[go: up one dir, main page]

JP4565316B2 - Heat source equipment - Google Patents

Heat source equipment Download PDF

Info

Publication number
JP4565316B2
JP4565316B2 JP2004089439A JP2004089439A JP4565316B2 JP 4565316 B2 JP4565316 B2 JP 4565316B2 JP 2004089439 A JP2004089439 A JP 2004089439A JP 2004089439 A JP2004089439 A JP 2004089439A JP 4565316 B2 JP4565316 B2 JP 4565316B2
Authority
JP
Japan
Prior art keywords
heat
combustion gas
heat exchanger
gas
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004089439A
Other languages
Japanese (ja)
Other versions
JP2005274043A (en
Inventor
一朗 大友
宏 朝倉
紀弘 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2004089439A priority Critical patent/JP4565316B2/en
Priority to PCT/JP2005/005241 priority patent/WO2005093335A1/en
Priority to US10/593,350 priority patent/US7647897B2/en
Priority to DE112005000642T priority patent/DE112005000642T5/en
Publication of JP2005274043A publication Critical patent/JP2005274043A/en
Application granted granted Critical
Publication of JP4565316B2 publication Critical patent/JP4565316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02B30/102
    • Y02B30/14

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Description

本発明は熱源装置に関するものであり、特に複数の加熱系統を備えたことを特徴とするものに関する。   The present invention relates to a heat source device, and more particularly to a device including a plurality of heating systems.

従来より、給湯機能と浴槽の湯水の追い焚き機能のように複数の機能を併せ持った熱源装置が広く普及している。この種の熱源装置の多くは、下記特許文献1に示すいわゆる二缶二水路形式を採用した熱源装置のように複数の熱交換回路を備えた構成となっている。
特開2003−4227号公報
Conventionally, a heat source device having a plurality of functions such as a hot water supply function and a hot water replenishment function for a bathtub has been widely used. Many of this type of heat source device has a configuration including a plurality of heat exchange circuits like a heat source device employing a so-called two-can two-water channel format shown in Patent Document 1 below.
JP 2003-4227 A

一方、給湯器や風呂装置等の熱源として、ガスや液体燃料を燃焼する熱源装置が多用されている。また近年、省エネルギーや環境保護の観点から、従来の熱源装置よりもさらにエネルギー効率の高い熱源装置が切望されている。そこで、かかる要望を解決すべく複数の熱交換器を備えた熱源装置や、燃焼ガスの顕熱に加えて潜熱も回収可能な潜熱回収型熱源装置と称する熱源装置が提供されている。従来技術の潜熱回収型熱源装置は、例えば下記特許文献2に開示されている様な構成を有するものであり、主として燃焼ガスの顕熱を回収する顕熱回収用熱交換器と、主として潜熱を回収する(残存する顕熱も回収する)潜熱回収用熱交換器とを備えたものである。潜熱回収型熱源装置は、従来の熱源装置に比べて熱効率が高い。
特開平11−148642号公報
On the other hand, a heat source device that burns gas or liquid fuel is often used as a heat source for a water heater or a bath device. In recent years, from the viewpoint of energy saving and environmental protection, a heat source device having higher energy efficiency than the conventional heat source device is desired. In order to solve such a demand, a heat source device provided with a plurality of heat exchangers and a heat source device called a latent heat recovery type heat source device capable of recovering latent heat in addition to sensible heat of combustion gas are provided. The prior art latent heat recovery type heat source device has a configuration as disclosed in, for example, Patent Document 2 below, and mainly includes a sensible heat recovery heat exchanger that recovers sensible heat of combustion gas, and mainly latent heat. And a latent heat recovery heat exchanger that recovers (recovers the remaining sensible heat). The latent heat recovery type heat source device has higher thermal efficiency than the conventional heat source device.
JP-A-11-148642

上記したように、広く普及している熱源装置の多くは、上記特許文献1に開示されている二缶二水路形式の熱源装置のように複数の熱交換回路を備えたものであり、かかる構成の熱源装置についてもエネルギーの有効利用を図るべく潜熱回収用の熱交換器を採用した構成とすることが望まれている。   As described above, many of the widely used heat source devices are equipped with a plurality of heat exchange circuits like the two-can two-water channel type heat source device disclosed in Patent Document 1, and such a configuration. It is also desired that the heat source device of this type adopts a configuration in which a heat exchanger for recovering latent heat is employed in order to effectively use energy.

上記特許文献2に開示されているような潜熱回収用の熱交換器を備えた熱源装置は、熱効率が高い。一方、潜熱回収型熱源装置は、燃焼ガスのもつ潜熱まで回収するものであるため、水蒸気が液化して発生した大量のドレンが潜熱回収用熱交換器に付着する。このドレンは、燃焼ガスにさらされて酸性成分を含み、腐食性を有する液体である。そのため、従来技術の潜熱回収用熱源装置に採用されている潜熱回収用熱交換器は、耐腐食性の高い高価な素材で作製されている。   The heat source device including the heat exchanger for recovering latent heat as disclosed in Patent Document 2 has high thermal efficiency. On the other hand, since the latent heat recovery type heat source device recovers even the latent heat of the combustion gas, a large amount of drain generated by the liquefaction of water vapor adheres to the latent heat recovery heat exchanger. This drain is a liquid that is exposed to combustion gas, contains an acidic component, and is corrosive. Therefore, the latent heat recovery heat exchanger employed in the prior art latent heat recovery heat source device is made of an expensive material having high corrosion resistance.

また、潜熱回収型熱源装置は、顕熱回収用熱交換器と潜熱回収用熱交換器とを併せ持った構成であるため、装置構成が大型化する傾向にある。そのため、従来技術の潜熱回収用熱源装置では、プレートフィン熱交換器等のような高価な熱交換器が採用されている。上記したように、従来技術の潜熱回収型熱源装置では、潜熱回収用の熱交換器が高価であるため、熱源装置全体の製造コストが高くついてしまうという問題があった。   In addition, since the latent heat recovery type heat source device has a configuration including both a sensible heat recovery heat exchanger and a latent heat recovery heat exchanger, the configuration of the device tends to increase in size. Therefore, an expensive heat exchanger such as a plate fin heat exchanger or the like is employed in the conventional heat source device for recovering latent heat. As described above, the latent heat recovery type heat source device of the prior art has a problem that the manufacturing cost of the entire heat source device is increased because the heat exchanger for recovering latent heat is expensive.

そこで、かかる問題を解決すべく、本発明者らは、図6のように二系統の顕熱回収用熱交換回路101a,101bと、二系統の潜熱回収用熱交換手段102a,102bとを独立的に備え、潜熱回収用熱交換手段102a,102bに多数の受熱管を備えた多管式熱交換器を採用した二缶二水路形式の熱源装置100を試作した。熱交換手段102aは、一方の缶体103の燃焼ガス流路105の断面領域のみを覆うように配置されている。また、熱交換手段102bは、熱交換手段102aに対して独立しており、他方の缶体106の燃焼ガス流路107の断面領域のみを覆うように配置されている。   Therefore, in order to solve such a problem, the present inventors independently configured two systems of sensible heat recovery heat exchange circuits 101a and 101b and two systems of latent heat recovery heat exchange means 102a and 102b as shown in FIG. A two-can two-water channel type heat source device 100 employing a multi-tube heat exchanger having a large number of heat receiving tubes in the heat exchange means 102a, 102b for recovering latent heat was experimentally prepared. The heat exchanging means 102 a is disposed so as to cover only the cross-sectional area of the combustion gas flow path 105 of one can body 103. The heat exchanging means 102b is independent of the heat exchanging means 102a, and is arranged so as to cover only the cross-sectional area of the combustion gas flow path 107 of the other can body 106.

上記したように潜熱回収用熱交換手段102a,102bのような多管式熱交換器を採用した熱源装置100について燃焼実験を行った。その結果、プレートフィン熱交換器を採用した場合に匹敵する熱交換効率を得るためには、多数の受熱管を配置する必要があることが判明した。即ち、上記したように、多管型熱交換器を潜熱回収用として採用する場合、熱交換効率を上げるためには、多数の受熱管を配して燃焼ガスと受熱管との接触面積を向上させる必要がある。そのため、熱源装置100のような構成を採用すると、多数の受熱管をヘッダにろう付けして作製する必要があり、プレートフィン熱交換器等を採用した場合に比べて熱交換器の小型化が困難であったり、製造コストがさほど低減できないという問題があった。   As described above, a combustion experiment was performed on the heat source apparatus 100 employing the multi-tube heat exchanger such as the heat exchange means 102a and 102b for recovering latent heat. As a result, it has been found that in order to obtain a heat exchange efficiency comparable to that when a plate fin heat exchanger is employed, it is necessary to arrange a large number of heat receiving tubes. That is, as described above, when a multi-tube heat exchanger is used for latent heat recovery, in order to increase the heat exchange efficiency, a large number of heat receiving tubes are arranged to improve the contact area between the combustion gas and the heat receiving tube. It is necessary to let Therefore, when a configuration such as the heat source device 100 is adopted, it is necessary to braze a large number of heat receiving tubes to the header, and the heat exchanger can be downsized as compared with the case where a plate fin heat exchanger or the like is adopted. There is a problem that it is difficult and the manufacturing cost cannot be reduced so much.

そこで、本発明は、熱交換手段として比較的製造コストの低い多管式熱交換器を採用しつつ、熱エネルギー効率が優れた熱源装置の提供を目的とする。   Then, this invention aims at provision of the heat source apparatus which was excellent in thermal energy efficiency, employ | adopting the multi-tube heat exchanger with comparatively low manufacturing cost as a heat exchange means.

上記した問題を解決すべく提供される請求項1に記載の発明は、燃焼手段と、当該燃焼手段において発生した燃焼ガスが流れる燃焼ガス流路とを備えた加熱系統を複数並べて配し、各加熱系統の燃焼ガス流路はそれぞれ独立しており、当該独立した燃焼ガス流路にはそれぞれ前記燃焼ガス中の主に顕熱を回収する一次熱交換器と、燃焼ガス中の主に潜熱を回収する二次熱交換器とが設けられ、各加熱系統の燃焼ガス流路を流れる燃焼ガスは他の加熱系統の燃焼ガス流路に流入することなく排気されるものであって、二次熱交換器は、燃焼ガスが通過可能な間隔を空けて多数の受熱管が配置された多管型熱交換器により構成され、全ての加熱系統における前記二次熱交換器の受熱管が前記複数の加熱系統の断面領域に跨るように配置されていることを特徴とする熱源装置である。 The invention according to claim 1, which is provided to solve the above-mentioned problem, arranges a plurality of heating systems each including a combustion unit and a combustion gas flow path through which combustion gas generated in the combustion unit flows. The combustion gas passages of the heating system are independent of each other. The independent combustion gas passages each have a primary heat exchanger that mainly recovers sensible heat in the combustion gas, and mainly latent heat in the combustion gas. A secondary heat exchanger to be recovered, and the combustion gas flowing through the combustion gas passages of each heating system is exhausted without flowing into the combustion gas passages of other heating systems, The exchanger is configured by a multi-tube heat exchanger in which a large number of heat receiving tubes are arranged at intervals through which combustion gas can pass, and the heat receiving tubes of the secondary heat exchanger in all heating systems are the plurality of heat receiving tubes. Arranged across the cross-sectional area of the heating system DOO is a heat source apparatus according to claim.

本発明の熱源装置は、熱交換手段(二次熱交換器)を構成する受熱管が、複数の加熱系統の断面領域に跨るように配置されており、受熱管の長さが長い。そのため、本発明の熱源装置は、燃焼ガスとの熱交換に供する伝熱面積を確保するために必要とされる受熱管の本数が少なくてすむ。従って、本発明によれば、熱交換手段(二次熱交換器)の作製に要する手間や、これに伴うコストを最小限に抑制しつつ、燃焼ガスの持つ熱エネルギーを十分回収し、湯水や熱媒体の加熱に有効利用可能なエネルギー回収効率の高い熱源装置を提供できる。 In the heat source device of the present invention, the heat receiving tubes constituting the heat exchange means (secondary heat exchanger) are arranged so as to straddle the cross-sectional areas of the plurality of heating systems, and the length of the heat receiving tubes is long. Therefore, the heat source device of the present invention requires a small number of heat receiving tubes required to secure a heat transfer area for heat exchange with the combustion gas. Therefore, according to the present invention, it is possible to sufficiently recover the thermal energy possessed by the combustion gas while minimizing the labor required for producing the heat exchange means (secondary heat exchanger) and the costs associated therewith. It is possible to provide a heat source device with high energy recovery efficiency that can be effectively used for heating the heat medium.

また、本発明の熱源装置に採用されている熱交換手段(二次熱交換器)は、燃焼ガスと受熱管の接触面積に対する受熱管の本数が少なくてすむため、構成がコンパクトである。そのため、本発明によれば、熱交換手段(二次熱交換器)を具備した熱源装置の小型化を図ることができる。 In addition, the heat exchange means (secondary heat exchanger) employed in the heat source device of the present invention has a compact configuration because the number of heat receiving tubes relative to the contact area between the combustion gas and the heat receiving tubes can be reduced. Therefore, according to this invention, size reduction of the heat-source apparatus provided with the heat exchange means (secondary heat exchanger) can be achieved.

また、請求項に記載の発明は、前記二次熱交換器は、受熱管を収納する収納手段を有し、当該収納手段には、燃焼ガスを導入するガス導入口と、前記収納手段内の燃焼ガスを外部に排出するガス排出口とが設けられており、前記ガス導入口からガス排出口に至る流路には、前記ガス導入口からガス排出口に向かう方向への燃焼ガスの流れ抵抗を増大させる抵抗手段が設けられていることを特徴とする請求項1に記載の熱源装置である。 In the invention according to claim 2 , the secondary heat exchanger has a storage means for storing a heat receiving pipe, and the storage means includes a gas inlet for introducing combustion gas, and an inside of the storage means. And a gas discharge port for discharging the combustion gas to the outside, and a flow of the combustion gas in a direction from the gas introduction port toward the gas discharge port is provided in the flow path from the gas introduction port to the gas discharge port. The heat source device according to claim 1, wherein a resistance means for increasing the resistance is provided.

本発明の熱源装置では、ガス導入口からガス排出口に至る流路に燃焼ガスの流れ抵抗を増大させる抵抗手段が設けられているため、収納手段に導入された燃焼ガスの滞留時間が長い。そのため、熱交換手段(二次熱交換器)に導入された燃焼ガスは、熱交換回路(二次熱交換器)を構成する各受熱管の略全範囲に接触し、十分熱交換した後に排出される。従って、本発明によれば、熱交換回路(二次熱交換器)の構成がコンパクトであると共に、燃焼ガスの持つ熱エネルギーを十分回収可能なエネルギー効率に優れた熱源装置を提供できる。 In the heat source device of the present invention, since the resistance means for increasing the flow resistance of the combustion gas is provided in the flow path from the gas inlet to the gas outlet, the residence time of the combustion gas introduced into the storage means is long. Therefore, the combustion gas introduced into the heat exchanging means (secondary heat exchanger) contacts substantially the entire range of each heat receiving pipe constituting the heat exchanging circuit (secondary heat exchanger) and is exhausted after sufficiently exchanging heat. Is done. Therefore, according to this invention, while the structure of a heat exchange circuit (secondary heat exchanger) is compact, the heat source apparatus excellent in the energy efficiency which can fully collect | recover the thermal energy which combustion gas has can be provided.

上記したように、本発明の熱源装置では、熱交換手段(二次熱交換器)を構成する各受熱管の略全範囲と燃焼ガスとが接触するため、受熱管の本数が少なくても十分に熱エネルギーを回収できる。そのため、本発明の熱源装置は、熱交換手段(二次熱交換器)を構成する受熱管の本数が少ない。従って、本発明によれば、受熱管のろう付け等に要する手間を省略し、熱交換手段(二次熱交換器)の製造コストを最小限に抑制すると共に、熱交換手段(二次熱交換器)をコンパクトな構成とし、熱源装置全体をより一層小型化できる。 As described above, in the heat source device of the present invention, since almost the entire range of each heat receiving pipe constituting the heat exchanging means (secondary heat exchanger) is in contact with the combustion gas, it is sufficient even if the number of heat receiving pipes is small. Heat energy can be recovered. Therefore, the heat source device of the present invention has a small number of heat receiving tubes constituting the heat exchanging means (secondary heat exchanger) . Therefore, according to the present invention, omitting the labor required for brazing or the like of the heat receiving tube, the manufacturing cost of the heat exchange means (secondary heat exchanger) is suppressed to a minimum, the heat exchange means (secondary heat exchanger The overall heat source device can be further reduced in size.

請求項に記載の発明は、抵抗手段は、ガス導入口に対して略平行に配置された平行面を有することを特徴とする請求項に記載の熱源装置である。 According to a third aspect of the invention, resistor means is a heat source apparatus according to claim 2, characterized in that it has a parallel surface arranged substantially parallel to the gas inlet.

かかる構成によれば、ガス導入口から導入された燃焼ガスを収納手段の内部に拡散させることができる。従って、上記した構成によれば、受熱管の伝熱面積を有効利用することができ、熱交換手段(二次熱交換器)をコンパクトな構成とすることができる。 According to this configuration, the combustion gas introduced from the gas inlet can be diffused into the storage means. Therefore, according to the above-described configuration, the heat transfer area of the heat receiving pipe can be effectively used, and the heat exchange means (secondary heat exchanger) can be made compact.

また、本発明の熱源装置は、熱交換手段(二次熱交換器)を構成する各受熱管毎の熱回収効率が高いため、熱エネルギーの回収に必要とされる受熱管の本数が少なくて済む。そのため、本発明によれば、受熱管のろう付け等に要する手間を省略し、熱交換手段(二次熱交換器)の製造コストを最小限に抑制すると共に、熱交換手段(二次熱交換器)の設置に要するスペースの小さな熱源装置を提供できる。 Further, the heat source device of the present invention has a high heat recovery efficiency for each heat receiving pipe constituting the heat exchanging means (secondary heat exchanger) , so that the number of heat receiving pipes required for recovering the heat energy is small. That's it. Therefore, according to the present invention, omitting the labor required for brazing or the like of the heat receiving tube, the manufacturing cost of the heat exchange means (secondary heat exchanger) is suppressed to a minimum, the heat exchange means (secondary heat exchanger A heat source device with a small space required for installation of the apparatus can be provided.

請求項に記載の発明は、異なる加熱系統の二次熱交換器を上下に積み重ねて並置した構成であることを特徴とする請求項1乃至3のいずれかに記載の熱源装置である。 The invention according to claim 4 is the heat source device according to any one of claims 1 to 3, wherein the secondary heat exchangers of different heating systems are stacked one above the other and juxtaposed.

かかる構成によれば、隣接する熱交換回路(二次熱交換器)のうちの一方において発生した放出熱を他方の熱交換手段(二次熱交換器)において回収できる。従って、本発明の熱源装置は、熱回収効率が高い。 According to such a configuration, the heat released in one of the adjacent heat exchange circuits (secondary heat exchangers) can be recovered in the other heat exchange means (secondary heat exchanger) . Therefore, the heat source device of the present invention has high heat recovery efficiency.

請求項に記載の発明は、前記複数の加熱系統には、少なくとも、湯水または熱媒体の供給が長時間に渡ると想定される第1の熱媒体供給流路を備えたものと、湯水または熱媒体の供給時間が第1の熱媒体供給流路による供給時間よりも短時間であると想定される第2の熱媒体供給流路を備えたものとがあり、第1の熱媒体供給流路を備えた加熱系統の多管型熱交換器は、第2の熱媒体供給流路を備えた別の加熱系統の多管型熱交換器よりも下側に配置されていることを特徴とする請求項1乃至のいずれかに記載の熱源装置である。 According to a fifth aspect of the present invention, the plurality of heating systems includes at least a first heat medium supply channel that is assumed to be supplied with hot water or a heat medium for a long time; There is a heat medium supply flow that includes a second heat medium supply flow path that is assumed to be shorter than the supply time of the first heat medium supply flow path. The multi-tube heat exchanger of the heating system provided with the passage is arranged below the multi-tube heat exchanger of another heating system provided with the second heat medium supply flow path. The heat source device according to any one of claims 1 to 4 .

本発明の熱源装置は、熱交換手段(二次熱交換器)が第1,2の熱交換回路(二次熱交換器)を有している。ここで、第1の熱交換回路(二次熱交換器)に接続されている第1の熱媒体供給流路は、第2の熱交換回路(二次熱交換器)に接続されている第2の熱媒体供給流路よりも湯水や熱媒体の供給時間が長時間に渡ると想定される。そのため、本発明の熱源装置では、第1の熱交換回路(二次熱交換器)から発生する放出熱が比較的多くなる傾向にある。 In the heat source device of the present invention, the heat exchange means (secondary heat exchanger) has first and second heat exchange circuits (secondary heat exchangers) . Here, the first heat medium supply channel connected to the first heat exchange circuit (secondary heat exchanger) is connected to the second heat exchange circuit (secondary heat exchanger) . It is assumed that the supply time of hot water or the heat medium is longer than the heat medium supply flow path of 2. Therefore, in the heat source device of the present invention, the heat released from the first heat exchange circuit (secondary heat exchanger) tends to be relatively large.

本発明の熱源装置は、放出熱の発生量が比較的大きな第1の熱交換回路(二次熱交換器)が第2の熱交換回路(二次熱交換器)よりも下側に配置されている。そのため、本発明の熱源装置は、第1の熱交換回路(二次熱交換器)において発生した放出熱が第2の熱交換回路(二次熱交換器)側に伝播して回収され、湯水や熱媒体の加熱に有効利用される。従って、本発明の熱源装置は、熱回収効率が高い。 In the heat source device of the present invention, the first heat exchange circuit (secondary heat exchanger) that generates a relatively large amount of emitted heat is disposed below the second heat exchange circuit (secondary heat exchanger). ing. Therefore, the heat source apparatus of the present invention, release heat generated in the first heat exchange circuit (secondary heat exchanger) is recovered propagates to the second heat exchange circuit (secondary heat exchanger) side, hot water It is effectively used for heating and heating media. Therefore, the heat source device of the present invention has high heat recovery efficiency.

請求項に記載の発明は、前記二次熱交換器は、受熱管を収納する収納手段を有し、当該収納手段には、一次熱交換器側から排出された燃焼ガスを導入するガス導入口と、前記収納手段内の燃焼ガスを外部に排出するガス排出口とが設けられており、当該ガス排出口は、前記収納手段の所定の構成面上に想定される排出口形成領域内に形成されたものであり、当該排出口形成領域は、排気部材によって被覆されており、当該排気部材と前記排出口形成領域との間には、ガス排出口から排出された燃焼ガスが流入するガス流入空間が形成されていることを特徴とする請求項1乃至のいずれかに記載の熱源装置である。 According to a sixth aspect of the present invention, the secondary heat exchanger has storage means for storing the heat receiving pipe, and the storage means introduces a gas introduced to introduce the combustion gas discharged from the primary heat exchanger side. And a gas discharge port for discharging the combustion gas in the storage means to the outside, and the gas discharge port is located in a discharge port formation region assumed on a predetermined configuration surface of the storage means. The exhaust port forming region is covered with an exhaust member, and a gas into which the combustion gas discharged from the gas exhaust port flows between the exhaust member and the exhaust port forming region is formed. the inflow space is formed as a heat source apparatus according to any one of claims 1 to 5, characterized in.

本発明の熱源装置は、熱交換手段(二次熱交換器)が持つ複数のガス排出口から排出された燃焼ガスが、ガス排出口が形成されている排出口形成領域と排気部材との間に形成されたガス流入空間に流入した後、排出される構成となっている。そのため、各ガス排出口から排出された燃焼ガスは、ガス流入空間内に広がり、排出速度を緩めた状態で排出される。従って、本発明によれば、排気騒音の小さな熱源装置を提供できる。 In the heat source device of the present invention, the combustion gas discharged from the plurality of gas discharge ports of the heat exchange means (secondary heat exchanger) is between the discharge port forming region where the gas discharge ports are formed and the exhaust member. After the gas flows into the gas inflow space formed in the above, it is configured to be discharged. Therefore, the combustion gas discharged from each gas discharge port spreads in the gas inflow space and is discharged in a state where the discharge speed is reduced. Therefore, according to the present invention, a heat source device with low exhaust noise can be provided.

請求項に記載の発明は、一次熱交換器と前記二次熱交換器の双方が多管型熱交換器により構成されていることを特徴とする請求項1乃至のいずれかに記載の熱源装置である。 The invention according to claim 7, according to any one of claims 1 to 6, characterized in that it is constituted by both the primary heat exchanger the secondary heat exchanger is a multi-tube type heat exchanger It is a heat source device.

上記したように、請求項1乃至に記載の熱源装置は、いずれも多管型熱交換器によって構成されるコンパクトな熱交換手段(二次熱交換器)を備えており、熱交換手段の製造コストが安価である。本発明の熱源装置は、顕熱回収用熱交換手段(一次熱交換器)と潜熱回収用熱交換手段(二次熱交換器)とを備えているが、その双方が上記した多管型熱交換器によって構成されている。そのため、本発明の熱源装置は、装置構成がコンパクトであると共に、熱エネルギーの回収効率が極めて高い。 As described above, each of the heat source devices according to claims 1 to 6 includes a compact heat exchange means (secondary heat exchanger) configured by a multi-tube heat exchanger, Manufacturing cost is low. The heat source device of the present invention includes a sensible heat recovery heat exchange means (primary heat exchanger) and a latent heat recovery heat exchange means (secondary heat exchanger) , both of which have the above-described multi-tube heat It is constituted by an exchanger. Therefore, the heat source device of the present invention has a compact device configuration and extremely high heat energy recovery efficiency.

本発明によれば、製造コストが低く、十分な熱交換効率を得ることが可能な熱源装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing cost is low and can provide the heat source apparatus which can obtain sufficient heat exchange efficiency.

続いて、本発明の一実施形態である熱源装置について図面を参照しながら詳細に説明する。図1は、本実施形態の熱源装置の作動原理図である。図2(a)は、図1に示す熱源装置において採用されている潜熱回収用の二次熱交換器を示す分解斜視図であり、(b)は二次熱交換器の斜視図である。図3は、図1に示す熱源装置の二次熱交換器近傍を示す分解斜視図である。また、図4(a)は、図1に示す熱源装置に採用されている潜熱回収用熱交換手段における燃焼ガスの流れを模式的に示した分解斜視図であり、同(b)は前記潜熱回収用熱交換手段と排気部材の分解斜視図である。また、図4(c)は、同(b)のA−A断面図である。図5は、図2に示す二次熱交換器の変形例を示す断面図である。なお、説明の都合上、図2(a)においては潜熱回収用熱交換器のケース部材を、また図2(b)においては受熱管を図示せず省略している。   Next, a heat source device according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is an operation principle diagram of the heat source device of the present embodiment. 2A is an exploded perspective view showing a secondary heat exchanger for recovering latent heat employed in the heat source apparatus shown in FIG. 1, and FIG. 2B is a perspective view of the secondary heat exchanger. FIG. 3 is an exploded perspective view showing the vicinity of the secondary heat exchanger of the heat source device shown in FIG. 4 (a) is an exploded perspective view schematically showing the flow of combustion gas in the heat exchange means for latent heat recovery employed in the heat source device shown in FIG. 1, and FIG. 4 (b) is the latent heat. It is a disassembled perspective view of the heat exchange means for collection | recovery and an exhaust member. Moreover, FIG.4 (c) is AA sectional drawing of the same (b). FIG. 5 is a cross-sectional view showing a modification of the secondary heat exchanger shown in FIG. For convenience of explanation, the case member of the latent heat recovery heat exchanger is omitted in FIG. 2A, and the heat receiving pipe is not shown in FIG. 2B.

図1において、1は本実施形態の熱源装置である。熱源装置1は、いわゆる二缶二水路型の熱源装置であり、独立した缶体2,3のそれぞれに主として燃焼ガスのもつ顕熱を回収する一次熱交換器5,6(顕熱回収型熱交換回路)と、燃焼バーナ7,8および送風手段10,11を設けた構成とされている。また、一次熱交換器5,6の下流側(図1において上方側)には主として燃焼ガス中から潜熱を回収する潜熱回収用の二次熱交換器12,13(潜熱回収用熱交換回路)からなる潜熱回収手段15が配置されている。   In FIG. 1, reference numeral 1 denotes a heat source apparatus according to this embodiment. The heat source device 1 is a so-called two-can two-water type heat source device, and primary heat exchangers 5 and 6 (sensible heat recovery type heat which mainly recover sensible heat of combustion gas in each of the independent can bodies 2 and 3. Exchange circuit), combustion burners 7 and 8, and blowing means 10 and 11 are provided. Further, on the downstream side (upper side in FIG. 1) of the primary heat exchangers 5 and 6, secondary heat exchangers 12 and 13 for recovering latent heat mainly recovering latent heat from the combustion gas (latent heat recovery heat exchange circuit). Latent heat recovery means 15 is arranged.

一次熱交換器5,6は、主要部分が銅製のいわゆるフィン・アンド・チューブ型の熱交換器である。一次熱交換器5,6は、燃焼バーナ7,8で発生する高温の燃焼ガスが流れる燃焼ガス流路16,17内に配置されている。一次熱交換器5,6は、主として燃焼ガスが持つ顕熱を回収する顕熱回収手段4として機能するものであり、内部を流れる湯水を加熱するものである。一次熱交換器5,6は、それぞれ燃焼ガス流路16,17の断面領域X,Yの全域を占領する。   The primary heat exchangers 5 and 6 are so-called fin-and-tube heat exchangers whose main parts are made of copper. The primary heat exchangers 5 and 6 are disposed in the combustion gas passages 16 and 17 through which high-temperature combustion gas generated in the combustion burners 7 and 8 flows. The primary heat exchangers 5 and 6 mainly function as the sensible heat recovery means 4 for recovering the sensible heat of the combustion gas, and heat the hot water flowing inside. The primary heat exchangers 5 and 6 occupy the entire cross-sectional areas X and Y of the combustion gas passages 16 and 17, respectively.

一次熱交換器5,6は、入水口18,20と、出水口21,22とを備えている。入水口18,20は、二次熱交換器12,13の出水口31,31側に接続されている。一次熱交換器5,6には二次熱交換器12,13において熱交換を行った湯水が流入し、さらに加熱される。   The primary heat exchangers 5 and 6 include water inlets 18 and 20 and water outlets 21 and 22. The water inlets 18 and 20 are connected to the water outlets 31 and 31 side of the secondary heat exchangers 12 and 13. Hot water that has undergone heat exchange in the secondary heat exchangers 12 and 13 flows into the primary heat exchangers 5 and 6 and is further heated.

一次熱交換器5は、燃焼能力の比較的大きな燃焼バーナ7が配された缶体2の燃焼ガス流路16内を流れる燃焼ガスと熱交換を行うものであり、出水口21には給湯栓23aのような湯水の供給が断続的に行われると想定される給湯配管23b(第2熱媒体供給流路)が接続されている。また、缶体3内に配置されている一次熱交換器6は、燃焼能力が比較的小さな燃焼バーナ8において発生する燃焼ガスと熱交換を行うものである。一次熱交換器6の出水口22には、暖房端末24aのような連続的な使用が見込まれる負荷端末に湯水を供給する往き流路24b(第1熱媒体供給流路)に接続されている。   The primary heat exchanger 5 exchanges heat with the combustion gas flowing in the combustion gas flow path 16 of the can body 2 in which the combustion burner 7 having a relatively large combustion capacity is arranged. A hot water supply pipe 23b (second heat medium supply flow path) that is assumed to be intermittently supplied with hot water such as 23a is connected. Moreover, the primary heat exchanger 6 arrange | positioned in the can 3 performs heat exchange with the combustion gas which generate | occur | produces in the combustion burner 8 with a comparatively small combustion capability. The outlet 22 of the primary heat exchanger 6 is connected to an outward flow path 24b (first heat medium supply flow path) that supplies hot water to a load terminal that is expected to be used continuously such as the heating terminal 24a. .

二次熱交換器12,13は、図2に示すように、ケース部材26の両端部に位置し、平行に配置されたヘッダ27,28に多数の受熱管25をろう付けにより接続したものである。受熱管25は、金属製の筒体であり、それぞれ燃焼ガスが通過可能な程度の隙間を空けて平行に配置されている。ヘッダ27には、外部から湯水を導入するための入水口30と、各受熱管25から出る湯水を外部に排出する出水口31とが設けられている。二次熱交換器13のヘッダ27に設けられた入水口30には外部から水を供給する給水配管23cが接続されている。また、二次熱交換器12側の入水口30には、暖房端末24aから湯水を戻す戻り流路24cが接続されている。二次熱交換器12,13の各入水口30,30から流入した湯水は、受熱管25内を流れて加熱され、出水口31,31から排出される。   As shown in FIG. 2, the secondary heat exchangers 12 and 13 are located at both ends of the case member 26, and a large number of heat receiving tubes 25 are connected to headers 27 and 28 arranged in parallel by brazing. is there. The heat receiving pipes 25 are metal cylinders, and are arranged in parallel with a gap that allows the combustion gas to pass therethrough. The header 27 is provided with a water inlet 30 for introducing hot water from the outside and a water outlet 31 for discharging hot water from each heat receiving pipe 25 to the outside. A water supply pipe 23 c for supplying water from the outside is connected to the water inlet 30 provided in the header 27 of the secondary heat exchanger 13. Moreover, the return flow path 24c which returns hot water from the heating terminal 24a is connected to the water inlet 30 at the secondary heat exchanger 12 side. Hot water flowing in from the water inlets 30, 30 of the secondary heat exchangers 12, 13 flows through the heat receiving pipe 25, is heated, and is discharged from the water outlets 31, 31.

ケース部材26は、図2(b)や図4に示すように帯状の金属板を折り曲げ加工して箱形に成形した部材である。ケース部材26は、正面32に排出口33を設けると共に、正面32に対向する背面35に導入口36を設けた構成とされている。導入口36は、一次熱交換器5,6を通過した燃焼ガスを二次熱交換器12,13内に導入するためのものである。導入口36から導入された燃焼ガスは、ケース部材26内を横断する多数の受熱管25同士の隙間を通過し、受熱管25内の湯水と熱交換を行う。受熱管25内の湯水と熱交換を行った燃焼ガスは、排出口33から二次熱交換器12,13の外部に排出される。   The case member 26 is a member formed by bending a belt-shaped metal plate into a box shape as shown in FIGS. The case member 26 is configured such that a discharge port 33 is provided on the front surface 32 and an introduction port 36 is provided on a back surface 35 facing the front surface 32. The inlet 36 is for introducing the combustion gas that has passed through the primary heat exchangers 5 and 6 into the secondary heat exchangers 12 and 13. The combustion gas introduced from the introduction port 36 passes through the gaps between the many heat receiving pipes 25 that traverse the inside of the case member 26, and exchanges heat with the hot water in the heat receiving pipe 25. The combustion gas that has exchanged heat with the hot water in the heat receiving pipe 25 is discharged from the outlet 33 to the outside of the secondary heat exchangers 12 and 13.

ケース部材26の内部には、図2に示すように、受熱管25に沿う方向(本実施形態では略平行方向)に拡がる平行面38を持つ偏向部材37が設けられている。偏向部材37は、排出口33と導入口36とを繋ぐ直線Lを想定した際にこの直線Lと交差する位置に配置されている。即ち、二次熱交換器12,13は、ケース部材26の排出口33と導入口36とが偏向部材37によって遮られた構成となっており、平行面38が導入口36および排出口33に対して平行に配置されている。   As shown in FIG. 2, a deflection member 37 having a parallel surface 38 extending in a direction along the heat receiving pipe 25 (substantially parallel direction in the present embodiment) is provided inside the case member 26. The deflection member 37 is disposed at a position that intersects with the straight line L when a straight line L connecting the discharge port 33 and the introduction port 36 is assumed. That is, the secondary heat exchangers 12 and 13 are configured such that the discharge port 33 and the introduction port 36 of the case member 26 are shielded by the deflection member 37, and the parallel surface 38 is connected to the introduction port 36 and the discharge port 33. They are arranged in parallel.

偏向部材37は、導入口36から排出口33に向かう方向への燃焼ガスの流れ抵抗を増大させる抵抗手段として機能する。さらに、偏向部材37は、ガス導入口から導入された燃焼ガスを収納手段内に分散させる分散手段としても機能する。そのため、導入口36からケース部材26内に導入された燃焼ガスは、ケース部材26の内部を迂回し、ケース部材26内の隅々まで拡がって排出口33側に流れ、各受熱管25の表面全体に接触して熱交換を行う。従って、二次熱交換器12,13内に流入した燃焼ガスは、各受熱管25において潜熱の略全体が回収された後に排出される。   The deflection member 37 functions as a resistance unit that increases the flow resistance of the combustion gas in the direction from the inlet 36 toward the outlet 33. Further, the deflecting member 37 also functions as a dispersion unit that disperses the combustion gas introduced from the gas introduction port in the storage unit. Therefore, the combustion gas introduced into the case member 26 from the introduction port 36 bypasses the inside of the case member 26, spreads to every corner in the case member 26, flows to the discharge port 33 side, and the surface of each heat receiving pipe 25. Heat exchange in contact with the whole. Accordingly, the combustion gas that has flowed into the secondary heat exchangers 12 and 13 is exhausted after substantially all of the latent heat is recovered in each heat receiving pipe 25.

二次熱交換器12,13は、図1や図3,図4に示すように、それぞれ缶体2,3の燃焼ガス流路16,17内を流れる燃焼ガスの流れ方向に積層されており、受熱管25が缶体2側の加熱系統Aおよび缶体3側の加熱系統Bにの断面領域に跨るように配されている。また、二次熱交換器12,13は、一次熱交換器5,6によって占領された断面領域X,Yに相当する領域に接続部材40,41を介して覆い被さるように配されている。そのため、二次熱交換器12,13は、図6の熱源装置100のように各缶体103,105に対して独立的に二次熱交換器102a,103aを設けた場合よりも受熱管25の長さが長い。そのため、二次熱交換器12,13は、十分な熱交換効率を得るために必要とされる伝熱面積を確保するために必要とされる受熱管25の本数が少なく、装置構成がコンパクトであると共に、受熱管25のヘッダ27,28に対するろう付け箇所が少ない。   As shown in FIGS. 1, 3, and 4, the secondary heat exchangers 12 and 13 are stacked in the flow direction of the combustion gas flowing in the combustion gas passages 16 and 17 of the can bodies 2 and 3, respectively. The heat receiving pipe 25 is arranged so as to straddle the cross-sectional area of the heating system A on the can body 2 side and the heating system B on the can body 3 side. Further, the secondary heat exchangers 12 and 13 are arranged so as to cover the regions corresponding to the cross-sectional regions X and Y occupied by the primary heat exchangers 5 and 6 via the connection members 40 and 41. Therefore, the secondary heat exchangers 12 and 13 are more heat-receiving pipes 25 than the case where the secondary heat exchangers 102a and 103a are provided independently for the cans 103 and 105 as in the heat source device 100 of FIG. Is long. Therefore, the secondary heat exchangers 12 and 13 have a small number of heat receiving pipes 25 required to secure a heat transfer area required to obtain sufficient heat exchange efficiency, and the apparatus configuration is compact. In addition, there are few brazing points for the headers 27 and 28 of the heat receiving pipe 25.

また、湯水を連続的に供給すると想定される暖房端末24aに供給される湯水を加熱するための二次熱交換器12は、湯水の供給が断続的であると想定される給湯栓23aに供給される湯水を加熱するための二次熱交換器13よりも下側(図1,3)に配置されている。換言すれば、連続的に放出熱が発生すると想定される二次熱交換器12が、これよりも放出熱の発生量が少ないと想定される二次熱交換器13よりも下側(図1,3)に配置されている。そのため、二次熱交換器12において発生する放出熱は、二次熱交換器13側に伝播し、効率よく回収される。   Moreover, the secondary heat exchanger 12 for heating the hot water supplied to the heating terminal 24a assumed to supply hot water continuously is supplied to the hot water tap 23a assumed to be intermittent in the supply of hot water. It arrange | positions below the secondary heat exchanger 13 for heating the hot and cold water (FIGS. 1, 3). In other words, the secondary heat exchanger 12 that is assumed to generate heat continuously is lower than the secondary heat exchanger 13 that is assumed to generate less heat than this (see FIG. 1). , 3). Therefore, the emitted heat generated in the secondary heat exchanger 12 propagates to the secondary heat exchanger 13 side and is efficiently recovered.

二次熱交換器12,13は、図1および図3に示すように、接続部材40,41を介して接続されている。接続部材40,41は、図3に示すように缶体2,3の開口部分に接続される集合部43,45と、接続部46,47とが繋がり、略「L」字型の流路を形成している。接続部46,47は、それぞれ二次熱交換器12,13のケース部材26の背面35側に面接触する。接続部47の高さは、二次熱交換器12の高さhと同一であり、接続部46,47の高さは二次熱交換器12,13を積み重ねた高さHに等しい。二次熱交換器12,13は、図3のように上下に積み重ねた状態で背面35,35が接続部46に面接触し、二次熱交換器12の底面が集合部43,45上に面接触するように配置されている。   The secondary heat exchangers 12 and 13 are connected via connecting members 40 and 41 as shown in FIGS. 1 and 3. As shown in FIG. 3, the connecting members 40 and 41 are connected to the collecting portions 43 and 45 connected to the opening portions of the can bodies 2 and 3 and the connecting portions 46 and 47, and have a substantially “L” -shaped flow path. Is forming. The connecting portions 46 and 47 are in surface contact with the back surface 35 side of the case member 26 of the secondary heat exchangers 12 and 13, respectively. The height of the connecting portion 47 is the same as the height h of the secondary heat exchanger 12, and the height of the connecting portions 46 and 47 is equal to the height H of the stacked secondary heat exchangers 12 and 13. In the secondary heat exchangers 12 and 13, as shown in FIG. 3, the back surfaces 35 and 35 are in surface contact with the connection portion 46 in a state of being stacked up and down, and the bottom surface of the secondary heat exchanger 12 is on the collecting portions 43 and 45. It is arranged so as to be in surface contact.

集合部43,45は、缶体2,3の燃焼ガス流路16,17を流れる燃焼ガスを導入するための開口43a,45aを有する。また、接続部46,47には、燃焼ガスを排出するための排出開口48,50が設けられている。排出開口48,50は、それぞれ上記したように集合部43,45に積み重ねられた二次熱交換器12,13の導入口36,36に相当する位置にあり、気密状態に接続されている。   The collecting portions 43 and 45 have openings 43a and 45a for introducing combustion gas flowing through the combustion gas flow paths 16 and 17 of the can bodies 2 and 3, respectively. Further, the connection portions 46 and 47 are provided with discharge openings 48 and 50 for discharging combustion gas. As described above, the discharge openings 48 and 50 are at positions corresponding to the inlets 36 and 36 of the secondary heat exchangers 12 and 13 stacked on the collecting portions 43 and 45, respectively, and are connected in an airtight state.

二次熱交換器12,13の正面側には、図4のように排気部材55が装着されている。排気部材55は、膨出部56とフランジ部57とから構成されている。膨出部56には4つの排気用の開口58が形成されている。排気部材55は、フランジ部57が二次熱交換器12,13の正面32に面接触するように取り付けられる。また、二次熱交換器12,13は、排出口33,33の双方が図4(b)にハッチングを施した排出口形成領域60内にあり、排気部材55は、この排出口形成領域60を膨出部56が覆うように取り付けられている。これにより、図4(c)に示すように、排出口形成領域60と膨出部56との間にガス流入空間61が形成されている。   An exhaust member 55 is mounted on the front side of the secondary heat exchangers 12 and 13 as shown in FIG. The exhaust member 55 includes a bulging portion 56 and a flange portion 57. In the bulging portion 56, four exhaust openings 58 are formed. The exhaust member 55 is attached such that the flange portion 57 is in surface contact with the front surface 32 of the secondary heat exchangers 12 and 13. Further, in the secondary heat exchangers 12 and 13, both the discharge ports 33 and 33 are in the discharge port forming region 60 hatched in FIG. 4B, and the exhaust member 55 is connected to the discharge port forming region 60. It is attached so that the bulging part 56 may cover. Thereby, as shown in FIG. 4C, a gas inflow space 61 is formed between the discharge port forming region 60 and the bulging portion 56.

続いて、本実施形態の熱源装置1における燃焼ガスの流れについて図面を参照しながら詳細に説明する。熱源装置1は、暖房端末24aに供給される湯水を加熱するための燃焼バーナ8が配された缶体3と、給湯栓23aから供給される湯水を加熱するための燃焼バーナ7が配された缶体2とが独立している。燃焼バーナ7において発生した燃焼ガスは、缶体2側の燃焼ガス流路16に配置された一次熱交換器5を通過し、一次熱交換器5内の湯水を加熱する。一次熱交換器5において主として顕熱が回収された燃焼ガスは、燃焼ガス流路16の最下流に配された接続部材40に至る。   Next, the flow of combustion gas in the heat source device 1 of the present embodiment will be described in detail with reference to the drawings. The heat source device 1 is provided with a can 3 provided with a combustion burner 8 for heating hot water supplied to the heating terminal 24a, and a combustion burner 7 for heating hot water supplied from the hot water tap 23a. The can body 2 is independent. The combustion gas generated in the combustion burner 7 passes through the primary heat exchanger 5 disposed in the combustion gas flow path 16 on the can body 2 side, and heats the hot water in the primary heat exchanger 5. The combustion gas from which sensible heat has been mainly recovered in the primary heat exchanger 5 reaches the connecting member 40 disposed on the most downstream side of the combustion gas passage 16.

一次熱交換器5を通過した燃焼ガスは、接続部材40の集合部43に集まり、接続部46の排出開口48から導入口36を通り、二次熱交換器13内に流入する。二次熱交換器13内に流入した燃焼ガスは、図4に矢印で示すように導入口36に対向した位置に配された偏向部材37によって受熱管25に沿う方向に流れ方向が偏向される。その後、燃焼ガスは、ヘッダ27側の壁面に当たって流れ方向が再度偏向され、排出口33側に流れる。そのため、二次熱交換器13のケース部材26内に流入した燃焼ガスは、ケース部材26内における滞留時間が長く、内部空間全体に拡がって各受熱管25の表面全体と面接触した後排出される。   The combustion gas that has passed through the primary heat exchanger 5 gathers at the gathering portion 43 of the connecting member 40, flows from the discharge opening 48 of the connecting portion 46 through the inlet 36, and flows into the secondary heat exchanger 13. The flow direction of the combustion gas flowing into the secondary heat exchanger 13 is deflected in the direction along the heat receiving pipe 25 by a deflecting member 37 disposed at a position facing the inlet 36 as indicated by an arrow in FIG. . Thereafter, the combustion gas strikes the wall surface on the header 27 side, the flow direction is deflected again, and the combustion gas flows to the discharge port 33 side. Therefore, the combustion gas that has flowed into the case member 26 of the secondary heat exchanger 13 has a long residence time in the case member 26, spreads over the entire internal space, and is discharged after contacting the entire surface of each heat receiving pipe 25. The

一方、暖房端末24aに供給される湯水の加熱を行うべく燃焼バーナ8が作動して発生した燃焼ガスは、燃焼ガス流路17内を下流側、即ち図1において上方側に流れ、一次熱交換器6に至る。燃焼ガス流路17内を流れる燃焼ガスは、一次熱交換器6において内部を流れる湯水との熱交換により顕熱の大部分が回収される。その後、燃焼ガスは一次熱交換器6の下流側(上方側)にある接続部材41の集合部45に流れ込む。   On the other hand, the combustion gas generated by the operation of the combustion burner 8 to heat the hot water supplied to the heating terminal 24a flows downstream in the combustion gas passage 17, that is, upward in FIG. To vessel 6. Most of the sensible heat is recovered from the combustion gas flowing in the combustion gas flow path 17 by heat exchange with hot water flowing in the primary heat exchanger 6. Thereafter, the combustion gas flows into the collecting portion 45 of the connecting member 41 on the downstream side (upper side) of the primary heat exchanger 6.

集合部45に流れ込んだ燃焼ガスは、接続部47内を流れ、二次熱交換器12の排出開口50まで上昇する。その後、燃焼ガスは、排出開口50と連通した導入口36を介して二次熱交換器12内に導入される。二次熱交換器12内に流入した燃焼ガスは、偏向部材37によって流れ方向を偏向されてケース部材26内をジグザグに流れ、ケース部材26の内部空間全体に拡散される。その間に、燃焼ガスは、二次熱交換器12を構成する受熱管25の表面全体に面接触して外部から受熱管25内に導入された低温の湯水と熱交換を行い、潜熱が回収される。その後、燃焼ガスは、二次熱交換器12の正面32側にある排出口33に至り、ケース部材26の外部に排出される。   The combustion gas that has flowed into the collecting portion 45 flows through the connection portion 47 and rises to the discharge opening 50 of the secondary heat exchanger 12. Thereafter, the combustion gas is introduced into the secondary heat exchanger 12 through the inlet 36 communicating with the discharge opening 50. The combustion gas that has flowed into the secondary heat exchanger 12 is deflected in the flow direction by the deflecting member 37, flows in a zigzag manner in the case member 26, and is diffused throughout the internal space of the case member 26. Meanwhile, the combustion gas is in surface contact with the entire surface of the heat receiving pipe 25 constituting the secondary heat exchanger 12 and exchanges heat with the low-temperature hot water introduced into the heat receiving pipe 25 from the outside, and the latent heat is recovered. The Thereafter, the combustion gas reaches the discharge port 33 on the front surface 32 side of the secondary heat exchanger 12 and is discharged to the outside of the case member 26.

上記したようにして二次熱交換器12あるいは二次熱交換器13内を流れて排出口33,33からケース部材26,26の外部に流出した燃焼ガスは、排気部材55の膨出部56と潜熱回収手段15の排出口形成領域60との間に形成されるガス流入空間61に流入して拡がった後、開口58から外部に排出される。   As described above, the combustion gas flowing through the secondary heat exchanger 12 or the secondary heat exchanger 13 and flowing out of the case members 26 and 26 from the discharge ports 33 and 33 is expanded at the bulging portion 56 of the exhaust member 55. And flows into a gas inflow space 61 formed between the gas outlet space 61 and the discharge port forming region 60 of the latent heat recovery means 15, and then discharged to the outside through the opening 58.

上記したように、本実施形態の熱源装置1は、潜熱回収手段15を構成する受熱管25が各缶体2,3の燃焼ガス流路16,17の略全体に渡って覆い被さると共に、缶体2,3の隙間に相当する部分にも受熱管25が横切っている。そのため、図6に示す熱源装置100のように潜熱回収用熱交換手段102a,102bがそれぞれ各缶体103,106の燃焼ガス流路105,107の一方のみを覆うように配置した場合に比べて受熱管25の長さが長い。   As described above, in the heat source device 1 of the present embodiment, the heat receiving pipe 25 constituting the latent heat recovery means 15 covers the combustion gas flow paths 16 and 17 of the can bodies 2 and 3 and covers the cans. The heat receiving pipe 25 also crosses the portion corresponding to the gap between the bodies 2 and 3. Therefore, as compared with the case where the latent heat recovery heat exchanging means 102a and 102b are arranged so as to cover only one of the combustion gas flow paths 105 and 107 of the can bodies 103 and 106, respectively, as in the heat source device 100 shown in FIG. The length of the heat receiving pipe 25 is long.

さらに、熱源装置1に採用されている潜熱回収手段15を構成する二次熱交換器12,13は、燃焼ガスと受熱管25との接触を促進すべく、ケース部材26内に偏向部材37を設け、燃焼ガスを迂回させてケース部材26内全体に拡散させている。そのため、熱源装置1では、燃焼ガスが二次熱交換器12,13のケース部材26内における長期にわたって滞留し、受熱管25の表面略全体において熱交換を行った後に排出される。従って、熱源装置1は、熱源装置100のような構成とした場合よりも受熱管25の本数が少なくても燃焼ガスのもつ潜熱を十分に回収できる。   Further, the secondary heat exchangers 12 and 13 constituting the latent heat recovery means 15 employed in the heat source device 1 have a deflection member 37 in the case member 26 in order to promote contact between the combustion gas and the heat receiving pipe 25. The combustion gas is bypassed and diffused throughout the case member 26. Therefore, in the heat source device 1, the combustion gas stays in the case member 26 of the secondary heat exchangers 12 and 13 for a long period of time, and is discharged after heat exchange is performed on substantially the entire surface of the heat receiving pipe 25. Therefore, the heat source device 1 can sufficiently recover the latent heat of the combustion gas even if the number of the heat receiving tubes 25 is smaller than that in the case where the heat source device 100 is configured.

また、本実施形態の熱源装置1は、受熱管25の本数が少なくても十分潜熱を回収できるため、二次熱交換器12,13をコンパクトな構成とすることができる。そのため、上記した構成によれば、潜熱回収手段15の設置に要するスペースが小さく、小型の熱源装置1を提供できる。   In addition, since the heat source device 1 of the present embodiment can sufficiently recover latent heat even if the number of the heat receiving tubes 25 is small, the secondary heat exchangers 12 and 13 can have a compact configuration. Therefore, according to the configuration described above, the space required for installing the latent heat recovery means 15 is small, and the small heat source device 1 can be provided.

本実施形態の熱源装置1は、二次熱交換器12,13を積層した構成であるため、これらのうちの一方において発生した放出熱は、他方に伝播され回収される。さらに、熱源装置1では、暖房端末24aに供給するための湯水を加熱するための二次熱交換器12が給湯栓23aに湯水を供給するための二次熱交換器13よりも下方に配置された構成とされている。即ち、熱源装置1は、連続的に熱交換が行われ、放出熱の発生量が多いと想定される暖房側の二次熱交換器12を、熱交換が断続的に行われ、放出熱の発生量が少ないと想定される給湯側の二次熱交換器13よりも下方側に配置した構成となっている。そのため、熱源装置1は、二次熱交換器12,13において発生する放出熱についても十分回収でき、熱回収効率が高い。   Since the heat source device 1 of the present embodiment has a configuration in which the secondary heat exchangers 12 and 13 are stacked, the emitted heat generated in one of these is propagated to the other and recovered. Furthermore, in the heat source device 1, the secondary heat exchanger 12 for heating hot water supplied to the heating terminal 24a is disposed below the secondary heat exchanger 13 for supplying hot water to the hot water tap 23a. It has been configured. That is, in the heat source device 1, heat exchange is continuously performed and heat exchange is performed intermittently in the secondary heat exchanger 12 on the heating side, which is assumed to generate a large amount of emitted heat. It is the structure arrange | positioned below the secondary heat exchanger 13 by the side of the hot water supply assumed that there are few generation | occurrence | production amounts. Therefore, the heat source device 1 can sufficiently recover the heat generated in the secondary heat exchangers 12 and 13, and the heat recovery efficiency is high.

熱源装置1は、二次熱交換器12,13の排出口33,33から流出した燃焼ガスがガス流入空間61に流入して拡がった後、開口58から外部に排出される。そのため、開口58から排出される燃焼ガスは、流速が緩やかであり、排気騒音を殆ど発生しない。   In the heat source device 1, after the combustion gas flowing out from the discharge ports 33 and 33 of the secondary heat exchangers 12 and 13 flows into the gas inflow space 61 and expands, it is discharged from the opening 58 to the outside. Therefore, the combustion gas discharged from the opening 58 has a slow flow rate and generates almost no exhaust noise.

また、熱源装置1は、二次熱交換器12,13の排出口33,33が排出口形成領域60内に集合しており、両者が排気部材55によって覆われるため、排出口33,33をバラバラに配した場合に比べて外観が整然としており、美観に優れている。   In the heat source device 1, the discharge ports 33 and 33 of the secondary heat exchangers 12 and 13 are gathered in the discharge port forming region 60, and both are covered by the exhaust member 55. The appearance is orderly and superior in aesthetics compared to the case where it is distributed apart.

偏向部材37は、上記実施形態のようにケース部材26に形成された導入口36と排出口33とを繋ぐ直線Lを遮るように配置されることが望ましいが、これとは異なる位置に配置されていてもよい。また、熱源装置1は、偏向部材37を設ける代わりに図5(a)のように一部の受熱管25を密に配して燃焼ガスの流路抵抗が高い領域を形成し、これを偏向手段65としてもよい。かかる構成によっても、二次熱交換器12,13内に導入された燃焼ガスを所定方向に偏向し、燃焼ガスの滞留時間や流路長さを延長することができ、ケース部材26内の隅々まで燃焼ガスを行き渡らせることができる。従って、熱源装置1は、各受熱管25の表面全体を伝熱面とすることができ、熱交換効率が高い。   The deflecting member 37 is desirably disposed so as to block the straight line L connecting the inlet 36 and the outlet 33 formed in the case member 26 as in the above embodiment, but is disposed at a position different from this. It may be. In addition, instead of providing the deflecting member 37, the heat source apparatus 1 forms a region where the flow resistance of the combustion gas is high by densely arranging a part of the heat receiving pipes 25 as shown in FIG. The means 65 may be used. Also with this configuration, the combustion gas introduced into the secondary heat exchangers 12 and 13 can be deflected in a predetermined direction, and the residence time and flow path length of the combustion gas can be extended. It is possible to spread the combustion gas as much as possible. Therefore, the heat source device 1 can use the entire surface of each heat receiving pipe 25 as a heat transfer surface, and the heat exchange efficiency is high.

また、熱源装置1は、例えば図5(b)のように導入口36付近や、ケース部材26の内部に網部材70やパンチングメタルのような燃焼ガスの流れを拡散させるものを配した構成としてもよい。かかる構成によれば、燃焼ガスをケース部材26内全体に拡散させ、燃焼ガスの滞留時間を延ばすことができ、ケース部材26の内部を横断している受熱管25の表面全体を燃焼ガスと熱交換する伝熱面として有効に機能させることができる。   In addition, the heat source device 1 has a configuration in which, for example, as shown in FIG. 5B, a material that diffuses the flow of combustion gas, such as the net member 70 or punching metal, is arranged in the vicinity of the inlet 36 or inside the case member 26. Also good. According to such a configuration, the combustion gas can be diffused throughout the case member 26 and the residence time of the combustion gas can be extended, and the entire surface of the heat receiving pipe 25 traversing the inside of the case member 26 is heated with the combustion gas and the heat. It can function effectively as a heat transfer surface to be exchanged.

本実施形態の熱源装置1は、給湯栓23aに湯水を供給する加熱系統と、暖房端末24aに湯水を供給する加熱系統とを備えたものであったが、本発明はこれに限定されるものではなく、例えば暖房端末24aに供給する湯水を加熱する加熱系統に代わって図示しない浴槽内の湯水を加熱する加熱系統等を設けたものや、このような加熱系統を別途設けたものであってもよい。なお、浴槽に供給する湯水の加熱を行う加熱系統を設けた場合においても、連続使用される頻度が高いと想定される端末に供給するための湯水を加熱する二次熱交換器を燃焼ガスの流れ方向の下側に配置することが望ましい。   The heat source device 1 of the present embodiment includes a heating system that supplies hot water to the hot-water tap 23a and a heating system that supplies hot water to the heating terminal 24a, but the present invention is limited to this. Instead, for example, instead of a heating system for heating hot water supplied to the heating terminal 24a, a heating system for heating hot water in a bathtub (not shown) is provided, or such a heating system is provided separately. Also good. Even when a heating system for heating hot water supplied to the bathtub is provided, a secondary heat exchanger for heating hot water to be supplied to a terminal that is assumed to be used frequently is used as a combustion gas. It is desirable to place it below the flow direction.

上記実施形態の熱源装置1は、潜熱回収用の熱交換器として多管型の二次熱交換器12,13を備えたものであったが、本発明はこれに限定されるものではなく、例えば一次熱交換器5,6として二次熱交換器12,13と同様の構成を有する多管型の熱交換器を採用した構成としてもよい。   The heat source device 1 of the above embodiment includes the multi-tube type secondary heat exchangers 12 and 13 as a heat exchanger for latent heat recovery, but the present invention is not limited to this, For example, it is good also as a structure which employ | adopted the multi-tube type heat exchanger which has the structure similar to the secondary heat exchangers 12 and 13 as the primary heat exchangers 5 and 6. FIG.

本発明の一実施形態の熱源装置の作動原理図である。It is an operation principle figure of the heat source device of one embodiment of the present invention. (a)は図1に示す熱源装置において採用されている潜熱回収用の二次熱交換器を示す分解斜視図であり、(b)は二次熱交換器を示す斜視図である。(A) is a disassembled perspective view which shows the secondary heat exchanger for latent heat recovery employ | adopted in the heat-source apparatus shown in FIG. 1, (b) is a perspective view which shows a secondary heat exchanger. 図1に示す熱源装置の二次熱交換器近傍を示す分解斜視図である。It is a disassembled perspective view which shows the secondary heat exchanger vicinity of the heat-source apparatus shown in FIG. (a)は、図1に示す熱源装置に採用されている潜熱回収用熱交換手段における燃焼ガスの流れを模式的に示した概念図であり、(b)は前記潜熱回収用熱交換手段と排気部材の分解斜視図、(c)は(b)のA−A断面図である。(A) is the conceptual diagram which showed typically the flow of the combustion gas in the heat exchange means for latent heat collection | recovery employ | adopted as the heat source apparatus shown in FIG. 1, (b) is the said heat exchange means for latent heat collection | recovery, and The exploded perspective view of an exhaust member, (c) is AA sectional drawing of (b). (a)は図2に示す二次熱交換器の変形例を示す断面図であり、(b)はさらに別の変形例を示す斜視図である。(A) is sectional drawing which shows the modification of the secondary heat exchanger shown in FIG. 2, (b) is a perspective view which shows another modification. 従来技術の熱源装置の作動原理図である。It is an operation | movement principle figure of the heat source apparatus of a prior art.

1 熱源装置
4 顕熱回収手段
5,6 一次熱交換器
7,8 燃焼バーナ
12,13 二次熱交換器
15 潜熱回収手段
23b 給湯配管(第2熱媒体供給流路)
24b 往き流路(第1熱媒体供給流路)
25 受熱管
26 ケース部材
33 排出口
37 偏向部材
55 排気部材
60 排出口形成領域
61 ガス流入空間
65 偏向手段
1 Heat source device 4 Sensible heat recovery means 5, 6 Primary heat exchanger 7, 8 Combustion burner 12, 13 Secondary heat exchanger 15 Latent heat recovery means 23b Hot water supply pipe (second heat medium supply flow path)
24b Outward flow path (first heat medium supply flow path)
25 heat receiving pipe 26 case member 33 discharge port 37 deflection member 55 exhaust member 60 discharge port formation region 61 gas inflow space 65 deflection unit

Claims (7)

燃焼手段と、当該燃焼手段において発生した燃焼ガスが流れる燃焼ガス流路とを備えた加熱系統を複数並べて配し、各加熱系統の燃焼ガス流路はそれぞれ独立しており、当該独立した燃焼ガス流路にはそれぞれ前記燃焼ガス中の主に顕熱を回収する一次熱交換器と、燃焼ガス中の主に潜熱を回収する二次熱交換器とが設けられ、各加熱系統の燃焼ガス流路を流れる燃焼ガスは他の加熱系統の燃焼ガス流路に流入することなく排気されるものであって、二次熱交換器は、燃焼ガスが通過可能な間隔を空けて多数の受熱管が配置された多管型熱交換器により構成され、全ての加熱系統における前記二次熱交換器の受熱管が前記複数の加熱系統の断面領域に跨るように配置されていることを特徴とする熱源装置。 A plurality of heating systems including combustion means and combustion gas passages through which combustion gas generated in the combustion means flows are arranged side by side, and the combustion gas passages of each heating system are independent of each other, and the independent combustion gas Each flow path is provided with a primary heat exchanger that mainly recovers sensible heat in the combustion gas and a secondary heat exchanger that mainly recovers latent heat in the combustion gas, and the combustion gas flow of each heating system The combustion gas flowing through the passage is exhausted without flowing into the combustion gas passages of other heating systems, and the secondary heat exchanger has a large number of heat receiving tubes spaced at intervals through which the combustion gas can pass. A heat source comprising a multi-tube heat exchanger arranged, wherein heat receiving tubes of the secondary heat exchanger in all heating systems are arranged so as to straddle a cross-sectional area of the plurality of heating systems apparatus. 前記二次熱交換器は、受熱管を収納する収納手段を有し、当該収納手段には、燃焼ガスを導入するガス導入口と、前記収納手段内の燃焼ガスを外部に排出するガス排出口とが設けられており、前記ガス導入口からガス排出口に至る流路には、前記ガス導入口からガス排出口に向かう方向への燃焼ガスの流れ抵抗を増大させる抵抗手段が設けられていることを特徴とする請求項1に記載の熱源装置。 The secondary heat exchanger has storage means for storing a heat receiving pipe, and the storage means has a gas inlet for introducing combustion gas, and a gas discharge port for discharging the combustion gas in the storage means to the outside. The flow path from the gas inlet to the gas outlet is provided with resistance means for increasing the flow resistance of the combustion gas in the direction from the gas inlet to the gas outlet. The heat source device according to claim 1. 抵抗手段は、ガス導入口に対して略平行に配置された平行面を有することを特徴とする請求項に記載の熱源装置。 The heat source device according to claim 2 , wherein the resistance means has a parallel surface arranged substantially parallel to the gas inlet. 異なる加熱系統の二次熱交換器を上下に積み重ねて並置した構成であることを特徴とする請求項1乃至3のいずれかに記載の熱源装置。 The heat source device according to any one of claims 1 to 3, wherein secondary heat exchangers of different heating systems are stacked one above the other and juxtaposed. 前記複数の加熱系統には、少なくとも、湯水または熱媒体の供給が長時間に渡ると想定される第1の熱媒体供給流路を備えたものと、湯水または熱媒体の供給時間が第1の熱媒体供給流路による供給時間よりも短時間であると想定される第2の熱媒体供給流路を備えたものとがあり、第1の熱媒体供給流路を備えた加熱系統の多管型熱交換器は、第2の熱媒体供給流路を備えた別の加熱系統の多管型熱交換器よりも下側に配置されていることを特徴とする請求項1乃至のいずれかに記載の熱源装置。 The plurality of heating systems include at least a first heat medium supply channel that is assumed to supply hot water or a heat medium for a long time, and a supply time of hot water or a heat medium is the first. Some of them are provided with a second heat medium supply flow path that is assumed to be shorter than the supply time by the heat medium supply flow path. type heat exchanger, any one of claims 1 to 4, characterized in that arranged on the lower side of the multi-tube type heat exchanger of another heat system having a second heat medium supplying passage The heat source device described in 1. 前記二次熱交換器は、受熱管を収納する収納手段を有し、当該収納手段には、一次熱交換器側から排出された燃焼ガスを導入するガス導入口と、前記収納手段内の燃焼ガスを外部に排出するガス排出口とが設けられており、当該ガス排出口は、前記収納手段の所定の構成面上に想定される排出口形成領域内に形成されたものであり、当該排出口形成領域は、排気部材によって被覆されており、当該排気部材と前記排出口形成領域との間には、ガス排出口から排出された燃焼ガスが流入するガス流入空間が形成されていることを特徴とする請求項1乃至のいずれかに記載の熱源装置。 The secondary heat exchanger has storage means for storing a heat receiving pipe, and the storage means has a gas inlet for introducing combustion gas discharged from the primary heat exchanger side, and a combustion in the storage means. A gas discharge port for discharging the gas to the outside, and the gas discharge port is formed in a discharge port formation region assumed on a predetermined configuration surface of the storage means. The outlet formation region is covered with an exhaust member, and a gas inflow space into which the combustion gas discharged from the gas exhaust port flows is formed between the exhaust member and the exhaust port formation region. heat source apparatus according to any one of claims 1 to 5, characterized. 一次熱交換器と前記二次熱交換器の双方が多管型熱交換器により構成されていることを特徴とする請求項1乃至のいずれかに記載の熱源装置。 The heat source device according to any one of claims 1 to 6 , wherein both the primary heat exchanger and the secondary heat exchanger are constituted by a multi-tube heat exchanger.
JP2004089439A 2004-03-25 2004-03-25 Heat source equipment Expired - Fee Related JP4565316B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004089439A JP4565316B2 (en) 2004-03-25 2004-03-25 Heat source equipment
PCT/JP2005/005241 WO2005093335A1 (en) 2004-03-25 2005-03-23 Heating device
US10/593,350 US7647897B2 (en) 2004-03-25 2005-03-23 Heating apparatus
DE112005000642T DE112005000642T5 (en) 2004-03-25 2005-03-23 heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089439A JP4565316B2 (en) 2004-03-25 2004-03-25 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2005274043A JP2005274043A (en) 2005-10-06
JP4565316B2 true JP4565316B2 (en) 2010-10-20

Family

ID=35173913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089439A Expired - Fee Related JP4565316B2 (en) 2004-03-25 2004-03-25 Heat source equipment

Country Status (1)

Country Link
JP (1) JP4565316B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645734B1 (en) 2005-12-14 2006-11-15 주식회사 경동나비엔 Heat exchanger of condensing boiler for heating / hot water
JP4260802B2 (en) * 2005-12-27 2009-04-30 リンナイ株式会社 2-can combined heat source machine
JP4935297B2 (en) * 2006-10-26 2012-05-23 株式会社ノーリツ Heat source machine
CN102410631B (en) * 2011-11-01 2013-07-24 无锡锡州机械有限公司 Flue gas waste heat recovery device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175956A (en) * 1984-02-21 1985-09-10 Mitsubishi Electric Corp Composite type hot-water supplier
JP2000130855A (en) * 1998-10-26 2000-05-12 Noritz Corp Hot water supply apparatus
JP3802847B2 (en) * 2002-06-26 2006-07-26 株式会社ガスター Secondary heat exchanger and water heater using the same

Also Published As

Publication number Publication date
JP2005274043A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US7647897B2 (en) Heating apparatus
JP5589062B2 (en) Heat exchanger
CN109812963B (en) Heat exchanger and water heating apparatus
JP7135325B2 (en) Heat exchange device and heat source machine
US20190195563A1 (en) Heat exchange device and heat source machine
JP2019510952A (en) Tube type heat exchanger
JP5182570B2 (en) Water heater
JP2013011409A (en) Water heater
JP7357208B2 (en) Heat exchanger and water heating equipment equipped with the same
JP4565316B2 (en) Heat source equipment
JP6256807B2 (en) Heat exchanger and hot water device provided with the same
JP2010139110A (en) Latent heat recovery type heat exchanger
JP2010007968A (en) Hot water supply device
JP4264825B2 (en) Heat source equipment
CN210533121U (en) Condensing heat exchanger
JP5212703B2 (en) Water heater
JP2005274045A (en) Heat source device
KR100993035B1 (en) Corrugated pipe for heat exchanger and heat exchanger including the same
JP2009019859A (en) Heat exchanger and water heater
JP2011174688A (en) Combustion device
JP2021055889A (en) Water heater
JP2005274028A (en) Combustion device
JP6099003B2 (en) Heat exchanger and hot water device provided with the same
JP2005274044A (en) Heat source device
JP4160576B2 (en) Combined heat source machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees