JP4563406B2 - Rotor blade for wind turbine - Google Patents
Rotor blade for wind turbine Download PDFInfo
- Publication number
- JP4563406B2 JP4563406B2 JP2006552623A JP2006552623A JP4563406B2 JP 4563406 B2 JP4563406 B2 JP 4563406B2 JP 2006552623 A JP2006552623 A JP 2006552623A JP 2006552623 A JP2006552623 A JP 2006552623A JP 4563406 B2 JP4563406 B2 JP 4563406B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor blade
- lift
- drag ratio
- pitch angle
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims 7
- 238000009434 installation Methods 0.000 claims 1
- 238000010248 power generation Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05B2240/307—Blade tip, e.g. winglets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/97—Reducing windage losses
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49336—Blade making
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Description
本発明は、風力発電設備のローターブレード、及び該ローターブレードを有するローターを備えている風力発電設備に関する。 The present invention relates to a rotor blade of a wind power generation facility and a wind power generation facility including a rotor having the rotor blade.
風力発電設備の性能及び特にその効率は、ローターブレード又はローターブレードの設計によって僅かとは言えない程度に決定される。ローターブレードは、非常に多くのパラメーターによって表わされる。現時点では、非特許文献1(特に90頁)が従来技術(state of the art)として敬意を持って参照されている。非特許文献1の内容はまた、同時に本出願の技術の基礎を為すものであり、必要に応じて、本出願の内容に組み込まれるものでもある。 The performance of the wind power plant and in particular its efficiency is determined to a lesser extent by the rotor blade or rotor blade design. Rotor blades are represented by numerous parameters. At present, Non-Patent Document 1 (especially page 90) is referenced with respect as the state of the art. The contents of Non-Patent Document 1 also form the basis of the technology of the present application, and are incorporated into the contents of the present application as necessary.
上述の通り、風力発電設備の作動効率及び調整力は、僅かとは言えない程度に利用されるローターブレード断面の空力特性によって支配されている。ローターブレードの重要なパラメーターは、揚力係数ca及び抗力係数cwの比によって特徴づけられている。 As described above, the operating efficiency and adjusting force of the wind power generation facility are governed by the aerodynamic characteristics of the rotor blade cross section that is used to a lesser extent. An important parameter of the rotor blade is characterized by the ratio of lift coefficient c a and drag coefficient c w .
ここで、Eは、揚抗比として規定されている。 Here, E is defined as the lift-drag ratio.
さらに、ローターブレードの重要なパラメーターとして高速係数(high-speed factor)λがある。この高速係数は、ローターブレード先端の周辺速度(u)及び風速vの比によって規定される。 Further, an important parameter of the rotor blade is a high-speed factor λ. This high speed coefficient is defined by the ratio of the peripheral speed (u) at the tip of the rotor blade and the wind speed v.
図1は、よく知られた流体の流れの状態及びブレード要素の翼形断面に作用する空力を表わしている。 FIG. 1 represents the well-known fluid flow conditions and aerodynamic forces acting on the blade element airfoil cross-section.
よく知られたローターブレードの断面を調査すれば、揚抗比とピッチ角との詳細な関係が確立される。より詳しくは、揚抗比はそれぞれのピッチ角に大きく依存し、一般的には完全に限定されたピッチ角の範囲内においてのみ高い揚抗比が達成されることがわかる。従って、例えば、ローターブレードのピッチ角が約6°である場合に、高い揚抗比は達成される。しかしながら、同時にピッチ角が僅かに約6°を上回るか又は下回ると、すぐさま揚抗比が厳密には低下することもわかる。 A well-known rotor blade cross-section will establish a detailed relationship between lift-drag ratio and pitch angle. More specifically, it can be seen that the lift-drag ratio is highly dependent on the respective pitch angle, and that generally a high lift-drag ratio is achieved only within a completely limited pitch angle range. Thus, for example, a high lift-drag ratio is achieved when the pitch angle of the rotor blades is about 6 °. However, it can also be seen that as soon as the pitch angle is slightly above or below about 6 °, the lift-drag ratio decreases immediately.
その値が最適な揚抗比の近傍から離れた場合には、すなわち、ピッチ角が最適なピッチ角(例えば6°)とは著しく異なる場合には、風力発電設備が、例えばピッチ制御によってピッチ角を最適値に設定しようとする傾向、及び/又は、ポッド(pod)の向きによって最適な関係でローター全体を風の中に設置しようとする傾向にある結果として、設備全体の効率が低下してしまうということが容易に理解されるであろう。 If the value departs from the vicinity of the optimum lift-drag ratio, that is, if the pitch angle is significantly different from the optimum pitch angle (for example 6 °), the wind power generation facility is controlled by the pitch control, for example. As a result of a tendency to set the rotor to the optimum value and / or a tendency to place the entire rotor in the wind in an optimal relationship depending on the orientation of the pod. It will be easily understood that
風力発電設備のローターの大きさは近年着実に大きくなっている。そして、受風面積が10,000平方メートルとされるローターは、もはや机上の空論ではなく、例えば、Enercon社製タイプE112(type E112)のような風力発電設備が今では実現されている。E112は、約112メートルのローター直径を有する風力発電設備である。 In recent years, the size of rotors in wind power generation facilities has steadily increased. The rotor having a wind receiving area of 10,000 square meters is no longer a desk theory. For example, a wind power generation facility such as type E112 manufactured by Enercon has been realized. E112 is a wind power plant with a rotor diameter of about 112 meters.
現在において、ローターブレードのすべての領域に亘る揚抗比の最適化を達成することは現実的には不可能とされている。ローターブレードが非常に大きな受風面積を有しているので、常に同一方向から且つ常に同一速度で、風がローターブレードに向かって吹いていると仮定することができないからである。 At present, it is practically impossible to achieve optimization of the lift-drag ratio across all areas of the rotor blade. This is because the rotor blade has a very large wind receiving area, so it cannot be assumed that the wind is always blowing from the same direction and always at the same speed toward the rotor blade.
この結果により、一部領域においては、ローターブレードが比較的最適な条件下で作動することができるであろう。しかし、他の領域においては、ローターの受風面積における流体の流れ分布の異なる性質によって、ローターブレードは最適とは言い難い条件下で作動する。流れ角上の揚抗比の非常に高い依存性から直接的に得られる結果、及びこのことに伴って、ローターブレードに働く負荷は著しく変動する。これは、ローターブレードの揚力係数caも揚抗比に略比例するからである。
上述の問題を改善する方法として、及びその不利益を回避するために、ローターブレードの適切なピッチ制御又はローター全体のヨー制御によって、最適設定を常に見つけることができることが理解されるであろう。このことは当業者にとっては自明である。しかしながら、このコンセプトでは、ローターブレードは実用上風の中に絶えず設置されていなければならず(すなわち、ピッチされて(pitched)いなければならず)、及び/又は、状況を実質的に改善しないにも拘らず、ローターの方角も絶えず制御していなければならない。 It will be appreciated that an optimal setting can always be found by appropriate pitch control of the rotor blades or yaw control of the entire rotor, as a way to ameliorate the above problems and to avoid its disadvantages. This is obvious to those skilled in the art. However, with this concept, the rotor blades must be practically constantly installed in the wind (ie, must be pitched) and / or do not substantially improve the situation. Nevertheless, the direction of the rotor must be constantly controlled.
本発明の目的は、上述の不利益を回避し、より良い全体性能を有するローターブレード及び該ローターブレードを備える風力発電設備を提供することにある。 An object of the present invention is to provide a rotor blade having a better overall performance while avoiding the above-mentioned disadvantages, and a wind power generation facility including the rotor blade.
本発明は、請求項1に記載の特徴を有しているローターブレードの設計によって得られる。優位なローターブレードは従属請求項に記載されている。 The present invention is obtained by a rotor blade design having the features of claim 1. Advantageous rotor blades are described in the dependent claims.
本発明におけるローターブレード設計の本質的な特性のうち一つの特性は、揚抗比が非常に大きなピッチ角範囲に亘り仮想的に高い状態を維持することである。しかし、その点においては、揚抗比の最大値は従来技術(state of the art)から得られる前述の揚抗比の最適値より低い状態のままである。言い換えると、本発明における最適設定されたピッチ角を有するローターブレードの揚抗比は、たとえ最大値であっても従来技術よりも低い。しかし、同時に最適設定から離れたとしても、そのことが直ちに揚抗比、揚力係数の実質的な低下、ひいては揚力の損失につながる訳ではない。例えば最適設定角から3±0.5°の範囲で最適設定から外れたとしても、ブレードの全体効率が改善された結果として、揚抗比ひいては実質的な揚力の低減が生じることはない。そのことはまた、負荷(ΔL/dt)においては、著しく良好な負荷分布及び著しく低い負荷変動を達成する。図2から理解されるように、本発明におけるローターブレード揚抗比曲線における“サドル”状とされるピッチ角4〜8°の範囲は、よく知られているローターブレードの場合における範囲よりも著しく広い。 One of the essential characteristics of the rotor blade design in the present invention is that the lift-drag ratio remains virtually high over a very large pitch angle range. However, in that respect, the maximum lift-drag ratio remains lower than the aforementioned optimum lift-drag ratio obtained from the state of the art. In other words, the lift-drag ratio of the rotor blade having the optimally set pitch angle in the present invention is lower than that of the prior art even at the maximum value. However, even if the optimum setting is deviated at the same time, this does not immediately lead to a substantial decrease in the lift-drag ratio, lift coefficient, and hence lift loss. For example, even if the optimum setting angle is deviated from the optimum setting within a range of 3 ± 0.5 °, the overall efficiency of the blade is not improved, and as a result, there is no substantial reduction in the lift-drag ratio. It also achieves a significantly better load distribution and a significantly lower load variation at the load (ΔL / dt). As can be seen from FIG. 2, the range of the pitch angle of 4 to 8 degrees in the “saddle” shape in the rotor blade lift / drag ratio curve according to the present invention is significantly larger than the range in the case of the well-known rotor blade. wide.
特許請求の範囲におけるローターブレードの設計構成は、ローターブレードの中央の3分の1(central third)、すなわち、いわゆるローターブレードの主板(main board)領域にある。該領域は、一方におけるローターブレード取付領域又はローターブレードの根本領域と、ローターブレードの先端領域、すなわち外端領域との間にある。 The design structure of the rotor blade in the claims is in the central third of the rotor blade, i.e. the so-called main board region of the rotor blade. The region is between the rotor blade mounting region or the rotor blade root region on one side and the tip region, i.e., the outer end region, of the rotor blade.
図2は揚力係数又は揚抗比の変化を表わす一方で、ピッチ角との関係をも表わす。特に、ピッチ角と関連する曲線図は、標準的なローターブレードの場合において、揚抗比がピッチ角約6°近傍で絶対最大値約170に到達することを表わしている。ピッチ角が6°から1°変化する場合に、すなわち、7°又は5°となる場合に、揚抗比は既に大きく低下している。そして、ピッチ角が約9°の値であると仮定した場合には、特により大きなピッチ角に関する揚抗比が既に半減している。ピッチ角が小さくなる方向でも、揚抗比は非常に急激に低下する。しかしながら、ピッチ角が大きくなる場合程ではない。 While FIG. 2 represents the change in lift coefficient or lift / drag ratio, it also represents the relationship with the pitch angle. In particular, the curve diagram associated with the pitch angle shows that in the case of a standard rotor blade, the lift-drag ratio reaches an absolute maximum of about 170 near the pitch angle of about 6 °. When the pitch angle changes from 6 ° to 1 °, that is, when it becomes 7 ° or 5 °, the lift-drag ratio is already greatly reduced. When it is assumed that the pitch angle is about 9 °, the lift-drag ratio for a larger pitch angle is already halved. Even in the direction in which the pitch angle decreases, the lift-drag ratio decreases very rapidly. However, this is not as great as when the pitch angle is large.
本発明のローターブレードの場合における揚抗比の変化はまた、図より理解される。ピッチ角が約6°付近で再び揚抗比は最大値となり、該最大値は標準的なローターブレードの揚抗比の最大値を下回る。しかしながら、交差する曲線からわかるように、最適な“サドル”状部分が著しく広いことに留意すべきである。そして、例えば、ピッチ角が4〜8°の範囲とされる場合、すなわち最適ピッチ角6°の±2°とされる場合には、揚抗比は最適値から約10%だけ低減するに過ぎない。一方で約4.5°から−4°の範囲においては、他方で7°〜16°の領域においては、揚抗比は公知のローターブレードの揚抗比の曲線を常に上回っている。 The change in lift-drag ratio in the case of the rotor blade of the invention is also understood from the figure. When the pitch angle is about 6 °, the lift-drag ratio again reaches its maximum value, which is below the maximum lift-drag ratio of a standard rotor blade. However, it should be noted that the optimal “saddle” -like portion is significantly wider, as can be seen from the intersecting curves. For example, when the pitch angle is in the range of 4 to 8 °, that is, ± 2 ° of the optimum pitch angle of 6 °, the lift-drag ratio is only reduced by about 10% from the optimum value. Absent. On the other hand, in the range of about 4.5 ° to -4 ° and on the other hand in the region of 7 ° to 16 °, the lift-drag ratio always exceeds the lift-drag ratio curve of the known rotor blades.
本発明におけるローターブレードの配置構成をも参照すると、該配置構成全体がローターブレード全体の揚力係数を改善する。この改善により、ローターブレードの効率は約15%向上される。 Referring also to the rotor blade arrangement in the present invention, the overall arrangement improves the lift coefficient of the entire rotor blade. This improvement increases the efficiency of the rotor blade by about 15%.
特に、負荷変動も従来ほど大きくならない。そして、ピッチ角が非常に小さな任意の変化をした場合でも、同時に所望のピッチ角の最適値(する現在の実施例においては6°)に再設定する対応手段を講ずる必要はない。 In particular, load fluctuations are not as great as in the past. Even when the pitch angle is changed to a very small value, it is not necessary to take measures to reset the optimum value of the desired pitch angle (6 ° in the present embodiment) at the same time.
図3は、ローターブレードの先端部、すなわち、ローターブレードの端部を表わしている。図3aはローターブレードの先端部の斜視図を、図3bはその側面図を、そして、図3cはその平面図を表わしている。 FIG. 3 shows the tip of the rotor blade, that is, the end of the rotor blade. 3a is a perspective view of the tip of the rotor blade, FIG. 3b is a side view thereof, and FIG. 3c is a plan view thereof.
ローターブレードの先端部は縁弧部(edge arc)と呼ばれることが一般的である。図3aを見ると、その縁弧部が3つの断面区間及び3つの軸を備えている。 The tip of the rotor blade is generally called an edge arc. Referring to FIG. 3a, the edge arc has three cross sections and three axes.
図3a,図3b、及び図3cによって、前記スレッド軸(thread axis)回りの縁弧部断面の回転を表わすことができる。その点においては、図面の実施例における表現を幾らかでも理解可能なものとするために、本発明の詳細な説明で特定される角度よりも大きいという観点で、その図示された回転が大きく示されている。 3a, 3b and 3c can represent the rotation of the edge arc section about the thread axis. In that regard, the illustrated rotation is shown greatly in terms of being larger than the angle specified in the detailed description of the present invention in order to make some representation in the embodiments of the drawings comprehensible. Has been.
本発明におけるローターブレードに関する構成、特にその中心部、すなわち、いわゆる主板(main board)、ローターブレードの根本領域と先端領域との間の領域が、敬意をもって特に強調されている点に留意すべきである。前記主板は、一般的にはローターブレードの“中央の3分の1”(central third)として説明され、前記主板を超える特定の寸法に関して前記主板とは異なる。例えば、主板はローターブレードの長さの約60%まで占める。 It should be noted that the configuration relating to the rotor blade in the present invention, in particular its central part, i.e. the so-called main board, the region between the root region and the tip region of the rotor blade, is particularly emphasized with respect. is there. The main plate is generally described as the “central third” of the rotor blade and differs from the main plate with respect to specific dimensions beyond the main plate. For example, the main plate occupies up to about 60% of the length of the rotor blade.
付加的に、又はローターブレードの上述の構成から独立的に、さらなる改善もまた達成され得る。図3a〜図3cを参照すると、ローターブレードの先端部、すなわち先端部の端部がスレッド軸回りの所定領域内で、例えば、スレッド軸回り(捩れ方向)に4〜8°、好ましくは約5°回転される。従って、このような捩れはいわゆる中立的な流入角と称され、それ自体は揚力の発生に貢献しない先端部内にある。先端部の一般的な構成、又は対応する先端部端部区間は非特許文献1の126頁(図535)から公知である。 In addition, further improvements can also be achieved, independent of the above-described configuration of the rotor blades. 3a to 3c, the tip of the rotor blade, that is, the end of the tip, is within a predetermined region around the thread axis, for example, 4 to 8 ° around the thread axis (twist direction), preferably about 5 ° Rotated. Therefore, such a twist is referred to as a so-called neutral inflow angle and is itself in the tip which does not contribute to the generation of lift. The general configuration of the tip or the corresponding tip end section is known from page 126 (FIG. 535) of Non-Patent Document 1.
一般的な理論的考察にしたがって、ローターブレードに働く負荷の大きさは風速の2乗、ローターブレードの断面積、及び揚力係数の積として計算される。計算式は、 In accordance with general theoretical considerations, the magnitude of the load acting on the rotor blade is calculated as the product of the square of the wind speed, the cross-sectional area of the rotor blade, and the lift coefficient. The formula is
のように表わされる。ここで、ローターの断面積Aは、ローターが覆う(掃引する)領域を示すために利用される。 It is expressed as Here, the cross-sectional area A of the rotor is used to indicate a region covered (swept) by the rotor.
参考書を考慮すると、この数式は全く大雑把であり、常に現実に対応するという訳ではない。ローターブレードに働く最大負荷は、通常作動時にはローターブレードに作用しない。しかしながら、いわゆる50年に1度の突風が、ローターブレードをその側面から“衝突する(catch)”場合には別である。前記場合においては、突風はローターブレードのまさに全体に作用する。その点においては、揚力係数cAはその役割を果たさず、むしろ抗力係数cWは本明細書で考えられた通りとなるであろう。しかしながら、風がブレードに作用する場合には風が主板上に正確に作用するため、抗力係数は略平坦なローターブレード表面に関して常に一定である。前記状況(すなわち、完全な横方向の流れ)は、最悪のケースであって、この場合に、想定されるローターブレードに作用する最大負荷、すなわち正確に設計通りの負荷が作用する。 Considering the reference book, this formula is quite rough and does not always correspond to reality. The maximum load acting on the rotor blade does not act on the rotor blade during normal operation. However, the exception is when a so-called 50-year gust of wind "catch" the rotor blade from its side. In said case, the gust of wind acts on the entire rotor blade. In that respect, the lift coefficient c A will not play its role, but rather the drag coefficient c W will be as contemplated herein. However, the drag coefficient is always constant for a substantially flat rotor blade surface because the wind acts exactly on the main plate when the wind acts on the blade. The situation (i.e. full lateral flow) is the worst case, in which case the maximum load acting on the assumed rotor blade, i.e. exactly the designed load, is applied.
上記記載より、抗力係数が一定であれば、重要なのは、単にローターブレードの面積であり、これが唯一であることが明らかであろう。このことは、ローターブレードができるだけ細くされていることの理由でもある。 From the above description, it will be clear that if the drag coefficient is constant, what is important is simply the area of the rotor blade, which is the only one. This is also the reason why the rotor blades are made as thin as possible.
しかしながら、風力発電設備の出力はローターブレードの長さに非常に依存することが知られている。従って、従来においては、長細いブレードは幅広く短いブレードよりも好ましいとされてきた。しかしながら、この考えは、状況が根本的に異なることから、ブレードの内部領域(主板)には適用され得ない点は見落としてはならない。 However, it is known that the output of wind power generation equipment is highly dependent on the length of the rotor blades. Thus, conventionally, long and narrow blades have been preferred over wide and short blades. However, it should not be overlooked that this idea cannot be applied to the inner region (main plate) of the blade because the situation is fundamentally different.
最後に、ブレードの根本部領域周辺で流れる空気に関するローターブレードの相対速度は最も遅く、ブレード先端部に連続的に発生する。従って、本明細書に記載された狭い外部領域及び最適な揚抗比を有するローターブレードの形状は特に有効な解決策である。 Finally, the relative speed of the rotor blade with respect to the air flowing around the root region of the blade is the slowest and continuously occurs at the blade tip. Therefore, the shape of the rotor blade with the narrow outer area and the optimum lift-drag ratio described herein is a particularly effective solution.
Claims (8)
前記最適なピッチ角の±2°の範囲において前記最大揚抗比に対して80%以上の揚抗比が得られるように、ロータブレードの形状を決定することを特徴とするロータブレードの設計方法。The rotor blade design method is characterized in that the shape of the rotor blade is determined so that a lift-drag ratio of 80% or more with respect to the maximum lift-drag ratio is obtained within a range of ± 2 ° of the optimum pitch angle. .
前記先端領域が、翼の形態をしたロータブレードの平面から突出しており、
前記先端領域の端部が、中心面内でスレッド軸を中心として巻かれていることを特徴とする請求項1又は2に記載のロータブレードの設計方法。 The rotor blade is located between a root region, a tip region, and between the root region and the tip region, and the rotor blade has a central region composed of at least one third of the center of the rotor blade; , And
The tip region protrudes from the plane of the rotor blade in the form of a wing;
The rotor blade design method according to claim 1, wherein an end portion of the tip region is wound around a thread axis in a center plane.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004007487A DE102004007487A1 (en) | 2004-02-13 | 2004-02-13 | Rotor blade of a wind turbine |
PCT/EP2005/050585 WO2005078277A2 (en) | 2004-02-13 | 2005-02-10 | Rotor blade for a wind turbine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007522379A JP2007522379A (en) | 2007-08-09 |
JP4563406B2 true JP4563406B2 (en) | 2010-10-13 |
Family
ID=34813409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006552623A Expired - Fee Related JP4563406B2 (en) | 2004-02-13 | 2005-02-10 | Rotor blade for wind turbine |
Country Status (19)
Country | Link |
---|---|
US (2) | US7794209B2 (en) |
EP (2) | EP1716333B1 (en) |
JP (1) | JP4563406B2 (en) |
KR (2) | KR100953244B1 (en) |
CN (1) | CN1918386B (en) |
AR (1) | AR049772A1 (en) |
AU (2) | AU2005212637B2 (en) |
BR (1) | BRPI0507401B1 (en) |
CA (2) | CA2650752C (en) |
DE (1) | DE102004007487A1 (en) |
DK (2) | DK2420671T3 (en) |
ES (2) | ES2644035T3 (en) |
MA (1) | MA28465B1 (en) |
NO (1) | NO342217B1 (en) |
NZ (2) | NZ549117A (en) |
PL (1) | PL2420671T3 (en) |
PT (2) | PT1716333T (en) |
WO (1) | WO2005078277A2 (en) |
ZA (1) | ZA200606164B (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ538350A (en) * | 2002-09-05 | 2008-08-29 | Aloys Wobben | Use of an information support for climatic and environmental improvement |
DE102006017897B4 (en) * | 2006-04-13 | 2008-03-13 | Repower Systems Ag | Rotor blade of a wind turbine |
US20080112807A1 (en) * | 2006-10-23 | 2008-05-15 | Ulrich Uphues | Methods and apparatus for operating a wind turbine |
WO2008077403A2 (en) * | 2006-12-22 | 2008-07-03 | Vestas Wind Systems A/S | Wind turbine with rotor blades equipped with winglets and blades for such rotor |
US7927078B2 (en) * | 2007-07-12 | 2011-04-19 | General Electric Company | Wind turbine blade tip vortex breakers |
US8197218B2 (en) * | 2007-11-08 | 2012-06-12 | Alliance For Sustainable Energy, Llc | Quiet airfoils for small and large wind turbines |
GB2459453B (en) * | 2008-04-21 | 2011-06-08 | Barry Robert Marshall | Energy output limiter for wind turbine rotor(s) |
DE102008020154B4 (en) * | 2008-04-22 | 2011-04-28 | Repower Systems Ag | Method for operating a wind energy plant |
US8408877B2 (en) * | 2008-05-30 | 2013-04-02 | General Electric Company | Wind turbine blades with twisted tips |
US8061996B2 (en) * | 2008-05-30 | 2011-11-22 | General Electric Company | Wind turbine blade planforms with twisted and tapered tips |
JP5329128B2 (en) * | 2008-06-06 | 2013-10-30 | 学校法人明治大学 | Wind power generator |
EP2321528B1 (en) * | 2008-08-29 | 2012-12-19 | Vestas Wind Systems A/S | Control system in wind turbine blades |
GB0905316D0 (en) * | 2009-03-27 | 2009-05-13 | Vertical Wind Energy Ltd | Wind trubine blade tip |
DE102009002501A1 (en) | 2009-04-20 | 2010-10-28 | Wobben, Aloys | Rotor blade element and manufacturing process |
ES2513396T3 (en) * | 2010-03-18 | 2014-10-27 | Nordex Energy Gmbh | Rotor blade of wind power plant |
US7946826B1 (en) * | 2010-07-16 | 2011-05-24 | General Electric Company | Wind turbine rotor blade with a suction side winglet |
US7997875B2 (en) * | 2010-11-16 | 2011-08-16 | General Electric Company | Winglet for wind turbine rotor blade |
GB2477594B (en) * | 2010-11-25 | 2011-12-28 | Moog Insensys Ltd | Wind turbine rotor blades |
US20110243736A1 (en) * | 2010-12-08 | 2011-10-06 | General Electric Company | Joint sleeve for a rotor blade assembly of a wind turbine |
DE102012103704A1 (en) | 2011-04-30 | 2012-10-31 | General Electric Co. | Winglet for a rotor wing of a wind turbine |
CA2832984A1 (en) * | 2011-05-27 | 2012-12-06 | Flodesign Wind Turbine Corp. | Turbine blades with mixed blade loading |
US8985947B2 (en) | 2011-11-14 | 2015-03-24 | Siemens Aktiengesellschaft | Power producing spinner for a wind turbine |
US9103325B2 (en) | 2012-03-20 | 2015-08-11 | General Electric Company | Winglet for a wind turbine rotor blade |
DE102012222323A1 (en) | 2012-12-05 | 2014-06-05 | Wobben Properties Gmbh | Wind energy plant and method for operating a wind energy plant |
US9366224B2 (en) | 2013-06-27 | 2016-06-14 | General Electric Company | Wind turbine blade and method of fabricating the same |
DE102013217128A1 (en) | 2013-08-28 | 2015-03-05 | Wobben Properties Gmbh | Rotor blade element for a wind energy plant, rotor blade, and a manufacturing method therefor and wind turbine with rotor blade |
DE102014213930A1 (en) * | 2014-07-17 | 2016-01-21 | Wobben Properties Gmbh | Rotor blade tip trailing edge |
DE102014213929A1 (en) | 2014-07-17 | 2016-01-21 | Wobben Properties Gmbh | Rotor blade trailing edge |
DE102016213206A1 (en) | 2016-07-19 | 2018-01-25 | Wobben Properties Gmbh | Multilayer composite component |
DE102015220672A1 (en) | 2015-10-22 | 2017-04-27 | Wobben Properties Gmbh | Multilayer composite component |
CN108136716B (en) | 2015-10-22 | 2021-01-08 | 乌本产权有限公司 | Multi-layer composite component |
DE102016121554A1 (en) | 2016-11-10 | 2018-05-17 | Wobben Properties Gmbh | Multilayer composite component |
CN106886625B (en) * | 2017-01-05 | 2020-04-14 | 北京航天自动控制研究所 | Pneumatic shape design method of double-rotation stable missile based on fixed wing duck rudder |
US10961982B2 (en) | 2017-11-07 | 2021-03-30 | General Electric Company | Method of joining blade sections using thermoplastics |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB612413A (en) * | 1943-11-01 | 1948-11-12 | Wincharger Corp | Improvements in wind driven prime movers |
US2576981A (en) * | 1949-02-08 | 1951-12-04 | Vogt Richard | Twisted wing tip fin for airplanes |
DE830627C (en) * | 1949-08-25 | 1952-02-07 | Karl Seifert Dipl Ing | Wind turbine blades |
US4150301A (en) * | 1977-06-02 | 1979-04-17 | Bergey Jr Karl H | Wind turbine |
US4245804B1 (en) * | 1977-12-19 | 1993-12-14 | K. Ishimitsu Kichio | Minimum drag wing configuration for aircraft operating at transonic speeds |
US4408958A (en) * | 1980-12-23 | 1983-10-11 | The Bendix Corporation | Wind turbine blade |
US4329115A (en) * | 1981-02-02 | 1982-05-11 | Grumman Aerospace Corporation | Directionally stabilized wind turbine |
EP0094064A1 (en) * | 1982-05-11 | 1983-11-16 | George Stanmore Rasmussen | Wing tip thrust augmentation system |
JPS58200083A (en) * | 1982-05-18 | 1983-11-21 | Shin Meiwa Ind Co Ltd | Propeller type wind turbine with air stabilizing vane |
DE3242584A1 (en) * | 1982-11-18 | 1984-05-24 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | ARRANGEMENT OF ADDITIONAL SURFACES AT THE TIPS OF AN WING |
DE3825241A1 (en) * | 1988-04-08 | 1989-10-19 | Bentzel & Herter Wirtschafts U | Wind turbine |
IL101069A (en) * | 1991-02-25 | 1996-09-12 | Valsan Partners Purchase N Y | System for increasing airplane fuel mileage and airplane wing modification kit |
US5348253A (en) * | 1993-02-01 | 1994-09-20 | Gratzer Louis B | Blended winglet |
US5562420A (en) * | 1994-03-14 | 1996-10-08 | Midwest Research Institute | Airfoils for wind turbine |
US5634613A (en) | 1994-07-18 | 1997-06-03 | Mccarthy; Peter T. | Tip vortex generation technology for creating a lift enhancing and drag reducing upwash effect |
US5584655A (en) * | 1994-12-21 | 1996-12-17 | The Wind Turbine Company | Rotor device and control for wind turbine |
US6068446A (en) * | 1997-11-20 | 2000-05-30 | Midwest Research Institute | Airfoils for wind turbine |
FR2772715B1 (en) * | 1997-12-22 | 2000-02-11 | Eurocopter France | BLADE FOR A TURNING AIRCRAFT |
US6491262B1 (en) * | 1999-01-15 | 2002-12-10 | Sridhar Kota | System for varying a surface contour |
US6622973B2 (en) * | 2000-05-05 | 2003-09-23 | King Fahd University Of Petroleum And Minerals | Movable surface plane |
DE20301445U1 (en) * | 2003-01-30 | 2004-06-09 | Moser, Josef | rotor blade |
DE10332875B4 (en) * | 2003-07-19 | 2016-11-24 | Windreich GmbH | Rotor vane |
US7246998B2 (en) * | 2004-11-18 | 2007-07-24 | Sikorsky Aircraft Corporation | Mission replaceable rotor blade tip section |
US20070205603A1 (en) * | 2006-03-03 | 2007-09-06 | Karl Appa | Methods and devices for improving efficiency of wind turbines in low wind speed sites |
-
2004
- 2004-02-13 DE DE102004007487A patent/DE102004007487A1/en not_active Withdrawn
-
2005
- 2005-02-10 PT PT57166589T patent/PT1716333T/en unknown
- 2005-02-10 ES ES05716658.9T patent/ES2644035T3/en not_active Expired - Lifetime
- 2005-02-10 WO PCT/EP2005/050585 patent/WO2005078277A2/en active Application Filing
- 2005-02-10 KR KR1020067016756A patent/KR100953244B1/en active IP Right Grant
- 2005-02-10 KR KR1020087016229A patent/KR20080069717A/en not_active Application Discontinuation
- 2005-02-10 NZ NZ549117A patent/NZ549117A/en not_active IP Right Cessation
- 2005-02-10 AU AU2005212637A patent/AU2005212637B2/en not_active Ceased
- 2005-02-10 BR BRPI0507401-0A patent/BRPI0507401B1/en active IP Right Grant
- 2005-02-10 PL PL11186609T patent/PL2420671T3/en unknown
- 2005-02-10 DK DK11186609.1T patent/DK2420671T3/en active
- 2005-02-10 PT PT111866091T patent/PT2420671T/en unknown
- 2005-02-10 DK DK05716658.9T patent/DK1716333T3/en active
- 2005-02-10 JP JP2006552623A patent/JP4563406B2/en not_active Expired - Fee Related
- 2005-02-10 CA CA2650752A patent/CA2650752C/en not_active Expired - Fee Related
- 2005-02-10 CN CN2005800047632A patent/CN1918386B/en not_active Expired - Lifetime
- 2005-02-10 ES ES11186609.1T patent/ES2629210T3/en not_active Expired - Lifetime
- 2005-02-10 EP EP05716658.9A patent/EP1716333B1/en not_active Expired - Lifetime
- 2005-02-10 EP EP11186609.1A patent/EP2420671B1/en not_active Expired - Lifetime
- 2005-02-10 CA CA2554666A patent/CA2554666C/en not_active Expired - Fee Related
- 2005-02-10 NZ NZ577920A patent/NZ577920A/en not_active IP Right Cessation
- 2005-02-11 AR ARP050100493A patent/AR049772A1/en not_active Application Discontinuation
-
2006
- 2006-07-26 ZA ZA200606164A patent/ZA200606164B/en unknown
- 2006-08-16 US US11/504,118 patent/US7794209B2/en active Active
- 2006-09-11 NO NO20064081A patent/NO342217B1/en not_active IP Right Cessation
- 2006-09-12 MA MA29317A patent/MA28465B1/en unknown
-
2009
- 2009-08-10 AU AU2009208082A patent/AU2009208082B2/en not_active Ceased
-
2010
- 2010-07-27 US US12/844,675 patent/US8506255B2/en not_active Expired - Fee Related
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4563406B2 (en) | Rotor blade for wind turbine | |
EP2834517B1 (en) | Twisted blade root | |
KR102289000B1 (en) | Floating wind turbine with twin vertical axis turbines with improved efficiency | |
AU2007336537B2 (en) | Wind turbine with rotor blades equipped with winglets and blades for such rotor | |
CN101403368B (en) | Wind turbine rotor blade and pitch regulated wind turbine | |
US9422915B2 (en) | Customizing a wind turbine for site-specific conditions | |
CN105715449A (en) | Rotor Blade With Vortex Generators | |
CN101387262B (en) | Wind turbine rotor blade and turbine rotor | |
US10161252B2 (en) | Blade flow deflector | |
TWI606179B (en) | Horizontal axis type windmill and its standby method | |
CN107923364B (en) | Rotor blade shaped to enhance wake diffusion | |
EP3020959B1 (en) | Methods of operating a wind turbine and wind turbines | |
US20240011463A1 (en) | Method of optimizing a rotor blade, rotor blade and wind turbine | |
MXPA06009000A (en) | Rotor blade for a wind turbine | |
KR20180045945A (en) | A blade for the active pitch control system of Wind turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090623 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20090914 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20090924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100309 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100728 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4563406 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |