane 11 as a boundary, the cylinder 8, the support member 7, the swash member 9 and the vane 11 on the suction port 7c side with the vane 11 as a boundary. The refrigerant gas is sucked into the space (low pressure chamber) surrounded by the suction pipe 22, the passage 7b of the support member 7 and the suction port 7c.

この状態からスワッシュ部材9が回転していくと、上死点Pがベーン11、吸入口7cを過ぎた段階からスワッシュ部材9の上面9cの傾斜により低圧室の体積は狭められていき、高圧室内の冷媒ガスは圧縮されていく。これにより、上死点Pが支持部材7の吐出口7dを通過するまで高圧室内の高圧冷媒ガスは吐出口7dから吐出される。そして、上死点Pが支持部材7の吸入口7cを通過すると、低圧室の体積は拡大していくので吸入口7cから冷媒ガスが低圧室内に吸い込まれていく。   When the swash member 9 rotates from this state, the volume of the low pressure chamber is reduced by the inclination of the upper surface 9c of the swash member 9 from the stage where the top dead center P passes the vane 11 and the suction port 7c, and the high pressure chamber is reduced. The refrigerant gas is compressed. Thus, the high-pressure refrigerant gas in the high-pressure chamber is discharged from the discharge port 7d until the top dead center P passes through the discharge port 7d of the support member 7. When the top dead center P passes through the suction port 7c of the support member 7, the volume of the low-pressure chamber increases, so that the refrigerant gas is sucked into the low-pressure chamber from the suction port 7c.

高圧室から支持部材7の吐出口7dに吐出された高圧冷媒ガスは、前記のようにシリンダ8の通路8aを通り吐出バルブ12を開いてマフラ23内に吐出され、ここで消音されて支持部材7の出口7fから密閉容器1内に吐出される。密閉容器1内に吐出された高圧冷媒ガスは駆動要素2の隙間Sを通過して密閉容器1内の上部領域に至り、ここでオイルと分離され、吐出配管25から吐出されて冷媒回路に供給される。一方、高圧冷媒ガスから分離されたオイルは、密閉容器1とステータ4との間に形成されている前記隙間10から流下し、前記オイル溜め26に戻る。   The high-pressure refrigerant gas discharged from the high-pressure chamber to the discharge port 7d of the support member 7 passes through the passage 8a of the cylinder 8 and opens the discharge valve 12, and is discharged into the muffler 23. 7 is discharged into the sealed container 1 from the outlet 7f. The high-pressure refrigerant gas discharged into the sealed container 1 passes through the gap S of the driving element 2 and reaches the upper region in the sealed container 1, where it is separated from the oil, discharged from the discharge pipe 25, and supplied to the refrigerant circuit. Is done. On the other hand, the oil separated from the high-pressure refrigerant gas flows down from the gap 10 formed between the sealed container 1 and the stator 4 and returns to the oil reservoir 26.

前記のようにマフラ23の出口7fは駆動要素2の僅かな隙間Sの下方位置に近接して設けられているため、その出口7fから吐出される高圧冷媒ガスの大部分は隙間S内に流入する。高圧冷媒ガスの一部は前記隙間10内に流入するが、この隙間10は前記のようにオイルの戻り流路となっているため高圧冷媒ガスに対する流路抵抗が大きくなっており、高圧冷媒ガスが通過し難い。これに対して、上記隙間Sは高圧冷媒ガスに対する流路抵抗が小さいため、大部分の高圧冷媒ガスが通過する。これにより、吐出配管25から吐出する高圧冷媒ガス量を密閉容器1の上部領域に十分確保することができ、圧縮機としての性能を向上させることが可能となる。   As described above, since the outlet 7f of the muffler 23 is provided close to the position below the slight gap S of the drive element 2, most of the high-pressure refrigerant gas discharged from the outlet 7f flows into the gap S. To do. A part of the high-pressure refrigerant gas flows into the gap 10, and the gap 10 is an oil return flow path as described above, and therefore the flow path resistance against the high-pressure refrigerant gas is increased. Is difficult to pass. On the other hand, most of the high-pressure refrigerant gas passes through the gap S because the flow path resistance to the high-pressure refrigerant gas is small. As a result, a sufficient amount of the high-pressure refrigerant gas discharged from the discharge pipe 25 can be secured in the upper region of the sealed container 1, and the performance as a compressor can be improved.

本発明に係る圧縮機は、小型で構造が簡単でありながら十分な圧縮機能を発揮することが可能である。前記のようにスワッシュ部材9は連続する肉厚部9aと肉薄部9bを有して、その上面9cが略正弦波形状を呈して傾斜しているので、シリンダ8の高圧室に対応することになる肉厚部9aにおいて圧縮空間20の内壁面との間のシール寸法を十分に確保することができる。これにより、スワッシュ部材9とシリンダ8間における冷媒ガスリークの発生を効果的に防止できるようになり、圧縮効率の高い運転が可能となる。又、スワッシュ部材9はフライホイールの役割を果たすので、トルク変動も少なくなる。   The compressor according to the present invention can exhibit a sufficient compression function while being small in size and simple in structure. As described above, the swash member 9 has the continuous thick portion 9a and the thin portion 9b, and its upper surface 9c is inclined in a substantially sinusoidal shape, so that it corresponds to the high pressure chamber of the cylinder 8. In the thick portion 9a, the seal dimension between the inner wall surface of the compression space 20 can be sufficiently ensured. Thereby, generation | occurrence | production of the refrigerant | coolant gas leak between the swash member 9 and the cylinder 8 can be prevented now effectively, and the driving | operation with high compression efficiency is attained. Further, since the swash member 9 serves as a flywheel, torque fluctuation is reduced.

上記実施形態で、シリンダ8が回転軸5の副軸受け部21を有している場合には、回転軸5の副軸受け用支持部材を別途設ける必要がなくなり、部品点数の削減と更なる小型化が可能となる。又、支持部材7にベーン11を装着するためのベーンスロット16とバネ装着孔17を設けたので、高い加工精度が必要となるシリンダ8にベーン装着機構を設ける必要がなくなり、加工性が改善される。更に、上記実施形態のごとくスワッシュ部材9を回転軸5に一体に形成すれば、スワッシュ部材9を回転軸5に取り付けるための部材が不要となり、更なる部品点数の削減が可能となる。   In the above embodiment, when the cylinder 8 has the sub-bearing portion 21 of the rotating shaft 5, it is not necessary to separately provide a supporting member for the sub-bearing of the rotating shaft 5, reducing the number of parts and further downsizing. Is possible. Further, since the vane slot 16 and the spring mounting hole 17 for mounting the vane 11 on the support member 7 are provided, there is no need to provide a vane mounting mechanism in the cylinder 8 that requires high processing accuracy, and the workability is improved. The Furthermore, if the swash member 9 is formed integrally with the rotating shaft 5 as in the above embodiment, a member for attaching the swash member 9 to the rotating shaft 5 becomes unnecessary, and the number of parts can be further reduced.

尚、上記実施形態では、冷凍機の冷媒回路に組み込んで使用する圧縮機について説明したが、これに限定されずに例えば空気を吸い込んで圧縮するエアーコンプレッサ等にも本発明を有効に適用することができる。   In the above embodiment, the compressor used by being incorporated in the refrigerant circuit of the refrigerator has been described. However, the present invention is not limited to this, and the present invention is effectively applied to, for example, an air compressor that sucks and compresses air. Can do.

本発明は、特に冷媒ガスを圧縮して冷凍機等の冷媒回路に供給するための圧縮機として最適に利用することができる。   Especially this invention can be optimally utilized as a compressor for compressing refrigerant gas and supplying it to refrigerant circuits, such as a refrigerator.

本発明に係る圧縮機の実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の実施形態におけるベーンの箇所を通る概略縦断面図である。It is a schematic longitudinal cross-sectional view which passes along the location of the vane in embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の実施形態における概略横断面図である。It is a schematic cross-sectional view in the embodiment of the compressor concerning the present invention. 本発明に係る圧縮機の実施形態における駆動要素と圧縮要素との結合状態を示す斜視図である。It is a perspective view which shows the combined state of the drive element and compression element in embodiment of the compressor which concerns on this invention. (a)、(b)はいずれも本発明に係る圧縮機の実施形態におけるスワッシュ部材を含む回転軸の側面図である。(A), (b) is a side view of the rotating shaft containing the swash member in embodiment of the compressor based on this invention. 本発明に係る圧縮機の他の実施形態における一部の概略縦断面図である。It is a one part schematic longitudinal cross-sectional view in other embodiment of the compressor based on this invention.

1 密閉容器
2 駆動要素
3 圧縮要素
4 ステータ
5 回転軸
6 ロータ
7 支持部材
7e 切欠部
7f 出口
8 シリンダ
8a 通路
8b 切欠部
9 スワッシュ部材(圧縮部材)
10 隙間
11 ベーン
12 吐出バルブ
13 主軸受け部
13b スリット状切欠部
14 突出部
15 背圧孔
16 ベーンスロット
17 バネ装着孔
18 コイルバネ
19 凹陥部
20 圧縮空間
21 副軸受け部
22 吸込配管
23 マフラ
24 仕切板
25 吐出配管
26 オイル溜め
27 カバー板部材
S 駆動要素の僅かな隙間
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Drive element 3 Compression element 4 Stator 5 Rotating shaft 6 Rotor 7 Support member 7e Notch part 7f Outlet 8 Cylinder 8a Passage 8b Notch part 9 Swash member (compression member)
DESCRIPTION OF SYMBOLS 10 Clearance 11 Vane 12 Discharge valve 13 Main bearing part 13b Slit-like notch part 14 Protrusion part 15 Back pressure hole 16 Vane slot 17 Spring mounting hole 18 Coil spring 19 Depression part 20 Compression space 21 Sub bearing part 22 Suction piping 23 Muffler 24 Partition plate 25 Discharge pipe 26 Oil sump 27 Cover plate member S Slight gap between drive elements

Claims (1)

密閉容器(1)内に駆動要素(2)と、この駆動要素(2)により駆動される圧縮要素(3)とが配置され、
前記圧縮要素(3)は
前記密閉容器(1)に固定され前記駆動要素(2)のロータ(6)に固定した回転軸(5)を貫通させて軸支する支持部材(7)と、
この支持部材(7)に固定されて圧縮空間(20)を形成するシリンダ(8)と、
前記回転軸(5)に同軸心に固定されて前記シリンダ(8)の圧縮空間内を回転し一面が前記回転軸(5)を中心として一周すると最も高くなる上死点(P)から最も低くなる下死点(Q)を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材(9)と、
前記支持部材(7)に設けられたベーンスロット(16)にバネ(18)を介して装着され先端が前記圧縮部材(9)の傾斜面に常時接触して前記圧縮空間(20)内を低圧室と高圧室とに区分するベーン(11)と
を備え、
前記低圧室に吸入した冷媒ガスを前記圧縮部材(9)により圧縮して前記高圧室から吐出する圧縮機であって、
前記圧縮要素(3)の側部に、シリンダ(8)の側部に設けた切欠部(8b)と、このシリンダ(8)の上に位置する支持部材(7)の側部に前記切欠部(8b)に対応させて設けた切欠部(7e)と、前記シリンダ(8)の底面に取り付けた仕切板(24)と、前記密閉容器(1)の側壁と、前記支持部材(7)の天井板とで囲まれた空間により構成され、前記高圧室から吐出される前記冷媒ガスを消音するためのマフラ(23)を設けるとともに、
前記マフラ(23)を構成する空間内に前記冷媒ガスとともに流入するオイルが、前記空間から排出される出口(7f)を前記支持部材(7)の天井にのみ設け、
前記密閉容器(1)の上部領域で、冷媒ガスと分離されたオイルが流下する隙間(10)を前記密閉容器(1)とこれに対向するステータ(4)との間に有するとともに、
前記駆動要素(2)のステータ(4)とロータ(6)との間に僅かな隙間(S)を設け、
マフラ(23)の出口(7f)、前記僅かな隙間(S)の下方位置の前記支持部材(7)において、前記隙間(10)に対するよりも前記僅かな隙間(S)に対する方が近接した状態となるように設け
前記駆動要素(2)の隙間(S)を介する流路の方が、前記オイルの戻り流路である隙間(10)よりも、密閉容器(1)内の上部領域に導く際の高圧冷媒ガスに対する流路抵抗が低くなっている、
ことを特徴とする圧縮機。
A drive element (2) and a compression element (3) driven by this drive element (2) are arranged in the sealed container (1),
It said compression element (3) is,
A support member (7) that is fixed to the hermetic container (1) and pivotally supported by a rotary shaft (5) fixed to the rotor (6) of the drive element (2);
A cylinder (8) fixed to the support member (7) to form a compression space (20);
It is fixed to the rotating shaft (5) coaxially and rotates in the compression space of the cylinder (8). When one surface makes a round around the rotating shaft (5), it is lowest from the top dead center (P). A compression member (9) formed on a substantially sinusoidal inclined surface that returns to the top dead center via the bottom dead center (Q),
A vane slot (16) provided in the support member (7) is attached via a spring (18), and the tip always contacts the inclined surface of the compression member (9) to reduce the pressure in the compression space (20). A vane (11) that is divided into a chamber and a high-pressure chamber,
A compressor that compresses the refrigerant gas sucked into the low-pressure chamber by the compression member (9) and discharges the refrigerant gas from the high-pressure chamber;
On the side of the compression element (3), there is a notch (8b) provided on the side of the cylinder (8), and on the side of the support member (7) located above the cylinder (8), the notch (8b) corresponding to the notch (7e), the partition plate (24) attached to the bottom surface of the cylinder (8), the side wall of the sealed container (1), and the support member (7) is constituted by a space surrounded by the top plate, provided with a muffler (23) for muting the refrigerant gas discharged from the high pressure chamber,
Provided only at the ceiling of the support member (7) is an outlet (7f) through which oil flowing into the space constituting the muffler (23) together with the refrigerant gas is discharged from the space;
In the upper region of the closed container (1), there is a gap (10) between the closed container (1) and the stator (4) facing the gap (10) through which the oil separated from the refrigerant gas flows, and
A slight gap (S) is provided between the stator (4) and the rotor (6) of the drive element (2),
The outlet of the muffler (23) (7f), in said supporting member (7) of the lower position of the small gap (S), who for the slight gap (S) than to the gap (10) is close Provided to be in a state ,
The high-pressure refrigerant gas when the flow path through the gap (S) of the drive element (2) is led to the upper region in the sealed container (1) rather than the gap (10) that is the return flow path of the oil. The flow path resistance against is low,
A compressor characterized by that.
JP2004289183A 2004-09-30 2004-09-30 Compressor Expired - Fee Related JP4573613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289183A JP4573613B2 (en) 2004-09-30 2004-09-30 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289183A JP4573613B2 (en) 2004-09-30 2004-09-30 Compressor

Publications (2)

Publication Number Publication Date
JP2006104949A JP2006104949A (en) 2006-04-20
JP4573613B2 true JP4573613B2 (en) 2010-11-04

Family

ID=36374992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289183A Expired - Fee Related JP4573613B2 (en) 2004-09-30 2004-09-30 Compressor

Country Status (1)

Country Link
JP (1) JP4573613B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101528644B1 (en) * 2008-07-22 2015-06-16 엘지전자 주식회사 compressor
CN109209876B (en) * 2018-08-17 2019-11-22 珠海格力电器股份有限公司 Pump assembly, casting mould and rotary compressor
JP2020143624A (en) * 2019-03-06 2020-09-10 株式会社豊田自動織機 Compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219010U (en) * 1975-07-30 1977-02-10
JPS6065393U (en) * 1983-10-11 1985-05-09 ダイキン工業株式会社 Multi-vane compressor
JPS6357888A (en) * 1986-08-29 1988-03-12 Toshiba Corp Closed type compressor
JPH0331599A (en) * 1989-06-28 1991-02-12 Matsushita Refrig Co Ltd Compressor
WO2003048576A1 (en) * 2001-12-03 2003-06-12 Lg Electronics Inc. Discharging part structure for compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219010U (en) * 1975-07-30 1977-02-10
JPS6065393U (en) * 1983-10-11 1985-05-09 ダイキン工業株式会社 Multi-vane compressor
JPS6357888A (en) * 1986-08-29 1988-03-12 Toshiba Corp Closed type compressor
JPH0331599A (en) * 1989-06-28 1991-02-12 Matsushita Refrig Co Ltd Compressor
WO2003048576A1 (en) * 2001-12-03 2003-06-12 Lg Electronics Inc. Discharging part structure for compressor

Also Published As

Publication number Publication date
JP2006104949A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US20070243093A1 (en) Compressor
JP4454318B2 (en) Compressor
JP4573613B2 (en) Compressor
KR101459150B1 (en) Low pressure type rotary compressor
JP4573614B2 (en) Compressor
JP6607971B2 (en) Manufacturing method of rotary compressor
JP2021080906A (en) Rotary compressor
JP3742849B2 (en) Rotary compressor
JP4663293B2 (en) Compressor
JP4024605B2 (en) Scroll compressor with valve structure
JPH11182469A (en) Scroll compressor
JP2006104948A (en) Compressor
KR20240074140A (en) Rotary compressor with flat muffler
JP2006104947A (en) Compressor
KR200315066Y1 (en) Rotary compressor
JP2006125365A (en) Compressor
JP2006132347A (en) Compressor
KR20240176123A (en) Rotary compressor
KR100645819B1 (en) Discharge port selection method of swing vane compressor
JP2009150304A (en) Hermetic compressor
KR20210027061A (en) Scroll compressor
KR20040040712A (en) Hermetic rotary compressor
JP2006132348A (en) Compressor
JP2012013025A (en) Scroll compressor
JP2006132346A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees