[go: up one dir, main page]

JP4569701B2 - ガス濃度検出装置 - Google Patents

ガス濃度検出装置 Download PDF

Info

Publication number
JP4569701B2
JP4569701B2 JP2009002173A JP2009002173A JP4569701B2 JP 4569701 B2 JP4569701 B2 JP 4569701B2 JP 2009002173 A JP2009002173 A JP 2009002173A JP 2009002173 A JP2009002173 A JP 2009002173A JP 4569701 B2 JP4569701 B2 JP 4569701B2
Authority
JP
Japan
Prior art keywords
detection
voltage
gas concentration
current
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009002173A
Other languages
English (en)
Other versions
JP2009069167A (ja
Inventor
友生 川瀬
英一 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009002173A priority Critical patent/JP4569701B2/ja
Publication of JP2009069167A publication Critical patent/JP2009069167A/ja
Application granted granted Critical
Publication of JP4569701B2 publication Critical patent/JP4569701B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、車載エンジンの排ガス等を被検出ガスとし、同ガス中の特定成分のガス濃度を検出するガス濃度検出装置に関するものである。
この種のガス濃度検出装置は、例えば、車載エンジンより排出される排ガスを被検出ガスとして同ガス中の酸素濃度(空燃比:A/F)を検出する空燃比検出装置として具体化されている。この空燃比の検出結果はエンジンECU等により構成される空燃比制御システムに用いられ、空燃比をストイキ(理論空燃比)近傍でフィードバック制御するストイキ燃焼制御や、同空燃比を所定のリーン領域でフィードバック制御するリーン燃焼制御等が実現されるようになっている。また近年では、排ガス規制や異常検出規制(OBD)が益々強化されつつあり、ストイキ制御等の制御性向上が望まれる他、空燃比制御範囲に相当するリーン領域だけでなく大気状態にまで空燃比検出範囲を拡張させる必要が生じている。例えば、OBD対応(排ガス規制に関わる部品の排ガスが悪化する故障検出)として、エンジンの所定運転状態での燃焼カット時(排ガスが大気相当)にセンサの目詰まり等の劣化(センサのガス電流低下)を検出する必要がある。また、排ガスエミッションの改善と共に、燃費の向上を図ることも重要であり、エンジン高負荷時のリッチ状態をフィードバック制御することも重要になってきている。
更に、排気系にNOx吸蔵還元型触媒を実装したリーン燃焼エンジンでは、リーン燃焼に伴い同触媒に多量のNOxが吸蔵され、次第にNOx吸蔵能力が低下する。これに加え、燃料中には硫黄が含まれていることから、NOx吸蔵還元型触媒が硫黄被毒される。そのため、触媒のNOx吸蔵能力の回復や硫黄被毒再生を図るべく、リッチ領域でのリッチ空燃比制御が実施されるようになっている。これらの実情から、上記空燃比制御システムでは、空燃比検出範囲を拡張して広域の空燃比検出を可能とし、更に同範囲内における空燃比の検出精度を高めることが強く要望されている。
空燃比を検出するための、いわゆるA/Fセンサ(酸素濃度センサ)としては従来より、コップ型構造を有するA/Fセンサと積層型構造を有するA/Fセンサとが知られている。それらのセンサ構造を簡単に説明すれば、コップ型A/Fセンサでは、固体電解質が断面U字状をなすコップ型に成形され、その固体電解質の内外表面に一対の電極が設置されると共に外側に拡散層が設けられてセンサ素子が構成されている。また、固体電解質の中空部には棒状のヒータが配設されており、このヒータの発熱によりセンサ素子全体が加熱され活性状態に保持される構成となっている。なお、固体電解質の中空部は大気ダクトを構成する。
他方、積層型A/Fセンサでは、固体電解質及び拡散層が細長い板状に成形されており、更に大気ダクトを形成する絶縁層を含め、これらが各々積層されてセンサ素子が構成されている。固体電解質には一対の電極が対向配置され、絶縁層にはヒータが埋設されている。
上述したコップ型A/Fセンサと積層型A/Fセンサとを構造面から比較すると、コップ型A/Fセンサでは、活性化のために加熱されるセンサ素子の体積(マス)が比較的大きくなる。そのため、冷間始動時において活性完了までに要する時間が長くなり、早期活性化が困難になるという問題や、素子の活性化に要するヒータ消費電力が大きくなるという問題が生じる。これに対し、積層型A/Fセンサでは、センサ素子にヒータが一体化できることや、センサ素子の体積が縮小化できること等から早期活性化が実現できる。また、ヒータの消費電力が削減できるという利点も得られるようになる。こうした理由などから、センサ構造の改善が図られる中でコップ型A/Fセンサから積層型A/Fセンサへの移行が進みつつある。
積層型A/Fセンサの場合、素子全体の小型化が実現されることに伴い大気ダクトの容積も小さくなる。この場合、大気ダクトの小型化に伴い、センサ素子に流れる電流(素子電流)を小さくする必要が生じる。つまり、排ガスがリッチの時には、大気ダクト側から排ガス側に酸素がくみ出されるが、その際素子電流が大きいとそれだけ酸素の移動量が大きくなり大気ダクトの大型化が強いられる。故に、小型化の実現のためには素子電流を小さくする必要がある。具体的には、電極を小さくしたり、拡散層の律速を大きくしたりして(例えば同拡散層の気孔率を小さくする)、素子電流を小さくすることが考えられる。
次に、A/Fセンサによる電流検出のための回路構成について説明する。図16は、従来のセンサ制御回路を示す電気的構成図である。
図16において、センサ素子150の正側端子(+端子)にはオペアンプ151及び電流検出抵抗152を介して基準電圧電源153が接続され、同センサ素子150の負側端子(−端子)にはオペアンプ154を介して印加電圧制御回路155が接続されている。この場合、電流検出抵抗152の一端のA点は基準電圧Vfと同じ電圧に保持される。素子電流は電流検出抵抗152を介して流れ、素子電流に応じてB点電圧が変化する。例えばリーンの場合、センサ素子150の+端子から同−端子に電流が流れるためB点電圧が上昇し、リッチの場合、センサ素子150の−端子から+端子に電流が流れるためB点電圧が低下する。印加電圧制御回路155はB点電圧に応じてセンサ素子150への印加電圧(すなわちD点電圧)を制御する。また、B点電圧は、A/F出力としてオペアンプ156を介して図示しないマイクロコンピュータ等へ出力される。
一方で、センサ素子150を所定の活性状態に保つには、当該素子の交流インピーダンスZacを目標値に保持する必要があり、インピーダンスZacの検出値と目標値との偏差に応じてヒータの通電が制御される。この場合、印加電圧制御回路155によりD点電圧を交流的に変化させ、その際のD点電圧変化量ΔVと、B点電圧変化量を電流検出抵抗152の抵抗値で割った電流変化量ΔIとによりインピーダンスZacを検出するようにしている(Zac=ΔV/ΔI)。
ここで、上述したコップ型A/Fセンサと積層型A/Fセンサとについて、上記図16の回路構成を参照しつつ各々のセンサ特性と空燃比の検出分解能の違いとを説明する。なお、A/Fセンサの空燃比検出範囲はA/F=11(以下、A/F11と記す)から大気状態までとしている。
先ずコップ型A/Fセンサについて、具体的な数値条件は以下の通りである。すなわち、「大気時の素子電流:25mA、A/F11時の素子電流:−13mA、交流インピーダンスZac:22Ω、直流内部抵抗Ri:30Ω、Zac検出時の電圧変化:±0.3V、電流検出抵抗:63Ω、基準電圧:2.5V」としている。かかる場合、ストイキ状態では、B点電圧はA点電圧と同じ2.5Vとなる。また、オペアンプ156を介して出力されるA/F出力(B点電圧)は、大気時、A/F11時においてそれぞれ以下の数値を示す。
出力(大気)=2.5V+63Ω×25mA=4.075V
出力(A/F11)=2.5V+63Ω×(−13mA)=1.681V
A/F出力は、マイクロコンピュータ等において通常10〜12bitのA/D変換器を介して取り込まれ、例えば10bitA/Dを用いた場合のA/F11〜大気の検出分解能を計算すると次のようになる。
(4.075−1.681)/5V×1024=490
また、ストイキ近傍の1A/F相当の電流変化が2mAであれば、その検出分解能は次のようになる。
2mA×63Ω/5V×1024=25
また、インピーダンス検出時にはD点電圧が正負両側に所定幅で変化されるが、大気時、A/F11時には、D点電圧の正側変化に伴いB点電圧がそれぞれ以下の数値を示す。
B点電圧=4.075V+63Ω×(0.3V/22Ω)=4.934V
B点電圧=1.681V+63Ω×(0.3V/22Ω)=2.54V
これに対し、D点電圧の負側変化に際してはB点電圧が負側に変化し、そのB点電圧の最小値は以下のようになる(A/F11時が最小)。
B点電圧=1.681V+63Ω×(−0.3V/22Ω)=0.822V
上記の各数値によれば、インピーダンス検出時にD点電圧を正負両側に変化させてもその際のB点電圧がA/D変換器の作動電圧範囲内(0〜5V)に収まる。要するに、適正なるインピーダンス検出が実施できるよう設計がなされていることが分かる。
一方、積層型A/Fセンサの場合は、前述の通り素子電流の低減が図られており、素子電流がコップ型A/Fセンサの約1/10になっている。その具体的な数値条件は以下の通りである。すなわち、「大気時の素子電流:2.5mA、A/F11時の素子電流:−1.3mA、交流インピーダンスZac:28Ω、直流内部抵抗Ri:60Ω、Zac検出時の電圧変化:±0.3V、電流検出抵抗:185Ω、基準電圧:2.5V」としている。かかる場合、ストイキ状態では、B点電圧はA点電圧と同じ2.5Vとなる。また、オペアンプ156を介して出力されるA/F出力(B点電圧)は、大気時、A/F11時においてそれぞれ以下の数値を示す。
出力(大気)=2.5V+185Ω×2.5mA=2.9625V
出力(A/F11)=2.5V+185Ω×(−1.3mA)=2.2595V
この積層型A/Fセンサにおいても、インピーダンス検出時にB点電圧、D点電圧が正常に計測され、適正なるインピーダンス検出が実施できるよう設計がなされている。因みに、インピーダンス検出時のB点、D点の各電圧値を上記コップ型A/Fセンサと同様に計算すると、D点電圧を0.3Vの幅で正側変化させる際、
大気状態ではB点電圧=4.9446V、
A/F11ではB点電圧=4.2416V
となる。また、D点電圧を0.3Vの幅で負側変化させる際、B点電圧の最小値=0.277Vとなる(A/F11時が最小)。
積層型A/Fセンサにおいて、例えば10bitA/Dを用いた場合のA/F11〜大気の検出分解能を計算すると次のようになる。
(2.9625−2.2595)/5V×1024=144
従って、コップ型A/Fセンサに比べて約0.3倍(144/490=0.294)の分解能しか無い。
また、ストイキ近傍の1A/F相当の電流変化が0.2mAであれば、その検出分解能は次のようになる。
0.2mA×185Ω/5V×1024=7
これもコップ型A/Fセンサに比べて約0.3倍(7/25=0.28)の分解能しか無い。
ここで、コップ型A/Fセンサに比べて積層型A/Fセンサの検出精度が低下する理由を以下に説明する。
前述の通り積層型A/Fセンサでは、素子電流がコップ型A/Fセンサの約1/10まで低減されることから、空燃比検出範囲をA/F11〜大気とした場合、この空燃比検出範囲に対応する素子電流範囲は、コップ型A/Fセンサでは38mA(−13〜25mA)となり、積層型A/Fセンサでは3.8mA(−1.3〜2.5mA)となる。また、インピーダンス検出時における交流電流は、コップ型A/Fセンサでは13.6mA(=0.3V/22Ω)となり、積層型A/Fセンサでは10.7mA(=0.3V/28Ω)となる。この場合、A/F検出時の素子電流に対するインピーダンス検出電流の比率は、コップ型A/Fセンサでは35.8%(13.6mA/38mA=0.358)となるのに対し、積層型A/Fセンサでは281.6%(10.7mA/3.8mA=2.816)となる。
つまり、積層型A/Fセンサでは、A/F検出時の素子電流に対するインピーダンス検出電流の比率が格段に大きくなっている。その結果、素子電流を検出する電流検出抵抗の抵抗値が相対的に小さくなってしまい、A/Fの検出分解能が低下するという問題が生じる。
因みに、積層型A/Fセンサについてセンサ素子の直流内部抵抗(交流インピーダンスも同様)を大きくすれば、インピーダンス検出電流が小さくなり、A/F検出時の素子電流に対するインピーダンス検出電流の比率が小さくなるが、センサ素子の直流内部抵抗を大きくするとセンサ特性(図3の特性参照)が変わり、印加電圧制御が望み通りに行えなくなる等の問題が生ずる。故に、現実にはセンサ素子の直流内部抵抗はほぼ一定にしておくのが望ましい。
ところで、広域な空燃比検出範囲が要求される前提でその検出精度を向上させるための従来技術として、特許文献1(特開平11−37971号公報)のガス濃度検出装置が提案されている。図17には、上記特許文献1にかかるセンサ制御回路の構成を示す。
前記図16との相違点のみを説明すると、図17では、電流検出抵抗として2つの抵抗161,162が直列に接続され、図のB点、C点の何れかがスイッチ163を介して選択的にオペアンプ156に接続されるようになっている。この場合、その都度のA/F値に応じてスイッチ163が切り換えられる。具体的には、例えば大気時にはスイッチ163がC点側に切り換えられ、抵抗161により素子電流が計測されてその計測結果がオペアンプ156を介して出力される。また、ストイキ時にはスイッチ163がB点側に切り換えられ、抵抗161及び抵抗162により素子電流が計測されてその計測結果がオペアンプ156を介して出力される。
上記構成により、広域な空燃比検出範囲で検出精度が確保され、特にストイキ近傍の検出精度が向上するものとなっていた。
しかしながら、図17の構成であっても、積層型A/Fセンサを用いる場合に素子電流が小さくなると、やはりA/F検出時の素子電流に対するインピーダンス検出電流の比率が格段に大きくなる。故に、A/Fの検出分解能が低下するという問題が生じる。従って、素子電流が小さくなる場合における検出精度の低下の問題は未だ残る懸案事項であった。
特開平11−37971号公報
本発明は上記事情に鑑みてなされたものであり、その目的とするところは、所望とするガス濃度検出範囲においてガス濃度の検出精度を向上させることができるガス濃度検出装置を提供することである。
本発明のガス濃度検出装置では前提として、センサ素子への電圧印加時に当該素子に流れる電流が電流検出抵抗により計測され、該計測された信号がA/D変換器にてA/D変換される。また、A/D変換後の前記信号に基づいてガス濃度演算が実施される。そして特に請求項1に記載の発明では、ガス濃度の全検出範囲内に複数の検出範囲が設定されており、電流検出抵抗により計測された信号が、少なくとも1つの検出範囲では所定の増幅率を有する増幅器にて増幅された後、A/D変換器に対して出力される。また、他の検出範囲では増幅器を介さずにA/D変換器に対して出力される。
要するに、ガス濃度が同じ場合であっても、計測された信号が増幅されることでA/D変換器に入力される信号レベルが正側又は負側に拡張される。そのため、ガス濃度の検出分解能を上げることができる。また、複数の検出範囲のうち何れかの検出範囲に対応して増幅器が設けられており、個別の検出範囲に最適な増幅処理を行わせることができる。その結果、所望とするガス濃度検出範囲においてその検出精度を向上させることができるようになる。
上記請求項1のガス濃度検出装置には、素子抵抗の検出手段が併せ設けられている。すなわち、前記センサ素子の印加電圧又は電流を交流的に変化させ、その時の電流又は電圧の変化量を前記電流検出抵抗により計測してセンサ素子の抵抗値を検出するようにしている。
本発明は、素子電流が比較的小さいガス濃度センサを用いる場合に特に有益なものであり、例えば積層型構造のガス濃度センサを用いる場合に望ましい効果が得られる。具体的には、前記センサ素子は、ガス濃度検出時の素子電流に対して素子抵抗検出時における電流変化が大きいものであるとしている。つまり、素子電流が小さければ、前記電流検出抵抗を素子抵抗検出用としても兼用する場合等において、ガス濃度検出時の素子電流に対して素子抵抗検出時における電流変化が大きくなるといった電流アンバランスが生じる。本発明によれば、電流のアンバランスが生じても高精度なガス濃度検出が可能となる。
また、請求項1に記載の発明では、前記電流検出抵抗の第1端子に固定の基準電圧を印加しておき、センサ素子の印加電圧又は電流を交流的に変化させた時に電流検出抵抗の第2端子の電圧値を計測して素子抵抗値を検出することとしている。そして、前記増幅器と電流検出抵抗の第2端子との間に、その両者間を開放又は閉鎖するためのスイッチ手段を設けている。つまり、素子抵抗値の検出に際し、センサ素子の印加電圧又は電流を交流的に変化させると、それが原因で増幅器の出力である信号が不用意に変化し、ガス濃度検出に悪影響が及ぶおそれがある。これに対し、上述の通り増幅器と電流検出抵抗の第2端子との間にスイッチ手段を設けることにより、ガス濃度検出に対する悪影響が排除できる。
請求項2に記載の発明では、前記複数の検出範囲として比較的広い第1検出範囲と比較的狭い第2検出範囲とが設定されている。そして、第1検出範囲に対応する広範囲出力が増幅器を介さずに出力され、第2検出範囲に対応する狭範囲出力が増幅器を介して出力される。この場合、特に第2検出範囲においてガス濃度の検出精度(検出分解能)を向上させることができる。
請求項3に記載の発明では、前記複数の検出範囲としてガス濃度の全検出範囲とその一部である特定範囲とが設定されている。そして、全検出範囲に対応する広範囲出力が増幅器を介さずに出力され、特定範囲に対応する狭範囲出力が増幅器を介して出力される。この場合、特に特定範囲においてガス濃度の検出精度(検出分解能)を向上させることができる。
また、請求項4に記載の発明では、前記センサ素子は、板状の固体電解質と、それに積層された拡散層及び絶縁層と、酸素基準室とを有する積層型素子であるとしている。この積層型のセンサ素子では、酸素基準室(或いは大気ダクト)を設置するためのスペース上の制約が大きく、酸素基準室として確保できる体積が小さくなるために必然的に素子電流が小さくなるが、やはり電流のアンバランスが生じても高精度なガス濃度検出が可能となる。
本発明のガス濃度センサは、請求項5に記載したように、燃焼ガスの空燃比を広域に検出可能なセンサ素子を有するものであると良い。具体的には、例えばリッチ〜大気状態の広域で空燃比を検出可能とする。この場合、所望とする空燃比検出範囲にて空燃比の検出精度を向上させることができる。
上記請求項3は特定範囲においてガス濃度の検出精度(検出分解能)を向上させるものであるが、この場合、請求項6に記載したように、前記特定範囲は、理論空燃比(ストイキ)を含む範囲に設定されると良い。これにより、ストイキ及びその近傍の空燃比の検出精度が向上し、ひいては高精度なストイキ制御が実現できる。
また、請求項7に記載の発明では、前記センサ素子は、被検出ガス中の酸素を出し入れするポンプセルと、同被検出ガスの酸素濃度に応じた信号を出力する酸素検知セルとを積層してなる積層型素子であり、酸素検知セルの出力信号が所定値になるようにポンプセルを制御するようにしている。かかる構成のセンサ素子であっても、やはり素子電流の低電流化により電流アンバランスの事態が生じ得るが、かかる状況にあっても高精度なガス濃度検出が可能となる。
上記請求項7の場合、請求項8に記載したように、前記酸素検知セルの内部抵抗を電圧に変換する構成を有するものとしたり、請求項9に記載したように、前記ガス濃度センサは、燃焼ガスの空燃比を広域に検出可能な空燃比センサとしたりしても良い。なお、空燃比センサとしては、例えばリッチ〜大気状態の広域で空燃比を検出可能とするものとし、所望とする空燃比検出範囲にて空燃比の検出精度を向上させるようにする。
その他に、ガス濃度センサは、請求項10に記載したように、固体電解質にて形成された複数のセルを有し、そのうち第1セルでは被検出ガス中の酸素を排出又はくみ出し、第2セルでは酸素排出後のガスから特定成分のガス濃度を検出するものであると良い。このガス濃度センサは、例えば排ガス中のNOx濃度を検出するNOxセンサとして具体化されるものであり、本発明の適用によりNOx濃度の検出精度が向上する。
また、請求項11に記載の発明では、前記増幅器の正負各入力端子に前記電流検出抵抗の両端子の電圧をそれぞれ入力する構成を有し、該増幅器の帰還電流経路には帰還電流吸収のためのオペアンプを設置している。つまり、増幅器の帰還電流経路に帰還電流が流れると、それが原因で電流検出抵抗により計測される信号が不用意に変化し、ガス濃度検出に悪影響が及ぶおそれがある。これに対し、上述の通り帰還電流吸収のためのオペアンプを設けることにより、ガス濃度検出に対する悪影響が排除できる。
またより望ましくは、請求項12に記載したように、前記増幅器と前記スイッチ手段との間に、当該スイッチ手段の開放時(OFF時)にその直前の電圧レベルを保持するためのコンデンサを接続すると良い。これにより、素子抵抗値の検出時にあっても適正なガス濃度出力(実際にはスイッチ開放直前の信号)が得られるようになる。
上記の通り大小異なる増幅率を有する増幅器を用いセンサ信号を検出範囲毎に増幅処理する場合、増幅率の大きい増幅器ではその出力がA/D変換器の作動電圧範囲を越え、A/D変換器のラッチアップが懸念される。この場合、A/D変換器の保護を図るには、増幅器の出力(すなわちA/D入力)をA/D変換器の最大作動電圧付近で制限するのが望ましい。そこで、請求項13に記載の発明では、前記増幅器の出力部に、前記増幅器の出力を前記A/D変換器の最大作動電圧付近で制限するクランプ回路が設けられている。これにより、A/D変換器の保護を図ることができる。
前記クランプ回路として具体的には、請求項14に記載したように、前記増幅器の出力経路から前記A/D変換器の最大作動電圧相当の定電圧源に対して順方向に接続されたダイオードを有すると良い。この場合、定電圧源(A/D変換器の最大作動電圧相当)に対してダイオードの電圧低下分だけ加算した電圧値で増幅器の出力が制限される。
又は、請求項15に記載したように、前記クランプ回路は、エミッタ端子が前記増幅器の出力経路に接続されると共にベース端子が基準電圧源に接続されたpnp型トランジスタを有し、当該トランジスタのベース入力電圧を、前記A/D変換器の最大作動電圧相当の定電圧源からベース−エミッタ間の電圧降下分だけ減算した電圧値とすると良い。この場合、トランジスタのベース入力電圧が、定電圧源(A/D変換器の最大作動電圧相当)からベース−エミッタ間の電圧降下分だけ減算した電圧値であれば、エミッタ端子の電圧値はA/D変換器の最大作動電圧相当の電圧値になり、増幅器の出力が当該最大作動電圧相当の電圧値付近で制限される。
発明の実施の形態における空燃比検出装置を示す構成図である。 A/Fセンサの構成を示す断面図である。 A/Fセンサの出力特性を示す図である。 素子電流とA/F値との関係を示す図である。 別のセンサ制御回路の構成を示す回路図である。 別のセンサ制御回路の構成を示す回路図である。 第2の実施の形態におけるセンサ制御回路の構成を示す回路図である。 第3の実施の形態におけるセンサ制御回路の構成を示す回路図である。 第4の実施の形態におけるセンサ制御回路の構成を示す回路図である。 別のセンサ制御回路の構成を示す回路図ある。 別のセンサ制御回路の構成を示す回路図ある。 別のA/Fセンサの構成を示す断面図である。 センサ制御回路の構成を示す回路図ある。 センサ制御回路の構成を示す回路図ある。 別のA/Fセンサの構成を示す断面図である。 従来技術におけるセンサ制御回路の構成を示す回路図ある。 従来技術におけるセンサ制御回路の構成を示す回路図ある。
(第1の実施の形態)
以下、本発明のガス濃度検出装置を具体化した第1の実施の形態を図面に従って説明する。本実施の形態では、車載エンジンより排出される排ガス(燃焼ガス)を被検出ガスとして同ガス中の酸素濃度(空燃比:A/F)を検出する空燃比検出装置を具体化しており、空燃比の検出結果はエンジンECU等により構成される空燃比制御システムに用いられる。空燃比制御システムでは、空燃比をストイキ近傍でフィードバック制御するストイキ燃焼制御や、同空燃比を所定のリーン領域でフィードバック制御するリーン燃焼制御等が適宜実現される。また本実施の形態では、近年又は将来の排ガス規制や異常検出規制(OBD)に対応する広域の空燃比検出や、排気系に設置されたNOx吸蔵還元型触媒の吸蔵NOx放出、硫黄被毒再生等の制御を実施すべく、リッチ域(例えばA/F11)から大気状態までの広い範囲で空燃比を検出可能としている。
先ずはじめに、A/Fセンサの構成を図2を用いて説明する。本A/Fセンサは積層型構造のセンサ素子10を有し、図2にはセンサ素子10の断面構成を示す。実際には当該センサ素子10は図2の紙面直交方向に延びる長尺状をなし、素子全体がハウジングや素子カバー内に収容される構成となっている。
センサ素子10は、固体電解質11、拡散抵抗層12、遮蔽層13及び絶縁層14を有し、これらが図の上下に積層されて構成されている。同素子の周囲には図示しない保護層が設けられている。長方形板状の固体電解質11は部分安定化ジルコニア製のシートであり、その固体電解質11を挟んで上下一対の電極15,16が対向配置されている。拡散抵抗層12は電極15へ排ガスを導入するための多孔質シートからなり、遮蔽層13は排ガスの透過を抑制するための緻密層からなる。これら各層12,13は何れも、アルミナ、スピネル、ジルコニア等のセラミックスをシート成形法等により成形したものであるが、ポロシティの平均孔径及び気孔率の違いによりガス透過率が相違するものとなっている。
絶縁層14はアルミナ等の高熱伝導性セラミックスからなり、電極16に対面する部位には大気ダクト17が形成されている。また、同絶縁層14にはヒータ18が埋設されている。ヒータ18は、バッテリ電源からの通電により発熱する線状の発熱体よりなり、その発熱により素子全体を加熱する。
上記センサ素子10において、その周囲の排ガスは拡散抵抗層12の側方部位から導入されて電極15に達する。排ガスがリーンの場合、排ガス中の酸素が電極15で分解され、電極16より大気ダクト17に排出される。また、排ガスがリッチの場合、逆に大気ダクト17内の酸素が電極16で分解され、電極15より排気側に排出される。
図3は、A/Fセンサの電圧−電流特性(V−I特性)を示す図面である。図3において、V軸(横軸)に平行な直線部分はセンサ素子10の素子電流(限界電流)を特定する限界電流域であって、この素子電流の増減は空燃比の増減(すなわち、リーン・リッチの程度)に対応している。つまり、空燃比がリーン側になるほど素子電流は増大し、空燃比がリッチ側になるほど素子電流は減少する。なお、図中のLX1は、センサ素子10への印加電圧を決定するための印加電圧直線(印加電圧特性)を表しており、その傾きは概ね抵抗支配域(限界電流域よりも低電圧側の傾き部分)に一致している。
特に本実施の形態では、A/F11〜大気の広域を空燃比検出範囲としており、A/F11では素子電流が−1.3mA、大気状態では素子電流が2.5mAとなっている。これらの数値は、コップ型構造のA/Fセンサと比較してほぼ1/10である。
また、図4は、横軸をA/F、縦軸を素子電流Iとした時の両者の関係を示す図面である。同図によれば、A/Fがリーン側に移行するほど単位A/F相当の電流変化(図示の特性の傾き)が小さくなるのが分かる。なお、ストイキ(A/F=14.5)近傍では1A/F相当の電流変化が0.2mAであり、これもコップ型構造のA/Fセンサと比較してほぼ1/10となっている。
次に、本発明の主要部たるセンサ制御系の構成を図1を参照しながら説明する。そのセンサ制御系にはマイクロコンピュータ(以下、マイコンと略す)20とセンサ制御回路30とが設けられ、これらによりA/Fセンサ(センサ素子10)の検出結果に基づきA/Fの検出やセンサ素子10のインピーダンス(素子インピーダンスZac)の検出が実施される。
図1において、マイコン20は、CPU、各種メモリ、A/D変換器、I/Oポート等を備える周知の論理演算回路にて構成されており、後述するセンサ制御回路30により検出した電流信号(アナログ信号)をA/D変換器を介して取り込み、A/F値の演算や素子インピーダンスZacの演算を適宜実施する。なお、A/D変換器は例えば10bit分解能を有するものであり、その作動電圧範囲は0〜5Vである。同マイコン20により演算されたA/F値は、例えば図示しないエンジンECUに出力され、空燃比フィードバック制御等に使用される。
また、センサ制御回路30において、センサ素子10の正側端子(+端子)にはオペアンプ31及び電流検出抵抗32を介して基準電圧電源33が接続され、同センサ素子10の負側端子(−端子)にはオペアンプ34を介して印加電圧制御回路35が接続されている。この場合、電流検出抵抗32の一端のA点(第1端子)は基準電圧Vfと同じ電圧に保持される。素子電流は電流検出抵抗32を介して流れ、素子電流に応じてB点(第2端子)の電圧が変化する。例えば排ガスがリーンの場合、センサ素子10の+端子から同−端子に電流が流れるためB点電圧が上昇し、リッチの場合、センサ素子10の−端子から同+端子に電流が流れるためB点電圧が低下する。印加電圧制御回路35では、B点電圧をモニタすると共にその電圧値に応じてセンサ素子10に印加すべき電圧を決定(例えば、図3の印加電圧直線LX1に基づき決定)し、オペアンプ34を介してD点電圧を制御する。但し、ストイキ近傍のみでA/F検出を行う場合、印加電圧固定とすることも可能である。
また、電流検出抵抗32の両端のA点及びB点には、増幅器を構成するオペアンプ(差動増幅器)36,37がそれぞれ接続されており、これらオペアンプ36,37の出力OP1,OP2がマイコン20のA/D0,A/D1に入力される。オペアンプ36,37は並列な関係を有し、オペアンプ36の増幅率は5倍、オペアンプ37の増幅率は15倍となっている。なお、オペアンプ36,37はバッテリ駆動される。上記オペアンプ36,37の出力OP1,OP2(センサ素子10の電流信号)はA/F検出のためのA/F検出信号であり、マイコン20は、取り込んだ各A/D値に基づきA/F値を演算する。つまり本実施の形態では、センサ制御回路30からマイコン20に対して2系統のA/F検出信号が出力される構成となっている。
ここで、オペアンプ36は「第1増幅器」に相当し、該オペアンプ36の出力OP1により空燃比の全検出範囲(例えばA/F11〜大気)についてA/F検出が可能となるよう構成されている。また、オペアンプ37は「第2増幅器」に相当し、該オペアンプ37の出力OP2により空燃比の全検出範囲のうちストイキを含む特定範囲(例えばA/F12〜A/F22)についてA/F検出が可能となる構成されている。以下の説明では、出力OP1を広範囲検出信号、出力OP2をストイキ検出信号とも言う。なお、前者が「広範囲出力」に相当し、後者が「狭範囲出力」に相当する。但しその検証については後述する。
一方、マイコン20は、センサ素子10への印加電圧を一時的に交流的に変化させる旨指令し、その際の電流変化量に基づき素子インピーダンスZacを検出する構成となっている。より具体的には、インピーダンス検出に際し、印加電圧制御回路35がマイコン20からの指令を受け、センサ素子10への印加電圧(図のD点電圧)を所定幅(例えば0.3V)で正負両側に変化させる。このとき、マイコン20は、D点の電圧変化をA/D3を通じて入力する。また、D点の電圧変化に伴いその都度の素子インピーダンスに応じてB点電圧が変化し、マイコン20は、B点の電圧変化をA/D2を通じて入力する。かかる場合、マイコン20は、D点電圧(A/D3入力)の変化量ΔVと、B点電圧(A/D2入力)の変化量を電流検出抵抗32の抵抗値で割った電流変化量ΔIとから素子インピーダンスZacを演算する(Zac=ΔV/ΔI)。なお、インピーダンス検出に際し、センサ素子10に流す電流を交流的に変化させ、その際の電流又は電圧の変化量から素子インピーダンスZacを演算する構成とすることも可能である。
インピーダンス検出は所定の周期で(すなわち所定時間毎に)実施され、その実施のタイミングがマイコン20から印加電圧制御回路35に対して指令される。また、マイコン20は、素子インピーダンスZacが所定の目標値に保持されるようヒータ18への通電を制御する。これにより、センサ素子10が所定の活性状態に保持されるようになる。
次に、上記構成のセンサ制御回路30についてA/Fの検出分解能を検証する。A/Fセンサの空燃比検出範囲はA/F11〜大気であり、センサ素子10及びセンサ制御回路30の具体的な数値条件は以下の通りである。すなわち、「大気時の素子電流:2.5mA、A/F11時の素子電流:−1.3mA、A/F12時の素子電流:−0.79mA、A/F22時の素子電流:0.884mA、交流インピーダンスZac:28Ω、Zac検出時の電圧変化:±0.3V、電流検出抵抗:185Ω、基準電圧:2.5V」としている。なお、オペアンプ36,37は単電源で作動し、5Vクランプされているため0〜5V以外は出力しない構成となっている。
かかる場合、オペアンプ36はA/F11〜大気を検出範囲とするものであり、その出力OP1は、大気時、A/F11時においてそれぞれ以下の数値を示す。
OP1=2.5V+185Ω×2.5mA×5倍=4.8125V
OP1=2.5V+185Ω×(−1.3mA)×5倍=1.2975V
一方、オペアンプ37はA/F12〜A/F22を検出範囲とするものであり、その出力OP2は、A/F22時、A/F11時においてそれぞれ以下の数値を示す。
OP2=2.5V+185Ω×0.884mA×15倍=4.9531V
OP2=2.5V+185Ω×(−0.79mA)×15倍=0.30775V
以上から、オペアンプ36の出力OP1は、A/F11〜大気の空燃比検出範囲でA/D変換器(図1のA/D0)の作動電圧範囲内(0〜5V)に収まり、広範囲の空燃比検出範囲において適正なる信号出力が実現できる。また、オペアンプ37の出力OP2は、A/F11〜A/F22の空燃比検出範囲でA/D変換器(図1のA/D1)の作動電圧範囲内(0〜5V)に収まり、ストイキを中心とする特定の空燃比検出範囲において適正なる信号出力が実現できる。
以上の数値条件の下、10bitA/Dを用いた場合のA/F11〜大気の検出分解能を計算すると次のようになる。
(4.8125−1.2975)/5V×1024=720
この場合、従来技術(図16の回路構成)と比較して5倍の分解能(720/144=5)が得られることとなる。
また、ストイキ近傍の1A/F相当の電流変化が0.2mAであれば、その検出分解能は次のようになる。
0.2mA×185Ω×15倍/5V×1024=114
この場合、1LSB当たり0.009A/Fとなり、ストイキ近傍の高精度制御の要求(例えば、0.01A/F以下の分解能)を満足することができる。
因みに、上述の通りインピーダンス検出時には、図1のB点電圧の変化量とD点電圧の変化量とから素子インピーダンスZacが演算されるが、その際にも各点の電圧がA/D変換器(図1のA/D2,A/D3)の作動電圧範囲内(0〜5V)に収まるよう設計がなされている。つまり、大気でのインピーダンス検出時、A/F11でのインピーダンス検出時には、D点電圧の正側変化に伴いB点電圧がそれぞれ以下の数値を示し、それはA/D変換器の最大作動電圧以下となっている。
B点電圧=2.9625V+185Ω×(0.3V/28Ω)=4.9446V
B点電圧=2.2595V+185Ω×(0.3V/28Ω)=4.2416V
これに対し、D点電圧の負側変化に伴いB点電圧が負側に変化し、そのB点電圧の最小値は以下の数値を示す(A/F11時が最小)。
B点電圧=2.2595V+185Ω×(−0.3V/28Ω)=0.2774V
上記の各数値によれば、インピーダンス検出時にD点電圧を正負両側に変化させてもその際のB点電圧がA/D変換器の作動電圧範囲内(0〜5V)に収まり、適正なるインピーダンス検出が実施できることが分かる。
以上詳述した本実施の形態によれば、以下に示す効果が得られる。
電流検出抵抗32により計測された電流信号が、複数の検出範囲毎に設けられ且つ各自に所定の増幅率を有するオペアンプ36,37にて増幅された後、マイコン20(A/D変換器)に対して出力されるので、同じ空燃比を検出する場合であっても、A/D変換器に入力される信号レベルが正側又は負側に拡張され、空燃比の検出分解能を上げることができる。また、空燃比の検出範囲毎にオペアンプ36,37が設けられるため、個別の検出範囲に最適な増幅処理を行わせることができる。その結果、所望とする広域の空燃比検出範囲(高リーン、高リッチを含む範囲)においてその検出精度を向上させることができるようになる。このとき、個別の検出範囲について精度の差別化を任意に図ることもできる。
本実施の形態の空燃比検出装置は、積層型A/Fセンサを用いる場合に特に有益となる。つまり、積層型構造のセンサ素子10は、A/F検出時の素子電流に対してインピーダンス検出時における電流変化が大きいため、電流のアンバランスを生じるが、かかる場合であっても上述の通り所望とする空燃比検出範囲においてその検出精度を向上させることができるようになる。
また、空燃比の全検出範囲(A/F11〜大気)の一部である特定範囲(A/F12〜A/F22)に関して、オペアンプ37の増幅率を大きくしたため、特に特定範囲において空燃比の検出精度(検出分解能)を向上させることができる。すなわち、特定範囲はストイキを含む範囲に設定されるため、ストイキ及びその近傍の空燃比の検出精度が向上し、ひいては高精度なストイキ制御が実現できる。
上記の如く増幅率15倍のオペアンプ37を用いる場合、その出力OP2は、大気時、A/F11時のそれぞれにおいて、
OP2=2.5V+185Ω×2.5mA×15倍=9.4375V
OP2=2.5V+185Ω×(−1.3mA)×15倍=−1.1075Vとなり、A/D変換器の作動電圧範囲である0〜5Vの範囲を超えてしまう。また、車載バッテリ(単電源)での回路動作では負の電圧を出力できない。しかしながら、上記の通りA/F検出信号を2系統で出力する構成としたことから、一方のオペアンプ37の出力OP2で検出不可能となる空燃比検出範囲については他方のオペアンプ36の出力OP1で検出し、結果として所望とする全検出範囲についてA/F検出が実現できる。
上記図1の構成を図5,図6の如く変更することも可能である。なお図5,図6にはセンサ制御回路30の構成を一部変更した回路構成を示すが、便宜上図1と重複するマイコン20やB点電圧、D点電圧のA/D取り込みに関する構成などを省略している(以下同様)。
要するに、上記図1の構成では、オペアンプ36,37において電流検出抵抗32の両端のA点,B点の電圧差を増幅したが、図5の構成では、同オペアンプ36,37において基準電圧VfとB点電圧との電圧差を増幅する。つまり、A点電圧は基準電圧Vfと同一であるため、基準電圧Vfをオペアンプ38を介して各オペアンプ36,37に入力する構成とする。
上記図1の構成では、オペアンプ36,37の帰還がA点になるためにオペアンプ36,37の帰還電流が電流検出抵抗32に流れ、空燃比検出に誤差が生じるおそれがあるが、図5の構成では、オペアンプ36,37の帰還電流経路に帰還電流吸収のためのオペアンプ38が設置されており、空燃比検出に対する悪影響が排除できる。すなわち、空燃比検出精度が維持できる。なお、一般的に基準電圧Vfは2つの抵抗の分圧で生成される場合が多く、オペアンプ36,37からの帰還電流が流れて基準電圧Vfの変化が生じてしまうため、このVf変化を防止するにはオペアンプ38が必要となるが、基準電圧Vfがシンク/ソースできる場合にはオペアンプ38は必要無い。
また、図6では、電流検出抵抗32のB点端子(第2端子)から各オペアンプ36,37への経路にスイッチ手段としてのスイッチ39を配置し、インピーダンス検出時にスイッチ39をOFFする構成としている。つまり、インピーダンス検出に際し、センサ素子10への印加電圧を交流的に変化させると電流検出抵抗32に流れる電流が変化し、それが原因でオペアンプ36,37の出力である電流信号が不用意に変化して空燃比検出に悪影響が及ぶおそれがある。これに対し、上述の通りスイッチ39を設けることにより、空燃比検出に対する悪影響が排除できる。
この場合、図示の如くコンデンサ40を設け、スイッチ39のOFF時にその直前の電流信号レベル、すなわちインピーダンス検出直前の電流信号レベルを保持する構成としても良い。これにより、素子インピーダンスZacの検出時にあっても適正な空燃比出力(実際にはスイッチOFF直前の電流信号)が得られるようになる。
(第2の実施の形態)
本発明の第2の実施の形態について、上記第1の実施の形態との相違点を中心に以下に説明する。
上記図1の構成では、A/F検出信号を2系統で出力すべくオペアンプ36,37を並設したが、本実施の形態における図7の構成では、同じくA/F検出信号を2系統で出力するものの、オペアンプを一方の出力系統にのみ設ける。詳しくは、図7において、A/F検出信号を出力する2系統のうち、広範囲検出信号(前記図1のA/D0入力に相当)はオペアンプを介さずに出力するのに対し、ストイキ検出信号(前記図1のA/D1入力に相当)はオペアンプ41を介して出力する。オペアンプ41の増幅率は15倍である。
図7のセンサ制御回路30についてA/Fの検出分解能を検証する。A/Fセンサの空燃比検出範囲は第1の実施の形態と同様にA/F11〜大気であり、その他センサ素子10及びセンサ制御回路30の具体的な数値条件も第1の実施の形態と同様である(前述の条件参照)。
かかる場合、広範囲検出信号はB点電圧として出力され、当該B点電圧は、大気時、A/F11時にそれぞれ以下の数値を示す。
B点電圧=2.5V+185Ω×2.5mA=2.9625V
B点電圧=2.5V+185Ω×(−1.3mA)=2.2595V
一方、オペアンプ41はA/F12〜A/F22を検出範囲とするものであり、ストイキ検出信号(図のOP3)は、A/F22時、A/F11時においてそれぞれ以下の数値を示す。
OP3=2.5V+185Ω×0.884mA×15倍=4.9531V
OP3=2.5V+185Ω×(−0.79mA)×15倍=0.30775V
以上から、広範囲検出信号は、A/F11〜大気の空燃比検出範囲でA/D変換器(図1のA/D0)の作動電圧範囲内(0〜5V)に収まり、広範囲の空燃比検出範囲において適正なる信号出力が実現できる。また、ストイキ検出信号(オペアンプ41の出力)は、A/F11〜A/F22の空燃比検出範囲でA/D変換器(図1のA/D1)の作動電圧範囲内(0〜5V)に収まり、ストイキを中心とする特定の空燃比検出範囲において適正なる信号出力が実現できる。
上記の数値条件の下、10bitA/Dを用いた場合のA/F11〜大気の検出分解能を計算すると次のようになる。
(2.9625−2.2595)/5V×1024=144
また、ストイキ近傍の1A/F相当の電流変化が0.2mAであれば、その検出分解能は次のようになる。
0.2mA×185Ω×15倍/5V×1024=114
この場合、1LSB当たり0.009A/Fとなり、ストイキ近傍の高精度制御の要求(例えば、0.01A/F以下の分解能)を満足することができる。
本実施の形態の場合、広範囲検出信号については従来技術(図16の回路構成)と同等の検出精度になるものの、広域の空燃比検出は可能となる。また、この広範囲検出信号と分けて設けたストイキ検出信号については十分な検出精度が確保できる。
なお、インピーダンス検出に関しては、便宜上図示は省略しているが、既述の説明と同様に図7のB点電圧の変化量とD点電圧の変化量とから素子インピーダンスZacが演算される。その際、各点の電圧がA/D変換器(図1のA/D2,A/D3)の作動電圧範囲内(0〜5V)に収まるよう設計がなされており、適正なるインピーダンス検出が実施できることに変わりない。
上記図7のセンサ制御回路30においても、既述した第1の実施の形態における図5や図6の構成を採用することが可能である。つまり、図5の構成を採用し、オペアンプ41において基準電圧VfとB点電圧との電圧差を増幅する構成としたり、図6の構成を採用し、電流検出抵抗32のB点端子からA/F検出(広範囲検出、ストイキ検出)に至る経路の途中にスイッチとコンデンサとを配置し、インピーダンス検出時において電流検出抵抗32に流れる電流が変化する際、その電流変化が不用意に出力されるのを防止したりしても良い。
(第3の実施の形態)
本発明の第3の実施の形態について、上記第1の実施の形態との相違点を中心に以下に説明する。本実施の形態における図8の構成では、広範囲のA/F検出信号をオペアンプ42を介して1系統で出力する構成としている。オペアンプ42の増幅率は5倍である。
図8のセンサ制御回路30についてA/Fの検出分解能を検証する。A/Fセンサの空燃比検出範囲は第1の実施の形態と同様にA/F11〜大気であり、その他センサ素子10及びセンサ制御回路30の具体的な数値条件も第1の実施の形態と同様である(前述の条件参照)。かかる場合、A/F検出信号(図のOP4)は、大気時、A/F11時にそれぞれ以下の数値を示す。
OP4=2.5V+185Ω×2.5mA×5倍=4.8125V
OP4=2.5V+185Ω×(−1.3mA)×5倍=1.2975V
上記の数値条件の下、10bitA/Dを用いた場合のA/F11〜大気の検出分解能を計算すると次のようになる。
(4.8125−1.2975)/5V×1024=720
この場合、従来技術(図16の回路構成)と比較して5倍の分解能(720/144=5)が得られることとなる。
また、ストイキ近傍の1A/F相当の電流変化が0.2mAであれば、その検出分解能は次のようになる。
0.2mA×185Ω×5倍/5V×1024=37
この場合、1LSB当たり0.03A/Fとなり、ストイキ近傍の制御制御が幾分低下するものの、従来技術(図16の回路構成)よりも検出分解能の向上が見込まれる。
本実施の形態によれば、空燃比の検出分解能を上げることができ、広域な空燃比検出範囲(A/F11〜大気の範囲)において適正なる信号出力が実現できる。
なお、インピーダンス検出に関しては、便宜上図示は省略しているが、既述の説明と同様に図8のB点電圧の変化量とD点電圧の変化量とから素子インピーダンスZacが演算される。その際、各点の電圧がA/D変換器(図1のA/D2,A/D3)の作動電圧範囲内(0〜5V)に収まるよう設計がなされており、適正なるインピーダンス検出が実施できることに変わりない。
上記図8のセンサ制御回路30においても、既述した第1の実施の形態における図5や図6の構成を採用することが可能である。つまり、図5の構成を採用し、オペアンプ42において基準電圧VfとB点電圧との電圧差を増幅する構成としたり、図6の構成を採用し、電流検出抵抗32のB点端子からオペアンプ42に至る経路の途中にスイッチとコンデンサとを配置し、インピーダンス検出時において電流検出抵抗32に流れる電流が変化する際、その電流変化が不用意に出力されるのを防止したりしても良い。
(第4の実施の形態)
上記第1〜第3の実施の形態では何れも、電流検出抵抗32をセンサ素子10の+端子側に設けると共に印加電圧制御回路35を同−端子側に設けた事例について説明したが、本実施の形態ではこれを逆にし、電流検出抵抗32をセンサ素子10の−端子側に設けると共に印加電圧制御回路35を同+端子側に設けた構成とする。図9には、上記図1の構成についての変形例を示す。図示及び詳細な説明は割愛するが、本実施の形態と同様の回路構成(センサ素子の+−を逆にした構成)は勿論図7や図8の構成にも適用できる。説明の便宜上、図9では各構成部品に同一符号を付している。
図9において、A/F検出時の印加電圧やインピーダンス検出時の交流電圧変化は、オペアンプ34を介してセンサ素子10の+端子に与えられる。排ガスがリーンの場合、電流検出抵抗32にはD→Eの向きに電流が流れ、E点電圧がD点電圧よりも低くなる。また、リッチの場合、逆にE→Dの向きに電流が流れ、E点電圧がD点電圧よりも高くなる。その結果、空燃比に対する電位論理は逆になり、オペアンプ36,37の帰還電流がE点に流れる。この場合、帰還電流がオペアンプ31で吸収されるため、電流検出抵抗32を流れる電流に影響が及ぶことはない。故に、図5や図6のように帰還電流吸収用のオペアンプ(図のオペアンプ38)を別途設ける必要がなく、回路が簡素化できることになる。
上記図9のセンサ制御回路30において、電流検出抵抗32のE点端子からオペアンプ36,37に至る経路の途中にスイッチとコンデンサとを配置し、インピーダンス検出時において電流検出抵抗32に流れる電流が変化する際、その電流変化が不用意に出力されるのを防止したりしても良い。
なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施してもよい。
上記図1や図7等の構成では、オペアンプを介してA/D変換器の作動電圧範囲を超える電圧(5V以上)が出力される場合が考えられる。具体的には、増幅率を15倍とするオペアンプ37,41では、その出力がA/D変換器の作動電圧範囲を越え、A/D変換器のラッチアップが懸念される。この場合、A/D変換器の保護を図るには、オペアンプの出力(すなわちA/D入力)をA/D変換器の最大作動電圧付近で制限するのが望ましい。そこで、A/D変換器の保護を図るべく、A/F検出信号の出力部に5Vクランプ回路を設置した構成を以下に説明する。
図10に示す構成では、オペアンプ36,37の出力部にそれぞれクランプ回路51,52が設けられている。クランプ回路51はダイオード51a,51b及び抵抗51cよりなり、クランプ回路52はダイオード52a,52b及び抵抗52cよりなる。より具体的には、クランプ回路51では、オペアンプ36の出力経路上のP点に、定電圧Vcc(5V)に対して順方向にダイオード51aが接続されており、ダイオード51aの電圧降下が0.7Vであるとすれば図のP点が最大「5V+0.7V」で保持される。なお、定電圧Vccは、A/D変換器の最大作動電圧相当の定電圧源に相当する。他方のクランプ回路52も同様である。故に、オペアンプ36,37の出力がA/D変換器の最大作動電圧付近で制限される。
また、図11に示す構成では、オペアンプ36,37の出力部にそれぞれクランプ回路53,54が設けられている。クランプ回路53はpnp型トランジスタ53a、ダイオード53b及び抵抗53c,53dよりなり、クランプ回路54はpnp型トランジスタ54a、ダイオード54b及び抵抗54c,54dよりなる。より具体的には、クランプ回路53では、トランジスタ53aのエミッタ端子がオペアンプ36の出力経路上のQ点に接続されると共に、同ベース端子が定電圧Vcc(5V)、ダイオード53b及び抵抗53cよりなる基準電圧源に接続されている。この場合、定電圧Vcc(5V)に対して逆方向にダイオード53bが接続されており、ダイオード53bの電圧降下が0.7Vであるとすればトランジスタ53aのベース入力電圧が4.3Vで保持される。また、トランジスタ53aのエミッタ−ベース間の電圧降下が0.7Vであるとすれば図のQ点がほぼ5Vで保持される。他方のクランプ回路54も同様である。故に、オペアンプ36,37の出力がA/D変換器の最大作動電圧付近で制限される。
上記実施の形態では、空燃比の全検出範囲(A/F11〜大気)と特定範囲(A/F12〜A/F22)との2つの検出範囲を設定し、それら各検出範囲について空燃比の検出精度を高める構成としたが、3つ以上の検出範囲を設定し各検出範囲について空燃比の検出精度を高めるようにすることも可能である。また、広義には上記の各範囲に限られず、比較的広い第1検出範囲と比較的狭い第2検出範囲とを設定しておき、増幅率mの第1増幅器により第1検出範囲に対応する広範囲出力を取得し、増幅率n(n>m)の第2増幅器により第2検出範囲に対応する狭範囲出力を取得する構成とすることも可能である。
その他、空燃比の全検出範囲を複数に縦割り区分して各々を複数の検出範囲として設定することも可能である。例えば、A/F11〜大気を全検出範囲とする場合において、A/F11〜A/F22の検出範囲とA/F22〜大気の検出範囲とをそれぞれ設定する。この場合、複数の検出範囲は離れて設けられても良いし、一部重複して設けられても良い。かかる構成にあっても、上記各実施の形態の適用により同様の効果が得られる。
上記各実施の形態では、電流検出抵抗32により計測した電流変化量から素子インピーダンスを算出する構成としたが、電流検出抵抗32によらず電流変化量(又は電圧変化量)を計測して素子インピーダンスを算出する構成とすることも可能である。また、インピーダンス検出を要件としないガス濃度検出装置としての実施も可能である。
上記実施の形態では、図2のセンサ素子構造を有するA/Fセンサについて説明してきたが、他のセンサ素子構造を有するA/Fセンサに適用することも可能である。例えば、図12に示すセンサ素子60では、2層の固体電解質61,62を有しており、一方の固体電解質61には一対の電極63,64が対向配置され、他方の固体電解質62には一対の電極65,66が対向配置されている。なお、電極63〜65は図の左右対象に2カ所に見えるが、それらは紙面の前後何れかの部位で連結された同一部材である。本センサ素子60では、固体電解質61及び電極63,64によりポンプセル71が構成され、固体電解質62及び電極65,66により酸素検知セル72が構成されている。センサ素子60が積層構造を有することは、前述のセンサ素子10と同じである。図12において、符号67はガス導入孔、符号68は多孔質拡散層、符号69は大気ダクト、符号70はヒータである。
酸素検知セル72の電極66の電位は比較器82の−入力端子に入力され、同比較器82の+入力端子には比較電圧Vrefが入力される。ポンプセル71の電極63と比較器82の出力との間には電流検出抵抗83が接続されており、その電流検出抵抗83の両端子のA点及びB点がセンサ出力として取り出されるようになっている。
上記センサ素子構造のA/Fセンサにおいて、酸素検知セル72は、排ガスがストイキに対してリーンかリッチかに応じて2値(0V又は0.9V)の起電力出力を発生する。例えばリーンである場合、酸素検知セル72の起電力出力が小さくなり、比較器82の出力(図のB点電圧)が上昇する。故に、電流検出抵抗83にはB→Aの向きに電流が流れる。また逆に、リッチである場合、酸素検知セル72の起電力出力が大きくなり、比較器82の出力(図のB点電圧)が低下する。故に、電流検出抵抗83にはA→Bの向きに電流が流れる。なお、酸素検知セル72は、一般に起電力セル、酸素濃度検出セルとも称される。
図13は、上記図12のセンサ素子構造を有するA/Fセンサについてセンサ制御回路80の構成を示す回路図である。図13において、ポンプセル71及び酸素検知セル72の共通端子には基準電圧電源81が接続されている。また、これら各セル71,72を通じてオペアンプ82及び電流検出抵抗83を有する閉回路が構成されており、オペアンプ82の非反転端子(+端子)には比較電圧Vref(0.45V)を生成する比較電圧生成回路84が接続されている。リーン時にはB→Aの向きに電流検出抵抗83に電流が流れ、逆にリッチ時にはA→Bの向きに電流検出抵抗83に電流が流れることは前述した通りである。かかる場合、酸素検知セル72の出力電圧が所定値になるようポンプセル71がフィードバック制御されるようになっている(但し、フィードバック制御回路については既に種々公開されておりここでは図示及び詳細な説明を省略する)。
また、電流検出抵抗83の両端子A点、B点には、増幅率5倍のオペアンプ85と増幅率15倍のオペアンプ86とがそれぞれ接続されている。この場合、オペアンプ85は「第1増幅器」に相当し、該オペアンプ85の出力により空燃比の全検出範囲(例えばA/F11〜大気)についてA/F検出が可能となる。また、オペアンプ86は「第2増幅器」に相当し、該オペアンプ86の出力により空燃比の全検出範囲のうちストイキを含む特定範囲(例えばA/F12〜A/F22)についてA/F検出が可能となる。オペアンプ85の出力が「広範囲出力」に相当し、オペアンプ86の出力が「狭範囲出力」に相当する。
上記図13の構成においても、既述した優れた効果を奏する。すなわち、空燃比の検出範囲毎にオペアンプ85,86が設けられるため、個別の検出範囲に最適な増幅処理を行わせることができる。その結果、所望とする広域の空燃比検出範囲(高リーン、高リッチを含む範囲)においてその検出精度を向上させることができるようになる。また、特にストイキ及びその近傍の空燃比の検出精度が向上し、ひいては高精度なストイキ制御が実現できる。
上記図13のセンサ制御回路80では、電流検出抵抗83の両端子のA点、B点は何れも固定されず変動するが、以下の図14に示すセンサ制御回路90では電流検出抵抗の一方の端子を固定できる構成を提案する。
図14において、ポンプセル71及び酸素検知セル72の共通端子にはオペアンプ93を通じて基準電圧Vf1と同等の電圧(例えば3V)が印加される。つまり、図のB点電圧は3V固定となる。また、酸素検知セル72を通じてフィードバック回路91及び電流検出抵抗92を有する閉回路が構成されている。フィードバック回路91内の基準電圧Vf2は例えば2.55Vである。
センサ制御回路90の動作をリッチ時を例に説明する。リッチ時には、酸素検知セル72の起電力により図のC1点が3.45Vに上がるため、フィードバック回路91内のC2点の電位が下がる。すると、フィードバック回路91の出力、すなわちA点電圧が上昇する。つまり、リッチ時にはA→Bの向きに電流検出抵抗83に電流が流れる。逆に、リーン時にはB→Aの向きに電流検出抵抗83に電流が流れる。
また、電流検出抵抗92の両端子A点、B点には、増幅率5倍のオペアンプ94と増幅率15倍のオペアンプ95とがそれぞれ接続されている。この場合、オペアンプ94は「第1増幅器」に相当し、該オペアンプ94の出力により空燃比の全検出範囲(例えばA/F11〜大気)についてA/F検出が可能となる。また、オペアンプ95は「第2増幅器」に相当し、該オペアンプ95の出力により空燃比の全検出範囲のうちストイキを含む特定範囲(例えばA/F12〜A/F22)についてA/F検出が可能となる。オペアンプ94の出力が「広範囲出力」に相当し、オペアンプ95の出力が「狭範囲出力」に相当する。
上記図14の構成においても、既述した優れた効果を奏する。すなわち、所望とする広域の空燃比検出範囲(高リーン、高リッチを含む範囲)においてその検出精度を向上させることができるようになる。また、特にストイキ及びその近傍の空燃比の検出精度が向上し、ひいては高精度なストイキ制御が実現できる。図13及び図14の構成においては、上述した第2〜第4の実施の形態等が適宜適用できる。
その他に、図15に示すセンサ素子構造であっても良い。図15のセンサ素子100では、3層の固体電解質101,102,103を有し、固体電解質101には一対の電極104,105が対向配置され、固体電解質102には一対の電極106,107が対向配置されている。本センサ素子100では、固体電解質101及び電極104,105によりポンプセル111が構成され、固体電解質102及び電極106,107により酸素検知セル112が構成されている。また、固体電解質103は、酸素基準室108を確保するための壁材を構成している。センサ素子100が積層構造を有することは、前述のセンサ素子10等と同じである。図15において、符号109は多孔質拡散層、符号110はガス検出室である。なお、酸素検知セル112は、前記図12の酸素検知セル72と同様、一般に起電力セル、酸素濃度検出セルとも称される。
酸素検知セル112の電極107の電位は比較器113の−入力端子に入力され、同比較器113の+入力端子には比較電圧Vrefが入力される。ポンプセル111の電極104と比較器113の出力との間には電流検出抵抗114が接続されており、その電流検出抵抗114の両端子のA点及びB点がセンサ出力として取り出されるようになっている。この場合、リーン時にはB→Aの向きに電流検出抵抗114に電流が流れ、逆にリッチ時にはA→Bの向きに電流検出抵抗114に電流が流れる。センサ制御回路に関する構成は既述の通りであり、その説明は省略する。
前記図12や図15で説明した2セル構造のセンサ素子においては、酸素検知セルの印加電圧を適宜操作することにより、当該酸素検知セルの内部抵抗を検出する構成とすることが可能である。すなわち、定期的な内部抵抗検出期間において、酸素検知セルに所定の計測電流を流すことにより酸素検知セルの内部抵抗値に対応する電圧変化を生じさせ、その電圧変化量を計測する。これにより、酸素検知セルの内部抵抗が電圧に変換されて出力できるようになっている。より具体的には、所定時間毎に、酸素検知セルにて生じる内部起電力と逆極性の一定電流(抵抗値計測用電流)を所定時間、酸素検知セルに流し、その際の酸素検知セルの両端の電圧変化量を計測する。かかる場合、酸素検知セルだけでなくポンプセルにも同様に逆極性の一定電流を流すようにすることにより、酸素検知セルだけでなくポンプセルの内部抵抗も同時に検出できる。なお、前記逆極性の一定電流を流した後には、これとは更に逆の極性(例えば抵抗値計測用電流が負極性であれば、正極性)の一定電流を所定時間流すようにし、濃度検出可能な状態への早期復帰を図るようにしても良い。
また、酸素検知セルに対して、一定周波数(例えば数kHz程度)の交流パルスを印加し、その際の酸素検知セルの端子電圧変化をモニタする構成とする。かかる場合、酸素検知セルの端子電圧変化は酸素検知セルの内部抵抗値に対応していることから、やはり酸素検知セルの内部抵抗が検出できる。
酸素濃度を検出対象とするA/Fセンサ以外にも、他のガス濃度を検出対象とするガス濃度センサにも本発明が適用できる。例えば、複合型のガス濃度センサは、固体電解質にて形成された複数のセルを有し、そのうち第1セル(ポンプセル)では被検出ガス中の酸素を排出又はくみ出すと共に酸素濃度を検出し、第2セル(センサセル)では酸素排出後のガスから特定成分のガス濃度を検出する。このガス濃度センサは、例えば排ガス中のNOx濃度を検出するNOxセンサとして具体化されるものであり、本発明の適用によりNOx濃度の検出精度が向上する。また、上記第1セル、第2セルに加え、酸素排出後の残留酸素濃度を検出するための第3セル(モニタセル、若しくは第2ポンプセル)等の複数のセルを有するガス濃度センサであっても良い。
NOx濃度を検出可能とする他に、特定成分のガス濃度としてHC濃度やCO濃度を検出可能とするガス濃度センサにも適用できる。この場合、ポンプセルにて被検出ガス中の余剰酸素を排出し、センサセルにて余剰酸素排出後のガスからHCやCOを分解してHC濃度やCO濃度を検出する。更に、自動車用以外のガス濃度検出装置に用いることや、排ガス以外のガスを被検出ガスとすることも可能である。
10…センサ素子、
11…固体電解質、
12…拡散層、
14…絶縁層、
17…大気ダクト、
20…マイコン、
30…センサ制御回路、
32…電流検出抵抗、
36,37…オペアンプ、
39…スイッチ、
40…コンデンサ、
41,42…オペアンプ、
51〜54…クランプ回路、
51a,52a…ダイオード、
53a,54a…pnpトランジスタ、
60…センサ素子、
61,62…固体電解質、
69…大気ダクト、
71…ポンプセル、
72…酸素検知セル、
80…センサ制御回路、
83…電流検出抵抗、
85,86…オペアンプ、
90…センサ制御回路、
92…電流検出抵抗、
94,95…オペアンプ、
100…センサ素子、
101,102…固体電解質、
108…酸素基準室、
111…ポンプセル、
112…酸素検知セル。

Claims (15)

  1. 固体電解質よりなるセンサ素子を有し被検出ガス中の特定成分のガス濃度を広域に検出可能なガス濃度センサと、センサ素子への電圧印加時に当該素子に流れる電流を計測するための電流検出抵抗と、該電流検出抵抗により計測した信号をA/D変換するA/D変換器とを備え、A/D変換後の前記信号に基づいてガス濃度演算を実施するとともに、前記電流検出抵抗の第1端子に固定の基準電圧を印加しておき、前記センサ素子の印加電圧又は電流を交流的に変化させた時に前記電流検出抵抗の第2端子の電圧値を計測してセンサ素子の抵抗値を検出する一方、前記センサ素子が、ガス濃度検出時の素子電流に対して素子抵抗検出時における電流変化が大きいものであるガス濃度検出装置において、
    ガス濃度の全検出範囲内に複数の検出範囲を設定しておき、前記電流検出抵抗により計測した信号を、少なくとも1つの検出範囲では所定の増幅率を有する増幅器にて増幅した後前記A/D変換器に対して出力し、他の検出範囲では増幅器を介さずに前記A/D変換器に対して出力するものとし、
    前記増幅器と前記電流検出抵抗の第2端子との間に、その両者間を開放又は閉鎖するためのスイッチ手段を設けたことを特徴とするガス濃度検出装置。
  2. 前記複数の検出範囲として比較的広い第1検出範囲と比較的狭い第2検出範囲とを設定し、前記第1検出範囲に対応する広範囲出力を増幅器を介さずに出力すると共に、前記第2検出範囲に対応する狭範囲出力を増幅器を介して出力する請求項1記載のガス濃度検出装置。
  3. 前記複数の検出範囲としてガス濃度の全検出範囲とその一部である特定範囲とを設定し、前記全検出範囲に対応する広範囲出力を増幅器を介さずに出力すると共に、前記特定範囲に対応する狭範囲出力を増幅器を介して出力する請求項1記載のガス濃度検出装置。
  4. 前記センサ素子は、板状の固体電解質と、それに積層された拡散層及び絶縁層と、酸素基準室とを有する積層型素子である請求項1乃至3の何れかに記載のガス濃度検出装置。
  5. 前記ガス濃度センサは、燃焼ガスの空燃比を広域に検出可能なセンサ素子を有するものである請求項1乃至4の何れかに記載のガス濃度検出装置。
  6. 前記ガス濃度センサは、燃焼ガスの空燃比を広域に検出可能なセンサ素子を有するものであって、前記特定範囲は、理論空燃比を含む範囲に設定される請求項3記載のガス濃度検出装置。
  7. 前記センサ素子は、被検出ガス中の酸素を出し入れするポンプセルと、同被検出ガスの酸素濃度に応じた信号を出力する酸素検知セルとを積層してなる積層型素子であり、酸素検知セルの出力信号が所定値になるようにポンプセルを制御するようにした請求項1乃至3の何れかに記載のガス濃度検出装置。
  8. 前記酸素検知セルの内部抵抗を電圧に変換する構成を有する請求項7記載のガス濃度検出装置。
  9. 前記ガス濃度センサは、燃焼ガスの空燃比を広域に検出可能な空燃比センサである請求項8記載のガス濃度検出装置。
  10. 前記ガス濃度センサは、固体電解質にて形成された複数のセルを有し、そのうち第1セルでは被検出ガス中の酸素を排出又はくみ出し、第2セルでは酸素排出後のガスから特定成分のガス濃度を検出するものである請求項1乃至4の何れかに記載のガス濃度検出装置。
  11. 前記増幅器の正負各入力端子に前記電流検出抵抗の両端子の電圧をそれぞれ入力する構成を有し、該増幅器の帰還電流経路には帰還電流吸収のためのオペアンプを設置した請求項1乃至10の何れかに記載のガス濃度検出装置。
  12. 請求項1乃至11の何れかに記載のガス濃度検出装置において、前記増幅器と前記スイッチ手段との間に、当該スイッチ手段の開放時にその直前の電圧レベルを保持するためのコンデンサを接続したガス濃度検出装置。
  13. 前記増幅器の出力部には、前記増幅器の出力を前記A/D変換器の最大作動電圧付近で制限するクランプ回路が設けられている請求項1乃至12の何れかに記載のガス濃度検出装置。
  14. 請求項13に記載のガス濃度検出装置において、前記クランプ回路は、前記増幅器の出力経路から前記A/D変換器の最大作動電圧相当の定電圧源に対して順方向に接続されたダイオードを有するガス濃度検出装置。
  15. 請求項13に記載のガス濃度検出装置において、前記クランプ回路は、エミッタ端子が前記増幅器の出力経路に接続されると共にベース端子が基準電圧源に接続されたpnp型トランジスタを有し、当該トランジスタのベース入力電圧を、前記A/D変換器の最大作動電圧相当の定電圧源からベース−エミッタ間の電圧降下分だけ減算した電圧値としたガス濃度検出装置。
JP2009002173A 2002-11-08 2009-01-08 ガス濃度検出装置 Expired - Lifetime JP4569701B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002173A JP4569701B2 (ja) 2002-11-08 2009-01-08 ガス濃度検出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002325659 2002-11-08
JP2009002173A JP4569701B2 (ja) 2002-11-08 2009-01-08 ガス濃度検出装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003187371A Division JP2004205488A (ja) 2002-11-08 2003-06-30 ガス濃度検出装置

Publications (2)

Publication Number Publication Date
JP2009069167A JP2009069167A (ja) 2009-04-02
JP4569701B2 true JP4569701B2 (ja) 2010-10-27

Family

ID=40605546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002173A Expired - Lifetime JP4569701B2 (ja) 2002-11-08 2009-01-08 ガス濃度検出装置

Country Status (1)

Country Link
JP (1) JP4569701B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036720B2 (ja) * 2014-02-05 2016-11-30 株式会社デンソー 空燃比検出装置
JP7183910B2 (ja) * 2019-03-28 2022-12-06 株式会社デンソー ガスセンサ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155109A (ja) * 1998-09-16 2000-06-06 Denso Corp ガス濃度検出装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140958U (ja) * 1985-02-21 1986-09-01
JPH0676941B2 (ja) * 1986-03-31 1994-09-28 株式会社日立製作所 圧力検出装置
JPH01143961A (ja) * 1987-11-30 1989-06-06 Nec Corp 振動ジャイロの駆動方法
JPH07104324B2 (ja) * 1987-12-09 1995-11-13 本田技研工業株式会社 空燃比検出装置
JPH06137193A (ja) * 1992-10-23 1994-05-17 Nippondenso Co Ltd 内燃機関の空燃比制御装置
JPH0961397A (ja) * 1995-08-30 1997-03-07 Denso Corp 空燃比検出装置
JPH09135127A (ja) * 1995-11-07 1997-05-20 Nec Corp 電力増幅器
JPH09138141A (ja) * 1995-11-15 1997-05-27 Matsushita Electric Works Ltd センサ用入力回路
JP3645665B2 (ja) * 1996-07-31 2005-05-11 日本特殊陶業株式会社 全領域酸素センサの温度制御方法及び装置
JP3551642B2 (ja) * 1996-08-22 2004-08-11 富士通株式会社 増幅回路
JP3487159B2 (ja) * 1997-05-21 2004-01-13 株式会社デンソー ガス濃度検出装置及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155109A (ja) * 1998-09-16 2000-06-06 Denso Corp ガス濃度検出装置

Also Published As

Publication number Publication date
JP2009069167A (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
JP2004205488A (ja) ガス濃度検出装置
JP4697052B2 (ja) ガス濃度検出装置
EP0887640B1 (en) Gas sensor
JP4835375B2 (ja) ガス濃度検出装置
JP4005273B2 (ja) ガス濃度検出装置
JP4415771B2 (ja) ガス濃度検出装置
JP4093190B2 (ja) ガス濃度検出装置
JP3487159B2 (ja) ガス濃度検出装置及びその製造方法
US7416649B2 (en) Oxygen concentration detection system and vehicle control system having the same
JP4124119B2 (ja) ガス濃度検出装置
JP3846058B2 (ja) ガス濃度検出装置
JP4433009B2 (ja) センサ制御装置
JP4485718B2 (ja) 空燃比システムの異常検出システム
JP4872198B2 (ja) ガス濃度検出装置
JP3487161B2 (ja) ガス濃度センサ用制御装置
JP4569701B2 (ja) ガス濃度検出装置
JPH11344466A (ja) ガス濃度センサのヒータ制御装置
JP4699658B2 (ja) 空燃比システムの異常検出システム
JP4028503B2 (ja) 酸素濃度検出システム及びそれを有する車両システム
JP4576934B2 (ja) ガス濃度検出装置
JP5067469B2 (ja) ガス濃度検出装置
JP2008076410A (ja) ガス濃度検出装置
JP4023503B2 (ja) ガス濃度検出装置
JP2007248113A (ja) ガス濃度検出装置
JP4016964B2 (ja) ガス濃度検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4569701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term