[go: up one dir, main page]

JP4569606B2 - Electron capture detector - Google Patents

Electron capture detector Download PDF

Info

Publication number
JP4569606B2
JP4569606B2 JP2007208892A JP2007208892A JP4569606B2 JP 4569606 B2 JP4569606 B2 JP 4569606B2 JP 2007208892 A JP2007208892 A JP 2007208892A JP 2007208892 A JP2007208892 A JP 2007208892A JP 4569606 B2 JP4569606 B2 JP 4569606B2
Authority
JP
Japan
Prior art keywords
frequency
detection cell
current value
value
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007208892A
Other languages
Japanese (ja)
Other versions
JP2007292786A (en
Inventor
一也 中川
裕之 辻出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007208892A priority Critical patent/JP4569606B2/en
Publication of JP2007292786A publication Critical patent/JP2007292786A/en
Application granted granted Critical
Publication of JP4569606B2 publication Critical patent/JP4569606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、ガスクロマトグラフ装置等の検出器として用いられる電子捕獲形検出器(以下、ECD(=Electron Capture Detector)と呼ぶ)に関する。 The present invention relates to an electron capture detector (hereinafter referred to as ECD (= Electron Capture Detector)) used as a detector for a gas chromatograph apparatus or the like.

ガスクロマトグラフ装置の検出器としては種々のものが実用化されているが、その中で、ECDはハロゲン化合物やニトロ化合物等の親電子性化合物の測定に有用である。このため、有機水銀、農薬、PCB等の残留測定、或いは、ステロイドやアミノ酸等を親電子性の誘導体に変換しての極微量測定等に利用されている。 Various detectors for gas chromatograph apparatuses have been put into practical use. Among them, ECD is useful for measuring electrophilic compounds such as halogen compounds and nitro compounds. For this reason, it is used for the residual measurement of organic mercury, agricultural chemicals, PCB, etc., or the trace amount measurement by converting steroids, amino acids, etc. into electrophilic derivatives.

ECDの動作原理は次の通りである。検出セル内に63Ni等の放射性同位元素を封入しておき、検出セルにキャリアガスを導入して、放射線によりキャリアガス分子をイオン化して電子(自由電子)を放出させる。検出セル内に配置された電極(陽極)に電圧を印加すると、定常状態では、この自由電子により電極に一定量の電流が流れる。 The operating principle of ECD is as follows. A radioactive isotope such as 63 Ni is sealed in the detection cell, a carrier gas is introduced into the detection cell, and carrier gas molecules are ionized by radiation to emit electrons (free electrons). When a voltage is applied to the electrode (anode) disposed in the detection cell, in a steady state, a certain amount of current flows through the electrode due to the free electrons.

ここで、電極に印加する電圧をパルス状とするとともに、このパルス電圧により電極に流れるパルス電流と所定の設定電流ISとの差を積分器に入力する。これにより、積分器の出力には、パルス電流の平均値(単位時間当たりのパルス電流)と設定電流ISとの差に応じた電圧が現われる。この積分器の出力を電圧/周波数(V/F)変換器に入力し、上記両電流の差に応じた周波数のパルス信号を出力させて、これに基づいて電極へのパルス電圧を生成する。これにより、定常状態で電極に印加されるパルス電圧の周波数fは、設定電流ISに応じた値となる。 Here, the voltage applied to the electrode is pulsed, and the difference between the pulse current flowing through the electrode by this pulse voltage and a predetermined set current IS is input to the integrator. Thereby, a voltage corresponding to the difference between the average value of the pulse current (pulse current per unit time) and the set current IS appears in the output of the integrator. The output of this integrator is input to a voltage / frequency (V / F) converter, a pulse signal having a frequency corresponding to the difference between the two currents is output, and based on this, a pulse voltage to the electrode is generated. Thereby, the frequency f of the pulse voltage applied to the electrode in a steady state becomes a value corresponding to the set current IS.

検出セル内に電子捕獲性物質の分子を入れると、その分子はキャリアガスから放出された自由電子を吸収して自由電子の密度を減少させる。自由電子を吸収した電子捕獲性物質の負イオンは自由電子よりも遙かに移動速度が低いため、自由電子の減少により電極に流れる電流は減少する。すると、積分器の出力電圧が大きくなり、V/F変換器の出力のパルス信号の周波数fは上昇する。すなわち、1個のパルス電圧で取り込まれる電子数の減少を補うべく、単位時間当たりに発生するパルス数が増加する。 When a molecule of an electron-capturing substance is placed in the detection cell, the molecule absorbs free electrons emitted from the carrier gas and decreases the density of free electrons. Since the negative ions of the electron-trapping substance that has absorbed free electrons have a moving speed much lower than that of the free electrons, the current flowing through the electrode decreases due to the decrease in free electrons. Then, the output voltage of the integrator increases and the frequency f of the pulse signal output from the V / F converter increases. That is, the number of pulses generated per unit time increases in order to compensate for the decrease in the number of electrons captured by one pulse voltage.

電子捕獲性物質の濃度aとパルス周波数fとは、次のような関係を有することが知られている(例えば、R.J.Maggs, et al., "The Electron Capture Detector−A New Mode of Operation", ANALYTICAL CHEMISTRY, VOL.43, NO.14, DECEMBER 1971, p.1967)。
K・f=(k1・a+KD) (K、k1、KD:定数) (1)
従って、a=0の状態、すなわち検出セルに電子捕獲性物質を導入しない状態、からのパルス周波数の変化Δfは、
Δf=f−f0=(k1・a+KD)/K−KD/K
=(k1/K)・a (2)
と、濃度aに比例する。すなわち、試料の濃度aは周波数fの変化Δfより、
a=Δf/(k1/K) (3)
と算出することができる。なお、(k1/K)の値は予め実験により求めておく。
It is known that the concentration a of the electron-capturing substance and the pulse frequency f have the following relationship (for example, RJMaggs, et al., “The Electron Capture Detector-A New Mode of Operation”, ANALYTICAL CHEMISTRY, VOL.43, NO.14, DECEMBER 1971, p.1967).
K.f = (k1.a + KD) (K, k1, KD: constant) (1)
Therefore, the change Δf in pulse frequency from the state where a = 0, that is, the state where no electron-capturing substance is introduced into the detection cell is
Δf = f−f0 = (k1 · a + KD) / K−KD / K
= (K1 / K) · a (2)
And proportional to the concentration a. That is, the concentration a of the sample is determined from the change Δf of the frequency f,
a = Δf / (k1 / K) (3)
Can be calculated. The value of (k1 / K) is obtained in advance by experiments.

積分器の出力から取り出した検出電圧Vは、パルス周波数fの変化に応じたものとなるから、この検出電圧Vを時間経過に従って記録することにより、目的とする電子捕獲性物質の濃度に関するクロマトグラムが得られる。 Since the detection voltage V extracted from the output of the integrator is in accordance with the change of the pulse frequency f, the detection voltage V is recorded over time, so that a chromatogram relating to the concentration of the target electron-capturing substance is obtained. Is obtained.

測定を繰り返すうちに電極及び検出セル内部が試料で汚れてくると、電流が流れにくくなり、周波数fが増加してくる。このため、同一試料で測定を行なっても測定結果が経時的に変化するという問題が生ずる。一方、ECDは上記の通り放射性同位元素を用いるため、検出セル内部の洗浄には専門の技術が必要であり、容易に洗浄を行なうことができないという制約がある。 If the electrode and the inside of the detection cell become contaminated with the sample while the measurement is repeated, the current becomes difficult to flow and the frequency f increases. For this reason, even if it measures with the same sample, the problem that a measurement result changes with time arises. On the other hand, since ECD uses a radioisotope as described above, special techniques are required for cleaning the inside of the detection cell, and there is a restriction that it cannot be easily cleaned.

本発明はこのような課題を解決するために成されたものであり、その目的とするところは、検出セル内部の汚染等による経時変化を適切に補正し、常に正しい測定結果を出力することのできるECDを提供することにある。 The present invention has been made to solve such a problem, and the object of the present invention is to appropriately correct a change over time due to contamination inside the detection cell and always output a correct measurement result. It is to provide an ECD that can be used.

上記課題を解決するために成された本発明に係る電子捕獲型検出器は、a)検出セル内に導入されたキャリアガスをイオン化し、電子を放出させる電子放出手段と、b)所定の電流値を設定する電流値設定手段と、c)検出セル内に設けられた電極にパルス電圧を印加するとともに、上記電子による電流が前記所定電流値となるようにパルス電圧の周波数を制御するパルス制御手段と、d)検出セルの初期状態における上記周波数の値f00と、試料分析の際に試料を検出セルに導入する前の上記周波数の値f0とを記憶する周波数記憶手段と、e)検出セルの初期状態における上記電流値Idと、試料分析の際に試料を検出セルに導入する前の上記電流値Isとを記憶する電流値記憶手段と、f)検出セルに分析試料を注入した後のパルス電圧の周波数f並びに前記両周波数の値f00及びf0、並びに前記両電流値Id及びIsを用いて分析試料の濃度を算出する濃度算出手段と、を備えることを特徴としている。 The electron capture detector according to the present invention, which has been made to solve the above problems, includes a) an electron emission means for ionizing a carrier gas introduced into a detection cell and emitting electrons, and b) a predetermined current. Current value setting means for setting a value; and c) pulse control for applying a pulse voltage to the electrode provided in the detection cell and controlling the frequency of the pulse voltage so that the current caused by the electrons becomes the predetermined current value. Means, d) frequency storage means for storing the frequency value f00 in the initial state of the detection cell, and the frequency value f0 before introducing the sample into the detection cell at the time of sample analysis, and e) the detection cell Current value storage means for storing the current value Id in the initial state and the current value Is before introducing the sample into the detection cell at the time of sample analysis, and f) after injecting the analysis sample into the detection cell The frequency f of the pulse voltage and the both frequencies And a concentration calculating means for calculating the concentration of the analysis sample using the numerical values f00 and f0 and the two current values Id and Is.

本発明に係るECDでは、試料による汚染等で検出セルの状態が変化した場合にも、常に正しい濃度を検出することができる。また、周波数記憶手段に記憶されている周波数の値の変化により検出セルの汚れの程度を知ることができるため、洗浄の必要性を適切に判断し、警告することができる。 The ECD according to the present invention can always detect the correct concentration even when the state of the detection cell changes due to contamination by a sample or the like. Further, since the degree of contamination of the detection cell can be known from the change in the frequency value stored in the frequency storage means, the necessity of cleaning can be appropriately determined and a warning can be given.

ECDの製造直後又は洗浄を行なった直後の、検出セルが清浄な状態(これらを初期状態と呼ぶ)において、まず、所定電流値に対応するパルス周波数f00を測定し、この値(初期周波数)を周波数記憶手段に記憶させておく。 In a state in which the detection cells are clean immediately after manufacturing the ECD or immediately after cleaning (these are called initial states), first, a pulse frequency f00 corresponding to a predetermined current value is measured, and this value (initial frequency) is obtained. The frequency is stored in the frequency storage means.

試料を分析する際、分析試料を注入する前のパルス周波数f0を測定し、この値(測定前周波数)も周波数記憶手段に記憶させる。周波数記憶手段に記憶させたこれらの値は、いくつかの使用方法がある。 When analyzing the sample, the pulse frequency f0 before injecting the analysis sample is measured, and this value (frequency before measurement) is also stored in the frequency storage means. These values stored in the frequency storage means can be used in several ways.

第1の使用方法は、検出セル内部の汚染等により経時的に変化する検出器の特性を自動的に補正して、常に正しい検出値を算出するために用いることができる。すなわち、分析試料を注入した後のパルス周波数fを用いて試料の濃度aを上記式(3)により算出する際、この値fの代わりに、周波数記憶手段に記憶されている値f00及びf0を用いて補正した値f1を用いる。具体的には、
f1=f・(f00/f0) (4)
と算出した値f1を用いて、濃度aを
a=Δf/k1=(f1−f0)/k1 (5)
と算出する。又は、f00、f0、fの値を用いて直接、
a={f・(f00/f0)−f0}/k1 (6)
と算出してもよい。
The first method of use can be used to automatically correct the detector characteristics that change with time due to contamination inside the detection cell and to always calculate a correct detection value. That is, when the sample concentration a is calculated by the above equation (3) using the pulse frequency f after the analysis sample is injected, the values f00 and f0 stored in the frequency storage means are used instead of the value f. The value f1 corrected by using is used. In particular,
f1 = f · (f00 / f0) (4)
And using the calculated value f1, the density a is set to a = Δf / k1 = (f1−f0) / k1 (5)
And calculate. Or directly using the values of f00, f0, f,
a = {f · (f00 / f0) −f0} / k1 (6)
May be calculated.

このように補正(又は計算)できる理由は次の通りである。ECD内が汚れると、式(1)の定数KがK1に変化する。
K1・f=(k1・a+KD) (K1、k1、KD:定数) (1b)
a=0のときの周波数は、検出セルが清浄な状態(初期状態)では式(1)により
f00=KD/K
であるが、検出セルが汚れている時には式(1b)により
f0 =KD/K1
となる。従って、
f00/f0=K1/K (7)
となる。検出セルが汚れているとき、式(2)より
Δf'=f'−f0=(k1/K1)・a
=(f0/f00)・(k1/K)・a
=(f0/f00)・Δf (8)
となる。従って、式(5)、(6)で示したように、fの代わりにf1=f・(f0/f00)を用いることにより、常に同一の式で試料の濃度aを算出することができる。
The reason why such correction (or calculation) can be performed is as follows. When the inside of the ECD becomes dirty, the constant K in the equation (1) changes to K1.
K1 · f = (k1 · a + KD) (K1, k1, KD: constant) (1b)
When a = 0, the frequency is f00 = KD / K according to the equation (1) when the detection cell is clean (initial state).
However, when the detection cell is dirty, f0 = KD / K1 according to the equation (1b).
It becomes. Therefore,
f00 / f0 = K1 / K (7)
It becomes. When the detection cell is dirty, Δf ′ = f′−f0 = (k1 / K1) · a according to the equation (2).
= (F0 / f00) ・ (k1 / K) ・ a
= (F0 / f00) · Δf (8)
It becomes. Therefore, as shown in the equations (5) and (6), by using f1 = f · (f0 / f00) instead of f, the sample concentration a can always be calculated by the same equation.

第2の使用方法は、上記のように感度変化2応じて検出値を補正するのではなく、逆に感度を一定とするようにする方法である。すなわち、測定前周波数f0が常に初期周波数f00に一致するように、設定電流値の方を変化させる。なお、このように検出値を補正する方法と設定電流値を変化させる方法とは、適宜切り替えられるようにしておくこともできる。 The second usage method is a method in which the detection value is not corrected according to the sensitivity change 2 as described above, but the sensitivity is made constant. That is, the set current value is changed so that the pre-measurement frequency f0 always coincides with the initial frequency f00. Note that the method for correcting the detection value and the method for changing the set current value can be switched as appropriate.

第3の使用方法は、測定前周波数f0をその都度初期周波数f00と比較し、検出器の汚染度合いを判断することである。例えば、両値の差又は比が所定値以上になった場合に警報を出し、セルの交換を促すように構成することができる。 The third method of use is to compare the pre-measurement frequency f0 with the initial frequency f00 each time to determine the degree of contamination of the detector. For example, when the difference or ratio between the two values is equal to or greater than a predetermined value, a warning can be issued and the cell can be replaced.

本発明に係る電子捕獲形検出器(ECD)の一実施例を図1を参照して説明する。ガスクロマトグラフカラム11に接続された検出セル12は、キャリアガス導入口及び排出口が設けられた封止形となっており、内部には放射性同位元素63Ni等を担持したβ線源及び陽極13が設けられている。なお、検出セル12本体は接地されている。陽極13はトランス14の二次側のコイルに接続され、そのコイルを介して差分アンプ15に接続されている。差分アンプ15の出力電圧は電圧/周波数(V/F)変換器16に与えられ、V/F変換器16は入力電圧値に応じた周波数のパルス信号を出力する。パルス電圧発生回路17はV/F変換器16からのパルス信号を受け、その周波数の電圧をトランス14の一次側コイルに与える。 An embodiment of an electron capture detector (ECD) according to the present invention will be described with reference to FIG. The detection cell 12 connected to the gas chromatograph column 11 is a sealed type provided with a carrier gas introduction port and a discharge port, and a β-ray source and an anode 13 carrying a radioisotope 63 Ni or the like inside. Is provided. The detection cell 12 body is grounded. The anode 13 is connected to the secondary coil of the transformer 14 and is connected to the differential amplifier 15 via the coil. The output voltage of the differential amplifier 15 is supplied to a voltage / frequency (V / F) converter 16, and the V / F converter 16 outputs a pulse signal having a frequency corresponding to the input voltage value. The pulse voltage generation circuit 17 receives the pulse signal from the V / F converter 16 and applies a voltage of that frequency to the primary coil of the transformer 14.

差分アンプ15の出力電圧はまた、A/D変換器18によりデジタル信号に変換され、このデジタル信号は電流設定部19及び演算制御部20に送られる。演算制御部20には、メモリ21、キー入力部22及びデータ処理装置23が接続されている。 The output voltage of the differential amplifier 15 is also converted into a digital signal by the A / D converter 18, and this digital signal is sent to the current setting unit 19 and the calculation control unit 20. A memory 21, a key input unit 22, and a data processing device 23 are connected to the arithmetic control unit 20.

本ECDの動作は次の通りである。検出セル12にキャリヤガスを流すと、キャリヤガスはβ線源によりイオン化され、運動エネルギの低い電子(自由電子)を放出する。上記構成により、陽極13にはトランス14の二次側コイルから正のパルス電圧が印加されているため、電圧が印加されている期間だけ、自由電子により陽極13には電流が流れる。従って、パルス電圧の周波数fを上昇すると、パルス周期よりも長い所定期間内の陽極13の平均電流(陽極電流)IDは増加し、周波数fを減少すると陽極電流IDは減少する。 The operation of this ECD is as follows. When a carrier gas is allowed to flow through the detection cell 12, the carrier gas is ionized by the β-ray source and emits electrons (free electrons) having low kinetic energy. With the above configuration, since a positive pulse voltage is applied to the anode 13 from the secondary coil of the transformer 14, a current flows through the anode 13 by free electrons only during the period in which the voltage is applied. Therefore, when the frequency f of the pulse voltage is increased, the average current (anode current) ID of the anode 13 within a predetermined period longer than the pulse period increases, and when the frequency f is decreased, the anode current ID decreases.

操作者がキー入力部22から設定電流ISの値を入力すると、演算制御部20はそれに対応する設定電流信号を電流設定部19に送り、電流設定部19はそれに応じた設定電流ISを出力する。しかし、陽極電流IDの値は上記の通りパルス周波数fにより規定されるため、それと設定電流ISとの差分i(=ID−IS)は差分アンプ15から与えられる。差分アンプ15はこの差電流iに応じた電圧を出力し、V/F変換器16に与える。上述の通り、V/F変換器16はその入力電圧値に応じた周波数のパルス信号を出力し、パルス電圧発生回路17はその周波数の電圧をトランス14の一次側コイルに与える。V/F変換器16は、差電流iが所定値(例えばゼロ)よりも大きいときはパルス周波数fを増加するように設定されているため、このループ制御により差電流iが所定値となるように周波数fが制御される。検出セル12内を流れるキャリヤガスが定常状態であり、差電流iが所定値に制御されているときのパルス周波数fをゼロ周波数と呼ぶ。 When the operator inputs the value of the set current IS from the key input unit 22, the arithmetic control unit 20 sends a corresponding set current signal to the current setting unit 19, and the current setting unit 19 outputs a set current IS corresponding to the set current signal. . However, since the value of the anode current ID is defined by the pulse frequency f as described above, the difference i (= ID−IS) between it and the set current IS is given from the difference amplifier 15. The difference amplifier 15 outputs a voltage corresponding to the difference current i and supplies it to the V / F converter 16. As described above, the V / F converter 16 outputs a pulse signal having a frequency corresponding to the input voltage value, and the pulse voltage generation circuit 17 applies the voltage having the frequency to the primary coil of the transformer 14. The V / F converter 16 is set to increase the pulse frequency f when the difference current i is larger than a predetermined value (for example, zero), so that the difference current i becomes a predetermined value by this loop control. The frequency f is controlled. The pulse frequency f when the carrier gas flowing in the detection cell 12 is in a steady state and the difference current i is controlled to a predetermined value is called a zero frequency.

本実施例のECDでは、検出セル12を洗浄した後、操作者がキー入力部22を操作することにより、ゼロ周波数f00をメモリ21に記憶させる。これが上記初期周波数である。なお、現在日本ではユーザーがECDの検出セル12を洗浄することはできないので、このような操作を行なうのはメーカーの技術者又はサービスマンとなる。 In the ECD of the present embodiment, after the detection cell 12 is washed, the operator operates the key input unit 22 to store the zero frequency f00 in the memory 21. This is the initial frequency. In Japan, the user cannot clean the ECD detection cell 12 at this time, and it is a manufacturer's engineer or serviceman who performs such an operation.

ユーザーがこのECDを用いて試料を分析する際、試料を検出セル12に導入する前に、キー入力部22を操作することによりゼロ周波数f0をメモリ21に記憶させる。これが上記測定前周波数である。測定前周波数の測定は、検出セル12を洗浄した後、既に何度か検出セル12を使用した後にも、試料分析前には必ず行なう。この間、検出セル12の内部は試料により徐々に汚染され、陽極電流IDが流れにくくなっているため、測定前周波数f0は一般に徐々に大きくなる。 When the user analyzes a sample using the ECD, the zero frequency f 0 is stored in the memory 21 by operating the key input unit 22 before introducing the sample into the detection cell 12. This is the frequency before measurement. The measurement of the pre-measurement frequency is always performed before the sample analysis even after the detection cell 12 has been washed and the detection cell 12 has already been used several times. During this time, the inside of the detection cell 12 is gradually contaminated by the sample, and the anode current ID is less likely to flow, so the pre-measurement frequency f0 generally increases gradually.

その後、カラム11から送出される試料を検出セル12に導入する。導入された試料は検出セル12内の自由電子を捕獲し、陽極電流IDを減少させる。これにともない、差電流iを所定値とするためのパルス周波数の値が増加し、f1となる。 Thereafter, the sample delivered from the column 11 is introduced into the detection cell 12. The introduced sample captures free electrons in the detection cell 12 and decreases the anode current ID. Accordingly, the value of the pulse frequency for setting the difference current i to a predetermined value increases and becomes f1.

演算制御部は、この値f1と、メモリに記憶されている初期周波数f00及び測定前周波数f0を用いて、試料の濃度aを前記式(4)及び(5)、又は(6)により算出する。 The arithmetic control unit uses the value f1, the initial frequency f00 and the pre-measurement frequency f0 stored in the memory to calculate the concentration a of the sample by the above formula (4) and (5) or (6). .

なお、上記のように操作者のキー操作により初期周波数f00や測定前周波数f0を手動でメモリ21に記憶させるのではなく、この記憶を所定のタイミングで自動的に行なうようにしてもよい。例えば、多くの場合、分析の際に検出セル12を加熱するが、検出セル12の温度が所定値に達した時点でのゼロ周波数f00、f0をメモリ21に記憶させるという方法をとることができる。また、検出セル12洗浄後、ゼロ周波数がこうして自動的に逐次メモリに記憶されてゆく場合、最も古い時期に記憶されたゼロ周波数を初期周波数f00とし、最も新しい時期に記憶されたゼロ周波数を測定前周波数f0とすることができる。 Note that the initial frequency f00 and the pre-measurement frequency f0 may not be manually stored in the memory 21 by the operator's key operation as described above, but may be automatically stored at a predetermined timing. For example, in many cases, the detection cell 12 is heated at the time of analysis, but the zero frequency f00 and f0 when the temperature of the detection cell 12 reaches a predetermined value can be stored in the memory 21. . In addition, when the zero frequency is automatically and sequentially stored in the memory after the detection cell 12 is washed, the zero frequency stored at the oldest time is set as the initial frequency f00, and the zero frequency stored at the newest time is measured. The previous frequency f0 can be used.

次に、上記とは別の算出方法を示す。式(8)より
Δf'=(f0/f00)・Δf
であるが、ここでf0/f00=cとして、
Δf'=c・Δf (9)
とする。検出セル12を洗浄後、予め検出セル12を実験的に徐々に汚してゆき、各汚れの段階でf0を求めてf0/f00によりcを算出し、メモリ21に記憶しておく。試料分析時に測定前周波数f0を求め、それに対応するcをメモリ21から読み出して式(9)及び(5)により濃度aを算出する。
Next, a calculation method different from the above will be described. From equation (8), Δf ′ = (f0 / f00) · Δf
Where f0 / f00 = c,
Δf ′ = c · Δf (9)
And After the detection cell 12 is washed, the detection cell 12 is gradually soiled experimentally in advance, and f0 is obtained at each soiling stage, c is calculated by f0 / f00, and stored in the memory 21. At the time of sample analysis, a pre-measurement frequency f0 is obtained, c corresponding thereto is read from the memory 21, and the concentration a is calculated by the equations (9) and (5).

上記実施例では、分析時の設定電流の値ISと検出セル洗浄後のf0記憶時の設定電流の値ISが等しくなければならない。設定電流値ISは一般に分析試料により異なるため、各種試料を分析しようとするときは、それぞれの設定電流値ISに対して初期周波数f00及び測定前周波数f0をメモリ21に記憶しておかなければならない。それを簡略化する方法を次に示す。 In the above embodiment, the set current value IS at the time of analysis must be equal to the set current value IS at the time of storing f0 after washing the detection cell. Since the set current value IS generally differs depending on the analysis sample, when analyzing various samples, the initial frequency f00 and the pre-measurement frequency f0 must be stored in the memory 21 for each set current value IS. . The following shows how to simplify it.

式(1)の定数Kは、
K=b・q・{1−exp[−(k1・a+KD)/f]}/ID
(b:定数、q:電子の電荷、ID:設定電流値)で表わされる(前記文献)。ここで、
K=k/ID
とすると、ゼロ周波数f0(初期周波数f00及び測定前周波数f0を含む)は、
f0/ID=KD/k
となる。或る設定電流値IDにおけるf0/IDの値をメモリ21に記憶しておくことにより、任意の設定電流値ISでのゼロ周波数f0Sは、
f0S=(f0/ID)・IS
と算出される。従って、これと式(8)、(9)を用いて、
Δf'=(IS/ID)・c・Δf
によりΔf'を算出し、これに基づいて試料の濃度aを求めることができる。
The constant K in equation (1) is
K = b.q. {1-exp [-(k1.a + KD) / f]} / ID
(B: constant, q: electron charge, ID: set current value) (the above-mentioned document). here,
K = k / ID
Then, the zero frequency f0 (including the initial frequency f00 and the pre-measurement frequency f0) is
f0 / ID = KD / k
It becomes. By storing the value of f0 / ID at a certain set current value ID in the memory 21, the zero frequency f0S at an arbitrary set current value IS is
f0S = (f0 / ID) · IS
Is calculated. Therefore, using this and equations (8) and (9),
Δf ′ = (IS / ID) · c · Δf
Δf ′ is calculated by the above, and based on this, the concentration a of the sample can be obtained.

以上説明した通り、本実施例のECDでは、検出セル12が汚れても常に正しい濃度を検出することができる。また、メモリ21には現在のゼロ周波数の値f0が記憶されているが、この値は検出セル12の汚れ具合に応じたものである。従って、この値が所定の閾値を超えたときに検出セル12の洗浄を促すような警報又はメッセージをデータ処理装置23等に出力することができる。更に、メモリ21には洗浄直後のゼロ周波数が記憶されているので、この値と現在のゼロ周波数との値とを比較し、その比又は差について予め閾値を設けておくことにより(例えば、f00/f0=0.5)、同様に検出セル12の汚れの警報又はメッセージを出力することもできる。 As described above, the ECD of this embodiment can always detect the correct concentration even if the detection cell 12 is dirty. Further, the current zero frequency value f0 is stored in the memory 21, and this value corresponds to the degree of contamination of the detection cell 12. Therefore, it is possible to output a warning or a message that prompts cleaning of the detection cell 12 to the data processing device 23 or the like when this value exceeds a predetermined threshold. Further, since the zero frequency immediately after cleaning is stored in the memory 21, this value is compared with the current zero frequency, and a threshold is set in advance for the ratio or difference (for example, f00). /F0=0.5) Similarly, a warning or message of contamination of the detection cell 12 can be output.

なお、演算制御部20の機能を更に強化し、V/F変換器16の機能を演算制御部20に実行させるようにしてもよい。例えば図2に示すように、差分アンプ15の出力はA/D変換器18を介して演算制御部20に入れ、演算制御部20がその値に基づいてパルス信号を生成してパルス電圧発生回路17に与えるようにする。これにより、あらゆる操作が演算制御部20のキー入力部22等で行なうことができるようになるため、操作性が大幅に向上する。また、上記第2の使用方法を用いる場合は、検出された測定前周波数f0に基づいて対応する設定電流を演算制御部20で算出し、電流設定信号を電流設定部19へ送るという制御を行なうことができる。 Note that the function of the arithmetic control unit 20 may be further strengthened, and the function of the V / F converter 16 may be executed by the arithmetic control unit 20. For example, as shown in FIG. 2, the output of the differential amplifier 15 is input to the arithmetic control unit 20 via the A / D converter 18, and the arithmetic control unit 20 generates a pulse signal based on the value to generate a pulse voltage generation circuit. 17 to give. As a result, any operation can be performed by the key input unit 22 or the like of the arithmetic control unit 20, so that the operability is greatly improved. Further, when the second usage method is used, control is performed such that the calculation control unit 20 calculates a corresponding setting current based on the detected pre-measurement frequency f 0 and sends a current setting signal to the current setting unit 19. be able to.

本発明の一実施例である電子捕獲型検出器(ECD)の概略構成回路図。1 is a schematic circuit diagram of an electron capture detector (ECD) that is an embodiment of the present invention. 本発明の他の実施例であるECDの概略構成回路図。FIG. 6 is a schematic configuration circuit diagram of an ECD that is another embodiment of the present invention.

符号の説明Explanation of symbols

11...クロマトグラフカラム
12...検出セル
13...陽極
14...トランス
15...差分アンプ
16...電圧/周波数(V/F)変換器
17...パルス電圧発生回路
18...A/D変換器
19...電流設定部
20...演算制御部
21...メモリ
22...キー入力部
23...データ処理装置
11 ... Chromatograph column 12 ... Detection cell 13 ... Anode 14 ... Transformer 15 ... Differential amplifier 16 ... Voltage / frequency (V / F) converter 17 ... Pulse voltage generation Circuit 18 ... A / D converter 19 ... Current setting unit 20 ... Operation control unit 21 ... Memory 22 ... Key input unit 23 ... Data processing device

Claims (1)

a) 検出セル内に導入されたキャリアガスをイオン化し、電子を放出させる電子放出手段と、b) 所定の電流値を設定する電流値設定手段と、c) 検出セル内に設けられた電極にパルス電圧を印加するとともに、上記電子による電流が前記所定電流値となるようにパルス電圧の周波数を制御するパルス制御手段と、d) 検出セルの初期状態における上記周波数の値f00と、試料分析の際に試料を検出セルに導入する前の上記周波数の値f0とを記憶する周波数記憶手段と、e) 前記電流値設定手段において設定された任意の設定電流値を記憶する電流値記憶手段と、f) 検出セルに分析試料を注入した後のパルス電圧の周波数f並びに前記両周波数の値f00及びf0、並びに前記電流値記憶手段に記憶された任意の設定電流値を用いて分析試料の濃度を算出する濃度算出手段と
を備えることを特徴とする電子捕獲型検出器。
a) electron emission means for ionizing the carrier gas introduced into the detection cell and emitting electrons; b) current value setting means for setting a predetermined current value; and c) an electrode provided in the detection cell. A pulse control means for applying a pulse voltage and controlling the frequency of the pulse voltage so that the current due to the electrons becomes the predetermined current value; and d) the frequency value f00 in the initial state of the detection cell, and the sample analysis Frequency storage means for storing the frequency value f0 before introducing the sample into the detection cell, e) current value storage means for storing any set current value set in the current value setting means, f) Using the frequency f of the pulse voltage after the analysis sample is injected into the detection cell, the values f00 and f0 of both the frequencies, and any set current value stored in the current value storage means, the concentration of the analysis sample is determined. Calculated concentration An electron capture detector comprising: a calculation means.
JP2007208892A 2007-08-10 2007-08-10 Electron capture detector Expired - Fee Related JP4569606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007208892A JP4569606B2 (en) 2007-08-10 2007-08-10 Electron capture detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007208892A JP4569606B2 (en) 2007-08-10 2007-08-10 Electron capture detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9287946A Division JPH11108898A (en) 1997-10-03 1997-10-03 Electron capturing type detector

Publications (2)

Publication Number Publication Date
JP2007292786A JP2007292786A (en) 2007-11-08
JP4569606B2 true JP4569606B2 (en) 2010-10-27

Family

ID=38763499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007208892A Expired - Fee Related JP4569606B2 (en) 2007-08-10 2007-08-10 Electron capture detector

Country Status (1)

Country Link
JP (1) JP4569606B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6142767B2 (en) * 2013-10-21 2017-06-07 株式会社島津製作所 Electron capture detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158940A (en) * 1980-05-14 1981-12-08 Hitachi Ltd Constant current type electron capturing device
JPH01213794A (en) * 1988-02-22 1989-08-28 Nohmi Bosai Kogyo Co Ltd Fire alarm with dirt correcting function
JPH07287444A (en) * 1994-04-19 1995-10-31 Konica Corp Image density detector
JPH0934312A (en) * 1995-07-19 1997-02-07 Canon Inc Image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158940A (en) * 1980-05-14 1981-12-08 Hitachi Ltd Constant current type electron capturing device
JPH01213794A (en) * 1988-02-22 1989-08-28 Nohmi Bosai Kogyo Co Ltd Fire alarm with dirt correcting function
JPH07287444A (en) * 1994-04-19 1995-10-31 Konica Corp Image density detector
JPH0934312A (en) * 1995-07-19 1997-02-07 Canon Inc Image forming device

Also Published As

Publication number Publication date
JP2007292786A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP6568963B2 (en) Cleaning the corona discharge ion source
US9153423B2 (en) Methods and devices for calibrating the mobility axis of an ion mobility spectrum
JP4569606B2 (en) Electron capture detector
JP2008145264A (en) Radiation measuring apparatus
JP4834825B2 (en) Radiation measurement apparatus and radiation measurement method
Gruhn et al. Geminate recombination of α-particle-excited carriers in liguid argon
JPH11108898A (en) Electron capturing type detector
JPS61283859A (en) Detector for nickel and vanadium in oil
CN109632767A (en) Detector protection in Optical Emission Spectrometer
JP4212629B2 (en) Mass spectrometer
JP5614379B2 (en) Discharge ionization current detector and gas chromatograph apparatus
JPH1154083A (en) Ionization device
JP2001056315A (en) Electron capturing type detector
CN106610407A (en) Sensitivity automatic detection method and device of electron capture detector
JP2015224986A (en) Device and method for measuring radiation
WO2014132357A1 (en) Mass spectrometer
JPH05215722A (en) Electron capture type detector
Schechter et al. Quantitative laser mass analysis by time resolution of the ion-induced voltage in multiphoton ionization processes
WO2021212229A1 (en) Photoionization detector and method for gas sample analysis
JPWO2017057575A1 (en) Nuclear medicine examination apparatus and nuclear medicine examination method
Chen et al. Development of a novel system for monitoring tritium in gaseous form
JP6142767B2 (en) Electron capture detector
JPH04303759A (en) Electron capture detector
JP3868420B2 (en) X-ray fluorescence analyzer and method
JPH11326282A (en) Ionization detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees