[go: up one dir, main page]

JP4567495B2 - Optical wavelength conversion element - Google Patents

Optical wavelength conversion element Download PDF

Info

Publication number
JP4567495B2
JP4567495B2 JP2005069959A JP2005069959A JP4567495B2 JP 4567495 B2 JP4567495 B2 JP 4567495B2 JP 2005069959 A JP2005069959 A JP 2005069959A JP 2005069959 A JP2005069959 A JP 2005069959A JP 4567495 B2 JP4567495 B2 JP 4567495B2
Authority
JP
Japan
Prior art keywords
layer
group
photoelectric conversion
light
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005069959A
Other languages
Japanese (ja)
Other versions
JP2006251555A (en
Inventor
崇 岡田
正臣 佐々木
昌史 鳥居
俊也 匂坂
慎一 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005069959A priority Critical patent/JP4567495B2/en
Publication of JP2006251555A publication Critical patent/JP2006251555A/en
Application granted granted Critical
Publication of JP4567495B2 publication Critical patent/JP4567495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、光波長変換方法に関し、さらに詳しくは、可撓性及び耐久性に優れ、低電圧で良好な発光性を有し、しかも製造の容易な光波長変換素子に関するものである。   The present invention relates to a light wavelength conversion method, and more particularly to a light wavelength conversion element that is excellent in flexibility and durability, has a good light emission property at a low voltage, and is easy to manufacture.

従来、各種表示システムに用いられる光変換素子としては、種々のものが知られており、光変換素子として、アモルファスシリコン及び電界発光層を積層して電圧を印加、アモルファスシリコンの吸収光照射により電流を流し、発光層より別波長の発光を生じさせる波長変換素子が提案されている[宮尾、平本、横山、‘90春季応用物理学会予稿集31a−Q−7及び28a−PB−12(非特許文献1)]。
しかしながら、アモルファスシリコンは、製造コストが高いこと、可撓性がないこと等の欠点があった。
Conventionally, various types of light conversion elements used in various display systems are known. As a light conversion element, a voltage is applied by laminating amorphous silicon and an electroluminescent layer, and current is generated by irradiation of absorbed light of amorphous silicon. Wavelength conversion elements that emit light of different wavelengths from the light emitting layer have been proposed [Miyao, Hiramoto, Yokoyama, '90 Spring Applied Physics Society Proceedings 31a-Q-7 and 28a-PB-12 (non- Patent Document 1)].
However, amorphous silicon has drawbacks such as high manufacturing cost and lack of flexibility.

また、他の従来の光波長変換素子は、金属電極と電界発光層との接合部における変質劣化及びこれに伴う注入電荷密度の低下に起因した発光輝度の経時的な低下が観測されるという問題があった。
そこで、発光特性を安定化させるため、発光効率が低くなった場合には、さらに電圧を印加しなければならず、この場合、初期駆動時の数倍の電圧を印加することを余儀なくされ、素子寿命を短くする原因となっていた。
In addition, another conventional light wavelength conversion element has a problem that deterioration in emission luminance over time due to deterioration in quality at the junction between the metal electrode and the electroluminescent layer and the accompanying decrease in injected charge density is observed. was there.
Therefore, in order to stabilize the light emission characteristics, when the light emission efficiency becomes low, it is necessary to further apply a voltage. In this case, it is necessary to apply a voltage several times that in the initial drive, This was a cause of shortening the service life.

宮尾、平本、横山、‘90春季応用物理学会予稿集31a−Q−7及び28a−PB−12Miyao, Hiramoto, Yokoyama, '90 Spring Applied Physics Society Proceedings 31a-Q-7 and 28a-PB-12

本発明は、このような現状に鑑み、可撓性及び耐久性に優れ、低電圧で良好な発光性を有し、しかも製造の容易な光波長変換方法を提供することをその課題とするものである。   In view of such a current situation, the present invention has an object to provide an optical wavelength conversion method that is excellent in flexibility and durability, has a good light emission property at a low voltage, and is easy to manufacture. It is.

本発明者らは、上記課題を解決するために、試行錯誤の上、光電変換層に含有させる化合物に着目し鋭意検討を重ねた結果、本発明を完成するに到った。
すなわち、上記課題は本発明の(1)〜(10)によって解決される。
(1)「光電変換層及び電界発光層からなる積層体の両面に電極を設け、光電変換層の吸収領域の光を照射し、さらに該電極から電圧を印加することにより、電界発光層から入射光と異なる波長の光を発生する光波長変換素子であって、該光電変換層に下記一般式(I)で表わされる繰返し単位を有する高分子材料が含まれることを特徴とする光波長変換素子。
In order to solve the above-mentioned problems, the present inventors have made extensive efforts to pay attention to the compound contained in the photoelectric conversion layer through trial and error, and as a result, the present invention has been completed.
That is, the said subject is solved by (1)-(10) of this invention.
(1) “An electrode is provided on both sides of a laminate composed of a photoelectric conversion layer and an electroluminescent layer, irradiated with light from the absorption region of the photoelectric conversion layer, and further applied with a voltage from the electrode, thereby being incident from the electroluminescent layer. An optical wavelength conversion element for generating light having a wavelength different from that of light, wherein the photoelectric conversion layer includes a polymer material having a repeating unit represented by the following general formula (I): .

Figure 0004567495

(式中、Ar及びArは、それぞれ独立に置換若しくは無置換の芳香族炭化水素または置換若しくは無置換の複素芳香環化合物の2価基であり、Arは置換若しくは無置換の芳香族炭化水素または置換若しくは無置換の複素芳香環化合物の1価基であり、RからRは、それぞれ独立に水素原子、ハロゲン原子、置換または無置換のアルキル基、置換または無置換のアルコキシ基、及び置換または無置換のアルキルチオ基からなる群より選択される基であり、x及びyは、それぞれ独立に、1以上3以下の整数を表わす。
xまたはyが2以上の整数の場合、x個のRはそれぞれ異なっていてもよく、y個のRもそれぞれ異なっていてもよい。)」;
(2)「光電変換層及び電界発光層からなる積層体の両面に電極を設け、光電変換層の吸収領域の光を照射し、さらに該電極から電圧を印加することにより、電界発光層から入射光と異なる波長の光を発生する光波長変換素子であって、該光電変換層に下記一般式(II)で表わされる繰返し単位を有する高分子材料が含まれることを特徴とする前記第(1)項に記載の光波長変換素子。
Figure 0004567495

(In the formula, Ar 1 and Ar 2 are each independently a substituted or unsubstituted aromatic hydrocarbon or a divalent group of a substituted or unsubstituted heteroaromatic compound, and Ar 3 is a substituted or unsubstituted aromatic group. It is a monovalent group of a hydrocarbon or a substituted or unsubstituted heteroaromatic ring compound, and R 1 to R 8 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group And a group selected from the group consisting of a substituted or unsubstituted alkylthio group, and x and y each independently represents an integer of 1 to 3.
When x or y is an integer of 2 or more, x R 3 s may be different from each other, and y R 4 s may be different from each other. ) ”;
(2) “An electrode is provided on both sides of a laminate composed of a photoelectric conversion layer and an electroluminescent layer, irradiated with light from the absorption region of the photoelectric conversion layer, and further applied with a voltage from the electrode to be incident from the electroluminescent layer. An optical wavelength conversion element that generates light having a wavelength different from that of light, wherein the photoelectric conversion layer includes a polymer material having a repeating unit represented by the following general formula (II): The optical wavelength conversion element according to item).

Figure 0004567495

(式中、RからR11は、それぞれ独立に水素原子、ハロゲン原子、置換または無置換のアルキル基、置換または無置換のアルコキシ基、及び置換または無置換のアルキルチオ基からなる群より選択される基を表わす。x及びyは、それぞれ独立に1以上3以下の整数を表わし、u及びvは、それぞれ独立に1以上4以下の整数を表わし、wは1以上5以下の整数を表わす。
u、v、w、x、yがそれぞれ2以上の整数の場合、u個のR、v個のR10、w個のR11、x個のR、y個のRはそれぞれ異なっていてもよい。)」;
(3)「光電変換層及び電界発光層からなる積層体の両面に電極を設け、光電変換層の吸収領域の光を照射し、さらに該電極から電圧を印加することにより、電界発光層から入射光と異なる波長の光を発生する光波長変換素子であって、該光電変換層に下記一般式(III)で表わされる繰返し単位を有する高分子材料が含まれることを特徴とする前記第(1)項に記載の光波長変換素子。
Figure 0004567495

Wherein R 1 to R 11 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted alkylthio group. X and y each independently represents an integer of 1 to 3, u and v each independently represent an integer of 1 to 4, and w represents an integer of 1 to 5.
When u, v, w, x, and y are integers of 2 or more, u R 9 , v R 10 , w R 11 , x R 3 , and y R 4 are different from each other. It may be. ) ”;
(3) “An electrode is provided on both surfaces of a laminate composed of a photoelectric conversion layer and an electroluminescent layer, light is applied to the absorption region of the photoelectric conversion layer, and a voltage is applied from the electrode, whereby the light is incident from the electroluminescent layer. An optical wavelength conversion element that generates light having a wavelength different from that of light, wherein the photoelectric conversion layer includes a polymer material having a repeating unit represented by the following general formula (III): The optical wavelength conversion element according to item).

Figure 0004567495

(式中、RからR10およびR12からR15は、それぞれ独立に水素原子、ハロゲン原子、置換または無置換のアルキル基、置換または無置換のアルコキシ基、及び置換または無置換のアルキルチオ基からなる群より選択される基を表わす。s、x及びyは、それぞれ独立に1以上3以下の整数を表わし、t、u及びvは、それぞれ独立に1以上4以下の整数を表わす。
s、t、u、v、x、yがそれぞれ2以上の整数の場合、s個のR12、t個のR13、u個のR、v個のR10、x個のR、y個のRはそれぞれ異なっていてもよい。)」;
(4)「前記繰り返し単位は、置換または無置換で1個以上25個以下の炭素原子を含む直鎖または分岐鎖のアルキル基、置換または無置換で1個以上25個以下の炭素原子を含む直鎖または分岐鎖のアルコキシ基、及び/又は置換または無置換で1個以上25個以下の炭素原子を含む直鎖または分岐鎖のアルキルチオ基を前記芳香族環上または飽和炭化水素環上に有することを特徴とする前記第(1)項乃至第(3)項のいずれか1項に記載の光波長変換素子」;
(5)「該光電変換層が、電荷発生材料を含有するものである前記第(1)項乃至第(4)項のいずれかに記載の光波長変換素子」;
(6)「該光電変換層が、電荷発生層及び電荷輸送層からなる積層体であって、該電荷輸送層が、上記一般式(I)〜(III)で表わされる化合物を含有したものである前記第(1)項乃至第(4)項のいずれかに記載の光波長変換素子」;
(7)「光電変換層及び電界発光層からなる積層体の両面に電極を設けた光波長変換素子であって、該電界発光層に上記一般式(I)〜(III)で表わされる化合物を含有させたことを特徴とする光波長変換素子」;
(8)「該光電変換層が、電荷発生材料を含有するものである前記第(7)項に記載の光波長変換素子」;
(9)「該光電変換層が、上記一般式(I)〜(III)で表わされる化合物を含有したものである前記第(7)項または第(8)項に記載の光波長変換素子」;
(10)「該光電変換層が、電荷発生層及び電荷輸送層からなる積層体であって、該電荷発生層及び電荷輸送層が、上記一般式(I)〜(III)で表わされる化合物を含有したものである前記第(7)項に記載の光波長変換素子」。
Figure 0004567495

Wherein R 1 to R 10 and R 12 to R 15 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted alkylthio group. Represents a group selected from the group consisting of: s, x and y each independently represents an integer of 1 to 3, and t, u and v each independently represents an integer of 1 to 4.
When s, t, u, v, x, and y are integers of 2 or more, s R 12 , t R 13 , u R 9 , v R 10 , x R 3 , The y R 4 s may be different from each other. ) ”;
(4) "The repeating unit is a substituted or unsubstituted linear or branched alkyl group containing 1 to 25 carbon atoms, a substituted or unsubstituted alkyl group having 1 to 25 carbon atoms. A linear or branched alkoxy group and / or a substituted or unsubstituted linear or branched alkylthio group containing 1 to 25 carbon atoms on the aromatic ring or saturated hydrocarbon ring; The optical wavelength conversion device according to any one of the items (1) to (3), wherein:
(5) "The light wavelength conversion element according to any one of (1) to (4), wherein the photoelectric conversion layer contains a charge generation material";
(6) “The photoelectric conversion layer is a laminate composed of a charge generation layer and a charge transport layer, and the charge transport layer contains a compound represented by the general formulas (I) to (III). The optical wavelength conversion element according to any one of (1) to (4);
(7) “A light wavelength conversion element in which electrodes are provided on both surfaces of a laminate comprising a photoelectric conversion layer and an electroluminescent layer, wherein the compounds represented by the above general formulas (I) to (III) are added to the electroluminescent layer. A light wavelength conversion element characterized by containing ";
(8) “The optical wavelength conversion element according to (7), wherein the photoelectric conversion layer contains a charge generation material”;
(9) “The optical wavelength conversion element according to the item (7) or (8), wherein the photoelectric conversion layer contains a compound represented by the general formulas (I) to (III)” ;
(10) “The photoelectric conversion layer is a laminate comprising a charge generation layer and a charge transport layer, and the charge generation layer and the charge transport layer are compounds represented by the above general formulas (I) to (III). The optical wavelength conversion element according to item (7), which is contained.

本発明によれば、可撓性及び耐久性に優れ、低電圧で良好な発光性を有し、しかも製造の容易な光波長変換素子が提供され、各種表示システムに用いられる発光材料の設計、製造等の分野に寄与するところはきわめて多大である。   According to the present invention, there is provided a light wavelength conversion element that is excellent in flexibility and durability, has a good light emission property at a low voltage, and is easy to manufacture, and is designed for a light emitting material used in various display systems, There is a tremendous contribution to manufacturing and other fields.

以下に、図面に基づいて、本発明の電界発光素子及び光波長変換方法について説明する。
図1は、本発明に係る代表的な電界発光素子の断面図である。
(1)は光電変換層、(2)は電界により発光する電界発光層、(3)は電極、(4)は上部電極、(5)は支持体である。
Below, based on drawing, the electroluminescent element of this invention and the optical wavelength conversion method are demonstrated.
FIG. 1 is a cross-sectional view of a typical electroluminescent device according to the present invention.
(1) is a photoelectric conversion layer, (2) is an electroluminescent layer that emits light by an electric field, (3) is an electrode, (4) is an upper electrode, and (5) is a support.

次ぎに、図1に示す素子の作動について説明する。
光変換素子として、まず電極(3)及び(4)の間に電界をかけ、同時に、例えば、下側より光電変換層の吸収波長領域の光を照射する。光電変換層で発生した電荷(例えば、ホール)は発光層との界面に至る。発光層が電子移動性であった場合、上部電極(4)より電界発光層(2)へ注入された電子と上記ホールが出会い、電界発光層中の発光材料に基づく照射光と異なる波長の発光が生じる。
Next, the operation of the element shown in FIG. 1 will be described.
As the light conversion element, first, an electric field is applied between the electrodes (3) and (4), and at the same time, for example, light in the absorption wavelength region of the photoelectric conversion layer is irradiated from below. Charges (for example, holes) generated in the photoelectric conversion layer reach the interface with the light emitting layer. When the light emitting layer has electron mobility, electrons injected from the upper electrode (4) into the electroluminescent layer (2) meet the above holes, and light emission having a wavelength different from that of the irradiation light based on the light emitting material in the electroluminescent layer. Occurs.

本発明の光波長変換素子は、金属電極から光電変換層を介して発光部へ電荷が注入されるため、金属電極と発光層との接合部における変質劣化が起こりにくく、発光特性が安定的なものとなる。
本発明における光波長変換素子は、光電変換層に下記一般式(I)で表わされる化合物を含有することを特徴とするものである。
In the light wavelength conversion element of the present invention, charge is injected from the metal electrode to the light emitting part through the photoelectric conversion layer, so that deterioration deterioration at the junction between the metal electrode and the light emitting layer hardly occurs, and the light emission characteristic is stable. It will be a thing.
The light wavelength conversion element in the present invention is characterized in that the photoelectric conversion layer contains a compound represented by the following general formula (I).

Figure 0004567495

(式中、Ar及びArは、それぞれ独立に置換若しくは無置換の芳香族炭化水素または置換若しくは無置換の複素芳香環化合物の2価基であり、Arは、置換若しくは無置換の芳香族炭化水素または置換若しくは無置換の複素芳香環化合物の1価基であり、RからRは、それぞれ独立に水素原子、ハロゲン原子、置換または無置換のアルキル基、置換または無置換のアルコキシ基、及び置換または無置換のアルキルチオ基からなる群より選択される基であり、x及びyは、それぞれ独立に、1以上3以下の整数を表わす。
xまたはyが2以上の整数の場合、x個のRはそれぞれ異なっていてもよく、y個のRもそれぞれ異なっていてもよい。)
Figure 0004567495

(Wherein Ar 1 and Ar 2 are each independently a divalent group of a substituted or unsubstituted aromatic hydrocarbon or a substituted or unsubstituted heteroaromatic ring compound, and Ar 3 is a substituted or unsubstituted aromatic group. R 1 to R 8 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, or a monovalent group of an aromatic hydrocarbon or a substituted or unsubstituted heteroaromatic ring compound And a group selected from the group consisting of a substituted or unsubstituted alkylthio group, and x and y each independently represents an integer of 1 or more and 3 or less.
When x or y is an integer of 2 or more, x R 3 s may be different from each other, and y R 4 s may be different from each other. )

本発明の有機半導体材料は、前記芳香環上または飽和炭化水素環上に置換基を有していてもよい。溶解性の向上の観点からはアルキル基やアルコキシ基、アルキルチオ基などが挙げられる。これら置換基の炭素数が増加すれば溶解性はより向上するが、その反面キャリア移動度は低下してしまうため、溶解性が損なわれない範囲で所望の特性が得られるような置換基を選択することが好ましい。その場合の好適な置換基の例としては炭素数が1〜25の直鎖または分岐鎖の、アルキル基、アルコキシ基及びアルキルチオ基が挙げられる。更に好適には、炭素数が2〜18の直鎖または分岐鎖の、アルキル基、アルコキシ基及びアルキルチオ基が挙げられる。   The organic semiconductor material of the present invention may have a substituent on the aromatic ring or the saturated hydrocarbon ring. From the viewpoint of improving solubility, an alkyl group, an alkoxy group, an alkylthio group, and the like can be given. As the number of carbons in these substituents increases, the solubility will improve, but on the other hand, the carrier mobility will decrease, so select a substituent that will provide the desired properties within the range that does not impair the solubility. It is preferable to do. Examples of suitable substituents in that case include linear or branched alkyl groups, alkoxy groups and alkylthio groups having 1 to 25 carbon atoms. More preferably, a linear or branched alkyl group, alkoxy group and alkylthio group having 2 to 18 carbon atoms are exemplified.

これら置換基は同一のものを複数導入してもよいし、異なるものを複数導入してもよい。また、これらのアルキル基、アルコキシ基及びアルキルチオ基はさらにハロゲン原子、シアノ基、アリール基、ヒドロキシル基、カルボキシル基または炭素数1〜12の直鎖、分岐鎖もしくは環状のアルキル基やアルコキシ基、アルキルチオ基で置換されたアリール基などのさらなる置換基を含有していてもよい。   A plurality of the same substituents may be introduced, or a plurality of different substituents may be introduced. In addition, these alkyl groups, alkoxy groups and alkylthio groups are further halogen atoms, cyano groups, aryl groups, hydroxyl groups, carboxyl groups, linear, branched or cyclic alkyl groups having 1 to 12 carbon atoms, alkoxy groups, alkylthio groups. It may contain further substituents such as an aryl group substituted with a group.

アルキル基として具体的には、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基、s−ブチル基、n−ブチル基、i−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、3,7−ジメチルオクチル基、2−エチルヘキシル基、トリフルオロメチル基、2−シアノエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、シクロペンチル基、シクロヘキシル基等を一例として挙げることができ、アルコキシ基、アルキルチオ基としては上記アルキル基の結合位に酸素原子または硫黄原子を挿入してアルコキシ基、アルキルチオ基としたものが一例として挙げられる。   Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, i-propyl group, t-butyl group, s-butyl group, n-butyl group, i-butyl group, pentyl group, hexyl group, Heptyl, octyl, nonyl, decyl, 3,7-dimethyloctyl, 2-ethylhexyl, trifluoromethyl, 2-cyanoethyl, benzyl, 4-chlorobenzyl, 4-methylbenzyl, A cyclopentyl group, a cyclohexyl group, etc. can be mentioned as an example, As an alkoxy group and an alkylthio group, what made the alkoxy group and the alkylthio group by inserting an oxygen atom or a sulfur atom in the bond position of the said alkyl group is mentioned as an example. .

上記重合体は、アルキル基やアルコキシ基、アルキルチオ基の存在により、溶媒への溶解性がさらに向上する。これらの材質において溶解性を向上させることは、フィルムの湿式成膜過程の製造許容範囲が大きくなることから重要である。例えば塗工溶媒の選択肢の拡大、溶液調製時の温度範囲の拡大、溶媒の乾燥時の温度及び圧力範囲の拡大となり、これらプロセッシビリティーの高さにより、結果的に高純度で均一性の高い高品質な薄膜が得られる可能性が高くなる。   The polymer is further improved in solubility in a solvent due to the presence of an alkyl group, an alkoxy group, or an alkylthio group. It is important to improve the solubility of these materials because the manufacturing tolerance of the film wet film forming process is increased. For example, the choice of coating solvent is expanded, the temperature range during solution preparation is expanded, the temperature and pressure range during solvent drying is expanded, and the high processability results in high purity and high uniformity. The possibility of obtaining a high-quality thin film increases.

本発明の重合体における置換若しくは無置換の芳香族炭化水素または置換若しくは無置換の複素芳香環化合物の2価基Ar、Arとしては、単環基、多環基(縮合多環基、非縮合多環基)の何れでもよく、一例として以下の式(a)に示す芳香環の2価基が挙げられる。 As the divalent groups Ar 1 and Ar 2 of the substituted or unsubstituted aromatic hydrocarbon or the substituted or unsubstituted heteroaromatic compound in the polymer of the present invention, a monocyclic group, a polycyclic group (fused polycyclic group, Any of (non-condensed polycyclic groups) may be used, and examples thereof include an aromatic ring divalent group represented by the following formula (a).

Figure 0004567495

Y、Zはそれぞれ、O、S、および、N(R)を表わし、Y’は、O、S、C(R)、および、N(R)を表わす(ここでRは置換若しくは無置換の芳香族炭化水素または置換若しくは無置換の複素芳香環化合物の1価基、またはアルキル基を表わす)。
また、本発明の重合体における置換若しくは無置換の芳香族炭化水素または置換若しくは無置換の複素芳香環化合物の1価基Arの例としては、上記芳香環の1価基が挙げられる。
Figure 0004567495

Y and Z represent O, S, and N (R), respectively, and Y ′ represents O, S, C (R 2 ), and N (R) (where R is substituted or unsubstituted) Or a monovalent group or an alkyl group of a substituted or unsubstituted heteroaromatic ring compound).
In addition, examples of the monovalent group Ar 3 of the substituted or unsubstituted aromatic hydrocarbon or the substituted or unsubstituted heteroaromatic ring compound in the polymer of the present invention include the monovalent group of the aromatic ring.

また、これら芳香族炭化水素の1価基及び2価基、並びに複素環式化合物の1価基及び2価基は以下に示す置換基を有していてもよい。
(1)ハロゲン原子、トリフルオロメチル基、シアノ基、ニトロ基。
(2)炭素数1〜25の直鎖または分岐鎖の、アルキル基、アルコキシ基。これらのアルキル基及びアルコキシ基は、さらにハロゲン原子、シアノ基、フェニル基、ヒドロキシ基、カルボキシル基、アルコキシ基、アルキルチオ基で置換されていてもよい。
(3)アリールオキシ基。(アリール基としてフェニル基、ナフチル基を有するアリールオキシ基が挙げられる。これらのアリールオキシ基は、ハロゲン原子を置換基として含有してもよく、炭素数1〜25の直鎖または分岐鎖の、アルキル基またはアルコキシ基あるいはアルキルチオ基を置換基として含有していてもよい。具体的には、フェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、4−クロロフェノキシ基、6−メチル−2−ナフチルオキシ基等が挙げられる。)
(4)アルキルチオ基またはアリールチオ基。(アルキルチオ基またはアリールチオ基としては、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。)
(5)アルキル置換アミノ基。(具体的には、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(p−トリル)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ユロリジル基等が挙げられる。)
(6)アシル基。(アシル基としては、具体的にはアセチル基、プロピオニル基、ブチリル基、マロニル基、ベンゾイル基等が挙げられる。)
Moreover, the monovalent group and divalent group of these aromatic hydrocarbons, and the monovalent group and divalent group of the heterocyclic compound may have the following substituents.
(1) Halogen atom, trifluoromethyl group, cyano group, nitro group.
(2) A linear or branched alkyl group or alkoxy group having 1 to 25 carbon atoms. These alkyl groups and alkoxy groups may be further substituted with a halogen atom, a cyano group, a phenyl group, a hydroxy group, a carboxyl group, an alkoxy group, or an alkylthio group.
(3) Aryloxy group. (Examples include aryloxy groups having a phenyl group or a naphthyl group as the aryl group. These aryloxy groups may contain a halogen atom as a substituent, and may be a linear or branched chain having 1 to 25 carbon atoms. An alkyl group, an alkoxy group or an alkylthio group may be contained as a substituent, specifically, a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 4-methylphenoxy group, a 4-methoxyphenoxy group. , 4-chlorophenoxy group, 6-methyl-2-naphthyloxy group, etc.)
(4) An alkylthio group or an arylthio group. (Specific examples of the alkylthio group or arylthio group include a methylthio group, an ethylthio group, a phenylthio group, and a p-methylphenylthio group.)
(5) An alkyl-substituted amino group. (Specifically, diethylamino group, N-methyl-N-phenylamino group, N, N-diphenylamino group, N, N-di (p-tolyl) amino group, dibenzylamino group, piperidino group, morpholino group And a urolidyl group.)
(6) Acyl group. (Specific examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, a malonyl group, and a benzoyl group.)

上記一般式(I)に示されるくり返し単位を含む重合体のうち、より好ましい第一の態様は下記一般式(II)で表わされる。   Of the polymers containing repeating units represented by the above general formula (I), a more preferred first embodiment is represented by the following general formula (II).

Figure 0004567495

(式中、RからR11は、それぞれ独立に水素原子、ハロゲン原子、置換または無置換のアルキル基、置換または無置換のアルコキシ基、及び置換または無置換のアルキルチオ基からなる群より選択される基を表わす。x及びyは、それぞれ独立に1以上3以下の整数を表わし、u及びvは、それぞれ独立に1以上4以下の整数を表わし、wは1以上5以下の整数を表わす。
u、v、w、x、yがそれぞれ2以上の整数の場合、u個のR、v個のR10、w個のR11、x個のR、y個のRはそれぞれ異なっていてもよい。)
Figure 0004567495

Wherein R 1 to R 11 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted alkylthio group. X and y each independently represents an integer of 1 to 3, u and v each independently represent an integer of 1 to 4, and w represents an integer of 1 to 5.
When u, v, w, x, and y are integers of 2 or more, u R 9 , v R 10 , w R 11 , x R 3 , and y R 4 are different from each other. It may be. )

上記一般式(I)に示されるくり返し単位を含む重合体のうち、より好ましい第二の態様は下記一般式(III)で表わされる。   Of the polymers containing repeating units represented by the above general formula (I), a more preferred second embodiment is represented by the following general formula (III).

Figure 0004567495

(式中、RからR10およびR12からR15は、それぞれ独立に水素原子、ハロゲン原子、置換または無置換のアルキル基、置換または無置換のアルコキシ基、及び置換または無置換のアルキルチオ基からなる群より選択される基を表わす。s、x及びyは、それぞれ独立に1以上3以下の整数を表わし、t、u及びvは、それぞれ独立に1以上4以下の整数を表わす。
s、t、u、v、x、yがそれぞれ2以上の整数の場合、s個のR12、t個のR13、u個のR、v個のR10、x個のR、y個のRはそれぞれ異なっていてもよい。)
Figure 0004567495

Wherein R 1 to R 10 and R 12 to R 15 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, and a substituted or unsubstituted alkylthio group. Represents a group selected from the group consisting of: s, x and y each independently represents an integer of 1 to 3, and t, u and v each independently represents an integer of 1 to 4.
When s, t, u, v, x, and y are integers of 2 or more, s R 12 , t R 13 , u R 9 , v R 10 , x R 3 , The y R 4 s may be different from each other. )

上記一般式(I)、(II)、(III)に示される繰り返し単位を含む重合体の製造方法は、例えばカルボニル化合物とホスホネートを用いたWittig−Horner反応、カルボニル化合物とホスホニウム塩を用いたWittig反応、ビニル置換体とハロゲン化物を用いたHeck反応、ビニルボロン酸誘導体とハロゲン化物を用いた鈴木−宮浦カップリング反応などを用いることができ、公知の方法により製造可能である。
なお、本発明で用いられる上記一般式(I)〜(III)で表わされる構造単位からなる重合体の具体的な製造方法は、特願2004−174088号明細書にその詳細が記載されている。
The method for producing the polymer containing the repeating unit represented by the general formulas (I), (II), and (III) includes, for example, Wittig-Horner reaction using a carbonyl compound and a phosphonate, and Wittig using a carbonyl compound and a phosphonium salt. Reaction, Heck reaction using a vinyl-substituted product and a halide, Suzuki-Miyaura coupling reaction using a vinylboronic acid derivative and a halide, and the like can be used, and they can be produced by a known method.
In addition, the specific manufacturing method of the polymer which consists of the structural unit represented by the said general formula (I)-(III) used by this invention is described in the detail in Japanese Patent Application No. 2004-174088. .

本発明に係る高分子材料は、固体もしくは溶液の状態では、空気中でも実質的に酸化されることはない。
上記一般式(I)、(II)、(III)に示される高分子材料の好ましい分子量は、ポリスチレン換算数平均分子量で1000〜1000000であり、より好ましくは2000〜500000である。分子量が小さすぎる場合は成膜時にひびが入ったりして実用性に乏しくなる。また、分子量が大きすぎる場合は一般溶媒への溶解性が悪くなり、溶液の粘度が高くなって塗工が困難になり、やはり実用性に乏しくなるからである。
The polymer material according to the present invention is not substantially oxidized even in the air in a solid or solution state.
The preferable molecular weight of the polymer material represented by the general formulas (I), (II), and (III) is 1000 to 1000000 in terms of polystyrene-equivalent number average molecular weight, and more preferably 2000 to 500000. If the molecular weight is too small, it will be cracked during film formation and become less practical. On the other hand, when the molecular weight is too large, the solubility in a general solvent is deteriorated, the viscosity of the solution becomes high and coating becomes difficult, and the practicality is also poor.

次に、光電変換層の構成について説明する。
一般式(I)で表わされる化合物を光電変換層として用いる場合、このものを単独で使用できるが、このときは窒素レーザ等の光源を用いて励起することになる。また、代表的には、ポリ−N−ビニルカルバゾールと2,4,7−トリニトロ−9−フルオレノンとからなる電荷移動錯体をも光電変換層として使用できる。
Next, the configuration of the photoelectric conversion layer will be described.
When the compound represented by the general formula (I) is used as a photoelectric conversion layer, it can be used alone, but in this case, it is excited using a light source such as a nitrogen laser. Typically, a charge transfer complex composed of poly-N-vinylcarbazole and 2,4,7-trinitro-9-fluorenone can also be used as the photoelectric conversion layer.

また、染料増感された光電変換層も使用できる。増感染料としては、ブリリアントグリーン、ビクトリアブルーB、メチルバイオレット、クリスタルバイオレット、アシッドバイオレット6Bのようなトリアリールメタン染料、ローダミンB、ローダミン6G、ローダミンGエキストラ、エオシンS、エリトロシン、ローズベンガル、フルオレセインのようなキサンテン染料、メチレンブルーのようなチアジン染料、シアニンのようなシアニン染料が挙げられる。   A dye-sensitized photoelectric conversion layer can also be used. As sensitizing dyes, triarylmethane dyes such as brilliant green, Victoria blue B, methyl violet, crystal violet, and acid violet 6B, rhodamine B, rhodamine 6G, rhodamine G extra, eosin S, erythrocin, rose bengal, fluorescein And xanthene dyes, thiazine dyes such as methylene blue, and cyanine dyes such as cyanine.

本発明において光電変換層を形成するためには、スピンコート法、キャスト法、インクジェット工法等の公知の方法によって薄膜化することができる。本発明の高分子材料は、ジクロロメタンやテトラヒドロフラン等の有機溶媒に容易に溶解する。したがって、本発明の高分子材料を溶解できる適当な溶媒により適当な濃度の溶液を調製し、これを用いて上記方法等により塗工し、薄膜を作製することができる。
また、本発明においては、光電変換層にさらに電荷発生材料を含有させることができる。
In order to form the photoelectric conversion layer in the present invention, the photoelectric conversion layer can be thinned by a known method such as a spin coating method, a casting method, or an ink jet method. The polymer material of the present invention is easily dissolved in an organic solvent such as dichloromethane or tetrahydrofuran. Therefore, it is possible to prepare a thin film by preparing a solution having an appropriate concentration with an appropriate solvent capable of dissolving the polymer material of the present invention, and applying the solution by the above method or the like.
In the present invention, the photoelectric conversion layer can further contain a charge generating material.

電荷発生材料としては、例えば、セレン、セレン−テルル、硫化カドミウム、硫化カドミウム−セレン、α−シリコン等の無機材料、有機材料としては例えば、シーアイピグメントブルー25(カラーインデックスCI21180)、シーアイピグメントレッド41(CI21200)、シーアイアシッドレッド52(CI45100)、シーアイベーシックレッド3(CI45210)、カルバゾール骨格を有するアゾ顔料(特開昭53−95033号公報に記載)、ジスチリルベンゼン骨格を有するアゾ顔料(特開昭53−133445号公報に記載)、トリフェニルアミン骨格を有するアゾ顔料(特開昭53−132347号公報に記載)、ジベンゾチオフェン骨格を有するアゾ顔料(特開昭54−21728号公報に記載)、オキサジアゾール骨格を有するアゾ顔料(特開昭54−12742号公報に記載)、フルオレノン骨格を有するアゾ顔料(特開昭54−22834号公報に記載)、ビススチルベン骨格を有するアゾ顔料(特開昭54−17733号公報に記載)、ジスチリルオキサジアゾール骨格を有するアゾ顔料(特開昭54−2129号公報に記載)、ジスチリルカルバゾール骨格を有するアゾ顔料(特開昭54−14967号公報に記載)等のアゾ顔料、例えばシーアイバットブラウン5(CI73410)、シーアイバットダイ(CI73030)等のインジゴ系顔料、アルゴスカーレットB(バイエル社製)、インダンスレンスカーレットR(バイエル社製)等のペリレン系顔料等が挙げられる。   Examples of the charge generation material include inorganic materials such as selenium, selenium-tellurium, cadmium sulfide, cadmium sulfide-selenium, and α-silicon, and examples of organic materials include C.I. Pigment Blue 25 (Color Index CI21180) and C.I. Pigment Red 41. (CI21200), CI Acid Red 52 (CI45100), CI Basic Red 3 (CI45210), an azo pigment having a carbazole skeleton (described in JP-A-53-95033), an azo pigment having a distyrylbenzene skeleton (JP-A No. 53-133445), azo pigments having a triphenylamine skeleton (described in JP-A No. 53-132347), azo pigments having a dibenzothiophene skeleton (described in JP-A No. 54-21728) , Oxa An azo pigment having an azole skeleton (described in JP-A No. 54-12742), an azo pigment having a fluorenone skeleton (described in JP-A No. 54-22834), an azo pigment having a bis-stilbene skeleton (Japanese Patent Laid-Open No. No. 17733), azo pigments having a distyryl oxadiazole skeleton (described in JP-A No. 54-2129), azo pigments having a distyrylcarbazole skeleton (described in JP-A No. 54-14967) Azo pigments, for example, Indigo pigments such as C-Ibat Brown 5 (CI73410) and C-Ibat Die (CI73030), Perylenes such as Argo Scarlet B (manufactured by Bayer), Indence Scarlet R (manufactured by Bayer) And pigments.

また、下記式(1)で表わされるフタロシアニン顔料も電荷発生物質として有用である。
式中、M(中心金属)は金属または水素を表わす。
Moreover, the phthalocyanine pigment represented by the following formula (1) is also useful as a charge generating material.
In the formula, M (central metal) represents a metal or hydrogen.

Figure 0004567495
このM(中心金属)は、H、Li、Be、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Th、Pa、U、Np、Am等の単体または酸化物、塩化物、フッ化物、水酸化物、臭化物等の2種以上の元素からなる。中心金属は、これらの元素に限定されるものではない。
Figure 0004567495
This M (central metal) is H, Li, Be, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Ba, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Pa, U, Np, Am, etc. alone or oxides, chlorides, fluorides, It consists of two or more elements such as hydroxide and bromide. The central metal is not limited to these elements.

本発明におけるフタロシアニン骨格を有する電荷発生物質とは、少なくとも一般式(1)の基本骨格を有していればよく、2量体、3量体等多量体構造を有するもの、さらに高次の高分子構造を有するものであってもよい。また、基本骨格に様々な置換基を有していれもよい。   The charge generation material having a phthalocyanine skeleton in the present invention may have at least the basic skeleton of the general formula (1), and those having a multimeric structure such as a dimer and a trimer, It may have a molecular structure. In addition, the basic skeleton may have various substituents.

これらの様々なフタロシアニンのうち、中心金属にTiOを有するオキソチタニウムフタロシアニン、Hを有する無金属フタロシアニンは、感光体特性的に、特に好ましいものである。
また、これらのフタロシアニンは、様々な結晶系を有することも知られており、例えば、オキソチタニウムフタロシアニンの場合、α、β、γ、m、y型等、銅フタロシアニンの場合、α、β、γの結晶多系を有している。
同じ中心金属を持つフタロシアニンにおいても、結晶系が変わることにより、種々の特性も変化する。
Of these various phthalocyanines, oxotitanium phthalocyanine having TiO as a central metal and metal-free phthalocyanine having H are particularly preferable in terms of photoreceptor characteristics.
These phthalocyanines are also known to have various crystal systems. For example, in the case of oxotitanium phthalocyanine, α, β, γ, m, y type, etc., in the case of copper phthalocyanine, α, β, γ It has a polycrystal system of
Even in a phthalocyanine having the same central metal, various properties change as the crystal system changes.

その中で、感光体特性もこのような結晶系変化に伴い変化することが報告されている〔電子写真学会誌第29巻第4号(1990)〕。
このことから、各フタロシアニンは、感光体特性的に最適な結晶系が存在し、特にオキソチタニウムフタロシアニンにおいては、y型の結晶系が好ましい。
また、上記記載の電荷発生物質は2種以上混合して用いてもよい。
Among them, it has been reported that the characteristics of the photoreceptor also change with such a crystal system change [Journal of Electrophotographic Society, Vol. 29, No. 4 (1990)].
For this reason, each phthalocyanine has an optimum crystal system in terms of the characteristics of the photoconductor, and in particular for oxotitanium phthalocyanine, a y-type crystal system is preferable.
Further, two or more kinds of the charge generating materials described above may be used in combination.

しかしながら、光電変換効率等を考慮すれば、電荷発生材料と電荷輸送材料とからなる機能分離型の光電変換層を形成することが好ましい。
すなわち、本発明の電界発光素子における光電変換層が、電荷発生層と、一般式(1)で表わされる化合物を含む電荷輸送層との積層であってもよい。
However, in consideration of photoelectric conversion efficiency and the like, it is preferable to form a function-separated photoelectric conversion layer including a charge generation material and a charge transport material.
That is, the photoelectric conversion layer in the electroluminescent element of the present invention may be a laminate of a charge generation layer and a charge transport layer containing a compound represented by the general formula (1).

図2は、光電変換層(1)が電荷発生層(12)と電荷輸送層(11)との積層からなる本発明の代表的な光波長変換素子の断面図である。
これらの電荷発生層は、電荷発生材料と適当な溶媒に、必要に応じてバインダー樹脂を加え、溶解または分散し塗布して乾燥させることにより設けることができる。バインダー樹脂としては、絶縁性がよい従来から知られているバインダー樹脂であれば、いずれも使用でき特に限定はない。
FIG. 2 is a cross-sectional view of a typical light wavelength conversion device of the present invention in which the photoelectric conversion layer (1) is a laminate of a charge generation layer (12) and a charge transport layer (11).
These charge generation layers can be provided by adding a binder resin to a charge generation material and a suitable solvent, if necessary, dissolving or dispersing, applying, and drying. As the binder resin, any conventionally known binder resin having good insulating properties can be used without any particular limitation.

このバインダー樹脂としては、例えば、ポリエチレン、ポリビニルブチラール、ポリビニルホルマール、ポリスチレン樹脂、フェノキシ樹脂、ポリプロピレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、ポリアミド樹脂、シリコン樹脂、メラミン樹脂等の付加重合型樹脂、重付加型樹脂、重縮合型樹脂及びこれらの樹脂の繰り返し単位のうち2つ以上を含む共重合体樹脂、例えば、塩化ビニル−酢酸ビニル共重合体、スチレン−アクリル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体樹脂等の絶縁性樹脂のほか、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。   Examples of the binder resin include polyethylene, polyvinyl butyral, polyvinyl formal, polystyrene resin, phenoxy resin, polypropylene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, Addition polymerization resins such as alkyd resins, polycarbonate resins, polyamide resins, silicone resins, melamine resins, polyaddition resins, polycondensation resins, and copolymer resins containing two or more repeating units of these resins, such as In addition to insulating resins such as vinyl chloride-vinyl acetate copolymer, styrene-acrylic copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer resin, polymer organic semiconductors such as poly-N-vinylcarbazole Is mentioned.

これらのバインダー樹脂は、単独または2種類以上の混合物として用いることができる。バインダー樹脂の量は、電荷発生材料1重量部に対し0〜5重量部、好ましくは0.1〜3重量部である。   These binder resins can be used alone or as a mixture of two or more. The amount of the binder resin is 0 to 5 parts by weight, preferably 0.1 to 3 parts by weight with respect to 1 part by weight of the charge generating material.

電荷発生層の分散液または溶液を調製する際に使用する溶媒としては、例えば、N,N−ジメチルホルムアミド、トルエン、キシレン、モノクロルベンゼン、1,2−ジクロルエタン、1,1,1−トリクロルエタン、ジクロルメタン、1,1,2−トリクロルエタン、トリクロルエチレン、テトラヒドロフラン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、ジオキサン等を挙げることができる。   Examples of the solvent used in preparing the dispersion or solution of the charge generation layer include N, N-dimethylformamide, toluene, xylene, monochlorobenzene, 1,2-dichloroethane, 1,1,1-trichloroethane, Examples include dichloromethane, 1,1,2-trichloroethane, trichloroethylene, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate, and dioxane.

電荷発生層用分散液の分散方法としては、例えば、ボールミル、超音波、ホモミキサー等が挙げられ、また塗布手段としては、ディッピング塗工法、ブレード塗工法、スプレー塗工法、インクジェット工法等が挙げられる。
本発明の光波長変換素子において、使用される発光材料は、溶液状態において強い蛍光を示すレーザ色素等や、これまで有機薄膜EL素子に発光材として使用されてきた既存の低分子蛍光性材料を利用することが可能である。
Examples of the dispersion method for the charge generation layer dispersion include a ball mill, an ultrasonic wave, and a homomixer. Examples of the application means include a dipping coating method, a blade coating method, a spray coating method, and an inkjet method. .
In the light wavelength conversion element of the present invention, the light emitting material used is a laser dye or the like that exhibits strong fluorescence in a solution state, or an existing low molecular fluorescent material that has been used as a light emitting material in organic thin film EL elements so far. It is possible to use.

この低分子蛍光性材料としては、例えば、アントラセン、ナフタレン、フェナントレン、ピレン、テトラセン、コロネン、クリセン、フルオレセイン、ペリレン、フタロペリレン、ナフタロペリレン、ペリノン、フタロペリノン、ナフタロペリノン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、アルダジン、ビスベンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジエン、キノリン金属錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、イミン、ジフェニルエチレン、ビニルアントラセン、ジアミノカルバゾール、ピラン、チオピラン、ポリメチン、メロシアニン、イミダゾールキノレート化オキシノイド化合物、キナクリドン、ルブレン等及びそれらの誘導体が挙げられる。   Examples of the low-molecular fluorescent material include anthracene, naphthalene, phenanthrene, pyrene, tetracene, coronene, chrysene, fluorescein, perylene, phthaloperylene, naphthaloperylene, perinone, phthaloperinone, naphthaloperinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, and oxadiene. Azole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, quinoline metal complex, aminoquinoline metal complex, benzoquinoline metal complex, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyran, thiopyran, polymethine, merocyanine, imidazole Examples thereof include quinolated oxinoid compounds, quinacridone, rubrene and the like and derivatives thereof.

また、上記記載の発光材料は2種以上混合して用いてもよく、これらを積層して電界発光層を形成してもよい。
上記発光材料を含む電界発光層の製膜方法としては、上記の光電変換層の製膜方法を利用することができ、また、それ以外に真空蒸着法やスパッタ法等の乾式成膜法をも利用することができる。
In addition, two or more of the light emitting materials described above may be mixed and used, and an electroluminescent layer may be formed by stacking them.
As a method for forming the electroluminescent layer containing the light emitting material, the method for forming the photoelectric conversion layer can be used, and in addition, a dry film forming method such as a vacuum evaporation method or a sputtering method can be used. Can be used.

本発明の光波長変換素子においては、電界発光層に一般式(I)で表わされる化合物を含有させることもできる。   In the light wavelength conversion element of the present invention, the electroluminescent layer may contain a compound represented by the general formula (I).

図3は、本発明の光波長変換素子の一例を示す断面図であり、電界発光層(6)に一般式(I)で表わされる化合物が含まれる。
また、一般式(I)で表わされる化合物を光電変換層及び電界発光層の両方に含有させることができる。
FIG. 3 is a cross-sectional view showing an example of the light wavelength conversion device of the present invention, in which the compound represented by the general formula (I) is contained in the electroluminescent layer (6).
Moreover, the compound represented with general formula (I) can be contained in both a photoelectric converting layer and an electroluminescent layer.

図4は、この一例を示す本発明の光波長変換素子の断面図であり、電界発光層(6)及び光電変換層(7)の両層に一般式(I)で表わされる化合物が含まれる。この光電変換層には、同時に電荷発生材料を含むことが望ましい。   FIG. 4 is a cross-sectional view of the light wavelength conversion element of the present invention showing an example of this, and the compound represented by the general formula (I) is contained in both the electroluminescent layer (6) and the photoelectric conversion layer (7). . The photoelectric conversion layer preferably contains a charge generation material at the same time.

さらに、光電変化層が電荷発生層と一般式(I)で表わされる化合物を含む電荷輸送層とを積層し構成されることも可能である。   Further, the photoelectric change layer can be formed by laminating a charge generation layer and a charge transport layer containing a compound represented by the general formula (I).

図5は、この例を示す本発明の光波長変換素子の断面図であり、光電変換層が電荷発生層(12)と電荷輸送層(71)との積層で構成され、電荷輸送層(71)に一般式(I)で表わされる化合物が含まれる。   FIG. 5 is a cross-sectional view of the light wavelength conversion element of the present invention showing this example. The photoelectric conversion layer is composed of a stack of a charge generation layer (12) and a charge transport layer (71), and the charge transport layer (71 ) Include compounds represented by general formula (I).

本発明の光波長変換素子に直流電圧をかける場合は、電極(3)が正極、電極(4)が負極となる。
この発光を電極(3)及び支持体(5)を通って外部に放射することを目的とした場合、電極(3)及び支持体は透明度の高いものがよく、かつ電荷発生物質の吸収は発光物質の発光波長と重ならない方がより多くの光を外部に取り出すことができる。
When a direct current voltage is applied to the optical wavelength conversion element of the present invention, the electrode (3) is a positive electrode and the electrode (4) is a negative electrode.
When it is intended to radiate the emitted light to the outside through the electrode (3) and the support (5), the electrode (3) and the support should be highly transparent, and the absorption of the charge generating substance is light emission. More light can be extracted outside if it does not overlap with the emission wavelength of the substance.

一方、電極(4)を通して出てきた光を使用する場合、電極(4)はなるべく透明なもの(透明電極またはアルミニウムを薄く蒸着する)を使用する。なお、透明支持体は電極(4)側につけてもよい。   On the other hand, when using the light emitted through the electrode (4), the electrode (4) should be as transparent as possible (transparent electrode or aluminum is thinly deposited). The transparent support may be attached to the electrode (4) side.

また、図2に示すように、発光層と対極側の間にも電荷搬送層を設けることも可能である。また、対極側にも電荷発生層を設けることもできる。
電極(3)としては、4eV好ましくは4.8eVより大きな仕事関数を有する金属、合金、酸化金属等が利用される。
Further, as shown in FIG. 2, it is also possible to provide a charge transport layer between the light emitting layer and the counter electrode side. A charge generation layer can also be provided on the counter electrode side.
As the electrode (3), a metal, an alloy, a metal oxide, or the like having a work function of 4 eV, preferably greater than 4.8 eV is used.

このような電極材料の具体例としては、金、白金、パラジウム、銀、タングステン、ニッケル、コバルト、ITO、CuI、SnO、ZnO等の透明電極の利用が挙げられる。
特にITO基板が好適である。ITO基板の場合表面の平滑なものが好ましく、また、表面の汚れを充分に洗浄して使用する。
Specific examples of such an electrode material include use of transparent electrodes such as gold, platinum, palladium, silver, tungsten, nickel, cobalt, ITO, CuI, SnO 2 , and ZnO.
In particular, an ITO substrate is suitable. In the case of an ITO substrate, a substrate having a smooth surface is preferable, and the surface is thoroughly cleaned before use.

洗浄法としては、既知の方法でよいが、オゾン雰囲気下での紫外線照射や酸素雰囲気下でのプラズマ処理を行なったものが好適である。
一方、電極(4)としては、仕事関数の4eVより小さい金属、合金等が利用される。このような物質の具体例としては、ナトリウム、カルシウム、マグネシウム、リチウム、アルミニウム、サマリウム及びこれらの合金等が利用できる。
電極(3)及び電極(4)として用いる材料のうち少なくとも一方は、素子の発光波長領域において充分透明であることが望ましい。
基板(5)としては通常、ガラス板や合成樹脂シートが用いられ、入射光と発光層より放出される光に対して透明であることが望ましい。
As a cleaning method, a known method may be used, but a method in which ultraviolet irradiation in an ozone atmosphere or plasma treatment in an oxygen atmosphere is performed is preferable.
On the other hand, as the electrode (4), a metal, an alloy or the like having a work function smaller than 4 eV is used. Specific examples of such materials include sodium, calcium, magnesium, lithium, aluminum, samarium, and alloys thereof.
It is desirable that at least one of the materials used as the electrode (3) and the electrode (4) is sufficiently transparent in the light emission wavelength region of the element.
Usually, a glass plate or a synthetic resin sheet is used as the substrate (5), and it is desirable that the substrate (5) be transparent to incident light and light emitted from the light emitting layer.

以下、実施例を挙げて本発明をさらに詳しく説明するが、これら実施例によって本発明はなんら限定されるものではない。また、本実施例に用いた重合体の製造方法の詳細は特願2004−174088号明細書に記載されている。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited at all by these Examples. Details of the method for producing the polymer used in this example are described in Japanese Patent Application No. 2004-174088.

〔実施例1〕
厚さ150nmのITO膜を設けたガラス基板を煮沸アルコールにより洗浄し、さらに表面を酸素プラズマにより表面処理(プラズマ処理条件は、出力:500W、反射波率:1.2%以下、酸素ガス流量:70cc/min.、処理時間:30分)した。
この基板上にX型銅フタロシアニン50nmを蒸着した後、本発明で用いられる下記化合物(A)の高分子材料の1.5wt%ジクロロメタン溶液を調製し、孔径0.1μmのメンブランフィルターで濾過した。
[Example 1]
A glass substrate provided with an ITO film having a thickness of 150 nm is washed with boiling alcohol, and the surface is further surface-treated with oxygen plasma (plasma treatment conditions are: output: 500 W, reflection wave rate: 1.2% or less, oxygen gas flow rate: 70 cc / min., Treatment time: 30 minutes).
After depositing 50 nm of X-type copper phthalocyanine on this substrate, a 1.5 wt% dichloromethane solution of a polymer material of the following compound (A) used in the present invention was prepared and filtered through a membrane filter having a pore size of 0.1 μm.

この溶液を使用して、X型銅フタロシアニン膜上にスピンコート法により100nmの膜厚で塗布し、光電変換層を形成した。
充分乾燥を行なった後に、光電変換層上に、発光層として、1,4−ビス(4−ジ−p−トリルアミノスチリル)ベンゼン50nmを蒸着、次いで電子輸送層として、2−(4−tert.−ブチルフェニル)−5−(4−ビフェニリル)−1,3,4−オキサジアゾールを100nm蒸着し、電界発光層を形成した。
さらに、この上にMgAg合金層を200nm 形成した。
Using this solution, a photoelectric conversion layer was formed on the X-type copper phthalocyanine film by spin coating to a thickness of 100 nm.
After sufficiently drying, 1,4-bis (4-di-p-tolylaminostyryl) benzene 50 nm was deposited as a light emitting layer on the photoelectric conversion layer, and then 2- (4-tert) as an electron transport layer. .-Butylphenyl) -5- (4-biphenylyl) -1,3,4-oxadiazole was deposited to a thickness of 100 nm to form an electroluminescent layer.
Further, an MgAg alloy layer having a thickness of 200 nm was formed thereon.

このようにして作製した光波長変換素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO側から780nmのレーザ光を照射したところ、青緑色の発光が観測された。   When the light wavelength conversion element thus produced was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with a laser beam of 780 nm from the ITO side at an applied voltage of 10 V, blue-green light emission was observed.

Figure 0004567495
Figure 0004567495

〔一般式(A)の高分子材料合成〕
実施例1に用いた実施例に用いた重合体(A)は、つぎのように合成された。
[Synthesis of polymer material of general formula (A)]
The polymer (A) used in the example used in Example 1 was synthesized as follows.

Figure 0004567495
Figure 0004567495

200ml四つ口フラスコに、上記のジアルデヒド1.106g(2.648mmol)及びジホスホネート1.681g(2.648mmol)を入れ、窒素置換してテトラヒドロフラン80ml、及びベンズアルデヒド14.1mg(0.132mmol)を加えた。この溶液にカリウムt−ブトキシドの1.0mol dm−3テトラヒドロフラン溶液8.00ml(8.00mmol)を滴下し、室温で2時間撹拌した後、ベンジルホスホン酸ジエチル60.5mg(0.265mmol)を加え、さらに1時間撹拌した。酢酸およそ1mlを加えて反応を終了し、反応溶液を水洗した。溶媒を減圧留去した後、テトラヒドロフラン及びメタノールを用いて再沈澱による精製を行ない、上記重合体を1.682g得た。収率85%。
元素分析値(計算値);C:90.68(90.40%)、H:7.48%(7.72%)、N:1.91%(1.88%)。
示差走査熱量測定から求めたガラス転移温度は194.6℃であった。
GPCにより測定したポリスチレン換算の数平均分子量は17300、重量平均分子量は56000であった。
In a 200 ml four-necked flask, 1.106 g (2.648 mmol) of the above dialdehyde and 1.681 g (2.648 mmol) of diphosphonate were placed, and the atmosphere was replaced with nitrogen. 80 ml of tetrahydrofuran and 14.1 mg (0.132 mmol) of benzaldehyde Was added. To this solution, 8.00 ml (8.00 mmol) of 1.0 mol dm -3 tetrahydrofuran solution of potassium t-butoxide was added dropwise and stirred at room temperature for 2 hours, and then 60.5 mg (0.265 mmol) of diethyl benzylphosphonate was added. The mixture was further stirred for 1 hour. About 1 ml of acetic acid was added to complete the reaction, and the reaction solution was washed with water. After the solvent was distilled off under reduced pressure, purification by reprecipitation was performed using tetrahydrofuran and methanol to obtain 1.682 g of the above polymer. Yield 85%.
Elemental analysis value (calculated value); C: 90.68 (90.40%), H: 7.48% (7.72%), N: 1.91% (1.88%).
The glass transition temperature determined from differential scanning calorimetry was 194.6 ° C.
The number average molecular weight in terms of polystyrene measured by GPC was 17300, and the weight average molecular weight was 56000.

〔実施例2〕
実施例1において、本発明で用いられる高分子材料として、化合物(A)のかわりに下記化合物(B)を用いた以外は、実施例1と同様にして本発明の光波長変換素子を作製した。このようにして作製した光波長変換素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO 側から780nmのレーザ光を照射したところ、青緑色の発光が観測された。
[Example 2]
In Example 1, the light wavelength conversion device of the present invention was produced in the same manner as in Example 1 except that the following compound (B) was used instead of the compound (A) as the polymer material used in the present invention. . When the light wavelength conversion element thus fabricated was connected to ITO as the anode and MgAg was connected to the cathode and irradiated with a laser beam of 780 nm from the ITO side at an applied voltage of 10 V, blue-green light emission was observed.

Figure 0004567495
Figure 0004567495

〔一般式(B)の高分子材料合成〕
実施例2に用いた実施例に用いた重合体(B)は、つぎのように合成された。
[Synthesis of polymer material of general formula (B)]
The polymer (B) used in the example used in Example 2 was synthesized as follows.

Figure 0004567495
Figure 0004567495

200ml四つ口フラスコに、上記のジアルデヒド0.837g(2.655mmol)及びジホスホネート1.685g(2.655mmol)を入れ、窒素置換してテトラヒドロフラン80ml、及びベンズアルデヒド14.1mg(0.132mmol)を加えた。この溶液にカリウムt−ブトキシドの1.0mol dm−3テトラヒドロフラン溶液8.00ml(8.00mmol)を滴下し、室温で2時間撹拌した後、ベンジルホスホン酸ジエチル60.5mg(0.265mmol)を加え、さらに1時間撹拌した。酢酸およそ1mlを加えて反応を終了し、反応溶液を水洗した。溶媒を減圧留去した後、テトラヒドロフラン及びメタノールを用いて再沈澱による精製を行ない、上記重合体を1.386g得た。収率81%。
元素分析値(計算値);C:90.11(89.81%)、H:7.92%(8.01%)、N:2.01%(2.18%)。
示差走査熱量測定から求めたガラス転移温度は182.9℃であった。
GPCにより測定したポリスチレン換算の数平均分子量は14400、重量平均分子量は42600であった。
In a 200 ml four-necked flask, 0.837 g (2.655 mmol) of the above dialdehyde and 1.485 g (2.655 mmol) of diphosphonate were placed, and the atmosphere was replaced with nitrogen, 80 ml of tetrahydrofuran, and 14.1 mg (0.132 mmol) of benzaldehyde. Was added. To this solution, 8.00 ml (8.00 mmol) of 1.0 mol dm -3 tetrahydrofuran solution of potassium t-butoxide was added dropwise and stirred at room temperature for 2 hours, and then 60.5 mg (0.265 mmol) of diethyl benzylphosphonate was added. The mixture was further stirred for 1 hour. About 1 ml of acetic acid was added to complete the reaction, and the reaction solution was washed with water. After the solvent was distilled off under reduced pressure, purification by reprecipitation was performed using tetrahydrofuran and methanol to obtain 1.386 g of the above polymer. Yield 81%.
Elemental analysis value (calculated value); C: 90.11 (89.81%), H: 7.92% (8.01%), N: 2.01% (2.18%).
The glass transition temperature determined from differential scanning calorimetry was 182.9 ° C.
The number average molecular weight in terms of polystyrene measured by GPC was 14400, and the weight average molecular weight was 42600.

〔実施例3〕
厚さ150nmのITO膜を設けたガラス基板を煮沸アルコールにより洗浄し、さらに表面を酸素プラズマにより表面処理した。
この基板上にY型チタニルフタロシアニン/シリコン樹脂(商品名KR5240、信越化学製)/2−ブタノンからなる電荷発生層形成液をドクターブレードを塗布、乾燥して、100nmの光電変換層を形成した。
Example 3
A glass substrate provided with an ITO film having a thickness of 150 nm was washed with boiling alcohol, and the surface was surface-treated with oxygen plasma.
A charge generation layer forming liquid composed of Y-type titanyl phthalocyanine / silicon resin (trade name KR5240, manufactured by Shin-Etsu Chemical) / 2-butanone was applied onto this substrate and dried to form a 100 nm photoelectric conversion layer.

光電変換層上に本発明で用いられる化合物として下記化合物(C)の高分子材料の1.5wt%ジクロロメタン溶液に、2−(4−tert.−ブチルフェニル)−5−(4−ビフェニリル)−1,3,4−オキサジアゾールを固形分の30wt%と微量の下記式(D)で表わされるペリレン誘導体を固形分の3wt%溶解させ、ドクターブレードを塗布、乾燥して、100nmの電界発光層を形成した。   As a compound used in the present invention on the photoelectric conversion layer, a 1.5 wt% dichloromethane solution of the polymer material of the following compound (C) was added to 2- (4-tert.-butylphenyl) -5- (4-biphenylyl)- 1,3,4-oxadiazole is dissolved in 30 wt% of solid content and a small amount of 3 wt% of perylene derivative represented by the following formula (D) is dissolved, and a doctor blade is applied and dried. A layer was formed.

このようにして作製した光波長変換素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO 側から780nmのレーザ光を照射したところ、オレンジ色の発光が観測された。   When the light wavelength conversion element thus fabricated was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with a laser beam of 780 nm from the ITO side at an applied voltage of 10 V, orange light emission was observed.

Figure 0004567495
Figure 0004567495

Figure 0004567495
Figure 0004567495

〔一般式(C)の高分子材料合成〕
実施例3に用いた実施例に用いた重合体(C)は、つぎのように合成された。
[Synthesis of polymer material of general formula (C)]
The polymer (C) used in the example used in Example 3 was synthesized as follows.

Figure 0004567495
Figure 0004567495

200ml四つ口フラスコに、上記のジアルデヒド0.977g(2.534mmol)及びジホスホネート1.609g(2.534mmol)を入れ、窒素置換してテトラヒドロフラン80ml、及びベンズアルデヒド13.4mg(0.127mmol)を加えた。この溶液にカリウムt−ブトキシドの1.0mol dm−3テトラヒドロフラン溶液8.00ml(8.00mmol)を滴下し、室温で2時間撹拌した後、ベンジルホスホン酸ジエチル57.7mg(0.253mmol)を加え、さらに1時間撹拌した。酢酸およそ1mlを加えて反応を終了し、反応溶液を水洗した。溶媒を減圧留去した後、テトラヒドロフラン及びメタノールを用いて再沈澱による精製を行ない、上記重合体を1.580g得た。収率88%。
元素分析値(計算値);C:89.70(89.40%)、H:8.44%(8.63%)、N:2.01%(1.97%)。
示差走査熱量測定から求めたガラス転移温度は142.4℃あった。
GPCにより測定したポリスチレン換算の数平均分子量は11600、重量平均分子量は31900であった。
In a 200 ml four-necked flask, 0.977 g (2.534 mmol) of the above dialdehyde and 1.609 g (2.534 mmol) of diphosphonate were placed, and the atmosphere was replaced with nitrogen to give 80 ml of tetrahydrofuran and 13.4 mg (0.127 mmol) of benzaldehyde. Was added. To this solution, 8.00 ml (8.00 mmol) of a 1.0 mol dm -3 tetrahydrofuran solution of potassium t-butoxide was added dropwise and stirred at room temperature for 2 hours, and then 57.7 mg (0.253 mmol) of diethyl benzylphosphonate was added. The mixture was further stirred for 1 hour. About 1 ml of acetic acid was added to complete the reaction, and the reaction solution was washed with water. After the solvent was distilled off under reduced pressure, purification by reprecipitation was performed using tetrahydrofuran and methanol to obtain 1.580 g of the polymer. Yield 88%.
Elemental analysis value (calculated value); C: 89.70 (89.40%), H: 8.44% (8.63%), N: 2.01% (1.97%).
The glass transition temperature determined from differential scanning calorimetry was 142.4 ° C.
The number average molecular weight in terms of polystyrene measured by GPC was 11600, and the weight average molecular weight was 31900.

〔実施例4〕
実施例1における発光層を下記式(E)のトリス(8−ヒドロキシキノリル)アルミニウムに代えた以外は、実施例1と同様にして光波長変換素子を作製した。この素子をITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO側から780nmのレーザ光を照射したところ、緑色の発光が観測された。
Example 4
A light wavelength conversion device was produced in the same manner as in Example 1 except that the light emitting layer in Example 1 was replaced with tris (8-hydroxyquinolyl) aluminum represented by the following formula (E). When this element was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with a laser beam of 780 nm from the ITO side at an applied voltage of 10 V, green light emission was observed.

Figure 0004567495
Figure 0004567495

〔実施例5〕
実施例1におけるX型銅フタロシアニン蒸着膜に代えて、下記式(F)で表わされるビスアゾ顔料3.6gをシクロヘキサノン65.63gとともにボールミル中で粉砕混合し、得られた分散液1重量部にさらにシクロヘキサノン4重量部を混合させた液を、実施例1と同様に処理されたITO膜上に侵積塗工法により100nmの電荷発生層を設けた以外は、実施例1と同様にして電荷輸送層及び電界発光層を設け、光波長変換素子を作製した。
Example 5
Instead of the X-type copper phthalocyanine deposited film in Example 1, 3.6 g of a bisazo pigment represented by the following formula (F) was pulverized and mixed with 65.63 g of cyclohexanone in a ball mill, and further added to 1 part by weight of the obtained dispersion. A charge transport layer was prepared in the same manner as in Example 1 except that a 100 nm charge generation layer was formed on the ITO film treated in the same manner as in Example 1 by a dip coating method. And the electroluminescent layer was provided and the light wavelength conversion element was produced.

このようにして作製した素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO側から580nmの光を照射したところ、青緑色の発光が観測された。   When the device thus fabricated was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with light of 580 nm from the ITO side at an applied voltage of 10 V, blue-green light emission was observed.

Figure 0004567495
Figure 0004567495

〔実施例6〕
実施例5におけるビスアゾ顔料に代えて、下記式(G)で表わされるトリスアゾ顔料3.6gをシクロヘキサノン65.63gとともにボールミル中で粉砕混合し、得られた分散液1重量部にさらにシクロヘキサノン4重量部を混合させた液を、実施例1と同様に処理されたITO膜上に侵積塗工法により100nmの電荷発生層を設けた以外は、実施例4と同様にして電荷輸送層及び電荷発光層を設け、光波長変換素子を作製した。
Example 6
Instead of the bisazo pigment in Example 5, 3.6 g of trisazo pigment represented by the following formula (G) was ground and mixed in a ball mill together with 65.63 g of cyclohexanone, and 4 parts by weight of cyclohexanone was further added to 1 part by weight of the obtained dispersion. A charge transport layer and a charge emitting layer were formed in the same manner as in Example 4 except that a 100 nm charge generation layer was formed on the ITO film treated in the same manner as in Example 1 by the dip coating method. To prepare an optical wavelength conversion element.

このようにして作製した素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO側から780nmのレーザ光を照射したところ、青緑色の発光が観測された。   When the device thus fabricated was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with a laser beam of 780 nm from the ITO side at an applied voltage of 10 V, blue-green light emission was observed.

Figure 0004567495
Figure 0004567495

〔実施例7〕
実施例5で作製された光電変換層上に、実施例3に示した電界発光層形成用樹脂液をスピンコートすることにより、光波長変換素子を作製した。
このようにして作製した素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO側から580nmの光を照射したところ、オレンジ色の発光が観測された。
Example 7
An optical wavelength conversion element was produced by spin-coating the electroluminescent layer forming resin liquid shown in Example 3 on the photoelectric conversion layer produced in Example 5.
When the device thus fabricated was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with light of 580 nm from the ITO side at an applied voltage of 10 V, orange light emission was observed.

〔実施例8〕
2,4,7−トリニトロ−9−フルオレノンとポリ−N−ビニルカルバゾールが1:1のモル比からなる厚さ200nmの光電変換層上に、実施例3に示した電界発光層形成用樹脂液をスピンコートすることにより、光波長変換素子を作製した。
このようにして作製した素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO側からキセノン光を照射したところ、オレンジ色の発光が観測された。
Example 8
The resin solution for forming an electroluminescent layer shown in Example 3 on a photoelectric conversion layer having a thickness of 200 nm and having a molar ratio of 2,4,7-trinitro-9-fluorenone and poly-N-vinylcarbazole of 1: 1. A light wavelength conversion element was produced by spin coating.
When the device thus fabricated was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with xenon light from the ITO side at an applied voltage of 10 V, orange light emission was observed.

〔実施例9〕
本発明で用いられる化合物として、上記化合物(A)の高分子材料の1.5wt%キシレン溶液を調製し、孔径0.1μmのメンブランフィルターで濾過した。
この溶液を使用してITO膜上にスピンコートして厚さ250nmの光電変換層を形成した。
この光電変換層上に、実施例1で示した電界発光層を設けることにより、光波長変換素子を作製した。
このようにして作製した素子を、ITOを陽極に、MgAgを陰極に接続し、印加電圧10VにてITO側から窒素レーザ光を照射したところ、青緑色の発光が観測された。
Example 9
As a compound used in the present invention, a 1.5 wt% xylene solution of the polymer material of the above compound (A) was prepared and filtered through a membrane filter having a pore size of 0.1 μm.
Using this solution, a 250-nm-thick photoelectric conversion layer was formed by spin coating on the ITO film.
By providing the electroluminescent layer shown in Example 1 on this photoelectric conversion layer, a light wavelength conversion element was produced.
When the element thus fabricated was connected to ITO as an anode and MgAg was connected to a cathode and irradiated with nitrogen laser light from the ITO side at an applied voltage of 10 V, blue-green light emission was observed.

本発明の光波長変換素子を示す断面図である。It is sectional drawing which shows the optical wavelength conversion element of this invention. 本発明の他の光波長変換素子を示す断面図である。It is sectional drawing which shows the other light wavelength conversion element of this invention. 本発明の別の光波長変換素子を示す断面図である。It is sectional drawing which shows another light wavelength conversion element of this invention. 本発明のさらに他の光波長変換素子を示す断面図である。It is sectional drawing which shows the further another optical wavelength conversion element of this invention. 本発明のさらに別の光波長変換素子を示す断面図である。It is sectional drawing which shows another optical wavelength conversion element of this invention.

符号の説明Explanation of symbols

1 光電変換層
2 電界発光層
3 電極
4 電極
5 支持体
6 一般式(I)〜(III)で表わされる化合物を含有した電界発光層
7 一般式(I)〜(III)で表わされる化合物及び電荷発生剤を含有した光電変換層
71 一般式(I)〜(III)で表わされる化合物を含有した電荷輸送層
11 電荷輸送層
12 電荷発生層


DESCRIPTION OF SYMBOLS 1 Photoelectric conversion layer 2 Electroluminescent layer 3 Electrode 4 Electrode 5 Support body 6 Electroluminescent layer containing the compound represented by general formula (I)-(III) 7 The compound represented by general formula (I)-(III) and Photoelectric Conversion Layer Containing Charge Generating Agent 71 Charge Transport Layer Containing Compound Represented by General Formulas (I) to (III) 11 Charge Transport Layer 12 Charge Generation Layer


Claims (7)

光電変換層及び電界発光層からなる積層体の両面に電極を設け、光電変換層の吸収領域の光を照射し、さらに該電極から電圧を印加することにより、電界発光層から入射光と異なる波長の光を発生する光波長変換素子であって、該光電変換層に下記式(A)、(B)、(C)で表わされる化合物のいずれかを含有させたことを特徴とする光波長変換素子。
Figure 0004567495

Figure 0004567495

Figure 0004567495
A wavelength different from the incident light from the electroluminescent layer by providing electrodes on both sides of the laminate composed of the photoelectric conversion layer and the electroluminescent layer, irradiating light in the absorption region of the photoelectric conversion layer, and further applying a voltage from the electrode An optical wavelength conversion element that emits the light of claim 1, wherein the photoelectric conversion layer contains any of the compounds represented by the following formulas (A), (B), and (C): element.
Figure 0004567495

Figure 0004567495

Figure 0004567495
該光電変換層が、電荷発生材料を含有するものである請求項1に記載の光波長変換素子 The light wavelength conversion element according to claim 1, wherein the photoelectric conversion layer contains a charge generation material . 該光電変換層が、電荷発生層及び電荷輸送層からなる積層体であり、該電荷輸送層に前記化合物を含有させている請求項1または2に記載の光波長変換素子 The light wavelength conversion element according to claim 1, wherein the photoelectric conversion layer is a laminate composed of a charge generation layer and a charge transport layer, and the charge transport layer contains the compound . 光電変換層及び電界発光層からなる積層体の両面に電極を設け、光電変換層の吸収領域の光を照射し、さらに該電極から電圧を印加することにより、電界発光層から入射光と異なる波長の光を発生する光波長変換素子であって、該電界発光層に下記式(A)、(B)、(C)で表わされる化合物のいずれかを含有させたことを特徴とする光波長変換素子

Figure 0004567495

Figure 0004567495

Figure 0004567495
A wavelength different from the incident light from the electroluminescent layer by providing electrodes on both sides of the laminate composed of the photoelectric conversion layer and the electroluminescent layer, irradiating light in the absorption region of the photoelectric conversion layer, and further applying a voltage from the electrode A light wavelength conversion element for generating a light of claim 1, wherein the electroluminescent layer contains any of the compounds represented by the following formulas (A), (B), and (C): Element .

Figure 0004567495

Figure 0004567495

Figure 0004567495
該光電変換層が、電荷発生材料を含有したものである請求項4に記載の光波長変換素子 The light wavelength conversion element according to claim 4, wherein the photoelectric conversion layer contains a charge generation material . 該光電変換層が、前記(A)、(B)、(C)で表わされる化合物のいずれかを含有したものである請求項4または5に記載の光波長変換素子 The light wavelength conversion element according to claim 4 or 5, wherein the photoelectric conversion layer contains any one of the compounds represented by (A), (B), and (C) . 該光電変換層が、電荷発生層及び電荷輸送層からなる積層体であり、該電荷発生層及び電荷輸送層に前記化合物を含有させている請求項6に記載の光波長変換素子 The light wavelength conversion element according to claim 6, wherein the photoelectric conversion layer is a laminate composed of a charge generation layer and a charge transport layer, and the compound is contained in the charge generation layer and the charge transport layer .
JP2005069959A 2005-03-11 2005-03-11 Optical wavelength conversion element Expired - Fee Related JP4567495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069959A JP4567495B2 (en) 2005-03-11 2005-03-11 Optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005069959A JP4567495B2 (en) 2005-03-11 2005-03-11 Optical wavelength conversion element

Publications (2)

Publication Number Publication Date
JP2006251555A JP2006251555A (en) 2006-09-21
JP4567495B2 true JP4567495B2 (en) 2010-10-20

Family

ID=37092096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069959A Expired - Fee Related JP4567495B2 (en) 2005-03-11 2005-03-11 Optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JP4567495B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042859A2 (en) 2006-09-29 2008-04-10 University Of Florida Research Foundation, Inc. Method and apparatus for infrared detection and display
JP5025343B2 (en) * 2007-06-19 2012-09-12 株式会社リコー Thiophene-containing polymer and method for producing the same
KR101226296B1 (en) 2007-09-13 2013-01-24 가부시키가이샤 리코 Novel arylamine polymer, method for producing the same, ink composition, film, electronic device, organic thin-film transistor, and display device
WO2011052577A1 (en) * 2009-10-30 2011-05-05 住友化学株式会社 Organic photoelectric conversion element and production method therefor
SG185375A1 (en) 2010-05-24 2012-12-28 Univ Florida Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
CN103733355B (en) 2011-06-30 2017-02-08 佛罗里达大学研究基金会有限公司 A method and apparatus for detecting infrared radiation with gain
CA2988784A1 (en) 2015-06-11 2017-03-09 University Of Florida Research Foundation, Incorporated Monodisperse, ir-absorbing nanoparticles and related methods and devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513170A (en) * 1991-06-27 1993-01-22 Ricoh Co Ltd Electroluminescence element and wavelength converting method
JPH06275864A (en) * 1993-03-24 1994-09-30 Mitsui Toatsu Chem Inc Light-to-light conversion element
JP2000001515A (en) * 1998-06-17 2000-01-07 Honda Motor Co Ltd Polymeric compound and element utilizing same
JP2000001538A (en) * 1998-06-17 2000-01-07 Honda Motor Co Ltd Polymeric compound and element utilizing same
JP2002515078A (en) * 1995-09-04 2002-05-21 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Polymers containing triarylamine units as electroluminescent substances
JP2002265781A (en) * 2001-03-13 2002-09-18 Nippon Shokubai Co Ltd Process for preparing electrically conductive polyaniline composition
JP2003202822A (en) * 2001-12-28 2003-07-18 Ricoh Co Ltd Electroluminescence element and optical wavelength conversion method
JP2006243626A (en) * 2005-03-07 2006-09-14 Ricoh Co Ltd Light wavelength converting element
JP2006253505A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Organic semiconductor laser
JP2006253496A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Photovoltaic element

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513170A (en) * 1991-06-27 1993-01-22 Ricoh Co Ltd Electroluminescence element and wavelength converting method
JPH06275864A (en) * 1993-03-24 1994-09-30 Mitsui Toatsu Chem Inc Light-to-light conversion element
JP2002515078A (en) * 1995-09-04 2002-05-21 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Polymers containing triarylamine units as electroluminescent substances
JP2000001515A (en) * 1998-06-17 2000-01-07 Honda Motor Co Ltd Polymeric compound and element utilizing same
JP2000001538A (en) * 1998-06-17 2000-01-07 Honda Motor Co Ltd Polymeric compound and element utilizing same
JP2002265781A (en) * 2001-03-13 2002-09-18 Nippon Shokubai Co Ltd Process for preparing electrically conductive polyaniline composition
JP2003202822A (en) * 2001-12-28 2003-07-18 Ricoh Co Ltd Electroluminescence element and optical wavelength conversion method
JP2006243626A (en) * 2005-03-07 2006-09-14 Ricoh Co Ltd Light wavelength converting element
JP2006253505A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Organic semiconductor laser
JP2006253496A (en) * 2005-03-11 2006-09-21 Ricoh Co Ltd Photovoltaic element

Also Published As

Publication number Publication date
JP2006251555A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4006862B2 (en) Novel amino compound, its production method and use
JP3593719B2 (en) Novel triphenylamine derivative, its production method and use
JP3593717B2 (en) Novel triphenylamine derivative, its production method and use
JP4088985B2 (en) Organic electroluminescence device using new amino compound
JP3780619B2 (en) Novel styryl polymer compound, production method and use thereof
JP4232259B2 (en) Novel amino compound, its production method and use
JP4122901B2 (en) Organic electroluminescence device
JP4320811B2 (en) Organic electroluminescence device
JPH0794807A (en) Amorphous organic thin film element, amorphous organic polymer composition and amorphous inorganic composition
JP4567495B2 (en) Optical wavelength conversion element
JP4120059B2 (en) Novel benzimidazole compounds, their production and use
JP4314771B2 (en) Organic electroluminescence device
JP3709637B2 (en) Hole transport material and use thereof
JP3593718B2 (en) Novel triphenylamine derivative, its production method and use
JP2006243626A (en) Light wavelength converting element
JP2005093572A (en) Photovoltaic element and photosensor provided therewith
JP3800720B2 (en) Novel styryl polymer compound, production method and use thereof
JP2005093148A (en) Optical wavelength conversion element
JP4230696B2 (en) Electroluminescent device and optical wavelength conversion method
JP2004030942A (en) Organic electroluminescent element
JP2001064642A (en) High molecular charge-transporting material
JP2003203775A (en) Electroluminescence element and light wavelength conversion method
JP3580691B2 (en) Tetra-substituted diamine compound, organic electroluminescent device and organic photoreceptor using the compound
JP2003203777A (en) Electroluminescence element and light wavelength conversion method
JP2003208984A (en) Electroluminescent device and light wavelength converting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees