JP4564758B2 - Method for producing vinylidene fluoride resin porous membrane - Google Patents
Method for producing vinylidene fluoride resin porous membrane Download PDFInfo
- Publication number
- JP4564758B2 JP4564758B2 JP2004004021A JP2004004021A JP4564758B2 JP 4564758 B2 JP4564758 B2 JP 4564758B2 JP 2004004021 A JP2004004021 A JP 2004004021A JP 2004004021 A JP2004004021 A JP 2004004021A JP 4564758 B2 JP4564758 B2 JP 4564758B2
- Authority
- JP
- Japan
- Prior art keywords
- vinylidene fluoride
- fluoride resin
- solvent
- porous membrane
- phase separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title claims description 94
- 239000011347 resin Substances 0.000 title claims description 49
- 229920005989 resin Polymers 0.000 title claims description 49
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000002904 solvent Substances 0.000 claims description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 36
- 239000010954 inorganic particle Substances 0.000 claims description 34
- 239000011148 porous material Substances 0.000 claims description 31
- 238000005191 phase separation Methods 0.000 claims description 25
- 238000002145 thermally induced phase separation Methods 0.000 claims description 25
- 239000012510 hollow fiber Substances 0.000 claims description 24
- 239000002245 particle Substances 0.000 claims description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 230000004931 aggregating effect Effects 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 5
- 230000004580 weight loss Effects 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 239000000701 coagulant Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 239000007788 liquid Substances 0.000 description 24
- 239000000203 mixture Substances 0.000 description 23
- 238000001914 filtration Methods 0.000 description 22
- 239000000126 substance Substances 0.000 description 16
- UUGLJVMIFJNVFH-UHFFFAOYSA-N Hexyl benzoate Chemical compound CCCCCCOC(=O)C1=CC=CC=C1 UUGLJVMIFJNVFH-UHFFFAOYSA-N 0.000 description 14
- 239000011259 mixed solution Substances 0.000 description 14
- 239000002033 PVDF binder Substances 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- -1 fatty acid esters Chemical class 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 11
- 238000009287 sand filtration Methods 0.000 description 9
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 238000004898 kneading Methods 0.000 description 8
- 238000000605 extraction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 238000005374 membrane filtration Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 4
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 238000011001 backwashing Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 235000012438 extruded product Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000004033 diameter control Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 2
- LZFIOSVZIQOVFW-UHFFFAOYSA-N propyl 2-hydroxybenzoate Chemical compound CCCOC(=O)C1=CC=CC=C1O LZFIOSVZIQOVFW-UHFFFAOYSA-N 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- CHDVXKLFZBWKEN-UHFFFAOYSA-N C=C.F.F.F.Cl Chemical compound C=C.F.F.F.Cl CHDVXKLFZBWKEN-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000223935 Cryptosporidium Species 0.000 description 1
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PYVHTIWHNXTVPF-UHFFFAOYSA-N F.F.F.F.C=C Chemical compound F.F.F.F.C=C PYVHTIWHNXTVPF-UHFFFAOYSA-N 0.000 description 1
- 241000224466 Giardia Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- HJUFTIJOISQSKQ-UHFFFAOYSA-N fenoxycarb Chemical compound C1=CC(OCCNC(=O)OCC)=CC=C1OC1=CC=CC=C1 HJUFTIJOISQSKQ-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001330 spinodal decomposition reaction Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Materials (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Artificial Filaments (AREA)
Description
本発明は、熱誘起相分離法を用いて、機械的強度、耐熱性、耐薬品性に優れ、さらに、大孔径で、透水量が大きく、分離性能が高く、孔形成性に優れたフッ化ビニリデン系樹脂多孔膜の製造方法に関する。 The present invention uses a thermally induced phase separation method, and is excellent in mechanical strength, heat resistance, chemical resistance, large pore diameter, large water permeability, high separation performance, and excellent pore formation. The present invention relates to a method for producing a vinylidene resin porous membrane.
近年、選択透過性を有する分離膜を用いた分離手段の技術がめざましく進展している。このような分離操作の技術は、例えば飲料水、超純水および医薬品の製造工程、醸造製品の除菌・仕上げなどにおいて、分離手段、洗浄手段および殺菌手段等を含む一連の浄化システムとして実用化されている。これらの用途分野においては、水のファイン化(高度処理)や安全性向上、精度向上などが高いレベルで要求されていたことから分離膜の利用が普及したものである。しかし、このように分離膜の利用が普及しているにもかかわらず、濾過および分離という観点から見ると、現在でも砂による濾過が主流であり、例えば水道水の製造においては、凝集沈殿と砂濾過とを組み合わせた分離手段が圧倒的大多数を占める。 In recent years, the technology of separation means using a separation membrane having selective permeability has been remarkably advanced. Such separation operation technology has been put to practical use as a series of purification systems including separation means, washing means, sterilization means, etc., for example in the production process of drinking water, ultrapure water and pharmaceuticals, sterilization and finishing of brewed products, etc. Has been. In these fields of application, the use of separation membranes has become widespread because finer water (advanced processing), improved safety, and improved accuracy are required at a high level. However, in spite of the widespread use of separation membranes as described above, from the viewpoint of filtration and separation, filtration with sand is still the mainstream at present. For example, in the production of tap water, coagulation precipitation and sand are used. Separation means combined with filtration accounts for the overwhelming majority.
水道水の製造において分離膜を用いた分離手段の普及がなかなか進まない理由は、砂濾過の方が分離膜による濾過よりも単位濾過面積当たりの透過流速が大きく、従って砂濾過の方が低いコストでの造水が可能であることによる。 The reason why separation means using separation membranes in the production of tap water is not so popular is that sand filtration has a higher permeate flow rate per unit filtration area than filtration by separation membranes, and sand filtration is therefore less expensive. Because it is possible to produce fresh water at
しかし、分離膜は砂濾過と比較して次のような点において圧倒的に優れているため、濾過に要するコストを低減できれば砂濾過に変わる新しい濾過技術として急速に普及するものと思われる。
1.分離精度が高いため、原水水質に左右されず、安定した濾過液が得られ、安全性も高い。
2.砂の入れ替えなど煩雑なメンテナンスが少なく廃棄物も少ない。
3.砂濾過であれば分離精度を改善させるために凝集沈殿処理が必要であるが、膜濾過であれば凝集沈殿処理を省略するか、簡素化することができ、システムの省スぺース化や処理工程の単純化が図れる。
4.膜濾過では濾過液の回収率が高く逆洗に使用する水が少ないため、逆洗による廃液の処理が簡単になる。
However, since separation membranes are overwhelmingly superior to sand filtration in the following points, if the cost required for filtration can be reduced, it will be rapidly spread as a new filtration technique that replaces sand filtration.
1. Since the separation accuracy is high, a stable filtrate can be obtained regardless of the quality of raw water, and the safety is also high.
2. There is little troublesome maintenance such as replacement of sand and less waste.
3. In the case of sand filtration, a coagulation sedimentation treatment is required to improve the separation accuracy, but in the case of membrane filtration, the coagulation sedimentation treatment can be omitted or simplified, and the system can be saved and processed. The process can be simplified.
4). In membrane filtration, the recovery rate of the filtrate is high and the amount of water used for backwashing is small, so that wastewater treatment by backwashing is simplified.
膜濾過による透過速度が砂濾過による透過速度と比較して極端に低い原因としては、従来の分離膜は分画粒子径が0.2μm以下の精密濾過膜や限外濾過膜が主流であるために、分画粒子径が小さく、純水透過速度がもともと低いこと、さらに処理水中に存在する不純物や懸濁物質のほとんどが分離膜でトラップされ、上記トラップされた物質による抵抗の増加で透過速度がさらに低くなってしまうことが考えられる。これに対し、砂濾過の分離精度は5〜10μm程度であり、もともとの純水透過速度が高く、さらに水中に不純物や懸濁物質が存在しても、大きさが5μm以下であれば透過してしまうことから、トラップされた物質等による抵抗も受けにくく、高い濾過速度を維持することができる。砂濾過では、5μm以下の不純物等を完全に除去することはできないが、大部分の用途では既に実用化されている通り、精密濾過や限外濾過のような0.2μm以下の分離精度は必ずしも必要とはされていなかった。 The reason why the permeation rate by membrane filtration is extremely low compared with the permeation rate by sand filtration is that conventional separation membranes are mainly microfiltration membranes and ultrafiltration membranes with a fractional particle size of 0.2 μm or less. In addition, the fractional particle size is small and the pure water permeation rate is originally low, and most of the impurities and suspended solids present in the treated water are trapped by the separation membrane, and the permeation rate is increased by the increase in resistance due to the trapped substance. May be even lower. On the other hand, the separation accuracy of sand filtration is about 5 to 10 μm, the original pure water permeation rate is high, and even if there are impurities and suspended solids in water, it will permeate if the size is 5 μm or less. Therefore, it is difficult to receive resistance due to trapped substances and the like, and a high filtration rate can be maintained. Although sand filtration cannot completely remove impurities of 5 μm or less, etc., separation accuracy of 0.2 μm or less, such as microfiltration or ultrafiltration, is not necessarily required as it has already been put to practical use in most applications. It was not necessary.
しかし最近、例えば、水道水にクリプトスポリジウムやジアルジアなどの原虫類が存在することが安全性の面で問題となっているが、砂濾過による除去では十分とはいえず、限外濾過膜や精密濾過膜を用いた分離手段が一部導入されているものの、膜濾過における造水効率の低さは改善されていない。中空糸膜の孔径が原虫類を除去することで水道水としての安全性が満足されるのに十分な2〜3μm程度にまで大きくかつ分離精度の高い分離膜があれば、膜濾過の特長である高度な分離性能を有しつつ、1μm以下の細菌類や懸濁物質による膜の目詰まりが抑制されることで高い濾過速度を発現かつ維持することができ、水道水をはじめとする様々な用途において利用されるものと考えられる。 Recently, however, the presence of protozoa such as Cryptosporidium and Giardia in tap water has been a problem in terms of safety. However, removal by sand filtration is not sufficient. Although some separation means using a filtration membrane has been introduced, the low water production efficiency in membrane filtration has not been improved. If there is a separation membrane with a high separation accuracy, the pore size of the hollow fiber membrane is large enough to satisfy safety as tap water by removing protozoa, High filtration rate can be expressed and maintained by suppressing clogging of membranes by bacteria and suspended solids of 1 μm or less while having a certain advanced separation performance. It is considered to be used in applications.
大きな孔径を有する濾過膜を製造する方法として、延伸開孔法が挙げられる。該方法は、膜素材を特定条件下でアニール処理および延伸することを特徴とし、その結果、フィブリル化されたラメラ構造を有する濾過膜を製造することができる。しかし該方法により製造された濾過膜は、延伸により繊維方向に配向するため円周方向に対する強度が大きく低下してしまうという問題がある。特に、孔径が大きくなると強度は低下傾向となるため、該方法により実用的な強度を有する濾過膜を製造することは困難である。また、形成される孔の形がスリット状となるため、細長い形状の物質は透過しやすくなり分離精度が低くなりやすい。 An example of a method for producing a filtration membrane having a large pore diameter is a stretch pore opening method. The method is characterized in that the membrane material is annealed and stretched under specific conditions, and as a result, a filtration membrane having a fibrillated lamellar structure can be produced. However, the filtration membrane produced by this method has a problem that the strength in the circumferential direction is greatly reduced because it is oriented in the fiber direction by stretching. In particular, since the strength tends to decrease as the pore diameter increases, it is difficult to produce a filtration membrane having practical strength by this method. In addition, since the shape of the hole to be formed is a slit shape, a long and narrow substance is easily transmitted and the separation accuracy is likely to be lowered.
また、濾過膜に求められる重要な特性としては、分離精度だけでなく、強度や伸度、耐薬品性が挙げられる。これらの特性は膜素材に因るところが大きい。そのため、近年ではフッ化ビニリデン系樹脂を用いた濾過膜の開発が進められている。フッ化ビニリデン系樹脂を用いた濾過膜は、強度や伸度、耐薬品性に優れるだけでなく、耐酸化剤性にも優れるため、近年注目されているオゾンを用いた高度水処理にも利用可能である。 Moreover, important characteristics required for the filtration membrane include not only separation accuracy but also strength, elongation, and chemical resistance. These characteristics largely depend on the membrane material. Therefore, in recent years, the development of a filtration membrane using a vinylidene fluoride resin has been promoted. Filtration membranes using vinylidene fluoride resin not only excel in strength, elongation, and chemical resistance, but also in oxidation resistance, so they can be used for advanced water treatment using ozone, which has recently been attracting attention. Is possible.
分離精度に優れた濾過膜を製造する方法として、相分離を利用する場合が多い。そのような相分離を利用した製造法は、非溶剤誘起相分離法と熱誘起相分離法に大きく分けることができる。非溶剤誘起相分離法では、ポリマーと溶剤からなる均一なポリマー溶液は、非溶剤の進入や溶剤の外部雰囲気への蒸発によって相分離を起こす。この非溶剤誘起相分離法は濾過膜の製造方法としては極めて一般的である。しかしこの方法は、非溶剤中での相分離制御が難しく、非溶剤が必須であるために生産コストがかかり、マクロボイド(粗大孔)が発生しやすいなど、膜物性、工程制御性およびコスト性の面で問題がある。 Phase separation is often used as a method for producing a filtration membrane with excellent separation accuracy. Production methods using such phase separation can be broadly divided into non-solvent induced phase separation methods and thermally induced phase separation methods. In the non-solvent induced phase separation method, a uniform polymer solution composed of a polymer and a solvent undergoes phase separation by the ingress of the non-solvent or evaporation of the solvent to the outside atmosphere. This non-solvent induced phase separation method is very general as a method for producing a filtration membrane. However, this method is difficult to control the phase separation in a non-solvent, and the non-solvent is essential, so the production cost is high and macro voids (coarse pores) are easily generated. There is a problem in terms of.
一方、熱誘起相分離法は通常、以下のステップよりなる。(1)ポリマーと高い沸点を持った溶剤の混合物を高温で溶融させる。(2)成形後、相分離を誘発させるために適当な速度で冷却させ、ポリマーを固化させる。(3)用いた溶剤を抽出する。 On the other hand, the thermally induced phase separation method usually comprises the following steps. (1) A mixture of a polymer and a solvent having a high boiling point is melted at a high temperature. (2) After molding, the polymer is solidified by cooling at an appropriate rate to induce phase separation. (3) Extract the used solvent.
また、熱誘起相分離法が、非溶剤誘起相分離法と比較して有利な点は以下のとおりである。(a)膜の強度を弱める要因となるマクロボイドが発生しない。(b)非溶剤誘起相分離法では、溶剤のほかに非溶剤が必要であるため、製造工程における制御が困難であり、再現性も低い。一方、熱誘起相分離法では非溶剤が必要ないため制御性およびコスト性に優れ、また再現性も高い。(c)孔径制御が比較的容易で、孔径分布がシャープで良好な孔を形成する孔形成性に優れる。 The advantages of the thermally induced phase separation method compared to the non-solvent induced phase separation method are as follows. (A) Macrovoids that cause a decrease in film strength are not generated. (B) In the non-solvent induced phase separation method, a non-solvent is required in addition to the solvent, so that control in the production process is difficult and reproducibility is low. On the other hand, the heat-induced phase separation method does not require a non-solvent, so it has excellent controllability and cost, and has high reproducibility. (C) The pore diameter control is relatively easy, the pore diameter distribution is sharp, and the hole forming property for forming good holes is excellent.
熱誘起相分離には固−液型熱誘起相分離と液−液型熱誘起相分離が存在し、どちらを発現するかは、ポリマーと溶剤の相容性に起因する。両者の相容性が非常に高い場合は固−液型熱誘起相分離を発現するが、相容性が低くなると液−液型熱誘起相分離を発現し、ついに両者は非相容となる。一般に、液−液型熱誘起相分離ではスピノーダル分解により相分離が進行するため、固−液型熱誘起相分離と比較して共連続構造が発現し易いという特徴を持ち、その結果、孔の連通性や均一性などの孔形成性に優れる分離膜を製造することができる。つまり、透過性能と分画性能に優れる分離膜を製造するには、液−液型熱誘起相分離を発現する適切なポリマーと溶剤の組み合わせを選択することが好ましい。一般に、ポリマーと溶剤が液−液型熱誘起相分離を発現する領域は狭いため、該方法により分離膜を製造する場合、ポリマーと溶剤の適切な組み合わせを選ぶことが極めて重要であることが知られている(例えば、非特許文献1参照)。 Thermally induced phase separation includes solid-liquid type thermally induced phase separation and liquid-liquid type thermally induced phase separation, and it is attributed to the compatibility between the polymer and the solvent. When the compatibility of both is very high, solid-liquid type thermally induced phase separation is developed, but when compatibility is low, liquid-liquid type thermally induced phase separation is developed, and finally both become incompatible. . In general, in liquid-liquid type thermally induced phase separation, since phase separation proceeds by spinodal decomposition, it has a feature that a co-continuous structure is easily developed compared to solid-liquid type thermally induced phase separation. A separation membrane having excellent pore forming properties such as communication and uniformity can be produced. That is, in order to produce a separation membrane excellent in permeation performance and fractionation performance, it is preferable to select an appropriate polymer and solvent combination that exhibits liquid-liquid type thermally induced phase separation. In general, since the region where a polymer and a solvent exhibit liquid-liquid type thermally induced phase separation is small, it is known that it is extremely important to select an appropriate combination of a polymer and a solvent when producing a separation membrane by this method. (See, for example, Non-Patent Document 1).
一方、熱誘起相分離法を利用したフッ化ビニリデン系樹脂多孔膜の製造方法に関しては、ポリフッ化ビニリデン樹脂と溶剤、例えばフタル酸ジエチルやアセトフェノン等からなる紡糸原液を高温で溶解後、冷却により熱誘起相分離を発現させ、抽出や延伸工程を経て多孔膜を得るという方法が知られている(例えば、特許文献1参照)。この方法で得られた多孔膜の平均孔径は最大0.5μm程度で、また純水透過速度(透水量)も10000L/m2/hr/98kPaに満たないものである。
本発明の目的は、熱誘起相分離法を用いて、機械的強度、耐熱性、耐薬品性に優れ、さらに、大孔径で、透水量が大きく、分離性能が高く、孔形成性に優れたフッ化ビニリデン系樹脂多孔膜の製造方法を提供することにある。 The object of the present invention is to use a thermally induced phase separation method, which is excellent in mechanical strength, heat resistance and chemical resistance, and has a large pore diameter, large water permeability, high separation performance, and excellent pore formation. It is providing the manufacturing method of a vinylidene fluoride resin porous membrane.
上記目的を達成するために、本発明のフッ化ビニリデン系樹脂多孔膜の製造方法は、フッ化ビニリデン系樹脂と、該フッ化ビニリデン系樹脂と特定の温度領域で相容して一相状態となり、かつ温度変化により相分離を起こしうる所定の溶剤と、無機粒子と、無機粒子と親和性を有する凝集剤とを、該フッ化ビニリデン系樹脂と該溶剤とが相容する温度で混練させた混合液を調製した後、冷却することで熱誘起相分離と該フッ化ビニリデン系樹脂の析出とを起こさせ、その後無機粒子が存在する状態で延伸処理を行い、次いで該溶剤、無機粒子および凝集剤を抽出させることにより多孔膜が製造される、膜表面に、平均孔径が3μm以上の円形または楕円形の微細孔を有し、該多孔膜内の空間の体積比である空隙率が50%〜90%の範囲内で、純水透過速度が30000L/m2/hr/98kPa以上、分画粒子径が1μm以上のフッ化ビニリデン系樹脂多孔膜を得ることを特徴とする。 In order to achieve the above object, the method for producing a vinylidene fluoride resin porous membrane of the present invention is compatible with a vinylidene fluoride resin and the vinylidene fluoride resin in a specific temperature region to be in a one-phase state. In addition, a predetermined solvent capable of causing phase separation due to a temperature change, inorganic particles, and an aggregating agent having an affinity for the inorganic particles were kneaded at a temperature at which the vinylidene fluoride resin and the solvent are compatible with each other. After preparing the liquid mixture, cooling causes heat-induced phase separation and precipitation of the vinylidene fluoride resin, followed by stretching in the presence of inorganic particles, and then the solvent, inorganic particles, and agglomeration The porous membrane is produced by extracting the agent. The membrane surface has circular or elliptical micropores with an average pore diameter of 3 μm or more, and the porosity, which is the volume ratio of the space in the porous membrane, is 50%. In the range of ~ 90% Pure water permeation rate 30000L / m 2 / hr / 98kPa above, fractionated particle diameter and wherein the obtaining a more porous membrane of vinylidene fluoride resin 1 [mu] m.
本発明において用いられるフッ化ビニリデン系樹脂は、フッ化ビニリデンホモポリマーおよび/またはフッ化ビニリデン共重合体を含有する樹脂のことであり、特定の温度領域で溶剤と相容して一相状態となり、かつ温度変化により相分離を起こしうるものであれば特に制限はない。フッ化ビニリデン共重合体としては、フッ化ビニリデン残基構造を有するポリマーならば特に限定されず、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーとの共重合体である。例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上のフッ素系モノマーとフッ化ビニリデンとの共重合体が挙げられる。場合によっては、フッ素系モノマー以外の例えばエチレン等のモノマーが含まれていても良い。また、フッ化ビニリデン系樹脂の分子量は高い方が膜の強度が高くなるので好ましいが、加工性を考慮すれば、重量平均分子量10万から60万の範囲が好ましく、さらに20万から50万の範囲が好ましい。 The vinylidene fluoride resin used in the present invention is a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer, and is compatible with a solvent in a specific temperature range to become a one-phase state. In addition, there is no particular limitation as long as phase separation can be caused by temperature change. The vinylidene fluoride copolymer is not particularly limited as long as it is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers. For example, a copolymer of at least one fluorine-based monomer selected from vinyl fluoride, ethylene tetrafluoride, propylene hexafluoride, and ethylene trifluoride chloride and vinylidene fluoride can be given. In some cases, a monomer such as ethylene other than the fluorine-based monomer may be included. The higher the molecular weight of the vinylidene fluoride resin, the higher the strength of the film. However, in consideration of processability, the weight average molecular weight is preferably in the range of 100,000 to 600,000, more preferably 200,000 to 500,000. A range is preferred.
本発明において用いられる溶剤は、特定の温度領域でフッ化ビニリデン系樹脂と相容し、かつ温度変化によりフッ化ビニリデン系樹脂と相分離を起こすものが用いられる。ポリフッ化ビニリデンと固―液相分離状態を取りうる溶剤としては、アセトフェノン、イソホロン、シクロヘキサノン、フタル酸ジメチル、フタル酸ジエチルなどが挙げられ、ポリフッ化ビニリデン−六フッ化プロピレン共重合体と固―液相分離状態を取りうる溶剤としては、アセトフェノン、セバシン酸ジブチル、リン酸トリクレジルなどが挙げられる。またポリフッ化ビニリデンと液―液相分離状態を取りうる溶剤としては、安息香酸ヘキシルが挙げられ、ポリフッ化ビニリデン−六フッ化プロピレン共重合体と液―液相分離状態を取りうる溶剤としては、サリチル酸プロピルやピリジンなどが挙げられる。これらの中でも、透過性能と分画性能に優れる分離膜を製造するには液−液相分離状態を発現するフッ化ビニリデン樹脂と溶剤の組み合わせを用いることが好ましい。さらに、溶剤に(熱誘起相分離温度+30)℃における30秒間での重量減量率が10%以下のものを用いると、膜表面における開孔性(開孔率)がより良好となるため好ましい。この溶剤の重量減量率は、例えば示差熱・熱重量測定装置(以下、TG(熱重量)−DTA(示差熱)と略記することがある)を用いて測定される。 As the solvent used in the present invention, a solvent that is compatible with the vinylidene fluoride resin in a specific temperature range and causes phase separation with the vinylidene fluoride resin due to temperature change is used. Solvents that can be in a solid-liquid phase separation state with polyvinylidene fluoride include acetophenone, isophorone, cyclohexanone, dimethyl phthalate, diethyl phthalate, and the like. Examples of the solvent capable of taking a phase separation state include acetophenone, dibutyl sebacate, tricresyl phosphate, and the like. Examples of the solvent that can take a liquid-liquid phase separation state with polyvinylidene fluoride include hexyl benzoate, and the solvent that can take a liquid-liquid phase separation state with a polyvinylidene fluoride-hexafluoropropylene copolymer, Examples include propyl salicylate and pyridine. Among these, it is preferable to use a combination of a vinylidene fluoride resin and a solvent that exhibits a liquid-liquid phase separation state in order to produce a separation membrane having excellent permeation performance and fractionation performance. Furthermore, it is preferable to use a solvent having a weight loss rate of 10% or less at 30 ° C. at (thermally induced phase separation temperature + 30) ° C., because the pore opening property (opening rate) on the membrane surface becomes better. The weight loss rate of the solvent is measured using, for example, a differential thermal / thermogravimetric measuring device (hereinafter sometimes abbreviated as TG (thermogravimetric) -DTA (differential heat)).
本発明において用いられる無機粒子は、多孔膜が大きな孔径を有するための核となるものであり、薬品などによる抽出が容易で粒径分布の比較的狭い微粒子が望ましい。その例として、例えば、シリカ、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム、鉄、亜鉛などの金属酸化物または水酸化物、ナトリウム、カリウム、カルシウム等の塩類などを例示することができる。特に、凝集性を有する無機粒子は、通常であればフッ化ビニリデン系樹脂と溶剤とが相分離してしまうような組成に添加することでフッ化ビニリデン系樹脂と溶剤とが相容状態にあるときの安定性が向上する結果、均質な多孔膜を製造することが可能となり、より大きな孔径を有する多孔膜を製造することができる。このような凝集性の点から無機粒子としてはシリカが最良である。また多孔膜の孔径制御、特に孔の連通性を向上させることを目的として、異なる凝集粒子径を有する無機粒子を混合することもできる。 The inorganic particles used in the present invention are the core for the porous membrane to have a large pore size, and are desirably fine particles that can be easily extracted with chemicals and have a relatively narrow particle size distribution. Examples thereof include, for example, metal oxides or hydroxides such as silica, calcium silicate, aluminum silicate, magnesium silicate, calcium carbonate, magnesium carbonate, calcium phosphate, iron and zinc, and salts such as sodium, potassium and calcium. be able to. In particular, the inorganic particles having a cohesive property are usually compatible with each other by adding to a composition in which the vinylidene fluoride resin and the solvent are phase-separated. As a result of improving the stability at the time, it becomes possible to produce a homogeneous porous film, and a porous film having a larger pore diameter can be produced. From such a cohesive point, silica is the best inorganic particle. In addition, inorganic particles having different agglomerated particle diameters can be mixed for the purpose of improving the pore diameter control of the porous membrane, in particular, improving the pore connectivity.
本発明において用いられる凝集剤とは、無機粒子と親和性があり、さらに無機粒子の凝集性を向上させる働きを有する化合物をいう。凝集剤は、このような要件に加えて、フッ化ビニリデン系樹脂と溶剤とが相容する温度以上の沸点を有することが必要である。なお、無機粒子の凝集性を向上させる点から、凝集剤は親水基を有する化合物であることがより好ましい。ただし、溶剤が上記凝集剤の要件をも満たす場合は、新たに凝集剤を添加する必要はない。凝集剤の例としては、エチレングリコール、プロピレングリコール、トリエチレングリコール、ポリエチレングリコール、グリセリンなどの多価アルコール類、モノラウリン酸デカグリセリルのようなポリグリセリン脂肪酸エステル類、モノステアリン酸ポリオキシエチレングリセリンのようなポリオキシエチレングリセリン脂肪酸エステル類、ポリオキシエチレンラウリルエーテルやポリオキシエチレンセチルエーテルのようなポリオキシエチレンアルキルエーテル類、ポリオキシエチレンポリオキシプロピレンセチルエーテルのようなポリオキシエチレンポリオキシプロピレンアルキルエーテル類、ポリオキシエチレンノニルフェニルエーテルのようなポリオキシエチレンアルキルフェニルエーテル類、モノパルミチン酸ポリオキシエチレンソルビタンのようなポリオキシエチレンソルビタン脂肪酸エステル類などが挙げられる。さらに、無機粒子の凝集状態を制御するためや、系全体の溶融状態を安定化させるために、これらを任意の割合で混合することもできる。 The aggregating agent used in the present invention refers to a compound that has an affinity for inorganic particles and has a function of improving the aggregating properties of the inorganic particles. In addition to these requirements, the flocculant needs to have a boiling point equal to or higher than the temperature at which the vinylidene fluoride resin and the solvent are compatible. In addition, it is more preferable that the aggregating agent is a compound having a hydrophilic group from the viewpoint of improving the aggregation property of the inorganic particles. However, it is not necessary to add a new flocculant when the solvent also satisfies the requirements for the flocculant. Examples of flocculants include polyhydric alcohols such as ethylene glycol, propylene glycol, triethylene glycol, polyethylene glycol, and glycerin, polyglycerin fatty acid esters such as decaglyceryl monolaurate, and polyoxyethylene glyceryl monostearate. Polyoxyethylene glycerin fatty acid esters, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene cetyl ether, polyoxyethylene polyoxypropylene alkyl ethers such as polyoxyethylene polyoxypropylene cetyl ether , Polyoxyethylene alkylphenyl ethers such as polyoxyethylene nonylphenyl ether, polyoxyethylene monopalmitate Polyoxyethylene sorbitan fatty acid esters such as Nsorubitan thereof. Furthermore, in order to control the aggregation state of the inorganic particles or to stabilize the molten state of the entire system, they can be mixed at an arbitrary ratio.
上記したフッ化ビニリデン系樹脂、溶剤、無機粒子および凝集剤からなる混合液の組成は、製造された多孔膜が実用に耐える強度を持ち、所望の孔径および孔が所望の性能を満たす程度に存在し得る範囲内で自由に設定することができる。混合液の組成は上記した各構成成分の化学構造等により異なるが、フッ化ビニリデン系樹脂、溶剤、無機粒子および凝集剤の組成比の合計を120とした場合に(以下も同様)、フッ化ビニリデン系樹脂:溶剤:無機粒子:凝集剤=15〜30:25〜85:5〜30:5〜50の範囲内にあることが望ましい。混合液の組成がこの範囲を外れると、混合液から多孔膜を製造する際に安定性が低下して、均質な多孔膜を製造することが困難となる。また、フッ化ビニリデン系樹脂の量が上記した量より多いときには、均質な多孔膜を製造することは可能であっても得られる多孔膜の孔径が小さくなり、本発明の特徴である大きな孔径や大きい純水透過速度を得るのが困難となる傾向にある。 The composition of the mixed liquid composed of the above-mentioned vinylidene fluoride resin, solvent, inorganic particles, and aggregating agent has such a strength that the manufactured porous film can withstand practical use, and the desired pore diameter and pores satisfy the desired performance. It can be freely set within a possible range. The composition of the mixed solution varies depending on the chemical structure of each component described above, but when the total composition ratio of the vinylidene fluoride resin, the solvent, the inorganic particles, and the flocculant is 120 (the same applies hereinafter) It is desirable that it is in the range of vinylidene resin: solvent: inorganic particles: flocculant = 15-30: 25-85: 5-30: 5-50. When the composition of the mixed solution is out of this range, the stability is lowered when producing the porous membrane from the mixed solution, and it becomes difficult to produce a homogeneous porous membrane. Further, when the amount of the vinylidene fluoride resin is larger than the above-mentioned amount, the pore diameter of the obtained porous membrane is reduced even if it is possible to produce a homogeneous porous membrane. It tends to be difficult to obtain a high pure water permeation rate.
上記したフッ化ビニリデン系樹脂、溶剤、無機粒子および凝集剤からなる混合液には、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、染料、親水化剤、増粘剤などの各種添加剤を本発明の目的を損なわない範囲で添加することができる。 In the mixed liquid comprising the above-mentioned vinylidene fluoride resin, solvent, inorganic particles, and aggregating agent, an antioxidant, an ultraviolet absorber, a lubricant, an antiblocking agent, a dye, a hydrophilizing agent, and a thickener are added as necessary. Such various additives can be added as long as the object of the present invention is not impaired.
上記したフッ化ビニリデン系樹脂、溶剤、無機粒子および凝集剤からなる混合液は、二軸混練設備、プラストミル、ミキサーなどの中で混練される。混練温度はフッ化ビニリデン系樹脂と溶剤とが相容し、かつ上記混合物の各成分が分解しない範囲で設定する。混合液は混練された後、十分に気泡が除去され、ギヤポンプなどの計量ポンプで計量した後、シートダイや二重環構造のノズルより押出し、所望の形状に成形される。中空糸状にするときは、二重環構造のノズルの中心部から、空気、窒素などの気体、または上記混合液の押出し温度以上の沸点を有する液体が同時に押出される。上記二重環構造のノズルの中心部から押出すのに用いられる液体としては、テトラエチレングリコールやプロピレングリコール、グリセリンなどを例示することができ、これらを用いると、得られる中空糸の内表面における構造が粗大化し、大きな孔径を得るうえでより効果的である。 The liquid mixture composed of the above-mentioned vinylidene fluoride resin, solvent, inorganic particles, and aggregating agent is kneaded in a biaxial kneading equipment, a plast mill, a mixer, or the like. The kneading temperature is set in such a range that the vinylidene fluoride resin and the solvent are compatible with each other and each component of the mixture is not decomposed. After the mixed solution is kneaded, bubbles are sufficiently removed, measured with a metering pump such as a gear pump, and then extruded through a sheet die or a nozzle having a double ring structure, and formed into a desired shape. When forming a hollow fiber, a gas such as air or nitrogen or a liquid having a boiling point equal to or higher than the extrusion temperature of the above mixed liquid is extruded from the center of the nozzle having a double ring structure. Examples of the liquid used for extruding from the center of the nozzle having the double ring structure include tetraethylene glycol, propylene glycol, and glycerin. When these are used, the inner surface of the hollow fiber to be obtained is used. It is more effective in obtaining a large pore size by coarsening the structure.
シートダイやノズルより押出された押出成形物は、例えば冷却といった温度の変化によりフッ化ビニリデン系樹脂と溶剤とが相分離を起こしてフッ化ビニリデン系樹脂が固化する。フッ化ビニリデン系樹脂とフッ化ビニリデン系樹脂が相容する溶媒との混合物がフッ化ビニリデン系樹脂の貧溶媒中との接触により固化するときには、上記混合物と非溶媒の界面にあたる部分が緻密な層を形成し、得られる多孔膜が不均一な構造となり、高い分離精度が得られないおそれがある。冷却の方法は、空気中で行なう方法、液体中に導入する方法、一旦空気中を通した後に液体中に導入する方法などがありいずれの方法を用いても良いが、冷却の速度が多孔膜の強度や伸度、さらに孔径制御に大きく影響するので冷却速度をコントロールできるように雰囲気温度を温風で制御したり、冷却に用いられる液体の温度を制御することが望ましい。冷却に用いられる液体としては工業的には水が好ましいが、凝集剤または溶剤と相容する有機液体を用いることも可能である。 In the extruded product extruded from the sheet die or nozzle, for example, the vinylidene fluoride resin and the solvent undergo phase separation due to a temperature change such as cooling, and the vinylidene fluoride resin is solidified. When the mixture of the vinylidene fluoride resin and the solvent compatible with the vinylidene fluoride resin is solidified by contact with the poor solvent of the vinylidene fluoride resin, the portion corresponding to the interface between the mixture and the non-solvent is a dense layer. The resulting porous membrane has a non-uniform structure, and high separation accuracy may not be obtained. The cooling method includes a method of performing in air, a method of introducing into the liquid, a method of once passing through the air and then introducing into the liquid, and any method may be used. Therefore, it is desirable to control the ambient temperature with warm air so that the cooling rate can be controlled, or to control the temperature of the liquid used for cooling. As the liquid used for cooling, water is industrially preferable, but an organic liquid compatible with the flocculant or solvent can also be used.
次いで、上記により形成された成形物から、溶剤、無機粒子および凝集剤を抽出して多孔膜を得る。これらの成分の抽出は、押出、固化などの操作と共に工程中で連続的に行なうことができるし、成形物を一旦枠やカセなどに巻き取った後に行なっても、あるいは成形物を所定の形状のケースに収納してモジュール化した後に行なっても良い。各成分の抽出に用いる溶剤は、抽出温度においてフッ化ビニリデン系樹脂の非溶剤であることが必要である。抽出溶剤は抽出成分の化学構造等によっても異なるが、例えば溶剤がアセトフェノンの場合は、アセトンやメタノールなどが挙げられる。また無機粒子がシリカの場合は、アルカリ溶液による抽出が好適である。さらに凝集剤がポリオキシエチレンポリオキシプロピレンセチルエーテルの場合は、ヘキサン、アセトン、メタノール、水などが挙げられる。多孔膜は、これらの処理を行なった後に、例えば枠やカセに巻き取った状態で乾燥される。 Next, a solvent, inorganic particles, and an aggregating agent are extracted from the molded product formed as described above to obtain a porous film. The extraction of these components can be carried out continuously in the process together with operations such as extrusion and solidification, and can be carried out after the molded product is once wound up on a frame or a cassette, or the molded product can be formed into a predetermined shape. You may carry out after storing in the case and modularizing. The solvent used for extraction of each component must be a non-solvent of vinylidene fluoride resin at the extraction temperature. Although the extraction solvent varies depending on the chemical structure of the extraction component, for example, when the solvent is acetophenone, acetone, methanol and the like can be mentioned. In addition, when the inorganic particles are silica, extraction with an alkaline solution is preferable. Further, when the flocculant is polyoxyethylene polyoxypropylene cetyl ether, hexane, acetone, methanol, water and the like can be mentioned. The porous film is dried after being subjected to these treatments, for example, in a state of being wound around a frame or a cassette.
また、本発明において多孔膜の強度を向上させるために延伸処理を行なうことも可能である。延伸の方法としては、熱延伸、冷延伸、熱固定などの方法を、目的とする強度に応じて適宜組み合わせて実施することができる。但し、延伸の程度が過ぎると、得られる多孔膜がフィブリル化を起こして微細孔がスリット状となり、分離精度が低くなったり、円周方向に対する強度が逆に低下してしまうために好ましくない。膜の濾過においては円周方向の強度も重要であるため、膜の表面がスリット状微細孔にならず円形または楕円形を保持する範囲内で延伸比率を制御する必要がある。延伸は形成後に溶剤や無機粒子などが存在している状態で行なう、溶剤および凝集剤を抽出した後に無機粒子が存在している状態で行なう、溶剤、無機粒子および凝集剤の抽出を行なった後に行なうなど、任意の方法で行なって良い。延伸時において無機粒子が存在する状態で延伸を行なう場合、無機粒子が孔形成の核となることにより、大きな孔径を有する多孔膜が得られるため好ましい。このような延伸を行なうことで、強度が向上するだけでなく空隙率が大きくなり、その結果高い純水透過速度を有する膜が製造できる。 In the present invention, it is also possible to perform a stretching treatment in order to improve the strength of the porous membrane. As the stretching method, methods such as hot stretching, cold stretching, and heat setting can be appropriately combined according to the intended strength. However, if the degree of stretching is excessive, the resulting porous membrane is fibrillated and the micropores become slit-like, so that the separation accuracy is lowered and the strength in the circumferential direction is adversely decreased. In the filtration of the membrane, the strength in the circumferential direction is also important. Therefore, it is necessary to control the stretching ratio within a range in which the membrane surface does not become slit-like micropores but maintains a circular or elliptical shape. Stretching is performed in a state where a solvent and inorganic particles are present after formation, and is performed in a state where inorganic particles are present after extracting the solvent and the flocculant. After extracting the solvent, inorganic particles and the flocculant This may be done by any method. When stretching in a state where inorganic particles are present at the time of stretching, it is preferable because the inorganic particles serve as nuclei for pore formation, so that a porous film having a large pore diameter can be obtained. By performing such stretching, not only the strength is improved but also the porosity is increased, and as a result, a membrane having a high pure water permeation rate can be produced.
このようにして得られた本発明のフッ化ビニリデン系樹脂多孔膜は、膜表面に平均孔径が3μm以上の円形または楕円形の微細孔を有する。また、多孔膜内の空間の体積比である空隙率は50〜95%、好ましくは70〜90%である。空隙率が50%よりも小さくなると十分な純水透過速度を得ることが困難であり、90%を越えると膜の強度が低下し、膜濾過の実施中に中空糸膜の破断や折れが発生し膜としての耐久性に欠ける。本発明の多孔膜はこのような膜構造を有しているため、純水透過速度が30000L/m2/hr/98kPa以上と従来の膜と比べ格段に高く、また分画粒子径1μm以上を有する。さらに、本発明の製造方法によると、純水透過速度が150000L/m2/hr/98kPa以上、分画粒子径が3μm以上の膜を製造することも可能である。また、孔径が大きくなることで湿潤状態でも100kPa以下の低い圧力で空気などの気体が透過できるようになるため、気体逆洗などの物理的手段による洗浄が可能となる。 The vinylidene fluoride resin porous membrane of the present invention thus obtained has circular or elliptical micropores with an average pore diameter of 3 μm or more on the membrane surface. The porosity, which is the volume ratio of the space in the porous membrane, is 50 to 95%, preferably 70 to 90%. When the porosity is less than 50%, it is difficult to obtain a sufficient pure water permeation rate. When the porosity exceeds 90%, the strength of the membrane is lowered, and the hollow fiber membrane is broken or broken during membrane filtration. It lacks durability as a thin film. Since the porous membrane of the present invention has such a membrane structure, the pure water permeation rate is 30000 L / m 2 / hr / 98 kPa or more, which is much higher than conventional membranes, and the fractional particle diameter is 1 μm or more. Have. Furthermore, according to the production method of the present invention, it is possible to produce a membrane having a pure water permeation rate of 150,000 L / m 2 / hr / 98 kPa or more and a fractional particle diameter of 3 μm or more. Further, since the pore diameter is increased, a gas such as air can be permeated at a low pressure of 100 kPa or less even in a wet state, so that cleaning by physical means such as gas backwashing is possible.
乾燥後の多孔膜を所定本数ずつ束ねて所定形状のケースに収納した後、ウレタン樹脂、エポキシ樹脂等で端部を固定することによって膜モジュールが得られる。例えば中空糸膜の場合、膜モジュールとしては、中空糸膜の両端が開口固定されているタイプのもの、中空糸膜の一端が開口固定されかつ他端が密封されているが固定はされていないタイプのもの等、種々の形態のものが公知である。 A membrane module is obtained by bundling a predetermined number of porous membranes after drying and storing them in a case having a predetermined shape, and then fixing the ends with urethane resin, epoxy resin or the like. For example, in the case of a hollow fiber membrane, the membrane module is of a type in which both ends of the hollow fiber membrane are fixed open, one end of the hollow fiber membrane is fixed open and the other end is sealed but not fixed Various types are known, such as types.
以下、実施例により本発明を具体的に説明する。なお、本発明はこれによってなんら限定を受けるものではない。 Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention does not receive any limitation by this.
実施例1
フッ化ビニリデン系樹脂としてポリフッ化ビニリデン(以下、PVDFと略記することがある)(ソルベイアドバンストポリマーズ株式会社製、SOLEF6010)と、溶剤として安息香酸ヘキシル(和光純薬株式会社製、試薬1級)と、無機粒子としてシリカ(株式会社トクヤマ製、ファインシールX−45、平均凝集粒子径4.0〜5.0μm)と、凝集剤としてモノラウリン酸ヘキサグリセリル(日光ケミカルズ株式会社製、Hexaglyn 1−L)とを、重量比で20:80:10:10の割合となるように混合液を調製した。この混合液の組成を表1に示す。
Example 1
Polyvinylidene fluoride (hereinafter sometimes abbreviated as PVDF) as a vinylidene fluoride-based resin (SOLEF6010 manufactured by Solvay Advanced Polymers Co., Ltd.), and hexyl benzoate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) as a solvent; Silica as inorganic particles (Tokuyama Co., Ltd., Fine Seal X-45, average agglomerated particle size 4.0 to 5.0 μm) and hexaglyceryl monolaurate as a flocculant (Hexaglyn 1-L, manufactured by Nikko Chemicals Co., Ltd.) Were mixed so that the weight ratio was 20: 80: 10: 10. The composition of this mixed solution is shown in Table 1.
上記した混合液を、二軸混練押出機中で加熱混練(温度240℃)して、押出したストランドをペレタイザーに通すことでチップ化した。このチップを、外径2.5mm、内径1.1mmの二重環構造のノズルを装着した押出機(230℃)を用いて押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。 The above mixed solution was heated and kneaded (temperature 240 ° C.) in a twin-screw kneading extruder, and the extruded strand was passed through a pelletizer to form chips. This chip was extruded using an extruder (230 ° C.) equipped with a nozzle having a double ring structure having an outer diameter of 2.5 mm and an inner diameter of 1.1 mm. At this time, tetraethylene glycol was injected into the hollow portion of the extrudate.
紡口から空気中に押し出した押出成形物を、2cmの空中走行距離を経て、水浴中(温度20℃)に入れ、約50cm水浴中を通過させて冷却固化させた。次いで、得られた中空糸を50℃のメタノール中で60分の浸漬を2回繰り返して溶剤(安息香酸ヘキシル)と凝集剤(モノラウリン酸ヘキサグリセリル)、さらに注入液(テトラエチレングリコール)を抽出除去した。 The extruded product extruded from the spinning nozzle into the air was placed in a water bath (temperature 20 ° C.) through an air travel distance of 2 cm, and passed through an approximately 50 cm water bath to be cooled and solidified. Next, the obtained hollow fiber was immersed in methanol at 50 ° C. for 60 minutes twice to extract and remove the solvent (hexyl benzoate), the flocculant (hexaglyceryl monolaurate), and the injection solution (tetraethylene glycol). did.
このようにして得られた中空糸状物を80℃の熱水中で繊維方向に原長の約2倍長となるよう延伸処理をした後に、100℃の熱水中で熱固定を行ない、次いで20℃の3N水酸化ナトリウム水溶液中で20分浸漬して無機粒子(株式会社トクヤマ製、ファインシールX―45)を抽出除去した後に、水洗、乾燥工程を経て中空糸膜を得た。製造した中空糸膜について以下の手法に従って試験を行った。試験結果を表2と表3に示す。 The hollow fiber-like material thus obtained was stretched in hot water at 80 ° C. so as to be about twice as long as the original length in the fiber direction, and then heat-set in hot water at 100 ° C., After being immersed in a 3N sodium hydroxide aqueous solution at 20 ° C. for 20 minutes to extract and remove inorganic particles (Fine Seal X-45, manufactured by Tokuyama Corporation), a hollow fiber membrane was obtained through a water washing and drying process. The manufactured hollow fiber membrane was tested according to the following method. The test results are shown in Tables 2 and 3.
(孔の長径と短径の比および平均孔径)
外表面および内表面の少なくとも2ヶ所について電子顕微鏡を用いて写真撮影し、写真の視野範囲内に見える全ての微細孔の長径、短径および内半径を計測し、計測する微細孔数が100個以上になるまで上記操作を行う。その後、外表面および内表面のそれぞれについて、上記計測した孔の長径と短径の比および内半径の平均値を求め、これを孔の長径と短径の比および平均孔径とした。
(Ratio of major and minor diameters of holes and average pore diameter)
At least two locations on the outer and inner surfaces are photographed using an electron microscope, and the major, minor, and inner radii of all micropores that are visible within the field of view of the photograph are measured. The number of micropores to be measured is 100 The above operation is performed until the above is reached. Thereafter, for each of the outer surface and the inner surface, the measured ratio of the major axis and minor axis of the hole and the average value of the inner radius were obtained, and this was defined as the ratio of the major axis and minor axis of the hole and the average pore diameter.
(分画粒子径)
異なる粒子径を有する少なくとも2種類の粒子の阻止率を測定し、その測定値を元にして下記の近似式(1)において、Rが90となるSの値を求め、これを分画粒子径とした。
R=100/(1−m×exp(−a×log(s))) …(1)
(1)式中、aおよびmは中空糸膜によって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。ただし、0.1μm径の粒子の阻止率が90%以上の場合の分画粒子径は、<0.1μmと表記される。
(Fractional particle size)
The rejection rate of at least two kinds of particles having different particle diameters is measured, and based on the measured values, the value of S in which R is 90 is obtained in the following approximate formula (1), and this is the fractional particle diameter. It was.
R = 100 / (1−m × exp (−a × log (s))) (1)
In the formula (1), a and m are constants determined by the hollow fiber membrane, and are calculated based on measured values of two or more types of rejection. However, the fractional particle size in the case where the rejection rate of 0.1 μm diameter particles is 90% or more is expressed as <0.1 μm.
(純水透過速度)
有効長が3cmの片端開放型の中空糸膜モジュールを用いて、原水として純水を利用し、濾過圧力が50kPa、温度が25℃の条件で中空糸膜の外側から内側に濾過(外圧濾過)して時間当たりの透水量を測定し、単位膜面積、単位時間、単位圧力当たりの透水量に換算した数値で算出した。
(Pure water transmission rate)
Using a hollow fiber membrane module with an open end of 3 cm in effective length, using pure water as raw water, filtering from the outside to the inside of the hollow fiber membrane under conditions of a filtration pressure of 50 kPa and a temperature of 25 ° C. (external pressure filtration) Then, the water permeation amount per hour was measured and calculated by a numerical value converted into the water permeation amount per unit membrane area, unit time and unit pressure.
(強度、伸度)
引張試験機(株式会社島津製作所製、オートグラフAGS−100G)を用いて測定した。測定は20℃の水中で実施し、チャック間距離は50mm、引張速度は100mm/分とし、破断時の荷重を膜断面積で割ることで強度を決定した。また伸度は式(2)を用いて決定した。
伸度(%)=(破断時チャック間距離−測定開始時チャック間距離)/測定開始時チャック間距離×100 …(2)
(Strength, elongation)
Measurement was performed using a tensile tester (manufactured by Shimadzu Corporation, Autograph AGS-100G). The measurement was carried out in water at 20 ° C., the distance between chucks was 50 mm, the tensile speed was 100 mm / min, and the strength was determined by dividing the load at break by the membrane cross-sectional area. Further, the elongation was determined using the formula (2).
Elongation (%) = (Distance between chucks at break-Distance between chucks at the start of measurement) / Distance between chucks at the start of measurement × 100 (2)
(熱誘起相分離温度)
ポリフッ化ビニリデン(PVDF)と溶剤からなる混合液の滴構造形成温度と結晶化温度を測定することで、熱誘起相分離温度を決定した。滴構造形成温度は、温度コントローラ(Limkam社製、TH−600PM)付きの光学顕微鏡(株式会社ニコン製、ECLIPSE E600POL)を用いて測定した。予め混練しておいた混合液を、混練時の温度で2分間ホールドすることで溶解した後、10℃/分で冷却し、その過程で観察される滴構造形成の温度を測定した。一方、結晶化温度は、DSC(PERKIN ELMER社製、Pyris1)を用いて測定した。予め混練しておいた混合液を、90℃/分で室温から混練温度まで加熱した後に、混練温度で2分間ホールドし、次いで10℃/分で冷却し、その過程で観察される吸熱ピークから結晶化温度を見積もった。なお、両測定とも少なくとも2回以上実施し、その平均値から両温度を決定した。上記測定より得られた滴構造形成温度と結晶化温度の差が±5℃の範囲であれば固−液型熱誘起相分離と判断し、結晶化温度を熱誘起相分離温度とした。一方、滴構造形成温度が結晶化温度よりも5℃以上高ければ液−液型熱誘起相分離と判断し、滴構造形成温度を熱誘起相分離温度とした。
(Thermally induced phase separation temperature)
The thermally induced phase separation temperature was determined by measuring the droplet structure formation temperature and the crystallization temperature of a mixed liquid composed of polyvinylidene fluoride (PVDF) and a solvent. The droplet structure formation temperature was measured using an optical microscope (Nikon Corporation, ECLIPSE E600POL) with a temperature controller (Limka, TH-600PM). The liquid mixture previously kneaded was dissolved by holding for 2 minutes at the temperature at the time of kneading, and then cooled at 10 ° C./min, and the temperature of droplet structure formation observed in the process was measured. On the other hand, the crystallization temperature was measured using DSC (manufactured by PERKIN ELMER, Pyris 1). After the pre-kneaded mixture was heated from room temperature to the kneading temperature at 90 ° C./min, held at the kneading temperature for 2 minutes, then cooled at 10 ° C./min, from the endothermic peak observed in the process The crystallization temperature was estimated. Both measurements were performed at least twice, and both temperatures were determined from the average value. If the difference between the droplet structure formation temperature and the crystallization temperature obtained from the above measurement was in the range of ± 5 ° C., it was judged as solid-liquid type thermally induced phase separation, and the crystallization temperature was defined as the thermally induced phase separation temperature. On the other hand, if the droplet structure forming temperature is higher than the crystallization temperature by 5 ° C. or more, it is determined that the liquid-liquid type thermally induced phase separation is used, and the droplet structure forming temperature is defined as the thermally induced phase separation temperature.
(溶剤の重量減量率)
溶剤をTG−DTA(理学電機株式会社製、Thermo Plus TG8120)に10mgセットし、(熱誘起相分離温度+30)℃まで500℃/分で昇温後、(熱誘起相分離温度+30)℃で30秒間ホールドし、この時間内における溶剤のTG(熱重量)の重量減量率を見積もった。
(Weight loss rate of solvent)
10 mg of solvent is set in TG-DTA (Rigaku Denki Co., Thermo Plus TG8120), heated to 500 ° C / min to (thermally induced phase separation temperature +30) ° C, and then (thermally induced phase separation temperature +30) ° C. Holding for 30 seconds, the weight loss rate of TG (thermal weight) of the solvent within this time was estimated.
実施例2
フッ化ビニリデン系樹脂としてポリフッ化ビニリデン(PVDF)(ソルベイアドバンストポリマーズ株式会社製、SOLEF6010)と、溶剤として安息香酸ヘキシル(和光純薬株式会社製、試薬1級)、無機粒子としてシリカ1(株式会社トクヤマ製、ファインシールX−45、平均凝集粒子径4.0〜5.0μm)およびシリカ2(株式会社トクヤマ製、ファインシールX−30、平均凝集粒子径2.5〜4.0μm)と、凝集剤としてモノラウリン酸ヘキサグリセリル(日光ケミカルズ株式会社製、Hexaglyn 1−L)との混合物を、PVDF:安息香酸ヘキシル:シリカ1:シリカ2:モノラウリン酸ヘキサグリセリルの重量比が20:60:5:15:20の割合となるように混合液を調製した。この混合液の組成を表1に示す。
Example 2
Polyvinylidene fluoride (PVDF) (SOLEF6010, manufactured by Solvay Advanced Polymers Co., Ltd.) as a vinylidene fluoride resin, hexyl benzoate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) as a solvent, and silica 1 (incorporated as a inorganic particle) Tokuyama, Fine seal X-45, average agglomerated particle size 4.0-5.0 μm) and silica 2 (Tokuyama, Fine seal X-30, average agglomerated particle size 2.5-4.0 μm), As a flocculant, a mixture of hexaglyceryl monolaurate (manufactured by Nikko Chemicals Co., Ltd., Hexaglyn 1-L) was used, and the weight ratio of PVDF: hexyl benzoate: silica 1: silica 2: hexaglyceryl monolaurate was 20: 60: 5: A mixed solution was prepared so as to have a ratio of 15:20. The composition of this mixed solution is shown in Table 1.
上記した混合液を、二軸混練押出機中で加熱混練(温度240℃)して、押出したストランドをペレタイザーに通すことでチップ化した。このチップを、外径2.5mm、内径1.1mmの二重環構造のノズルを装着した押出機(230℃)を用いて押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。 The above mixed solution was heated and kneaded (temperature 240 ° C.) in a twin-screw kneading extruder, and the extruded strand was passed through a pelletizer to form chips. This chip was extruded using an extruder (230 ° C.) equipped with a nozzle having a double ring structure having an outer diameter of 2.5 mm and an inner diameter of 1.1 mm. At this time, tetraethylene glycol was injected into the hollow portion of the extrudate.
紡口から空気中に押し出した押出成形物を、2cmの空中走行距離を経て、水浴中(温度20℃)に入れ、約50cm水浴中を通過させて冷却固化させた。次いで、得られた中空糸を50℃のメタノール中で60分の浸漬を2回繰り返して溶剤(安息香酸ヘキシル)と凝集剤(モノラウリン酸ヘキサグリセリル)、さらに注入液(テトラエチレングリコール)を抽出除去した。 The extruded product extruded from the spinning nozzle into the air was placed in a water bath (temperature 20 ° C.) through an air travel distance of 2 cm, and passed through an approximately 50 cm water bath to be cooled and solidified. Next, the obtained hollow fiber was immersed in methanol at 50 ° C. for 60 minutes twice to extract and remove the solvent (hexyl benzoate), the flocculant (hexaglyceryl monolaurate), and the injection solution (tetraethylene glycol). did.
このようにして得られた中空糸状物を、20℃の3N水酸化ナトリウム水溶液中で20分浸漬して無機粒子(ファインシールX―45およびファインシールX−30)を抽出除去した後に、水洗、乾燥工程を経て中空糸膜を得た。製造した中空糸膜について以下の手法に従って試験を行った。試験結果を表2と表3に示す。 The hollow fiber material thus obtained was immersed in a 3N sodium hydroxide aqueous solution at 20 ° C. for 20 minutes to extract and remove inorganic particles (Fine Seal X-45 and Fine Seal X-30), and then washed with water. A hollow fiber membrane was obtained through a drying process. The manufactured hollow fiber membrane was tested according to the following method. The test results are shown in Tables 2 and 3.
実施例3
実施例2と同じ組成の混合液を用いたこと以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2と表3に示す。
Example 3
A hollow fiber membrane was obtained in the same manner as in Example 1 except that a mixed solution having the same composition as in Example 2 was used. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Tables 2 and 3 show the test results.
実施例4
溶剤としてフタル酸ジオクチル(和光純薬株式会社製、試薬1級)およびフタル酸ジブチル(和光純薬株式会社製、試薬1級)の混合物を用い、無機粒子としてシリカ(日本アエロジル株式会社、R−972)を用い、かつ、PVDF:フタル酸ジオクチル:フタル酸ジブチル:シリカ:モノラウリン酸ヘキサグリセリルを、重量比で20:48:12:20:20とした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2と表3に示す。
Example 4
A mixture of dioctyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) and dibutyl phthalate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) was used as the solvent, and silica (Nippon Aerosil Co., Ltd., R-) was used as the inorganic particles. 972) and PVDF: dioctyl phthalate: dibutyl phthalate: silica: hexaglyceryl monolaurate in a weight ratio of 20: 48: 12: 20: 20 A yarn membrane was obtained. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Tables 2 and 3 show the test results.
実施例5
フッ化ビニリデン系樹脂としてフッ化ビニリデン−六フッ化プロピレン共重合体(以下、PVDF−HFPと略記することがある)(ソルベイアドバンストポリマー株式会社製、SOLEF21216)を用い、溶剤としてサリチル酸プロピル(和光純薬株式会社製、試薬1級)を用い、加熱混練温度を220℃、押出機ヘッド温度を200℃とした以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2と表3に示す。
Example 5
A vinylidene fluoride-hexafluoropropylene copolymer (hereinafter sometimes abbreviated as PVDF-HFP) (SOLEF21216, manufactured by Solvay Advanced Polymer Co., Ltd.) is used as a vinylidene fluoride resin, and propyl salicylate (Wako Pure) A hollow fiber membrane was obtained in the same manner as in Example 1 except that Yakuhin Co., Ltd., reagent grade 1) was used and the heating and kneading temperature was 220 ° C. and the extruder head temperature was 200 ° C. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Tables 2 and 3 show the test results.
比較例1
フッ化ビニリデン系樹脂としてPVDF(ソルベイアドバンストポリマーズ株式会社製、SOLEF6010)と、溶剤として安息香酸ヘキシル(和光純薬株式会社製、試薬1級)と、無機粒子としてシリカ(株式会社トクヤマ社製、ファインシールX−45、平均凝集粒子径4.0〜5.0μm)とを、重量比で20:80:10の割合となるように混合液を調製した以外は、実施例1と同様にして中空糸膜を得た。この中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2と表3に示す。試験結果の通り、凝集剤を添加していない場合は孔径がサブミクロンオーダーであり、高い透水性能は得られなかった。
Comparative Example 1
PVDF (made by Solvay Advanced Polymers Co., Ltd., SOLEF6010) as a vinylidene fluoride resin, hexyl benzoate (made by Wako Pure Chemical Industries, Ltd., reagent grade 1) as a solvent, and silica (made by Tokuyama Co., Ltd., Fine) as inorganic particles The seal X-45, the average aggregated particle diameter of 4.0 to 5.0 μm) is hollow in the same manner as in Example 1 except that the mixture is prepared so that the weight ratio is 20:80:10. A yarn membrane was obtained. Table 1 shows the composition of the mixed solution used for the production of this hollow fiber membrane, and Tables 2 and 3 show the test results. As a result of the test, when no flocculant was added, the pore diameter was on the order of submicrons, and high water permeability was not obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004004021A JP4564758B2 (en) | 2004-01-09 | 2004-01-09 | Method for producing vinylidene fluoride resin porous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004004021A JP4564758B2 (en) | 2004-01-09 | 2004-01-09 | Method for producing vinylidene fluoride resin porous membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005194461A JP2005194461A (en) | 2005-07-21 |
JP4564758B2 true JP4564758B2 (en) | 2010-10-20 |
Family
ID=34818745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004004021A Expired - Lifetime JP4564758B2 (en) | 2004-01-09 | 2004-01-09 | Method for producing vinylidene fluoride resin porous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4564758B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5076320B2 (en) | 2006-01-11 | 2012-11-21 | 東洋紡績株式会社 | Method for producing polyvinylidene fluoride hollow fiber type microporous membrane |
JP5436854B2 (en) | 2006-04-19 | 2014-03-05 | 旭化成ケミカルズ株式会社 | High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same |
JP2007313491A (en) * | 2006-04-25 | 2007-12-06 | Kureha Corp | Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method |
JP2008062227A (en) * | 2006-08-10 | 2008-03-21 | Kuraray Co Ltd | Membrane stock solution, porous membrane and method for producing porous membrane |
JP5318385B2 (en) * | 2006-08-10 | 2013-10-16 | 株式会社クラレ | Porous membrane made of vinylidene fluoride resin and method for producing the same |
CN101500696B (en) * | 2006-08-10 | 2013-02-27 | 株式会社可乐丽 | Porous membrane made of vinylidene fluoride resin and its manufacturing method |
US20100133184A1 (en) * | 2007-04-03 | 2010-06-03 | Asahi Kasei Chemicals Corporation | Cleaning agent for separation membrane, process for preparing the cleaning agent, and cleaning method |
JP2010119959A (en) * | 2008-11-20 | 2010-06-03 | Kuraray Co Ltd | Hollow fiber membrane module |
KR101134348B1 (en) | 2009-12-08 | 2012-04-09 | 허준혁 | Hydrophilic pvdf membrane and manufacturing method thereof |
US9737860B2 (en) * | 2014-02-28 | 2017-08-22 | Pall Corporation | Hollow fiber membrane having hexagonal voids |
CN111821521B (en) * | 2020-08-10 | 2022-05-20 | 北京天助畅运医疗技术股份有限公司 | Preparation method of hernia repair patch containing polyvinylidene fluoride |
CN111992052A (en) * | 2020-08-12 | 2020-11-27 | 北京中环膜材料科技有限公司 | Thermotropic phase hollow fiber blend membrane and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11319522A (en) * | 1998-03-16 | 1999-11-24 | Asahi Chem Ind Co Ltd | Finely porous membrane and manufacture thereof |
JP2001507741A (en) * | 1996-12-31 | 2001-06-12 | アルシン・メディカル・インコーポレーテッド | Melt-spun polysulfone semipermeable membrane and method for producing the same |
JP2002079066A (en) * | 2000-06-21 | 2002-03-19 | Kuraray Co Ltd | Hollow fiber membrane and its production method |
JP2002136851A (en) * | 2000-10-31 | 2002-05-14 | Asahi Kasei Corp | Ethylene-vinyl alcohol copolymer porous hollow fiber membrane and manufacturing method thereof |
WO2003026779A1 (en) * | 2001-08-01 | 2003-04-03 | Asahi Kasei Kabushiki Kaisha | Multilayer microporous film |
-
2004
- 2004-01-09 JP JP2004004021A patent/JP4564758B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001507741A (en) * | 1996-12-31 | 2001-06-12 | アルシン・メディカル・インコーポレーテッド | Melt-spun polysulfone semipermeable membrane and method for producing the same |
JPH11319522A (en) * | 1998-03-16 | 1999-11-24 | Asahi Chem Ind Co Ltd | Finely porous membrane and manufacture thereof |
JP2002079066A (en) * | 2000-06-21 | 2002-03-19 | Kuraray Co Ltd | Hollow fiber membrane and its production method |
JP2002136851A (en) * | 2000-10-31 | 2002-05-14 | Asahi Kasei Corp | Ethylene-vinyl alcohol copolymer porous hollow fiber membrane and manufacturing method thereof |
WO2003026779A1 (en) * | 2001-08-01 | 2003-04-03 | Asahi Kasei Kabushiki Kaisha | Multilayer microporous film |
Also Published As
Publication number | Publication date |
---|---|
JP2005194461A (en) | 2005-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101409712B1 (en) | Porous membrane of vinylidene fluoride resin and process for producing the same | |
JP5318385B2 (en) | Porous membrane made of vinylidene fluoride resin and method for producing the same | |
KR101657307B1 (en) | Fluorinated hollow fiber membrane and method for preparing the same | |
JP4599787B2 (en) | Method for producing hollow fiber membrane and hollow fiber membrane | |
JP6484171B2 (en) | Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same | |
JP4564758B2 (en) | Method for producing vinylidene fluoride resin porous membrane | |
JP3724412B2 (en) | Hollow fiber membrane manufacturing method and hollow fiber membrane module | |
JP2008062227A (en) | Membrane stock solution, porous membrane and method for producing porous membrane | |
JP4269576B2 (en) | Method for producing microporous membrane | |
JP2012236178A (en) | Method for producing vinylidene fluoride resin porous membrane | |
KR20130040620A (en) | Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment | |
KR101308998B1 (en) | The Preparation method of hollow fiber membrane with high mechanical properties using hydrophilized polyvinylidenefluoride for water treatment | |
JP2005144412A (en) | Polyketone hollow fiber membrane and manufacturing method of the same | |
JP2004041835A (en) | Hollow fiber membrane and method for producing the same | |
JP2006218441A (en) | Porous membrane and its production method | |
JP2005193201A (en) | Hydrophilic hollow fiber membrane and method for producing the same | |
JP2005193200A (en) | Hollow fiber membrane excellent in mechanical strength and method for producing the same | |
JP3805634B2 (en) | Porous hollow fiber membrane and method for producing the same | |
JP4572531B2 (en) | Membrane stock solution for separation membrane and separation membrane | |
KR101308996B1 (en) | The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment | |
JP2005193194A (en) | Polyphenylsulfone porous membrane and method for producing the same | |
KR101347042B1 (en) | Manufacturing method of asymmetric pvdf membrane and asymmetric pvdf membrane with improved properties manufactured thereby | |
JP2005193192A (en) | Polysulfone porous membrane and method for producing the same | |
KR20130040622A (en) | The preparation method of hollow fiber membrane with high permeation using hydrophilized polyvinylidenefluoride for water treatment | |
EP4414059A1 (en) | Porous membrane and method for manufacturing porous membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100720 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4564758 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |