[go: up one dir, main page]

JP4563776B2 - Transparent inorganic porous film and method for producing the same - Google Patents

Transparent inorganic porous film and method for producing the same Download PDF

Info

Publication number
JP4563776B2
JP4563776B2 JP2004325651A JP2004325651A JP4563776B2 JP 4563776 B2 JP4563776 B2 JP 4563776B2 JP 2004325651 A JP2004325651 A JP 2004325651A JP 2004325651 A JP2004325651 A JP 2004325651A JP 4563776 B2 JP4563776 B2 JP 4563776B2
Authority
JP
Japan
Prior art keywords
inorganic porous
organic
film
coating
porous coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004325651A
Other languages
Japanese (ja)
Other versions
JP2006130889A (en
Inventor
篤 穂積
隆広 関
修作 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004325651A priority Critical patent/JP4563776B2/en
Publication of JP2006130889A publication Critical patent/JP2006130889A/en
Application granted granted Critical
Publication of JP4563776B2 publication Critical patent/JP4563776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、ナノメートルスケールの細孔構造を有する透明無機多孔体被膜及びその製造方法に関するものであり、更に詳しくは、誘電率/屈折率が低く、光学材料、絶縁材料として優れた特性を有する透明無機多孔体被膜、光学及び絶縁部材、及びその製造技術に関するものである。本発明は、鋳型となる有機分子集合体を用いてナノ細孔を有する無機多孔体被膜を作製する方法において、1μmを超えた厚膜で、しかも、熱処理に伴う体積収縮によるクラック/剥離の発生がなく、高い可視光透過率を実現でき、厚膜化(1μm<)に伴うクラック/剥離の発生がないクラックフリーの特性を有する新しい透明無機多孔体被膜、光学及び絶縁材料としての利用及びその製造技術を提供するものである。   The present invention relates to a transparent inorganic porous film having a nanometer-scale pore structure and a method for producing the same, and more specifically, has a low dielectric constant / refractive index and excellent properties as an optical material and an insulating material. The present invention relates to a transparent inorganic porous coating, an optical and insulating member, and a manufacturing technique thereof. The present invention relates to a method for producing an inorganic porous material film having nanopores using an organic molecular aggregate as a template, and a thick film exceeding 1 μm, and the occurrence of cracks / peeling due to volume shrinkage accompanying heat treatment New transparent inorganic porous coating film that can realize high visible light transmittance, has crack-free characteristics without cracks / peeling caused by thickening (1 μm <), use as an optical and insulating material and its Providing manufacturing technology.

従来、鋳型となる有機分子集合体を用いてナノ細孔を有する無機多孔体被膜を製造することは種々行われていたが、これまで、有機分子集合体を用いてナノ細孔を有する無機多孔体被膜を作製する場合、乾燥や鋳型除去の際の熱処理が原因で生じる体積収縮によるクラック/剥離の発生を抑制するために、膜厚を経験的に500〜700nm程度に制御する必要があった(非特許文献1)。しかしながら、該被膜を光学材料あるいは絶縁材料として利用するためには、より厚い被膜(膜厚1μm以上)の作製が必要不可欠である。これまでに、クラック発生を抑制する目的で、真空紫外光、オゾン等を用いた低温での有機分子集合体除去技術が提案されているが(非特許文献1、非特許文献2)、1μmを超えた厚膜で、クラックのない透明な無機多孔体被膜を作製したという報告例はない。   Conventionally, various inorganic porous coatings having nanopores have been produced using organic molecular aggregates as templates, but so far, inorganic porous coatings having nanopores have been produced using organic molecular aggregates. When producing a body film, it was necessary to empirically control the film thickness to about 500 to 700 nm in order to suppress the occurrence of cracks / peeling due to volume shrinkage caused by heat treatment during drying and mold removal. (Non-Patent Document 1). However, in order to use the film as an optical material or an insulating material, it is indispensable to produce a thicker film (film thickness of 1 μm or more). So far, for the purpose of suppressing the generation of cracks, a technique for removing organic molecular aggregates at a low temperature using vacuum ultraviolet light, ozone or the like has been proposed (Non-Patent Document 1, Non-Patent Document 2). There is no report example of producing a transparent inorganic porous film having a thick film exceeding the crack and having no crack.

上述したように、有機分子集合体を鋳型に用いて、ナノ細孔を有する無機多孔体被膜を作製する場合には、熱処理により、該有機−無機複合体被膜から有機分子集合体を除去する工程が必要不可欠である。しかしながら、従来の加熱による有機分子集合体除去技術では、被膜に内部応力が発生し、クラックや剥離が生じるため、膜厚1μm以上の透明な無機多孔体被膜を作製することは困難であった。
J.E.Martinら、Langmuir,13(1997)4133 A.Hozumiら、Chem.Mater.,12(2000)3842 T.Clarkら、Chem. Mater.,12(2000)3879
As described above, in the case of producing an inorganic porous film having nanopores using an organic molecule assembly as a template, a step of removing the organic molecule assembly from the organic-inorganic composite film by heat treatment Is indispensable. However, in the conventional organic molecular aggregate removal technology by heating, internal stress is generated in the coating, and cracks and peeling occur, so that it is difficult to produce a transparent inorganic porous coating having a thickness of 1 μm or more.
J. et al. E. Martin et al., Langmuir, 13 (1997) 4133 A. Hozumi et al., Chem. Mater. , 12 (2000) 3842 T. T. Clark et al., Chem. Mater. , 12 (2000) 3879

このような状況に鑑みて、本発明者らは鋭意研究を進めた結果、有機分子集合体を鋳型として用い、該集合体と骨格となる無機前駆体とを混合して、有機−無機複合体被膜を作製した後、該被膜から水分を除去した後に、真空下で波長172nmの真空紫外光を照射することにより、前駆体被膜中の有機集合体のみが選択的に除去され、無機骨格だけが残り、クラックフリーで、透明、かつ、膜厚が1μm以上の無機多孔体被膜を作製できることを見いだし、この知見に基づいて、本発明を完成させるに至った。   In view of such a situation, as a result of intensive studies, the present inventors have used an organic molecular aggregate as a template, mixed the aggregate with an inorganic precursor serving as a skeleton, and formed an organic-inorganic composite. After producing the coating, after removing moisture from the coating, irradiation with vacuum ultraviolet light having a wavelength of 172 nm under vacuum selectively removes only the organic aggregates in the precursor coating, so that only the inorganic skeleton is present. The inventors have found that an inorganic porous coating film that is free from cracks, is transparent, and has a film thickness of 1 μm or more can be produced, and the present invention has been completed based on this finding.

本発明は、有機分子集合体除去の前にあらかじめ、真空乾燥等により該有機−無機複合体被膜中の水分を除去すること、300℃以上の熱処理により、有機分子集合体を急激に除去するのではなく、真空下(10Pa)で波長172nm以下の真空紫外光を照射し、光酸化により、低温で緩やかに該有機分子集合体を除去すること、それにより、無機ネットワークの体積収縮を著しく緩和させることにより、厚膜化(1μm<)に伴うクラック/剥離の発生がないクラックフリーであることを特徴とする透明無機多孔体被膜と光学材料及び絶縁材料としての利用とその製造技術を提供することを目的とするものである。   The present invention removes moisture in the organic-inorganic composite film in advance by vacuum drying or the like before removing the organic molecular aggregate, and rapidly removes the organic molecular aggregate by heat treatment at 300 ° C. or higher. Rather than irradiating vacuum ultraviolet light with a wavelength of 172 nm or less under vacuum (10 Pa), the organic molecular aggregate is gently removed at low temperature by photooxidation, thereby remarkably relieving the volume shrinkage of the inorganic network. To provide a transparent inorganic porous coating film characterized by being free from cracks / peeling caused by thickening (1 μm <), and its use as an optical material and an insulating material, and a manufacturing technique thereof. It is intended.

上記課題を解決するための本発明は、基板表面に形成されたナノスケールの微細な細孔を有するメソポーラス無機多孔体被膜において、1〜10Paの減圧下での乾燥で水分が除去された後、真空紫外光で有機成分が除去されており、ナノ細孔構造を有しており、1μmを超えた膜厚で、屈折率1.05〜1.3、誘電率1.1〜1.7の特性を有し、可視光領域から近赤外領域において少なくとも90%の高い透過率を示し、厚膜化に伴うクラック/剥離の発生がないクラックフリーであることを特徴とする透明無機多孔体被膜、である。本被膜は、(1)基材が、金属、セラミックス、ガラス、石英、プラスチックの内から選択される1種以上からなること、(2)骨格となる無機前駆体が、シリカ、チタニア、ジルコニア、又はアルミナであること、(3)膜厚が1〜3μmであり、可視領域から近赤外領域において95%以上の透過率を示すこと、を好適な態様とするものである。また、本発明は、上記のクラックフリーな透明無機多孔体被膜を具備してなることを特徴とする光学部材、である。また、本発明は、上記のクラックフリーな透明無機多孔体被膜を具備してなることを特徴とする絶縁部材、である。 The present invention for solving the above problems is a mesoporous inorganic porous coating film having nanoscale fine pores formed on the substrate surface, after moisture is removed by drying under reduced pressure of 1 to 10 Pa, organic Ingredients in vacuum ultraviolet light and is removed, has a nano-pore structure, with a thickness in excess of 1 [mu] m, refractive index 1.05 to 1.3, the dielectric constant 1.1 to 1.7 A transparent inorganic porous material having the characteristics of: a crack-free material having a high transmittance of at least 90% from the visible light region to the near-infrared region and free from cracks / peeling due to thickening Coating. In this coating, (1) the base material is composed of one or more selected from metals, ceramics, glass, quartz, and plastic, and (2) the inorganic precursor serving as the skeleton is silica, titania, zirconia, Or it is an alumina, (3) The film thickness is 1-3 micrometers, and it shows the transmittance | permeability of 95% or more in a visible region to a near-infrared region, and makes it a suitable aspect. The present invention also provides an optical member comprising the above-described crack-free transparent inorganic porous coating. The present invention also provides an insulating member comprising the above-described crack-free transparent inorganic porous coating.

本発明は、基材に、鋳型となる有機分子集合体、骨格となる無機前駆体を含むゾル溶液を用いて、有機−無機複合体被膜を作製した後、該被膜から乾燥手法により水分を除去し、続いて減圧下で光酸化させることで有機成分を除去して該被膜中にナノ細孔を形成することにより、膜厚1〜3μm、クラックフリーで透明なメソポーラス無機多孔体被膜を得る透明無機多孔体被膜の製造方法であって、基材に、界面活性剤の分子集合体、異種の界面活性剤分子の集合体、ブロックコポリマーの内から選択した1種類以上の分子集合体、金属アルコキシド、水、有機溶媒、酸あるいはアルカリ性下で調製したゾル溶液を用いて、有機−無機複合体被膜を作製した後、該被膜から減圧下で、真空乾燥、凍結乾燥、超臨界乾燥の内の選択された1種類以上の乾燥手法により水分を除去し、続いて真空紫外光照射により光酸化させることで有機成分を除去して該被膜中にナノ細孔を形成することを特徴とする透明無機多孔体被膜の製造方法、である。本方法は、(1)基材が、金属、セラミックス、ガラス、石英、プラスチックの内から選択される1種以上からなること、(2)ロータリーポンプ、ディフュージョンポンプ、ターボ分子ポンプの内の選択された1種類以上のポンプにより減圧にした後、紫外線、真空紫外光、電子線、電磁波の内の選択された1種類以上を照射することにより、有機成分を光酸化により除去すること、()ゾル溶液の濃度を調整することにより、得られる被膜の膜厚を任意に制御すること、()波長172nm以下の真空紫外光照射により40℃以下の低温で有機分子集合体の除去を行うこと、を好ましい態様としている。 In the present invention, an organic-inorganic composite coating is prepared on a base material using a sol solution containing an organic molecular aggregate serving as a template and an inorganic precursor serving as a skeleton, and then moisture is removed from the coating by a drying method. and, Ru followed by forming nanopores to said film by removing the organic components by causing photooxidation under reduced pressure, to give a film thickness 1 to 3 [mu] m, the transparent mesoporous inorganic porous material coated with crack free a method of manufacturing a transparency inorganic porous material coating, on a substrate, molecular assembly of the surfactant, the aggregate of surfactant molecules heterologous, selected one or more molecular assembly from among the block copolymers, After preparing an organic-inorganic composite coating using a sol solution prepared under the conditions of metal alkoxide, water, organic solvent, acid or alkali, vacuum drying, freeze drying, or supercritical drying is performed under reduced pressure from the coating. Selected one of Production of a transparent inorganic porous film characterized in that moisture is removed by the above drying method, followed by photo-oxidation by irradiation with vacuum ultraviolet light to remove organic components and form nanopores in the film. Method . In this method, (1) the substrate is made of at least one selected from the group consisting of metal, ceramics, glass, quartz, and plastic , and (2 ) selected from among a rotary pump, a diffusion pump, and a turbo molecular pump. ( 3 ) removing an organic component by photooxidation by irradiating at least one selected from among ultraviolet rays, vacuum ultraviolet rays, electron beams, and electromagnetic waves after reducing the pressure by one or more types of pumps; The film thickness of the resulting film can be controlled arbitrarily by adjusting the concentration of the sol solution. ( 4 ) The organic molecular aggregate is removed at a low temperature of 40 ° C. or less by irradiation with vacuum ultraviolet light having a wavelength of 172 nm or less. Is a preferred embodiment.

次に、本発明について更に詳細に説明する。
本発明では、鋳型となる有機分子集合体、無機被膜前駆体原料(金属アルコキシド)、水、有機溶媒、酸あるいはアルカリを混合して作製したゾル溶液を用いて、基材の表面に、有機−無機複合体被膜を作製する。この場合、好適には、例えば、界面活性剤の分子集合体、異種の界面活性剤分子の集合体、ブロックコポリマーの内から選択した1種類以上の分子集合体、無機被膜前駆体原料(金属アルコキシド)、水、有機溶媒、酸あるいはアルカリを混合したゾル溶液を作製し、これをあらかじめプラズマ、紫外線、オゾンなどで親水化した様々な基板の表面にスピンキャスト法により有機−無機複合体被膜を作製する。次いで、真空乾燥や凍結乾燥により該被膜中の水分を除去し、続いて、波長172nm以下の真空紫外光を真空下で照射し、鋳型である有機分子集合体を除去することで、膜厚1〜3μm、クラックフリー、可視光透過率90%以上のナノ細孔を有する透明無機多孔体被膜を作製する。
Next, the present invention will be described in more detail.
In the present invention, an organic molecule aggregate serving as a template, an inorganic film precursor raw material (metal alkoxide), water, an organic solvent, an acid or an alkali, and a sol solution prepared by mixing an organic- An inorganic composite coating is prepared. In this case, preferably, for example, a surfactant molecular aggregate, a heterogeneous surfactant molecular aggregate, one or more molecular aggregates selected from block copolymers, an inorganic coating precursor raw material (metal alkoxide) ), Sol solution mixed with water, organic solvent, acid or alkali is prepared, and organic-inorganic composite film is prepared by spin casting method on the surface of various substrates that have been hydrophilized with plasma, ultraviolet rays, ozone, etc. To do. Next, moisture in the coating is removed by vacuum drying or freeze drying, and subsequently, vacuum ultraviolet light having a wavelength of 172 nm or less is irradiated under vacuum to remove the organic molecular aggregate as a template, thereby reducing the film thickness 1 A transparent inorganic porous coating film having nanopores of ˜3 μm, crack-free and visible light transmittance of 90% or more is prepared.

本発明において、基材としては、好適には、例えば、ガラス、石英、シリコンウェハ−、ポリマ−などを任意に使用することができるが、これらに制限されるものではなく、これらと同効のものであれば同様に使用することができる。基材の表面をあらかじめ酸素プラズマ、紫外線、真空紫外光、オゾンなどで親水化することにより、基材表面に付着した有機物を除去する、あるいは基材の表面に酸素含有極性基を導入することにより親水化する。この場合、好ましくは、波長172nm以下の真空紫外光を使用して親水化する。基材の具体例としては、透明性の高い石英やガラス基板が好適なものとして例示される。   In the present invention, as the base material, for example, glass, quartz, silicon wafer, polymer and the like can be arbitrarily used, but are not limited thereto, and have the same effect as these. Anything can be used as well. By removing the organic substances adhering to the surface of the substrate by introducing the hydrophilicity into the surface of the substrate in advance with oxygen plasma, ultraviolet light, vacuum ultraviolet light, ozone, or introducing an oxygen-containing polar group on the surface of the substrate. Hydrophilize. In this case, it is preferably hydrophilized using vacuum ultraviolet light having a wavelength of 172 nm or less. Specific examples of the substrate include a highly transparent quartz and glass substrate.

本発明では、鋳型となる有機分子集合体、無機被膜前駆体原料(金属アルコキシド)、水、有機溶媒、酸あるいはアルカリを混合した酸性あるいはアルカリ性のゾル溶液を作製する。無機被膜前駆体原料(金属アルコシド)としては、好適には、例えば、シリカ、チタニア、ジルコニア、アルミナが例示されるが、最終的に得られる無機フレームワークとしては、低屈折率、低誘電率を示すシリカが好ましく、その原料として、テトラエトキシシランが特に望ましい。鋳型となる有機分子集合体としては、例えば、ブロックコポリマーのPluronic P103,F127,P65,P85,L64が例示されるが、カチオン性低分子界面活性剤の塩化セチルトリメチルアンモニウムや臭化セチルトリメチルアンモニウム及びブロックコポリマーのPluronic P123などが望ましい。有機溶媒としては、有機分子が溶解するもので、アルコ−ル、特にエタノ−ルが望ましい。この際、エタノールによりゾル溶液の濃度を調整することにより、得られる被膜の膜厚を任意に制御することが可能である。上記ゾル溶液において、酸性とはpH4以下、アルカリ性とはpH9以上のことであり、更に好ましくは、pH3以下、あるいは、pH10以上が好ましい。これらの成分の混合モル比は特に限定されるものではないが、例えば、テトラエトキシシラン:ブロックコポリマ−(Pluronic P123):超純水:エタノ−ル:塩酸=1:0.01:5:10:0.05とすることができる。   In the present invention, an acidic or alkaline sol solution is prepared by mixing an organic molecular assembly serving as a template, an inorganic film precursor raw material (metal alkoxide), water, an organic solvent, an acid or an alkali. The inorganic film precursor material (metal alkoxide) is preferably exemplified by silica, titania, zirconia, and alumina, but the inorganic framework finally obtained has a low refractive index and a low dielectric constant. The silica shown is preferred, and tetraethoxysilane is particularly desirable as the raw material. Examples of organic molecular aggregates that serve as templates include block copolymers Pluronic P103, F127, P65, P85, and L64. Cationic low molecular surfactants such as cetyltrimethylammonium chloride and cetyltrimethylammonium bromide and Block copolymer Pluronic P123 and the like are desirable. As the organic solvent, an organic molecule can be dissolved, and an alcohol, particularly ethanol is desirable. At this time, by adjusting the concentration of the sol solution with ethanol, the film thickness of the obtained film can be arbitrarily controlled. In the sol solution, acidic means pH 4 or less, and alkaline means pH 9 or more, more preferably pH 3 or less, or pH 10 or more. The mixing molar ratio of these components is not particularly limited. For example, tetraethoxysilane: block copolymer (Pluronic P123): ultrapure water: ethanol: hydrochloric acid = 1: 0.01: 5: 10 : 0.05.

続いて、本発明では、上記により作製したゾル溶液を用いて、スピンキャスト法により、有機−無機複合体被膜を作製する。スピンスピ−ドは特に限定されるものではないが、例えば、1000rpmで5秒間、その直後2000rpmで30秒間の二段階のスピ−ド、あるいはこれらと同効の条件で回転させることが望ましい。   Subsequently, in the present invention, an organic-inorganic composite film is produced by spin casting using the sol solution produced as described above. The spin speed is not particularly limited. For example, it is desirable to rotate the spin speed in two stages of 1000 rpm for 5 seconds and immediately after 2000 rpm for 30 seconds, or under the same conditions as these.

有機−無機複合体被膜を形成した後、水分除去処理を行う。水分除去の方法として、簡便な真空乾燥が使用される。特にこの際、処理温度は100℃、乾燥時間は7時間以上、あるいはこれと同効の条件が望ましいが、それは、7時間以下では水分除去が不十分であることから、局所的にクラックが生じてしまう可能性があるためである。また、大気圧中での乾燥では、水分の除去が不十分である可能性があるので、真空度は可能な限り減圧にすることが望ましく、具体的には約1〜10Paまで減圧にすることが望ましい。また、真空乾燥時間を長くして水分を十分に除去することが望ましい。 After the organic-inorganic composite film is formed, moisture removal treatment is performed. As a method for removing moisture, simple vacuum drying is used . In particular, at this time, the treatment temperature is 100 ° C., the drying time is 7 hours or more, or the same effect as this is desirable. However, since the moisture removal is insufficient in 7 hours or less, local cracking occurs. This is because there is a possibility of being lost. Moreover, since there is a possibility that moisture removal may be insufficient in drying at atmospheric pressure, it is desirable to reduce the degree of vacuum as much as possible, specifically to about 1 to 10 Pa. Is desirable. In addition, it is desirable to sufficiently remove moisture by lengthening the vacuum drying time.

真空乾燥により大部分の水分を除去した後、波長172nm以下の真空紫外光照射により低温(40℃以下)で有機分子集合体の除去を行う。この場合、好ましくは波長172nm以下の真空紫外光を使用する。また、真空紫外光処理を行う場合、真空下(10Pa)で6時間以上処理することが望ましいが、それは、大気圧下(10Pa)では、真空紫外光は雰囲気中の酸素分子に吸収されてしまうため、処理時間が長くかかるためである。また、10Pa以上であると、活性酸素種による急激な酸化反応により細孔構造が崩壊してしまうので好ましくない。本発明により、膜厚1〜3μm、クラック/剥離がない、可視光透過率が90%以上、細孔径2〜50nmの範囲のナノ細孔からなる細孔構造を有し、屈折率が、1.05〜1.3、誘電率が1.1〜1.7、という特徴を有する透明無機多孔体被膜が得られる。本発明の透明無機多孔体被膜は、低屈折材料(膜)、低誘電率材料(膜)として、光学素子や半導体素子等の光学部材、絶縁部材として用いられる。 After removing most of the moisture by vacuum drying, the organic molecular aggregate is removed at a low temperature (40 ° C. or less) by irradiation with vacuum ultraviolet light having a wavelength of 172 nm or less. In this case, vacuum ultraviolet light having a wavelength of 172 nm or less is preferably used. In addition, when vacuum ultraviolet light treatment is performed, it is desirable to perform the treatment under vacuum (10 Pa) for 6 hours or more. However, under atmospheric pressure (10 5 Pa), vacuum ultraviolet light is absorbed by oxygen molecules in the atmosphere. This is because the processing time is long. Further, if it is 10 3 Pa or more, the pore structure is collapsed by a rapid oxidation reaction by active oxygen species, which is not preferable. According to the present invention, it has a pore structure consisting of nanopores having a film thickness of 1 to 3 μm, no cracks / peeling, visible light transmittance of 90% or more, and pore diameters of 2 to 50 nm, and a refractive index of 1 A transparent inorganic porous coating film having characteristics of 0.05 to 1.3 and a dielectric constant of 1.1 to 1.7 is obtained. The transparent inorganic porous coating film of the present invention is used as an optical member and an insulating member such as an optical element and a semiconductor element as a low refractive material (film) and a low dielectric constant material (film).

本発明により、1)従来のナノ細孔を有する無機多孔体被膜では、クラック/剥離の発生を抑制するために、膜厚を500〜700nm程度に制御する必要があったが、本発明の透明無機多孔体被膜では、3μm程度までの厚膜化が可能である、2)可視光透過率90%以上の高い可視光透過率を有し、誘電率/屈折率が低い無機多孔体被膜が得られる、3)該被膜は、熱処理に伴う体積収縮によるクラック/剥離の発生がないので、例えば、光学材料、絶縁材料として各種デバイスへの応用が可能である、4)上記被膜を形成できる無機多孔体被膜の製造技術を提供することができる、という格別の効果が奏される。   According to the present invention, 1) In the conventional inorganic porous film having nanopores, it was necessary to control the film thickness to about 500 to 700 nm in order to suppress the occurrence of cracks / peeling. The inorganic porous coating can be thickened to about 3 μm. 2) An inorganic porous coating having a high visible light transmittance of 90% or more and a low dielectric constant / refractive index is obtained. 3) Since the coating does not cause cracks / peeling due to volume shrinkage due to heat treatment, it can be applied to various devices as, for example, optical materials and insulating materials. 4) Inorganic porous material capable of forming the coating The special effect that the manufacturing technique of a body coat can be provided is produced.

次に、実施例に基づいて本発明を具体的に説明する。以下の実施例は、本発明の好適な例を示すものであり、該実施例によって、本発明は、何ら限定されるものではない。   Next, the present invention will be specifically described based on examples. The following examples show preferred examples of the present invention, and the present invention is not limited to the examples.

(1)実験方法
水、シリカ原料(テトラエトキシシラン(TEOS)等、エタノールを混合し、塩酸を加えて約70℃で約2時間攪拌し、エタノールに完全溶解させたブロックコポリマー(Pluoronic 123等)を添加して約5分程度攪拌し、最終的な反応溶媒のモル比を所定の値に調整し、このゾル溶液をスピンキャストすることにより、メソ周期構造を持つ有機−無機ハイブリッド薄膜(膜厚1μm〜)を作製した。続いて、この薄膜を約100℃下で真空乾燥(〜10Pa、1〜7時間)した後、真空紫外(VUV:vacum ultraviolet)光を減圧下(〜1Pa)で0.5〜12時間照射することにより、光化学的に有機テンプレートを除去し、メソポーラスシリカ薄膜を作製した。
(1) Experimental method Block copolymer (Pluronic 123, etc.) in which water, silica raw material (tetraethoxysilane (TEOS), etc., ethanol is mixed, hydrochloric acid is added, stirred at about 70 ° C. for about 2 hours, and completely dissolved in ethanol Is added and stirred for about 5 minutes, the final reaction solvent molar ratio is adjusted to a predetermined value, and this sol solution is spin-cast to form an organic-inorganic hybrid thin film having a meso-periodic structure (film thickness) Subsequently, the thin film was vacuum-dried (about 10 Pa, 1 to 7 hours) at about 100 ° C., and then vacuum ultraviolet (VUV) light was reduced to 0 under reduced pressure (˜1 Pa). The organic template was removed photochemically by irradiation for 5 to 12 hours to produce a mesoporous silica thin film.

(2)評価方法
VUV照射前後の前駆体被膜のIRスペクトルから鋳型としての有機分子集合体の除去を調べた。また、VUV照射した薄膜のX線回折の結果から、メソ周期構造の存在を調べた。更に、光学顕微鏡写真(暗視野像)から、薄膜のモルフォルジーを調べた。
(2) Evaluation method The removal of the organic molecular assembly as a template was examined from the IR spectra of the precursor coating before and after VUV irradiation. In addition, the existence of mesoperiodic structure was examined from the result of X-ray diffraction of the thin film irradiated with VUV. Furthermore, the morphology of the thin film was examined from an optical micrograph (dark field image).

石英基板を10Pa下で30分間、波長172nmの真空紫外光に暴露して親水化した後、当該基板表面に、テトラエトキシシラン、ブロックコポリマ−(PluronicP123)、超純水、エタノ−ル及び塩酸を、モル比1:0.01:5:10:0.05で混合・調製したゾル溶液を滴下し、スピンキャスト法(1回目:1000rpmで5秒、2回目:2000rpmで30秒)により有機−無機複合体被膜を作製した(膜厚約1.2μm±0.1μm)。次に、当該基板を100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った。このサンプルを真空下(10Pa)で6時間、波長172nmの真空紫外光に暴露し、鋳型となるPluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.1μm±0.1μm)。 The quartz substrate was exposed to vacuum ultraviolet light having a wavelength of 172 nm under 10 3 Pa for 30 minutes to be hydrophilized, and tetraethoxysilane, block copolymer (Pluronic P123), ultrapure water, ethanol, and A sol solution prepared by mixing and preparing hydrochloric acid in a molar ratio of 1: 0.01: 5: 10: 0.05 was dropped, and the spin casting method (first time: 5 seconds at 1000 rpm, second time: 30 seconds at 2000 rpm) An organic-inorganic composite coating was prepared (film thickness of about 1.2 μm ± 0.1 μm). Next, the substrate was left at 10 Pa for 7 hours in a vacuum drying furnace maintained at 100 ° C. to remove moisture in the thin film. This sample was exposed to vacuum ultraviolet light with a wavelength of 172 nm under vacuum (10 Pa) for 6 hours to remove Pluronic P123 molecules as a template and converted into an inorganic porous film (film thickness of about 1.1 μm ± 0.1 μm) ).

石英基板を10Pa下で30分間、波長172nmの真空紫外光に暴露して親水化した後、当該基板表面に、テトラエトキシシラン、セチルトリメチルアンモニウムクロライド(CTAC)、超純水、エタノール及び塩酸を、モル比1:0.25:5:5:0.05で混合・調製したゾル溶液を滴下し、スピンキャスト法(1回目:1000rpmで5秒、2回目:2000rpmで30秒)により有機−無機複合体被膜を作製した(膜厚約1.3μm±0.1μm)。次に、当該基板を100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った。このサンプルを真空下(10Pa)で6時間、波長172nmの真空紫外光に暴露し、鋳型となるCTAC分子を除去し、無機多孔体被膜に変換した(膜厚約1.2μm±0.1μm)。 A quartz substrate is exposed to vacuum ultraviolet light having a wavelength of 172 nm under 10 3 Pa for 30 minutes to be hydrophilized, and tetraethoxysilane, cetyltrimethylammonium chloride (CTAC), ultrapure water, ethanol and hydrochloric acid are formed on the surface of the substrate. Sol solution mixed and prepared at a molar ratio of 1: 0.25: 5: 5: 0.05 was added dropwise, and organic by spin casting (first time: 1000 rpm for 5 seconds, second time: 2000 rpm for 30 seconds). -An inorganic composite film was prepared (film thickness of about 1.3 µm ± 0.1 µm). Next, the substrate was left at 10 Pa for 7 hours in a vacuum drying furnace maintained at 100 ° C. to remove moisture in the thin film. This sample was exposed to vacuum ultraviolet light having a wavelength of 172 nm under vacuum (10 Pa) for 6 hours to remove CTAC molecules as a template and converted into an inorganic porous film (film thickness: about 1.2 μm ± 0.1 μm). .

比較例1
実施例1で作製した有機−無機複合体被膜(膜厚約1.2μm±0.1μm)を250℃で2時間、熱処理することによりPluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.0μm±0.1μm)。
Comparative Example 1
The organic-inorganic composite film (film thickness: about 1.2 μm ± 0.1 μm) prepared in Example 1 was heat-treated at 250 ° C. for 2 hours to remove Pluronic P123 molecules and converted to an inorganic porous film ( The film thickness is about 1.0 μm ± 0.1 μm).

比較例2
実施例2で作製した有機−無機複合体被膜(膜厚約1.3μm±0.1μm)を250℃で2時間、熱処理することによりCTAC分子を除去し、無機多孔体被膜に変換した(膜厚約1.1μm±0.1μm)。
Comparative Example 2
The organic-inorganic composite film (film thickness: about 1.3 μm ± 0.1 μm) prepared in Example 2 was heat-treated at 250 ° C. for 2 hours to remove CTAC molecules and converted into an inorganic porous film (film) Thickness about 1.1 μm ± 0.1 μm).

比較例3
実施例1で作製した有機−無機複合体被膜(膜厚約1.2μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った後、当該サンプルを250℃で2時間、熱処理することによりPluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.0μm±0.1μm)。
Comparative Example 3
The organic-inorganic composite film (film thickness: about 1.2 μm ± 0.1 μm) prepared in Example 1 was left in a vacuum drying furnace maintained at 100 ° C. for 7 hours under 10 Pa to remove moisture in the thin film. Then, the sample was heat-treated at 250 ° C. for 2 hours to remove Pluronic P123 molecules, and converted into an inorganic porous film (film thickness: about 1.0 μm ± 0.1 μm).

比較例4
実施例2で作製した有機−無機複合体被膜(膜厚約1.3μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った後、当該サンプルを250℃で2時間、熱処理することによりPluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.0μm±0.1μm)。
Comparative Example 4
The organic-inorganic composite coating (film thickness: about 1.3 μm ± 0.1 μm) prepared in Example 2 was left in a vacuum drying furnace maintained at 100 ° C. for 7 hours under 10 Pa to remove moisture in the thin film. Then, the sample was heat-treated at 250 ° C. for 2 hours to remove Pluronic P123 molecules, and converted into an inorganic porous film (film thickness: about 1.0 μm ± 0.1 μm).

比較例5
実施例1で作製した有機−無機複合体被膜(膜厚約1.2μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った後、当該サンプルを大気中で254nmの紫外光を90分間照射することによりPluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.15μm±0.1μm)。
Comparative Example 5
The organic-inorganic composite film (film thickness: about 1.2 μm ± 0.1 μm) prepared in Example 1 was left in a vacuum drying furnace maintained at 100 ° C. for 7 hours under 10 Pa to remove moisture in the thin film. Then, the sample was irradiated with ultraviolet light at 254 nm for 90 minutes in the atmosphere to remove Pluronic P123 molecules and converted into an inorganic porous film (film thickness: about 1.15 μm ± 0.1 μm).

比較例6
実施例2で作製した有機−無機複合体被膜(膜厚約1.3μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った後、当該サンプルを大気中で254nmの紫外光を90分間照射することによりCTAC分子を除去し、無機多孔体被膜に変換した(膜厚約1.1μm±0.1μm)。
Comparative Example 6
The organic-inorganic composite coating (film thickness: about 1.3 μm ± 0.1 μm) prepared in Example 2 was left in a vacuum drying furnace maintained at 100 ° C. for 7 hours under 10 Pa to remove moisture in the thin film. Then, the sample was irradiated with ultraviolet light at 254 nm for 90 minutes in the atmosphere to remove CTAC molecules and converted into an inorganic porous film (film thickness: about 1.1 μm ± 0.1 μm).

比較例7
実施例1で作製した有機−無機複合体被膜(膜厚約1.2μm±0.1μm)を、100℃に保持した乾燥炉中で、大気圧下で7時間乾燥を行うことで水分の除去を行った後、当該サンプルを大気中で254nmの紫外光を90分間照射することによりPluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.17μm±0.1μm)。
Comparative Example 7
Removal of moisture by drying the organic-inorganic composite film (film thickness: about 1.2 μm ± 0.1 μm) prepared in Example 1 for 7 hours under atmospheric pressure in a drying furnace maintained at 100 ° C. Then, the sample was irradiated with ultraviolet light at 254 nm for 90 minutes in the atmosphere to remove Pluronic P123 molecules and converted into an inorganic porous film (film thickness: about 1.17 μm ± 0.1 μm).

比較例8
実施例2で作製した有機−無機複合体被膜(膜厚約1.3μm±0.1μm)を、100℃に保持した乾燥炉中で、大気圧下で7時間乾燥を行うことで水分の除去を行った後、当該サンプルを大気中で254nmの紫外光を90分間照射することによりCTAC分子を除去し、無機多孔体被膜に変換した(膜厚約1.17μm±0.1μm)。
Comparative Example 8
Removal of moisture by drying the organic-inorganic composite coating (film thickness: about 1.3 μm ± 0.1 μm) prepared in Example 2 for 7 hours under atmospheric pressure in a drying furnace maintained at 100 ° C. Then, the sample was irradiated with ultraviolet light at 254 nm for 90 minutes in the atmosphere to remove CTAC molecules and converted into an inorganic porous film (film thickness: about 1.17 μm ± 0.1 μm).

比較例9
実施例1で作製した有機−無機複合体被膜(膜厚約1.2μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で1時間放置し、薄膜中の水分除去を行った後、当該サンプルを真空下(10Pa)下で、6時間、波長172nmの真空紫外光に暴露し、Pluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.13μm±0.1μm)。
Comparative Example 9
The organic-inorganic composite film (film thickness: about 1.2 μm ± 0.1 μm) prepared in Example 1 was left in a vacuum drying furnace maintained at 100 ° C. for 1 hour under 10 Pa to remove moisture in the thin film. After that, the sample was exposed to vacuum ultraviolet light with a wavelength of 172 nm under vacuum (10 Pa) for 6 hours to remove Pluronic P123 molecules and converted into an inorganic porous film (film thickness of about 1.13 μm). ± 0.1 μm).

比較例10
実施例2で作製した有機−無機複合体被膜(膜厚約1.3μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で1時間放置し、薄膜中の水分除去を行った後、当該サンプルを真空下(10Pa)下で、6時間、波長172nmの真空紫外光に暴露し、CTAC分子を除去し、無機多孔体被膜に変換した(膜厚約1.13μm±0.1μm)。
Comparative Example 10
The organic-inorganic composite film (film thickness: about 1.3 μm ± 0.1 μm) prepared in Example 2 was left in a vacuum drying furnace maintained at 100 ° C. for 1 hour at 10 Pa to remove moisture in the thin film. Then, the sample was exposed to vacuum ultraviolet light having a wavelength of 172 nm under vacuum (10 Pa) for 6 hours to remove CTAC molecules and converted into an inorganic porous film (film thickness of about 1.13 μm ± 0.1 μm).

比較例11
実施例1で作製した有機−無機複合体被膜(膜厚約1.2μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で3時間放置し、薄膜中の水分除去を行った後、当該サンプルを真空下(10Pa)下で、6時間、波長172nmの真空紫外光に暴露し、Pluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.12μm±0.10μm)。
Comparative Example 11
The organic-inorganic composite film (film thickness: about 1.2 μm ± 0.1 μm) prepared in Example 1 was left for 3 hours at 10 Pa in a vacuum drying furnace maintained at 100 ° C. to remove moisture in the thin film. After that, the sample was exposed to vacuum ultraviolet light having a wavelength of 172 nm under vacuum (10 Pa) for 6 hours to remove Pluronic P123 molecules and converted into an inorganic porous film (film thickness: about 1.12 μm) ± 0.10 μm).

比較例12
実施例2で作製した有機−無機複合体被膜(膜厚約1.3μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で3時間放置し、薄膜中の水分除去を行った後、当該サンプルを真空下(10Pa)下で、6時間、波長172nmの真空紫外光に暴露し、CTAC分子を除去し、無機多孔体被膜に変換した(膜厚約1.12μm±0.1μm)。
Comparative Example 12
The organic-inorganic composite film (film thickness: about 1.3 μm ± 0.1 μm) prepared in Example 2 was left in a vacuum drying furnace maintained at 100 ° C. for 3 hours under 10 Pa to remove moisture in the thin film. Then, the sample was exposed to vacuum ultraviolet light having a wavelength of 172 nm under vacuum (10 Pa) for 6 hours to remove CTAC molecules and converted into an inorganic porous film (film thickness of about 1.12 μm ± 0.1 μm).

比較例13
実施例1で作製した有機−無機複合体被膜(膜厚約1.2μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った後、当該サンプルを真空下(10Pa)下で、3時間、波長172nmの真空紫外光に暴露し、Pluronic P123分子を除去し、無機多孔体被膜に変換した(膜厚約1.14μm±0.1μm)。
Comparative Example 13
The organic-inorganic composite film (film thickness: about 1.2 μm ± 0.1 μm) prepared in Example 1 was left in a vacuum drying furnace maintained at 100 ° C. for 7 hours under 10 Pa to remove moisture in the thin film. After that, the sample was exposed to vacuum ultraviolet light having a wavelength of 172 nm under vacuum (10 Pa) for 3 hours to remove Pluronic P123 molecules and converted into an inorganic porous film (film thickness of about 1.14 μm). ± 0.1 μm).

比較例14
実施例2で作製した有機−無機複合体被膜(膜厚約1.3μm±0.1μm)を、100℃に保持した真空乾燥炉中で、10Pa下で7時間放置し、薄膜中の水分除去を行った後、当該サンプルを真空下(10Pa)下で、3時間、波長172nmの真空紫外光に暴露し、CTAC分子を除去し、無機多孔体被膜に変換した(膜厚約1.14μm±0.1μm)。
Comparative Example 14
The organic-inorganic composite coating (film thickness: about 1.3 μm ± 0.1 μm) prepared in Example 2 was left in a vacuum drying furnace maintained at 100 ° C. for 7 hours under 10 Pa to remove moisture in the thin film. Then, the sample was exposed to vacuum ultraviolet light with a wavelength of 172 nm under vacuum (10 Pa) for 3 hours to remove CTAC molecules and converted into an inorganic porous material coating (film thickness of about 1.14 μm ± 0.1 μm).

以上の実施例1〜2と比較例1〜14で作製した無機多孔体被膜の光学特性及びクラック発生量を相対的に評価した結果を表1に示す。表1は、各例における膜の状態、性質を示すものである。比較例5、比較例13及び比較例14においては、クラックの発生はなかったが、紫外線あるいは真空紫外光の照射時間が短いため、完全に有機分子集合体を除去することはできなかった。また、比較例7及び比較例8においては、ともにクラックが生じたことから、大気圧中での乾燥では、水分の除去が不十分であることが推測される。事実、比較例9、10、11、12、13及び14において、真空乾燥時間を変化させたところ、時間を長くするにつれ、クラック量が減少した。この結果からも、水分の除去量とクラックの量が密接に関係していることが分かる。   Table 1 shows the results of relative evaluation of the optical characteristics and the amount of cracks generated in the inorganic porous coating films prepared in Examples 1 and 2 and Comparative Examples 1 to 14. Table 1 shows the state and properties of the film in each example. In Comparative Example 5, Comparative Example 13 and Comparative Example 14, no crack was generated, but the organic molecular aggregate could not be completely removed because the irradiation time of ultraviolet light or vacuum ultraviolet light was short. Moreover, in Comparative Example 7 and Comparative Example 8, since cracks occurred, it is presumed that moisture removal is insufficient when drying at atmospheric pressure. In fact, in Comparative Examples 9, 10, 11, 12, 13, and 14, when the vacuum drying time was changed, the crack amount decreased as the time was increased. This result also shows that the amount of moisture removed and the amount of cracks are closely related.

比較例11、12、13及び14において、真空紫外光照射時間を変化させたところ、鋳型がほぼ完全に除去された無機膜の状態になるまでには、6時間以上の照射を要することが分かった。実際に、この実施例1で作製した被膜について、赤外分光(IR)測定を実施したところ、2900cm−1付近にあるブロックコポリマー分子のアルキル基に由来するC−H伸縮振動は完全に消失していることを確認した(図1参照)。X線回折(XRD)により、得られた細孔径は約11.6nmであった。 In Comparative Examples 11, 12, 13 and 14, when the vacuum ultraviolet light irradiation time was changed, it was found that it took 6 hours or more to reach the state of the inorganic film from which the template was almost completely removed. It was. Actually, when the infrared spectroscopic (IR) measurement was performed on the film produced in Example 1, the CH stretching vibration derived from the alkyl group of the block copolymer molecule near 2900 cm −1 disappeared completely. (See FIG. 1). According to X-ray diffraction (XRD), the obtained pore diameter was about 11.6 nm.

図1に、実施例1に関わるサンプルの透過IRスペクトル、及び当該サンプルの照射前のスペクトルを合せて示す。照射前(スペクトル[b])では2900cm−1付近のアルキル基に由来するC−H伸縮振動が確認されたが、光処理後(スペクトル[a])では、この吸収は見当たらず、ブロックコポリマー分子が消失したことが明らかとなった。更に、この被膜の可視光透過率を測定したところ、透過率は95%以上であった。この値は、石英基板のそれ(98%)とほぼ同じであった。また、光学顕微鏡を用いて、当該被膜のモルフォロジーを観察したところ、図2の光学顕微鏡写真(暗視野像)に示すように、クラックは観察されなかった。このように、実施例1及び2に示した手法が最も効果的に、透明でクラックフリーな無機多孔体被膜を作製することができることが分かった。 FIG. 1 shows a transmission IR spectrum of a sample relating to Example 1 and a spectrum before irradiation of the sample. Before irradiation (spectrum [b]), C—H stretching vibration derived from an alkyl group in the vicinity of 2900 cm −1 was confirmed, but after light treatment (spectrum [a]), this absorption was not found, and the block copolymer molecule Was found to disappear. Furthermore, when the visible light transmittance of this film was measured, the transmittance was 95% or more. This value was almost the same as that of the quartz substrate (98%). Further, when the morphology of the film was observed using an optical microscope, no cracks were observed as shown in the optical micrograph (dark field image) of FIG. Thus, it was found that the method shown in Examples 1 and 2 can most effectively produce a transparent and crack-free inorganic porous coating.

以上詳述したように、本発明は、透明無機多孔体被膜及びその製造方法に係るものであり、本発明により、有機分子集合体を鋳型として用い、ゾルーゲル法によって該有機分子集合体と無機前駆体を骨格として構成される有機−無機複合体被膜を作製し、該前駆体被膜中の水分を真空乾燥等により除去し、更に、有機分子集合体を光酸化により除去することにより、透明で、クラックフリーな、ナノ細孔を有する無機多孔体被膜を作製し、提供することができる。本発明により、膜厚を700nm以下に制限する必要がなくなり、3μm程度までの厚膜化が可能である。可視領域から近赤外領域において透過率90%以上を確保できる透明無機多孔体被膜を提供できる。更に、該被膜は、低屈折率、低誘電率を示すことから、光学材料、絶縁材料として様々なデバイスへの展開が可能である。   As described above in detail, the present invention relates to a transparent inorganic porous film and a method for producing the same, and according to the present invention, an organic molecule aggregate is used as a template, and the organic molecule aggregate and inorganic precursor are obtained by a sol-gel method. An organic-inorganic composite coating composed of a body as a skeleton is produced, moisture in the precursor coating is removed by vacuum drying or the like, and further, organic molecule aggregates are removed by photooxidation, thereby being transparent, It is possible to produce and provide a crack-free inorganic porous film having nanopores. According to the present invention, it is not necessary to limit the film thickness to 700 nm or less, and it is possible to increase the film thickness to about 3 μm. It is possible to provide a transparent inorganic porous coating film that can ensure a transmittance of 90% or more from the visible region to the near infrared region. Furthermore, since the coating film exhibits a low refractive index and a low dielectric constant, it can be applied to various devices as an optical material and an insulating material.

VUV照射前後の前駆体被膜のIRスペクトルを示す。The IR spectrum of the precursor film before and after VUV irradiation is shown. 実施例1で作製した被膜の光学顕微鏡写真(暗視野像)を示す。The optical micrograph (dark field image) of the film produced in Example 1 is shown. 実施例1で作製した被膜について、X線回折(XRD)を行った結果を示す。The result of having performed the X-ray diffraction (XRD) about the film produced in Example 1 is shown.

Claims (11)

基板表面に形成されたナノスケールの微細な細孔を有するメソポーラス無機多孔体被膜において、1〜10Paの減圧下での乾燥で水分が除去された後、真空紫外光で有機成分が除去されており、ナノ細孔構造を有しており、1μmを超えた膜厚で、屈折率1.05〜1.3、誘電率1.1〜1.7の特性を有し、可視光領域から近赤外領域において少なくとも90%の高い透過率を示し、厚膜化に伴うクラック/剥離の発生がないクラックフリーであることを特徴とする透明無機多孔体被膜。 In mesoporous inorganic porous material coating having fine pores of nano-scale formed on the substrate surface, after which moisture is removed by drying under a reduced pressure of 1 to 10 Pa, the organic Ingredient is removed by vacuum ultraviolet light It has a nanopore structure, a film thickness exceeding 1 μm, a refractive index of 1.05 to 1.3 and a dielectric constant of 1.1 to 1.7, and is close to the visible light region. A transparent inorganic porous coating film characterized by exhibiting a high transmittance of at least 90% in the infrared region and being crack-free without occurrence of cracks / peeling due to thickening. 基材が、金属、セラミックス、ガラス、石英、プラスチック、ダイヤモンドの内から選択される1種以上からなる請求項1に記載の透明無機多孔体被膜。   2. The transparent inorganic porous coating according to claim 1, wherein the substrate comprises at least one selected from the group consisting of metal, ceramics, glass, quartz, plastic, and diamond. 骨格となる無機前駆体が、シリカ、チタニア、ジルコニア、又はアルミナである請求項1に記載の透明無機多孔体被膜。   The transparent inorganic porous coating according to claim 1, wherein the inorganic precursor serving as a skeleton is silica, titania, zirconia, or alumina. 上記被膜の膜厚が1〜3μmであり、可視領域から近赤外領域において少なくとも95%の透過率を示す請求項1に記載の透明無機多孔体被膜。   The transparent inorganic porous coating film according to claim 1, wherein the coating film has a thickness of 1 to 3 μm and exhibits a transmittance of at least 95% in the visible region to the near infrared region. 上記請求項1から4のいずれかに記載のクラックフリーな透明無機多孔体被膜を具備してなることを特徴とする光学部材。   An optical member comprising the crack-free transparent inorganic porous coating film according to any one of claims 1 to 4. 上記請求項1から4のいずれかに記載のクラックフリーな透明無機多孔体被膜を具備してなることを特徴とする絶縁部材。   An insulating member comprising the crack-free transparent inorganic porous coating film according to any one of claims 1 to 4. 基材に、鋳型となる有機分子集合体、骨格となる無機前駆体を含むゾル溶液を用いて、有機−無機複合体被膜を作製した後、該被膜から乾燥手法により水分を除去し、続いて減圧下で光酸化させることで有機成分を除去して該被膜中にナノ細孔を形成することにより、膜厚1〜3μm、クラックフリーで透明なメソポーラス無機多孔体被膜を得る透明無機多孔体被膜の製造方法であって、
基材に、界面活性剤の分子集合体、異種の界面活性剤分子の集合体、ブロックコポリマーの内から選択した1種類以上の分子集合体、金属アルコキシド、水、有機溶媒、酸あるいはアルカリ性下で調製したゾル溶液を用いて、有機−無機複合体被膜を作製した後、該被膜から減圧下で、真空乾燥、凍結乾燥、超臨界乾燥の内の選択された1種類以上の乾燥手法により水分を除去し、続いて真空紫外光照射により光酸化させることで有機成分を除去して該被膜中にナノ細孔を形成することを特徴とする透明無機多孔体被膜の製造方法。
After preparing an organic-inorganic composite film using a sol solution containing an organic molecular assembly as a template and an inorganic precursor as a skeleton on a substrate, moisture is removed from the film by a drying method, Transparent inorganic porous coating that obtains a crack-free transparent mesoporous inorganic coating by removing organic components by photooxidation under reduced pressure to form nanopores in the coating A manufacturing method of
In the base material, surfactant molecular aggregate, heterogeneous surfactant molecular aggregate, one or more molecular aggregates selected from block copolymers, metal alkoxide, water, organic solvent, acid or alkaline After preparing an organic-inorganic composite coating using the prepared sol solution, moisture is removed from the coating by one or more drying methods selected from vacuum drying, freeze drying, and supercritical drying under reduced pressure. A method for producing a transparent inorganic porous coating, comprising removing the organic component by subsequent photo-oxidation by irradiation with vacuum ultraviolet light to form nanopores in the coating.
基材が、金属、セラミックス、ガラス、石英、プラスチック、ダイヤモンドの内から選択される1種以上からなる請求項7に記載の透明無機多孔体被膜の製造方法。   The method for producing a transparent inorganic porous coating film according to claim 7, wherein the base material comprises one or more selected from metals, ceramics, glass, quartz, plastic, and diamond. ロータリーポンプ、ディフュージョンポンプ、ターボ分子ポンプの内の選択された1種類以上のポンプにより減圧にした後、真空紫外光を照射することにより、有機成分を光酸化により除去する請求項7に記載の透明無機多孔体被膜の製造方法。   The transparent component according to claim 7, wherein the organic component is removed by photooxidation by irradiating with vacuum ultraviolet light after reducing the pressure with one or more pumps selected from a rotary pump, a diffusion pump, and a turbo molecular pump. A method for producing an inorganic porous coating. ゾル溶液の濃度を調整することにより、得られる被膜の膜厚を任意に制御する請求項7に記載の透明無機多孔体被膜の製造方法。   The method for producing a transparent inorganic porous coating film according to claim 7, wherein the film thickness of the coating film to be obtained is arbitrarily controlled by adjusting the concentration of the sol solution. 波長172nm以下の真空紫外光照射により高くても40℃の低温で有機分子集合体の除去を行う請求項7に記載の透明無機多孔体被膜の製造方法。   The method for producing a transparent inorganic porous coating film according to claim 7, wherein the organic molecular aggregate is removed at a low temperature of 40 ° C at the highest by irradiation with vacuum ultraviolet light having a wavelength of 172 nm or less.
JP2004325651A 2004-11-09 2004-11-09 Transparent inorganic porous film and method for producing the same Expired - Fee Related JP4563776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325651A JP4563776B2 (en) 2004-11-09 2004-11-09 Transparent inorganic porous film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325651A JP4563776B2 (en) 2004-11-09 2004-11-09 Transparent inorganic porous film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006130889A JP2006130889A (en) 2006-05-25
JP4563776B2 true JP4563776B2 (en) 2010-10-13

Family

ID=36724846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325651A Expired - Fee Related JP4563776B2 (en) 2004-11-09 2004-11-09 Transparent inorganic porous film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4563776B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090026924A1 (en) * 2007-07-23 2009-01-29 Leung Roger Y Methods of making low-refractive index and/or low-k organosilicate coatings
JP5437664B2 (en) * 2008-03-03 2014-03-12 学校法人慶應義塾 Optical element having antireflection film, pickup lens for optical information recording / reproducing apparatus, and optical information recording / reproducing apparatus
JP5437662B2 (en) * 2008-03-03 2014-03-12 学校法人慶應義塾 Antireflection film and method for forming the same
JP5313750B2 (en) * 2008-07-31 2013-10-09 学校法人慶應義塾 Antireflection film, optical component having the same, interchangeable lens, and imaging device
JP5239663B2 (en) * 2008-09-12 2013-07-17 三菱化学株式会社 Method for producing silica-based porous membrane
JP5266019B2 (en) * 2008-11-10 2013-08-21 学校法人慶應義塾 Antireflection film, method for forming the same, optical element, interchangeable lens, and imaging device
JP5504474B2 (en) * 2009-12-28 2014-05-28 国立大学法人大阪大学 Method for imparting hydrophilicity to substrate surface, anti-fogging composition for translucent material, hydrophilic material, and method for producing hydrophilic material
JP5599635B2 (en) * 2010-03-30 2014-10-01 旭化成イーマテリアルズ株式会社 Functional coating
FR3021967B1 (en) * 2014-06-06 2021-04-23 Saint Gobain PROCESS FOR OBTAINING A SUBSTRATE COATED WITH A FUNCTIONAL LAYER
FR3028778B1 (en) * 2014-11-26 2019-04-12 Glass Surface Technology PROCESS FOR PRODUCING A COATING LAYER OF THE INTERNAL SIDE OF A CONTAINER AND CONTAINER OBTAINED WITH SUCH A METHOD
GB2533589A (en) * 2014-12-22 2016-06-29 Ndc Infrared Eng Ltd Measurement of porous film
US10995624B2 (en) * 2016-08-01 2021-05-04 General Electric Company Article for high temperature service
KR102153276B1 (en) * 2018-09-28 2020-09-09 세메스 주식회사 Method for forming dielectric layer and method for fabricating semiconductor device
CN109904350A (en) * 2019-03-25 2019-06-18 京东方科技集团股份有限公司 A kind of package substrate, encapsulating structure and OLED device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322013A (en) * 2001-04-25 2002-11-08 Univ Nagoya Active substance precursor, active substance using the precursor, and method for producing the active substance
JP3870254B2 (en) * 2002-02-05 2007-01-17 独立行政法人産業技術総合研究所 Highly hydrophilic thin film and method for producing the same
JP2004212791A (en) * 2003-01-07 2004-07-29 Dainippon Printing Co Ltd Optical member and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006130889A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP4563776B2 (en) Transparent inorganic porous film and method for producing the same
TWI299321B (en) Low dielectric materials and methods for making the same
JP4893905B2 (en) Zeolite raw material liquid, zeolite crystal preparation method, zeolite raw material liquid preparation method, and zeolite thin film
TWI284140B (en) Method for forming porous silica film
JP4125637B2 (en) Low dielectric constant material and manufacturing method thereof
JP5007416B2 (en) Method for producing porous silica membrane
KR100536178B1 (en) Mesoporous silica film from a solution containing a surfactant and methods of making same
JP2003508895A (en) Nanoporous silica treated with siloxane polymer for ULSI applications
KR101202955B1 (en) Composition for forming low dielectric film comprising porous nanoparticles and method for preparing low dielectric thin film using the same
TWI286163B (en) Low dielectric foam dielectric formed from polymer decomposition
US8859050B2 (en) Patterning of ultra-low refractive index high surface area nanoparticulate films
KR19990044697A (en) Silicon dioxide thin film, method for producing same and use thereof
CN101687219A (en) Low k dielectric
KR101119141B1 (en) Composition for forming low dielectric film comprising polymeric nanoparticles and method for preparing low dielectric thin film using the same
JP2007533583A (en) Method for preparing mesoporous material
Hozumi et al. Low-temperature elimination of organic components from mesostructured organic− inorganic composite films using vacuum ultraviolet light
Karlina et al. Synthesis and characterization of hydrophobic silica prepared by different acid catalysts
US20120071682A1 (en) Organosilica nanoparticles and method for making
JP3060017B1 (en) Method for low-temperature production of porous ceramic body having hollow structure
KR101876862B1 (en) Preparing method for optical coating film and optical coating film thereof
TW201829329A (en) Continuous sol-gel process for the manufacture of silicate-containing glass and glass ceramics
Chu et al. Preparation and atomic oxygen erosion resistance of silica films formed on polymethyl methacrylate by solvothermal method
CN110396309A (en) Titanium oxide nanoporous coating and preparation method thereof
JP2013212973A (en) Mesostructure body, method of manufacturing mesostructure body, method of manufacturing mesoporous film, method of manufacturing functional silica mesostructure film, silica mesostructure film, and mesoporous silica film
JP2005503312A (en) Method for producing high purity, low dielectric constant ceramic and hybrid ceramic thin films

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20041122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees