[go: up one dir, main page]

JP4562517B2 - Surface acoustic wave element and communication device - Google Patents

Surface acoustic wave element and communication device Download PDF

Info

Publication number
JP4562517B2
JP4562517B2 JP2004375125A JP2004375125A JP4562517B2 JP 4562517 B2 JP4562517 B2 JP 4562517B2 JP 2004375125 A JP2004375125 A JP 2004375125A JP 2004375125 A JP2004375125 A JP 2004375125A JP 4562517 B2 JP4562517 B2 JP 4562517B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
wave element
electrode
idt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004375125A
Other languages
Japanese (ja)
Other versions
JP2006186444A (en
Inventor
一弘 大塚
大輔 巻渕
淳弘 飯岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004375125A priority Critical patent/JP4562517B2/en
Publication of JP2006186444A publication Critical patent/JP2006186444A/en
Application granted granted Critical
Publication of JP4562517B2 publication Critical patent/JP4562517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、圧電基板上に平衡入力または平衡出力を行う平衡信号電極と、不平衡出力または不平衡入力を行う不平衡信号電極とを備えて成る共振器型の弾性表面波フィルタや弾性表面波共振器などの弾性表面波素子およびこれを備えた通信装置に関するものである。   The present invention relates to a resonator type surface acoustic wave filter or surface acoustic wave comprising a balanced signal electrode for performing balanced input or balanced output on a piezoelectric substrate and an unbalanced signal electrode for performing unbalanced output or unbalanced input. The present invention relates to a surface acoustic wave element such as a resonator and a communication apparatus including the same.

従来、携帯電話や自動車電話等の移動体通信機器のRF(無線周波数)段に用いられる周波数選択フィルタとして、弾性表面波フィルタが広く用いられている。一般に、周波数選択フィルタに求められる特性としては、広通過帯域、低損失、通過帯域外における高減衰量などの諸特性が挙げられる。また、近年、移動体通信機器等の小型化、軽量化および低コスト化のため、使用部品の削減が進められ、弾性表面波フィルタに新たな機能の付加が要求されてきている。その1つに不平衡入力−平衡出力型または平衡入力−不平衡出力型に構成できるようにするといった要求がある。ここで、平衡入力または平衡出力とは、信号が2つの信号線路間の電位差として入力または出力されるものをいい、各信号線路の信号は振幅が等しく、位相が逆相になっている。これに対して、不平衡入力または不平衡出力とは、信号がグランド電位に対する1本の線路の電位として入力または出力されるものをいう。   Conventionally, a surface acoustic wave filter has been widely used as a frequency selection filter used in an RF (radio frequency) stage of a mobile communication device such as a mobile phone or a car phone. In general, characteristics required for a frequency selective filter include various characteristics such as a wide passband, low loss, and high attenuation outside the passband. In recent years, in order to reduce the size, weight, and cost of mobile communication devices, the number of components used has been reduced, and a new function has been required for the surface acoustic wave filter. One of the requirements is that it can be configured as an unbalanced input-balanced output type or a balanced input-unbalanced output type. Here, the balanced input or balanced output means that a signal is input or output as a potential difference between two signal lines, and the signals of the signal lines have the same amplitude and the phases are reversed. On the other hand, unbalanced input or unbalanced output means that a signal is input or output as the potential of one line with respect to the ground potential.

従来の弾性表面波フィルタは、一般的に不平衡入力−不平衡出力型弾性表面波フィルタ(以下、不平衡型弾性表面波フィルタともいう)であるため、弾性表面波フィルタの後段に接続される回路や電子部品が平衡入力型となっている場合、弾性表面波フィルタと後段との間に、不平衡−平衡変換器(以下、バランともいう)を挿入した回路構成を採っていた。同様に弾性表面波フィルタの前段の回路や電子部品が平衡出力型となっている場合、前段と弾性表面波フィルタとの間にバランを挿入した回路構成となっていた。   A conventional surface acoustic wave filter is generally an unbalanced input-unbalanced output type surface acoustic wave filter (hereinafter also referred to as an unbalanced surface acoustic wave filter), and is therefore connected to a subsequent stage of the surface acoustic wave filter. When the circuit or electronic component is a balanced input type, a circuit configuration in which an unbalanced-balanced converter (hereinafter also referred to as a balun) is inserted between the surface acoustic wave filter and the subsequent stage has been adopted. Similarly, in the case where the circuit and electronic components in the previous stage of the surface acoustic wave filter are of the balanced output type, the circuit configuration is such that a balun is inserted between the previous stage and the surface acoustic wave filter.

現在、バランを削除するために、弾性表面波フィルタに不平衡−平衡変換機能または平衡−不平衡変換機能を持たせた、不平衡入力−平衡出力型弾性表面波フィルタまたは平衡入力−不平衡出力型弾性表面波フィルタ(以下、平衡型弾性表面波フィルタともいう)の実用化が進められている。不平衡−平衡変換機能の要求を満たすため、縦結合二重モードフィルタが多く用いられている。また、RF用フィルタとしては、接続端子の一方を不平衡接続で入出力インピーダンスが50Ω、他方を平衡接続で入出力インピーダンスが100〜200Ωに整合させるという要求が多い。   Currently, an unbalanced input-balanced output type surface acoustic wave filter or balanced input-unbalanced output, in which a surface acoustic wave filter is provided with an unbalanced-balanced conversion function or balanced-unbalanced conversion function to eliminate the balun. A surface acoustic wave filter (hereinafter also referred to as a balanced surface acoustic wave filter) has been put into practical use. In order to satisfy the requirement of the unbalance-balance conversion function, a longitudinally coupled double mode filter is often used. Further, there are many demands for RF filters to match one of the connection terminals with an unbalanced connection and an input / output impedance of 50Ω, and the other with a balanced connection and an input / output impedance of 100 to 200Ω.

図8に従来までの平衡入出力に対応した共振器型弾性表面波フィルタを示す。圧電基板201上に形成したIDT(Inter Digital Transducer)電極203は、一対の互いに対向させた櫛歯状電極に電界を加え、弾性表面波を励振させるものである。そして、IDT電極203に入力信号を加えることで、励振された弾性表面波がIDT電極203の両側に位置する、IDT電極202,204に伝搬される。IDT電極202,204のそれぞれの一方の櫛状電極が、2段目のIDT電極205,207のそれぞれの一方の櫛状電極に縦続接続され、最終的に2段目の中央のIDT電極206の一方の櫛状電極から出力信号端子222、他方の櫛状電極から出力信号端子223へ信号が伝わり平衡出力される。また、共振器型電極パターンを2段縦続接続させることにより、フィルタ特性である通過帯域外減衰量の向上ができる構成となっている。   FIG. 8 shows a conventional resonator type surface acoustic wave filter corresponding to balanced input / output. An IDT (Inter Digital Transducer) electrode 203 formed on the piezoelectric substrate 201 applies an electric field to a pair of comb-like electrodes opposed to each other to excite surface acoustic waves. Then, by applying an input signal to the IDT electrode 203, the excited surface acoustic wave is propagated to the IDT electrodes 202 and 204 located on both sides of the IDT electrode 203. One comb-like electrode of each of the IDT electrodes 202 and 204 is cascade-connected to one comb-like electrode of each of the second-stage IDT electrodes 205 and 207, and finally the IDT electrode 206 at the center of the second-stage A signal is transmitted from one comb-shaped electrode to the output signal terminal 222, and from the other comb-shaped electrode to the output signal terminal 223, and balanced output is performed. Further, by connecting the resonator type electrode patterns in two stages in cascade, the attenuation outside the passband, which is a filter characteristic, can be improved.

上記のような共振器型弾性表面波フィルタでは、IDT電極202,204,205,206,207は、対向する櫛状電極の電極本数および配置、また寄生容量を発生させる要因となる周辺の電極パターンなどの構造が互いに微妙に異なるために、出力信号端子222,223に伝わる信号が互いに振幅が異なり、また位相が逆相からずれてしまい、その結果、平衡度の劣化した共振器型弾性表面波フィルタしか得られなかった。   In the resonator-type surface acoustic wave filter as described above, the IDT electrodes 202, 204, 205, 206, and 207 have the number and arrangement of opposing comb-shaped electrodes, and peripheral electrode patterns that cause parasitic capacitance. Because of the slightly different structures, the signals transmitted to the output signal terminals 222 and 223 have different amplitudes and are out of phase with each other. Only a filter was obtained.

近年、弾性表面波フィルタは各種通信機器の小形化、無調整化に一役を担っている。通過帯域内の平衡度についても高性能化が要求されており、例えば、900MHz帯携帯電話用のフィルタとしては、振幅平衡度は0.5dB以下、位相平衡度は5度以下の高性能なバランスフィルタが要求されている。   In recent years, surface acoustic wave filters have played a role in downsizing and no adjustment of various communication devices. Higher performance is also required for the balance within the passband. For example, as a filter for a 900 MHz band mobile phone, a high-performance balance filter having an amplitude balance of 0.5 dB or less and a phase balance of 5 degrees or less. Is required.

また、図9に示すように、全体の両側が反射器210,211に挟まれた3個のIDT電極202,203,204を有する1段目の縦結合型二重モードフィルタのうち、中央のIDT電極203に不平衡端子221を接続し、その両側のIDT電極202,204がそれぞれ2段目のIDT電極205,207に縦続接続され、2段目の中央のIDT電極206を2分割して、逆位相にして平衡信号端子222,223に接続している。これにより、50Ω不平衡入力−200Ω平衡出力の構成が提案されている(例えば、特許文献1を参照)。   Further, as shown in FIG. 9, among the first-stage vertically coupled double mode filters having three IDT electrodes 202, 203, and 204 sandwiched between reflectors 210 and 211 on both sides, The unbalanced terminal 221 is connected to the IDT electrode 203, and the IDT electrodes 202 and 204 on both sides thereof are cascade-connected to the second-stage IDT electrodes 205 and 207, respectively, and the second-stage center IDT electrode 206 is divided into two. These are connected to the balanced signal terminals 222 and 223 in the opposite phase. Accordingly, a configuration of 50Ω unbalanced input−200Ω balanced output has been proposed (see, for example, Patent Document 1).

また、従来の2重モード弾性表面波共振器フィルタでは、弾性表面波の伝搬方向に3個並んだIDT電極のうち中央に配置されたIDT電極を偶数対にすることにより、平衡度を改善する構成が提案されている(例えば、特許文献2を参照)。   In the conventional dual mode surface acoustic wave resonator filter, the balance is improved by making the IDT electrodes arranged in the center of the three IDT electrodes arranged in the propagation direction of the surface acoustic wave an even pair. A configuration has been proposed (see, for example, Patent Document 2).

また、図10に示すように、1段目に弾性表面波の伝搬方向に沿って3個のIDT電極202,203,204を近接配置し、中央のIDT電極203に不平衡端子221を接続し、その両側のIDT電極202,204をそれぞれ2段目のIDT電極205,207に縦続接続した構成とし、2段目の中央のIDT電極206を2分割してそれぞれを平衡信号端子222,223に接続し、さらに無電界領域を形成する一方の平衡信号端子222に、圧電基板201上またはパッケージの内部または外部にリアクタンス(キャパシタンス)成分224を付加することにより、平衡度を改善させる構成が提案されている(例えば、特許文献3を参照)。   Also, as shown in FIG. 10, three IDT electrodes 202, 203, 204 are arranged close to each other along the propagation direction of the surface acoustic wave in the first stage, and an unbalanced terminal 221 is connected to the central IDT electrode 203. The IDT electrodes 202 and 204 on both sides are connected in cascade to the second-stage IDT electrodes 205 and 207, respectively, and the center IDT electrode 206 in the second-stage is divided into two parts, which are respectively connected to the balanced signal terminals 222 and 223. A configuration is proposed in which the balance is improved by adding a reactance (capacitance) component 224 on the piezoelectric substrate 201 or inside or outside the package to one balanced signal terminal 222 that is connected and further forms an electric field-free region. (For example, refer to Patent Document 3).

図8〜図10に示すように、複数個並設したIDT電極の弾性表面波の伝搬路の両端に、弾性表面波を効率よく共振させるための反射器電極が設けられた共振器型電極パターンにおいて、通過帯域内での振幅と位相の平衡度の向上が求められている。ここで、振幅と位相の平衡度とは、信号が2つの信号線路間の電位差として入力または出力するもので、各信号線路の信号の振幅の大きさが近似しているほど振幅の平衡度が優れており、また、各信号の位相の差が180°に近似しているほど位相の平衡度が優れているといえる。
特開平11−97966号公報 特開2002−84164号公報 特開2004−96244号公報
As shown in FIGS. 8 to 10, a resonator-type electrode pattern in which reflector electrodes for efficiently resonating surface acoustic waves are provided at both ends of a surface acoustic wave propagation path of a plurality of IDT electrodes arranged side by side. However, improvement in the balance between amplitude and phase within the passband is required. Here, the degree of balance between amplitude and phase means that a signal is input or output as a potential difference between two signal lines. The closer the amplitude of the signal of each signal line is, the closer the degree of amplitude balance is. It can be said that the better the phase balance is, the closer the phase difference of each signal is to 180 °.
JP-A-11-97966 JP 2002-84164 A JP 2004-96244 A

しかしながら、上述した従来の2段構成で2段目の中央のIDT電極に平衡出(入)力端子を接続した弾性表面波素子である、特許文献1に開示されている弾性表面波素子においては、位相を逆相にするために、中央のIDT電極の両側に位置するIDT電極の電極指ピッチ等を変えた構造や、中央のIDT電極とその両側のIDT電極との間の隣接する距離を左右で変えた構造を採用しているので、平衡度が劣化するという問題があった。   However, in the surface acoustic wave element disclosed in Patent Document 1, which is a surface acoustic wave element in which a balanced output (input) force terminal is connected to the IDT electrode at the center of the second stage in the conventional two-stage configuration described above. In order to reverse the phase, the structure in which the electrode finger pitches of the IDT electrodes located on both sides of the central IDT electrode are changed, and the adjacent distance between the central IDT electrode and the IDT electrodes on both sides thereof are determined. Since the left and right structure is adopted, there is a problem that the balance is deteriorated.

また、特許文献1に開示されている弾性表面波素子では、中央のIDT電極の最外側電極指の極性と、それに隣接するIDT電極の最外側電極指の極性とが左右で異なるので、各平衡信号端子に生じる寄生容量が異なるため、このような構成の平衡型弾性表面波フィルタは平衡度が悪いという問題点があった。   In the surface acoustic wave element disclosed in Patent Document 1, the polarity of the outermost electrode finger of the central IDT electrode and the polarity of the outermost electrode finger of the IDT electrode adjacent to the center are different on the left and right. Since the parasitic capacitance generated at the signal terminal is different, the balanced surface acoustic wave filter having such a configuration has a problem that the degree of balance is poor.

また、特許文献2に開示されている弾性表面波素子では、例えば圧電基板としてLiTaO単結晶の基板を用いた場合、振幅平衡度は1.2dB程度、位相平衡度は11度程度しか得られず、要求を満足する充分な平衡度が得られていなかった。 In the surface acoustic wave element disclosed in Patent Document 2, for example, when a LiTaO 3 single crystal substrate is used as the piezoelectric substrate, the amplitude balance is about 1.2 dB and the phase balance is only about 11 degrees. A sufficient degree of equilibrium that satisfies the requirements was not obtained.

さらに、特許文献3に開示されている弾性表面波素子について効果の検証を行った。図3に図9の弾性表面波素子における周波数特性を線図(グラフ)で示す。図3において、横軸は周波数(単位:MHz)、縦軸は減衰量(単位:dB)を表し、実線の特性曲線は平衡信号端子に何も付加しない場合の結果を示し、破線はどちらか一方の平衡信号端子にリアクタンス成分として容量成分を並列接続した場合の結果を示している。一方の平衡信号端子にリアクタンス成分として容量成分を並列接続させた場合、通過帯域内のリップルが増加している。   Furthermore, the effect of the surface acoustic wave element disclosed in Patent Document 3 was verified. FIG. 3 is a diagram (graph) showing frequency characteristics of the surface acoustic wave device shown in FIG. In FIG. 3, the horizontal axis represents frequency (unit: MHz), the vertical axis represents attenuation (unit: dB), the solid characteristic curve shows the result when nothing is added to the balanced signal terminal, and the broken line is either The result when a capacitive component as a reactance component is connected in parallel to one balanced signal terminal is shown. When a capacitive component as a reactance component is connected in parallel to one balanced signal terminal, the ripple in the passband increases.

また、図4は図9の弾性表面波素子におけるVSWR(Voltage Standing Wave Ratio:電圧定在波比)を示す線図である。図3と同様に実線の特性曲線は平衡信号端子に何も付加しない場合の結果を示し、破線はどちらか一方の平衡信号端子にリアクタンス成分として容量成分を並列接続した場合の結果を示している。一方の平衡信号端子にリアクタンス成分として容量成分を並列接続させた場合、VSWRも劣化していることが分かる。   4 is a diagram showing VSWR (Voltage Standing Wave Ratio) in the surface acoustic wave device of FIG. Similar to FIG. 3, the solid characteristic curve shows the result when nothing is added to the balanced signal terminal, and the broken line shows the result when the capacitive component is connected in parallel as a reactance component to one of the balanced signal terminals. . It can be seen that when a capacitive component as a reactance component is connected in parallel to one balanced signal terminal, the VSWR is also degraded.

また、図9の弾性表面波素子における通過帯域およびその近傍の位相平衡度を図5(a)に、振幅平衡度を図5(b)に線図で示す。図3と同様に実線の特性曲線は平衡信号端子に何も付加しない場合の結果を示し、破線がどちらか一方の平衡信号端子にリアクタンス成分として容量成分を並列接続した場合の結果を示している。図5から明らかなように、一方の平衡信号端子にリアクタンス成分として容量成分を並列接続させても位相平衡度、振幅平衡度に大きな改善が見られなかった。   FIG. 5A shows the pass balance and the phase balance in the vicinity of the surface acoustic wave device of FIG. 9, and FIG. 5B shows the amplitude balance. Similar to FIG. 3, the solid characteristic curve shows the result when nothing is added to the balanced signal terminal, and the broken line shows the result when the capacitive component is connected in parallel as a reactance component to one of the balanced signal terminals. . As is apparent from FIG. 5, even when a capacitive component as a reactance component is connected in parallel to one balanced signal terminal, no significant improvement was observed in the phase balance and the amplitude balance.

従って、本発明は、上記従来の技術の問題点に鑑みて完成されたものであり、その目的は、弾性表面波フィルタの平衡度を改善させることができ、高品質な平衡型弾性表面波フィルタとしても機能する弾性表面波素子およびそれを用いた通信装置を提供することにある。   Accordingly, the present invention has been completed in view of the above-mentioned problems of the prior art, and an object of the present invention is to improve the balance of the surface acoustic wave filter and to provide a high quality balanced surface acoustic wave filter. And providing a surface acoustic wave element that also functions as a communication device using the same.

本発明の弾性表面波素子は、圧電基板と、前記圧電基板上に配設される第1の弾性表面波素子部と、前記圧電基板上に配設される第2の弾性表面波素子部と、を備えた弾性表面波素子であって、前記第1の弾性表面波素子部は、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1の弾性表面波素子部側の第1のIDT電極の複数を互いに電気的に接続した3つの第1のIDT電極群、これら第1のIDT電極群の前記弾性表面波の伝搬方向の外側の両方に配設され、前記弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1の弾性表面波素子部側の第1の反射器電極、前記第1のIDT電極群の少なくとも2つの前記第1の弾性表面波素子部側の第1のIDT電極の間に配設され、前記第1の弾性表面波素子部側の第1のIDT電極に電気的に非接続とされた第2のIDT電極および第2の反射器電極の内いずれか1種以上からなる第1の弾性表面波素子部側の第1の分離電極と、を含み、前記第2の弾性表面波素子部は、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第2の弾性表面波素子部側の第1のIDT電極の複数を互いに電気的に接続した2つの第2のIDT電極群と、これら第2のIDT電極群の前記弾性表面波の伝搬方向の外側の両方に配設され、前記弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第2の弾性表面波素子部側の第1の反射器電極と、前記第2のIDT電極群の少なくとも2つの前記第2の弾性表面波素子部側の第1のIDT電極の間に配設され、前記第2の弾性表面波素子部側の第1のIDT電極に電気的に非接続とされた第2の弾性表面波素子部側の第1の分離電極と、前記第2のIDT電極群と前記第2の弾性表面波素子部側の第1の反射器電極との間に配設され、前記第2のIDT電極群とは電気的に非接続の第3のIDT電極からなる第2の分離電極と、を含み、前記第1の弾性表面波素子部の両端の前記第1のIDT電極群がそれぞれ前記第2の弾性表面波素子部の前記第2の分離電極と縦続接続されており、前記第1の弾性表面波素子部の中央の前記第1のIDT電極群が不平衡入力部または不平衡出力部とされ、前記第2の弾性表面波素子部の2つの前記第2のIDT電極群のそれぞれが平衡出力部または平衡入力部とされていることを特徴とするものである。
The surface acoustic wave element of the present invention includes a piezoelectric substrate , a first surface acoustic wave element portion disposed on the piezoelectric substrate, and a second surface acoustic wave element portion disposed on the piezoelectric substrate. The first surface acoustic wave element section includes a plurality of electrode fingers that are long in a direction orthogonal to the propagation direction of the surface acoustic wave. a part side first first IDT electrode group in which a plurality of three electrically connected to each other in the IDT electrode is disposed on both the outer surface acoustic wave propagation direction of these first IDT electrode group A first reflector electrode on the first surface acoustic wave element side having a plurality of long electrode fingers in a direction orthogonal to the propagation direction of the surface acoustic wave, and at least two of the first IDT electrode group one of disposed between the first surface acoustic wave element part side of the first IDT electrode, said First surface acoustic wave consisting of any one or more of 1 second IDT electrode and a second reflector electrode is electrically disconnected to the first IDT electrode of the surface acoustic wave element portion A second separation surface having a plurality of long electrode fingers in a direction orthogonal to the propagation direction of the surface acoustic wave. Two second IDT electrode groups in which a plurality of first IDT electrodes on the wave element section side are electrically connected to each other, and both of the second IDT electrode groups on the outer side in the propagation direction of the surface acoustic wave. A first reflector electrode on the second surface acoustic wave element side having a plurality of long electrode fingers in a direction orthogonal to the propagation direction of the surface acoustic wave, and the second IDT electrode group Arranged between at least two first IDT electrodes on the second surface acoustic wave element side It is, the second and the first separation electrode of the second surface acoustic wave element portion which is electrically disconnected to the first IDT electrode of the surface acoustic wave element side, the second IDT electrode disposed between the first reflector electrode of the the group second surface acoustic wave element portion, and a third IDT electrodes electrically disconnected from said second IDT electrode group first includes a second separation electrode, said first IDT electrode group at both ends of the first surface acoustic wave element part is cascaded to the second separation electrodes of the second surface acoustic wave element part and which, said first IDT electrode group in the center of the first surface acoustic wave element part is an unbalanced input unit or unbalanced output section, two of said second of said second surface acoustic wave element part Each of the IDT electrode groups is a balanced output section or a balanced input section.

また、本発明の弾性表面波素子は、上記構成において、前記第2の弾性表面波素子部の前記第2のIDT電極群と前記第2の分離電極との間に、前記第2のIDT電極群とは電気的に非接続の、第4のIDT電極および第3の反射器電極の内いずれか1種以上を第3の分離電極として配設してなることを特徴とするものである。
Further, the surface acoustic wave device of the present invention having the above structure, between the said second of said second IDT electrode group of the surface acoustic wave element part second separation electrode, said second IDT electrode The group is characterized in that one or more of the fourth IDT electrode and the third reflector electrode, which are not electrically connected, are arranged as the third separation electrode.

本発明の通信装置は、上記いずれかの本発明の弾性表面波素子を有する、受信回路および送信回路の少なくとも一方を備えたことを特徴とするものである。   A communication apparatus according to the present invention includes at least one of a reception circuit and a transmission circuit having any one of the surface acoustic wave elements according to the present invention.

本発明の弾性表面波素子によれば、不平衡−平衡変換機能を有する弾性表面波素子を構成することができる。また、平衡度の劣化を抑制することができる。また、共振モードの選択の自由度が広がり、弾性表面波の振幅分布の制御の自由度が増し、結果として挿入損失およびリップルを低減しつつ広帯域化するといったフィルタ特性の制御を行なうことができる。さらに、2段に縦続接続した構成により、通過帯域外減衰量を充分に確保することができる。
According to the surface acoustic wave element of the present invention, a surface acoustic wave element having an unbalance-balance conversion function can be configured. Further, it is possible to suppress degradation of the flat衡度. Further, the degree of freedom in selecting the resonance mode is widened, and the degree of freedom in controlling the amplitude distribution of the surface acoustic wave is increased. As a result, it is possible to control the filter characteristics such as widening the band while reducing the insertion loss and ripple. Further, the configuration in which the cascade connection is made in two stages can ensure a sufficient amount of attenuation outside the passband.

また、本発明の弾性表面波素子によれば、第2の弾性表面波素子部の第2のIDT電極群と第2の分離電極との間に、前記第2のIDT電極群とは電気的に非接続の、第4のIDT電極および第3の反射器電極の内いずれか1種以上を第3の分離電極として配設することにより、同様に不平衡−平衡信号の変換器の機能を有した弾性表面波素子を提供することができ、通過帯域における平衡度を改善することができる。さらに共振モードの選択の自由度が広がり、弾性表面波の振幅分布の制御の自由度が増し、結果として挿入損失およびリップルを低減しつつ広帯域化するといったフィルタ特性の制御を行なうことができる。
Further, according to the SAW device of the present invention, between the second surface acoustic wave element part the second IDT electrode group of the second separation electrode, the electrical and the second IDT electrode group By disposing any one or more of the fourth IDT electrode and the third reflector electrode that are not connected to each other as the third separation electrode, the function of the unbalanced-balanced signal converter can be similarly achieved. It is possible to provide a surface acoustic wave device having the same, and to improve the balance in the pass band. Furthermore, the degree of freedom in selecting the resonance mode is increased, the degree of freedom in controlling the amplitude distribution of the surface acoustic wave is increased, and as a result, it is possible to control the filter characteristics such as widening the band while reducing the insertion loss and ripple.

本発明の通信装置は、上記いずれかの本発明の弾性表面波素子を有する、受信回路および送信回路の少なくとも一方を備えたことにより、従来より要求されていた良好な平衡度を満たすことができるものが得られ、かつバランを削除することが可能となり、本発明の弾性表面波素子による良好なフィルタ特性を利用しつつ他部品の実装面積を大きく取ることができ、部品の選択の幅が広がるため、高機能を有する通信装置を作製することができる。   The communication apparatus according to the present invention includes the above-described surface acoustic wave element according to the present invention and includes at least one of the reception circuit and the transmission circuit, thereby satisfying a good balance required conventionally. Can be obtained, and the balun can be eliminated, and the mounting area of other components can be increased while utilizing the good filter characteristics of the surface acoustic wave device of the present invention, and the range of selection of the components is expanded. Therefore, a communication device having high functions can be manufactured.

本発明の弾性表面波素子の実施の形態について図面を参照にしつつ以下に詳細に説明する。また、本発明の弾性表面波素子について、簡単な構造の共振器型の弾性表面波フィルタを例にとり説明する。   Embodiments of a surface acoustic wave device according to the present invention will be described below in detail with reference to the drawings. The surface acoustic wave device of the present invention will be described by taking a resonator type surface acoustic wave filter having a simple structure as an example.

なお、以下に説明する図において同一構成には同一符号を付している。また、各電極の大きさや電極間の距離、電極指の本数や間隔等については、説明のために模式的に図示している。   In addition, in the figure demonstrated below, the same code | symbol is attached | subjected to the same structure. Further, the size of each electrode, the distance between the electrodes, the number of electrode fingers, the interval, and the like are schematically illustrated for explanation.

図1は、本発明の弾性表面波素子について実施の形態の第1の例を示すものであり、弾性表面波素子の平面図である。図1に示すように、本発明の弾性表面波素子は、圧電基板上に配設される第1の弾性表面波素子部Aと第2の弾性表面波素子部Bとを備えている。第1の弾性表面波素子部Aは、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1のIDT電極31〜42の複数を互いに電気的に接続した3つのIDT電極群21、22、23(第1のIDT電極群)を配設してなるとともに、これらIDT電極群21、22、23の弾性表面波の伝搬方向の外側の両方に、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1の弾性表面波素子部A側の第1の反射器電極2,3を配設し、IDT電極群21、22、23の少なくとも2つの第1の弾性表面波素子部A側の第1のIDT電極の間に、第1のIDT電極31〜42に電気的に非接続の、第2のIDT電極および第2の反射器電極の内いずれか1種以上を第1の弾性表面波素子部A側の第1の分離電極(この例では、反射器電極51,52,53,54)として1つ以上配設してなる。第2の弾性表面波素子部Bは、2つのIDT電極群24,25(第2のIDT電極群)およびその弾性表面波の伝搬方向の外側の両方に配設された第2の弾性表面波素子部B側の第1の反射器電極4,5ならびに第2の弾性表面波素子部B側の第1の分離電極(反射器電極)55,56を配設してなるとともに、IDT電極群24,25と第1の反射器電極4,5との間に、IDT電極群24,25とは電気的に非接続の第3のIDT電極61,62を第2の分離電極として配設してなる。 FIG. 1 shows a first example of an embodiment of a surface acoustic wave element according to the present invention, and is a plan view of the surface acoustic wave element. As shown in FIG. 1, the surface acoustic wave element of the present invention includes a first surface acoustic wave element part A and a second surface acoustic wave element part B disposed on a piezoelectric substrate . The first surface acoustic wave element unit A includes three first IDT electrodes 31 to 42 each having a plurality of long electrode fingers in a direction orthogonal to the propagation direction of the surface acoustic wave. The IDT electrode groups 21, 22, and 23 (first IDT electrode group) are disposed, and the surface acoustic wave waves of both the IDT electrode groups 21, 22, and 23 are disposed outside the surface acoustic wave propagation direction. The first reflector electrodes 2 and 3 on the first surface acoustic wave element part A side having a plurality of long electrode fingers in a direction orthogonal to the propagation direction are arranged, and the IDT electrode groups 21, 22, 23 A second IDT electrode and a second reflector that are electrically unconnected to the first IDT electrodes 31 to 42 between the at least two first IDT electrodes on the first surface acoustic wave element section A side first separation of any one or more of the electrodes first surface acoustic wave element part a side Pole (in this example, reflector electrodes 51, 52, 53, 54) made by arranging one or more as. The second surface acoustic wave element part B includes two IDT electrode groups 24 and 25 (second IDT electrode group) and a second surface acoustic wave disposed outside the propagation direction of the surface acoustic wave. together formed by disposing a first separate electrodes (reflector electrodes) 55 and 56 of the first reflector electrodes 4 and 5 and the second surface acoustic wave element part B side of the element portion B side, IDT electrodes The third IDT electrodes 61 and 62 that are not electrically connected to the IDT electrode groups 24 and 25 are arranged as second separation electrodes between the first and second reflector electrodes 4 and 25. ing Te.

そして、第1の弾性表面波素子部Aの両端のIDT電極群21,23がそれぞれ第2の弾性表面波素子部Bの第2の分離電極(IDT電極61,62)と縦続接続されており、第1の弾性表面波素子部Aの中央のIDT電極群22が不平衡入力部または不平衡出力部(この例では不平衡入力部6)とされ、第2の弾性表面波素子部Bの2つのIDT電極群24,25のそれぞれが平衡出力部または平衡入力部(この例では、平衡出力部7,8)とされている。   The IDT electrode groups 21 and 23 at both ends of the first surface acoustic wave element portion A are connected in cascade with the second separation electrodes (IDT electrodes 61 and 62) of the second surface acoustic wave element portion B, respectively. The IDT electrode group 22 at the center of the first surface acoustic wave element unit A is used as an unbalanced input unit or an unbalanced output unit (unbalanced input unit 6 in this example). Each of the two IDT electrode groups 24 and 25 is a balanced output unit or a balanced input unit (in this example, balanced output units 7 and 8).

これらの構成により、第1の弾性表面波素子部Aの両端のIDT電極群21,23がそれぞれ第2の弾性表面波素子部Bの第2の分離電極(IDT電極61,62)と縦続接続されており、2つのIDT電極群24,25のそれぞれが平衡出力部または平衡入力部とされており、第1のIDT電極の間に分離電極として第2のIDT電極または第2の反射器電極を挿入していることにより、不平衡−平衡変換機能を有する弾性表面波素子を構成することができる。   With these configurations, the IDT electrode groups 21 and 23 at both ends of the first surface acoustic wave element A are connected in cascade with the second separation electrodes (IDT electrodes 61 and 62) of the second surface acoustic wave element B, respectively. Each of the two IDT electrode groups 24 and 25 is a balanced output unit or a balanced input unit, and a second IDT electrode or a second reflector electrode is used as a separation electrode between the first IDT electrodes. By inserting a surface acoustic wave element having an unbalance-balance conversion function can be configured.

さらに、第1の弾性表面波素子部Aの中央のIDT電極群22に不平衡入力信号を入力することで、励振された弾性表面波がIDT電極群22の両側に位置するIDT電極群21,23に伝搬される。さらに、IDT電極群21,23がそれぞれ、第2の弾性表面波素子部BのIDT電極61,62に縦続接続され、IDT電極群24,25へ信号が伝わり平衡出力される。その際、2つのIDT電極群24,25の間に配置された電気的に非接続の反射器電極55,56の電極指ピッチおよび電極指本数を調整することにより、各平衡出力部7,8の位相の差を180°に等しくしている。また、複数のIDT電極と分離電極から構成されたIDT電極群によりインピーダンスを高めることができる。そのため、不平衡接続部の入力インピーダンスを50Ωとしたとき、平衡接続部で入出力インピーダンスを100〜200Ωに整合させるという要求を満たすことができる。   Furthermore, by inputting an unbalanced input signal to the IDT electrode group 22 at the center of the first surface acoustic wave element unit A, the excited surface acoustic waves are placed on both sides of the IDT electrode group 22, Propagated to 23. Further, the IDT electrode groups 21 and 23 are connected in cascade to the IDT electrodes 61 and 62 of the second surface acoustic wave element part B, respectively, and signals are transmitted to the IDT electrode groups 24 and 25 for balanced output. At that time, by adjusting the electrode finger pitch and the number of electrode fingers of the electrically non-connected reflector electrodes 55 and 56 disposed between the two IDT electrode groups 24 and 25, the balanced output units 7 and 8 are adjusted. The phase difference of is equal to 180 °. In addition, the impedance can be increased by an IDT electrode group composed of a plurality of IDT electrodes and separation electrodes. Therefore, when the input impedance of the unbalanced connection portion is 50Ω, the requirement that the input / output impedance is matched to 100 to 200Ω at the balanced connection portion can be satisfied.

なお、平衡出力部7,8から平衡信号(2つの信号の振幅が同じで位相が逆位相になっている信号)を取り出すには、平衡入力部6から平衡出力部7までの信号経路と、平衡入力部6から平衡出力部8までの信号経路とのそれぞれに、互いに極性の反転したIDT電極を設ければよい。例えば、図1の場合、IDT電極33とIDT電極36、IDT電極32とIDT電極37が、互いに極性が反転している。   In addition, in order to take out a balanced signal (a signal in which the two signals have the same amplitude and opposite phases) from the balanced output units 7 and 8, a signal path from the balanced input unit 6 to the balanced output unit 7, What is necessary is just to provide the IDT electrode which mutually reversed the polarity in each of the signal path | route from the balanced input part 6 to the balanced output part 8. For example, in the case of FIG. 1, the polarities of the IDT electrode 33 and the IDT electrode 36, and the IDT electrode 32 and the IDT electrode 37 are reversed.

また、弾性表面波素子部Aにおいて、IDT電極群21,23の少なくとも2つの第1のIDT電極31,32,37,38の間に、第1のIDT電極31,32,37,38に電気的に非接続の、第2のIDT電極および第2の反射器電極51,54の内いずれか1種以上を第1の分離電極として1つ以上配設することにより、2つのIDT電極群21,23における電極の電気的な容量を等しく調整することが可能となり、平衡度を向上させることができる。さらに、共振モードの選択の自由度が広がり、弾性表面波の振幅分布の制御の自由度が増し、結果として挿入損失およびリップルを低減しつつ広帯域化するといったフィルタ特性の制御を行なうことができる。   Further, in the surface acoustic wave element part A, the first IDT electrodes 31, 32, 37, 38 are electrically connected between at least two first IDT electrodes 31, 32, 37, 38 of the IDT electrode groups 21, 23. By disposing one or more of the second IDT electrodes and the second reflector electrodes 51 and 54 as the first separation electrodes, the two IDT electrode groups 21 are not connected. , 23 can be adjusted equally, and the balance can be improved. Furthermore, the degree of freedom in selecting the resonance mode is increased, the degree of freedom in controlling the amplitude distribution of the surface acoustic wave is increased, and as a result, it is possible to control the filter characteristics such as widening the band while reducing the insertion loss and ripple.

なお、IDT電極31〜42,61,62、反射器電極2,3,4,5,51〜56の電極指の本数は数本〜数100本にも及ぶので、簡単のため、図においてはそれらの形状を簡略化して図示している。また、第1の分離電極となる第1のIDT電極または第2の反射器電極51〜54は、接地された状態でも、電気的に浮いている状態でもかまわない。第2の反射器電極51〜54が電気的に接続されておらず、浮いている状態の場合、配線の引き回しが容易になる利点がある。   Since the number of electrode fingers of IDT electrodes 31 to 42, 61, 62 and reflector electrodes 2, 3, 4, 5, 51 to 56 ranges from several to several hundreds, These shapes are shown in a simplified manner. In addition, the first IDT electrode or the second reflector electrodes 51 to 54 serving as the first separation electrode may be grounded or electrically floating. When the second reflector electrodes 51 to 54 are not electrically connected and are in a floating state, there is an advantage that the wiring can be easily routed.

また、弾性表面波素子用の圧電基板1としては、36°±3°YカットX伝搬タンタル酸リチウム単結晶、42°±3°YカットX伝搬タンタル酸リチウム単結晶、64°±3°YカットX伝搬ニオブ酸リチウム単結晶、41°±3°YカットX伝搬リチウム単結晶、45°±3°XカットZ伝搬四ホウ酸リチウム単結晶は電気機械結合係数が大きく、かつ、周波数温度係数が小さいため圧電基板1として好ましい。また、これらの焦電性圧電単結晶のうち、酸素欠陥やFe等の固溶により焦電性を著しく減少させたものであれば、デバイスの信頼性上良好である。圧電基板1の厚みは0.1〜0.5mm程度がよく、0.1mm未満では圧電基板1が脆くなり、0.5mm超では材料コストと部品寸法が大きくなり使用に適さない。   Further, as the piezoelectric substrate 1 for the surface acoustic wave element, 36 ° ± 3 ° Y-cut X propagation lithium tantalate single crystal, 42 ° ± 3 ° Y cut X propagation lithium tantalate single crystal, 64 ° ± 3 ° Y Cut X Propagation Lithium Niobate Single Crystal, 41 ° ± 3 ° Y Cut X Propagation Lithium Single Crystal, 45 ° ± 3 ° X Cut Z Propagation Lithium Tetraborate Single Crystal has a large electromechanical coupling coefficient and frequency temperature coefficient Is preferable as the piezoelectric substrate 1. Of these pyroelectric piezoelectric single crystals, if the pyroelectricity is remarkably reduced by solid solution such as oxygen defects or Fe, the reliability of the device is good. The thickness of the piezoelectric substrate 1 is preferably about 0.1 to 0.5 mm. If the thickness is less than 0.1 mm, the piezoelectric substrate 1 becomes brittle, and if it exceeds 0.5 mm, the material cost and component dimensions become large, which is not suitable for use.

また、IDT電極31〜42,61,62および反射器電極2,3,4,5,51〜56は、AlもしくはAl合金(Al−Cu系、Al−Ti系)からなり、蒸着法、スパッタリング法またはCVD法などの薄膜形成法により形成する。各電極の厚みは0.1〜0.5μm程度とすることが弾性表面波素子としての特性を得る上で好適である。   Further, the IDT electrodes 31 to 42, 61, 62 and the reflector electrodes 2, 3, 4, 5, 51 to 56 are made of Al or an Al alloy (Al—Cu type, Al—Ti type), vapor deposition, sputtering. It is formed by a thin film forming method such as a CVD method or a CVD method. The thickness of each electrode is preferably about 0.1 to 0.5 μm for obtaining characteristics as a surface acoustic wave element.

さらに、本発明に係る弾性表面波素子の電極および圧電基板1上の弾性表面波の伝搬部にSiO,SiN,Si,Al等を保護膜として形成して、導電性異物による通電防止や耐電力向上を図ることもできる。 Furthermore, SiO 2 , SiN x , Si, Al 2 O 3 or the like is formed as a protective film on the surface acoustic wave propagation part on the surface of the surface acoustic wave element and the piezoelectric substrate 1 according to the present invention. It is also possible to prevent energization and improve power durability.

また、本発明の弾性表面波素子を通信装置に適用することができる。すなわち、少なくとも受信回路または送信回路の一方を備え、これらの回路に含まれるバンドパスフィルタとして用いる。例えば、送信回路から出力された送信信号をミキサでキャリア周波数にのせて、不要信号をバンドパスフィルタで減衰させ、その後、パワーアンプで送信信号を増幅して、デュプレクサを通ってアンテナより送信することができる送信回路を備えた通信装置、または、受信信号をアンテナで受信し、デュプレクサを通った受信信号をローノイズアンプで増幅し、その後、バンドパスフィルタで不要信号を減衰させて、ミキサでキャリア周波数から信号を分離し、この信号を取り出す受信回路へ伝送するような受信回路を備えた通信装置に適用可能である。したがって、本発明の弾性表面波素子を採用すれば、平衡出力対応に必要なバランを削除することが可能となり、本発明の弾性表面波素子による良好なフィルタ特性を利用しつつ他部品の実装面積を大きく取ることができ、部品の選択の幅が広がるため、高機能を有する通信装置を提供できる。   The surface acoustic wave element of the present invention can be applied to a communication device. That is, at least one of the reception circuit and the transmission circuit is provided and used as a bandpass filter included in these circuits. For example, the transmission signal output from the transmission circuit is put on the carrier frequency by the mixer, the unnecessary signal is attenuated by the band pass filter, and then the transmission signal is amplified by the power amplifier and transmitted from the antenna through the duplexer. A communication device equipped with a transmission circuit capable of receiving, or receiving a received signal with an antenna, amplifying the received signal that has passed through the duplexer with a low-noise amplifier, and then attenuating an unnecessary signal with a band-pass filter, and a carrier frequency with a mixer Can be applied to a communication apparatus including a receiving circuit that separates a signal from the signal and transmits the signal to a receiving circuit that extracts the signal. Therefore, if the surface acoustic wave device of the present invention is employed, it is possible to eliminate the balun necessary for the balanced output, and the mounting area of other components while utilizing the good filter characteristics of the surface acoustic wave device of the present invention. Since the range of component selection is widened, a communication device having high functionality can be provided.

図2は、本発明の弾性表面波素子について実施の形態の第2の例を示すものであり、弾性表面波素子の平面図である。図2に示すように、上述した第1の例の弾性表面波素子において、第2の弾性表面波素子部BのIDT電極群24,25と第2の分離電極(第3のIDT電極61,62)との間(IDT電極群24と第3のIDT電極61との間、IDT電極群25と第3のIDT電極62との間)に、IDT電極群24,25とは電気的に非接続の、第4のIDT電極および第3の反射器電極71,72の内いずれか1種以上を第3の分離電極(この例では、第3の反射器電極71,72)として配設することにより、第1の例と同様に不平衡−平衡信号の変換器の機能を有した弾性表面波素子を提供することができ、通過帯域における平衡度を改善することができる。さらに、共振モードの選択の自由度が広がり、弾性表面波の振幅分布の制御の自由度が増し、結果として挿入損失およびリップルを低減しつつ広帯域化するといったフィルタ特性の制御を行なうことができる。   FIG. 2 shows a second example of the embodiment of the surface acoustic wave element of the present invention, and is a plan view of the surface acoustic wave element. As shown in FIG. 2, in the surface acoustic wave element of the first example described above, the IDT electrode groups 24 and 25 of the second surface acoustic wave element part B and the second separation electrode (third IDT electrode 61, 62) (between the IDT electrode group 24 and the third IDT electrode 61, and between the IDT electrode group 25 and the third IDT electrode 62), the IDT electrode groups 24, 25 are electrically Any one or more of the fourth IDT electrode and the third reflector electrodes 71 and 72 that are connected are arranged as a third separation electrode (in this example, the third reflector electrodes 71 and 72). Accordingly, a surface acoustic wave device having a function of an unbalanced-balanced signal converter as in the first example can be provided, and the degree of balance in the passband can be improved. Furthermore, the degree of freedom in selecting the resonance mode is increased, the degree of freedom in controlling the amplitude distribution of the surface acoustic wave is increased, and as a result, it is possible to control the filter characteristics such as widening the band while reducing the insertion loss and ripple.

なお、上述した実施の形態の説明では、簡単のためIDT電極群21〜23の少なくとも2つのIDT電極31,32,37,38の間に、IDT電極群21〜23に電気的に非接続の、第2のIDT電極および弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第2の反射器電極51〜54の内のいずれかから成る第1の分離電極を1つ配設してなる例を示したが、これに限定されるものではなく、第2のIDT電極および第2の反射器電極51〜54の2種を複数配設するようにしてもよく、その他の構成においても、本発明の要旨を逸脱しない範囲で適宜変更することは可能である。   In the description of the above-described embodiment, for simplicity, the IDT electrode groups 21 to 23 are not electrically connected between at least two IDT electrodes 31, 32, 37, and 38 of the IDT electrode groups 21 to 23. A first separation electrode composed of any one of the second reflector electrodes 51 to 54 having a plurality of long electrode fingers in the direction orthogonal to the propagation direction of the second IDT electrode and the surface acoustic wave is 1 However, the present invention is not limited to this, and a plurality of two types of second IDT electrodes and second reflector electrodes 51 to 54 may be disposed. Other configurations can be changed as appropriate without departing from the gist of the present invention.

本発明の弾性表面波素子の具体的な実施例について以下に説明する。   Specific examples of the surface acoustic wave device of the present invention will be described below.

図1に示す弾性表面波素子を具体的に作製した実施例について説明する。38.7°YカットのX方向伝搬とするLiTaO単結晶の圧電基板1上に、Al(99質量%)−Cu(1質量%)から成る微細な各電極のパターンを形成した。図1の弾性表面波素子を構成するIDT電極及び反射器電極の平均電極指ピッチ及び電極指本数を以下に示す。 An example in which the surface acoustic wave element shown in FIG. 1 is specifically manufactured will be described. A fine electrode pattern made of Al (99 mass%)-Cu (1 mass%) was formed on a LiTaO 3 single crystal piezoelectric substrate 1 having a 38.7 ° Y-cut propagation in the X direction. The average electrode finger pitch and the number of electrode fingers of the IDT electrode and reflector electrode constituting the surface acoustic wave element of FIG. 1 are shown below.

第1の弾性表面波素子部Aを構成する第1のIDT電極31,32,33,34,35,36,37,38の平均電極指ピッチは、それぞれ2.10μm,2.01μm,1.96μm,2.11μm,2.11μm,1.96μm,2.01μm,2.10μmとし、電極指本数は、それぞれ14本,8本,8本,18本,18本,8本,8本,14本とした。また、第1の分離電極となる第2の反射器電極51,52,53,54の平均電極指ピッチは、ともに2.15μmとし、電極指本数は、ともに2本とした。   The average electrode finger pitches of the first IDT electrodes 31, 32, 33, 34, 35, 36, 37, and 38 constituting the first surface acoustic wave element A are 2.10 μm, 2.01 μm, 1.96 μm, and 2.11, respectively. μm, 2.11 μm, 1.96 μm, 2.01 μm, and 2.10 μm were used, and the number of electrode fingers was 14, 8, 8, 18, 18, 8, 8, and 14, respectively. In addition, the average electrode finger pitch of the second reflector electrodes 51, 52, 53, and 54 serving as the first separation electrode was 2.15 μm, and the number of electrode fingers was two.

同様に、第2の弾性表面波素子部Bを構成する2段目の第1のIDT電極39,40,41,42の平均電極指ピッチは、それぞれ2.00μm,2.12μm,2.12μm,2.00μmとした。第1のIDT電極39,40,41,42の電極指本数は、それぞれ8本,18本,18本,8本とした。   Similarly, the average electrode finger pitch of the second stage first IDT electrodes 39, 40, 41, and 42 constituting the second surface acoustic wave element part B is 2.00 μm, 2.12 μm, 2.12 μm, and 2.00 μm, respectively. It was. The number of electrode fingers of the first IDT electrodes 39, 40, 41, and 42 was 8, 18, 18, and 8, respectively.

また、第2の反射器電極55,56の均電極指ピッチは、ともに2.15μmとし、電極指本数は、ともに2本とした。また、第2の分離電極を構成する第3のIDT電極61,62の平均電極指ピッチは、ともに2.07μmとし、電極指本数は、18本とした。   Further, the uniform electrode finger pitch of the second reflector electrodes 55 and 56 was 2.15 μm, and the number of electrode fingers was two. The average electrode finger pitch of the third IDT electrodes 61 and 62 constituting the second separation electrode was 2.07 μm, and the number of electrode fingers was 18.

また、各弾性表面波共振子部A,Bの両側に配設した第1の反射器電極2,3,4,5の平均電極指ピッチは、ともに2.13μmとし、電極指本数は、ともに70本とした。   In addition, the average electrode finger pitch of the first reflector electrodes 2, 3, 4 and 5 disposed on both sides of the surface acoustic wave resonators A and B is 2.13 μm, and the number of electrode fingers is 70. It was a book.

そして、弾性表面波素子は、圧電基板1上に、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1のIDT電極31〜42の複数を互いに電気的に接続した3つのIDT電極群21,22,23を配設してなるとともに、これらIDT電極群21,22,23の弾性表面波の伝搬方向の外側の両方に、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1の反射器電極2,3を配設し、IDT電極群21,22,23の少なくとも2つの第1のIDT電極31〜38の間に、第1のIDT電極31〜38に電気的に非接続の、第2の反射器電極51〜54を第1の分離電極として1つ以上配設してなる第1の弾性表面波素子部Aと、2つのIDT電極群24,25およびその弾性表面波の伝搬方向の外側の両方に配設された第1の反射器電極4,5ならびに第1の分離電極(第2の反射器電極55,56)を配設してなるとともに、IDT電極群24,25と第1の反射器電極4,5との間に、IDT電極群24,25とは電気的に非接続の第3のIDT電極61,62を第2の分離電極として配設してなる第2の弾性表面波素子部Bとを備えている。   The surface acoustic wave element electrically connects a plurality of first IDT electrodes 31 to 42 having a plurality of long electrode fingers on the piezoelectric substrate 1 in a direction orthogonal to the propagation direction of the surface acoustic wave. The three IDT electrode groups 21, 22, and 23 are disposed, and the IDT electrode groups 21, 22, and 23 are both outside the surface acoustic wave propagation direction with respect to the surface acoustic wave propagation direction. The first reflector electrodes 2 and 3 having a plurality of long electrode fingers in the orthogonal direction are arranged, and the first reflector electrodes 31 to 38 of the IDT electrode groups 21, 22 and 23 are arranged between the first IDT electrodes 31 to 38. A first surface acoustic wave element unit A in which one or more second reflector electrodes 51 to 54 are arranged as first separation electrodes, which are electrically unconnected to one IDT electrode 31 to 38; Two IDT electrode groups 24, 25 and a first reflector electrode 4, disposed both outside the propagation direction of the surface acoustic wave, In addition, a first separation electrode (second reflector electrodes 55 and 56) is disposed, and an IDT electrode group 24 is provided between the IDT electrode groups 24 and 25 and the first reflector electrodes 4 and 5. , 25 is provided with a second surface acoustic wave element portion B in which third IDT electrodes 61, 62 that are electrically unconnected are arranged as second separation electrodes.

また、第1の弾性表面波素子部Aの両端のIDT電極群21,23がそれぞれ第2の弾性表面波素子部Bの第2の分離電極(第3のIDT電極61,62)と縦続接続されており、第1の弾性表面波素子部Aの中央のIDT電極群22が不平衡入力部6とされ、第2の弾性表面波素子部Bの2つのIDT電極群24,25のそれぞれが平衡出力部7,8とされている。   Further, the IDT electrode groups 21 and 23 at both ends of the first surface acoustic wave element part A are connected in cascade with the second separation electrodes (third IDT electrodes 61 and 62) of the second surface acoustic wave element part B, respectively. The IDT electrode group 22 at the center of the first surface acoustic wave element unit A is used as the unbalanced input unit 6, and each of the two IDT electrode groups 24 and 25 of the second surface acoustic wave element unit B is The balanced output units 7 and 8 are used.

各電極のパターン作製には、スパッタリング装置、縮小投影露光機(ステッパー)およびRIE(Reactive Ion Etching)装置によりフォトリソグラフィを実施することによって行なった。   The pattern of each electrode was produced by performing photolithography using a sputtering apparatus, a reduction projection exposure machine (stepper), and an RIE (Reactive Ion Etching) apparatus.

まず、個々の圧電基板1となる領域が多数形成された母基板を、アセトン,IPA(イソプロピルアルコール)等によって超音波洗浄し、有機成分を落とした。次に、クリーンオーブンによって充分に母基板の乾燥を行なった後、母基板の上面に各電極となる金属膜の成膜を行なった。金属膜の成膜にはスパッタリング装置を使用し、金属膜の材料としてAl(99質量%)−Cu(1質量%)合金を用いた。この金属膜の膜厚は約0.34μmとした。   First, a mother substrate on which a large number of regions to be the individual piezoelectric substrates 1 were formed was ultrasonically cleaned with acetone, IPA (isopropyl alcohol) or the like to remove organic components. Next, after sufficiently drying the mother substrate with a clean oven, a metal film serving as each electrode was formed on the upper surface of the mother substrate. A sputtering apparatus was used to form the metal film, and an Al (99 mass%)-Cu (1 mass%) alloy was used as the material of the metal film. The thickness of this metal film was about 0.34 μm.

次に、母基板の上面の金属膜上にフォトレジスト層を約0.5μmの厚みにスピンコートし、縮小投影露光装置(ステッパー)により、所望形状に各電極のパターニングを行ない、現像装置にて不要部分のフォトレジスト層をアルカリ現像液で溶解させ、所望パターンを表出させた後、RIE装置により金属膜のエッチングを行ない、各電極のパターニングを終了し、弾性表面波素子の各電極のパターンを得た。   Next, a photoresist layer is spin-coated on the metal film on the upper surface of the mother substrate to a thickness of about 0.5 μm, and each electrode is patterned into a desired shape by a reduction projection exposure device (stepper), which is not required by the developing device. After part of the photoresist layer is dissolved with an alkaline developer to reveal a desired pattern, the metal film is etched by an RIE apparatus, the patterning of each electrode is finished, and the pattern of each electrode of the surface acoustic wave element is changed. Obtained.

その後、各電極の所定領域上に保護膜を形成した。すなわち、CVD(Chemical Vapor Deposition)装置により、各電極のパターンおよび圧電基板1上にSiO膜を約0.02μmの厚みに形成した。 Thereafter, a protective film was formed on a predetermined region of each electrode. That is, a SiO 2 film having a thickness of about 0.02 μm was formed on each electrode pattern and the piezoelectric substrate 1 by a CVD (Chemical Vapor Deposition) apparatus.

次に、母基板の下面にフォトレジスト層を約5μmの厚みにスピンコートし、フォトリソグラフィによってそのフォトレジスト層についてフリップチップ実装用の窓開け部のパターニングを行ない、RIE装置等で窓開け部のエッチングを行なった。その後、スパッタリング装置を使用し、Alを主成分とする電極パッドを窓開け部に成膜した。この電極パッドの厚みは約1.0μmとした。その後、フォトレジスト層および不要箇所のAlをリフトオフ法により同時に除去し、弾性表面波素子を外部回路基板等にフリップチップ実装するための導体バンプを形成するための電極パッドを、個々の圧電基板1の領域に設けた。   Next, a photoresist layer is spin-coated on the lower surface of the mother substrate to a thickness of about 5 μm, and the photoresist layer is patterned by photolithography to form a window portion for flip chip mounting. Etching was performed. Thereafter, using a sputtering apparatus, an electrode pad mainly composed of Al was formed in the window opening portion. The thickness of this electrode pad was about 1.0 μm. Thereafter, the photoresist layer and the unnecessary portion of Al are simultaneously removed by a lift-off method, and electrode pads for forming conductive bumps for flip-chip mounting the surface acoustic wave element on an external circuit board or the like are provided on the individual piezoelectric substrates 1. Provided in the area.

次に、上記電極パッドにAuからなるフリップチップ実装用の導体バンプを、バンプボンディング装置を使用し形成した。導体バンプの直径は約80μm、その高さは約30μmであった。   Next, a conductive bump for flip chip mounting made of Au was formed on the electrode pad using a bump bonding apparatus. The conductor bump had a diameter of about 80 μm and a height of about 30 μm.

次に、母基板にその分割線に沿ってダイシング加工を施し、個々の弾性表面波素子(チップ)ごとに分割した。その後、各チップをフリップチップ実装装置にて電極パッド形成面である下面を下側にしてパッケージ内に接着した。その後、N雰囲気中でベーキングを行ない、弾性表面波装置を完成した。パッケージは、セラミック層を多層積層して成る2.5×2.0mm角の積層構造のものを用いた。 Next, the mother substrate was diced along the dividing line, and divided into individual surface acoustic wave elements (chips). Thereafter, each chip was bonded to the inside of the package with the flip chip mounting apparatus with the lower surface, which is the electrode pad forming surface, facing down. Thereafter, baking was performed in an N 2 atmosphere to complete the surface acoustic wave device. The package used was a 2.5 × 2.0 mm square laminate structure formed by laminating ceramic layers.

比較例のサンプルとして、図6に示すように、第2の弾性表面波素子部BにおいてIDT電極群24,25で第1の分離電極55,56(図1)として機能する第2の反射器電極がない微細な各電極のパターンを、上記と同様の工程で作製した弾性表面波素子を用いた。   As a sample of the comparative example, as shown in FIG. 6, in the second surface acoustic wave element portion B, the second reflector functioning as the first separation electrodes 55 and 56 (FIG. 1) in the IDT electrode groups 24 and 25. A surface acoustic wave device was used in which fine electrode patterns without electrodes were produced in the same process as described above.

次に、本発明の実施例における弾性表面波素子の特性測定を行なった。0dBmの信号を入力し、周波数910〜980MHzの範囲で測定した。サンプル数は30個、測定機器はマルチポートネットワークアナライザ(アジレントテクノロジー社製「E5071A」)である。   Next, the characteristics of the surface acoustic wave device in the example of the present invention were measured. A signal of 0 dBm was input and measurement was performed in the frequency range of 910 to 980 MHz. The number of samples is 30, and the measuring instrument is a multi-port network analyzer (“E5071A” manufactured by Agilent Technologies).

通過帯域(924〜960MHz)における振幅平衡度と位相平衡度の線図(グラフ)を図7に示す。実施例の平衡度は非常に良好であった。すなわち、図7(a)の実線に示すように、実施例の振幅平衡度(平衡出力された2つの信号の振幅が近似するほど0dBに近い値となる)は、最も劣化した値で0.41dBであり、図7(b)の実線に示すように、実施例の位相平衡度(平衡出力された2つの信号の位相差が180°に近似するほど0°に近い値となる)は、最も劣化した値で2.4°であった。   FIG. 7 shows a diagram (graph) of amplitude balance and phase balance in the pass band (924 to 960 MHz). The balance of the examples was very good. That is, as shown by the solid line in FIG. 7A, the amplitude balance of the embodiment (the closer the amplitude of the two balanced outputs is, the closer the value is to 0 dB) is 0.41 dB, which is the most deteriorated value. As shown by the solid line in FIG. 7 (b), the phase balance of the example (the closer the phase difference between the two balanced outputs is to 180 °, the closer the value is to 0 °) is the most. The deteriorated value was 2.4 °.

一方、図7(a)の破線に示すように、比較例の振幅平衡度は最も劣化した値で0.39dBであり、図7(b)の破線に示すように、比較例の位相平衡度は最も劣化した値で2.8°であった。   On the other hand, as shown by the broken line in FIG. 7A, the amplitude balance of the comparative example is 0.39 dB as the most deteriorated value, and as shown by the broken line in FIG. 7B, the phase balance of the comparative example is The most deteriorated value was 2.8 °.

このように本実施例では、通過帯域において位相平衡度を改善することができた。なお、位相平衡度の2.4°と2.8°との差は、実際にはCNR(Carrier Noise Ratio)等の観点では顕著な差である。   As described above, in this embodiment, the degree of phase balance can be improved in the pass band. Note that the difference in phase balance between 2.4 ° and 2.8 ° is actually a significant difference in terms of CNR (Carrier Noise Ratio) and the like.

本発明の弾性表面波素子について実施の形態の第1の例を示し、電極構造を模式的に示す平面図である。1 is a plan view schematically showing an electrode structure according to a first example of an embodiment of a surface acoustic wave element of the present invention. 本発明の弾性表面波素子について実施の形態の第2の例を示し、電極構造を模式的に示す平面図である。It is a top view which shows the 2nd example of embodiment about the surface acoustic wave element of this invention, and shows an electrode structure typically. 従来の弾性表面波素子の通過帯域およびその近傍における挿入損失の周波数特性を示す線図である。It is a diagram which shows the frequency characteristic of the insertion loss in the pass band of the conventional surface acoustic wave element, and its vicinity. 従来の弾性表面波素子の通過帯域およびその近傍におけるVSWRの周波数特性を示す線図である。It is a diagram which shows the frequency characteristic of VSWR in the pass band of the conventional surface acoustic wave element, and its vicinity. 従来の弾性表面波素子の通過帯域およびその近傍における平衡度の周波数依存性を示す線図であり、(a)は振幅平衡度を示す線図、(b)は位相平衡度を示す線図である。It is a diagram which shows the frequency dependence of the balance degree in the pass band of the conventional surface acoustic wave element and its vicinity, (a) is a diagram which shows amplitude balance, (b) is a diagram which shows phase balance. is there. 比較例の弾性表面波素子の電極構造を模式的に示す平面図である。It is a top view which shows typically the electrode structure of the surface acoustic wave element of a comparative example. 本発明の実施例および比較例の弾性表面波素子の通過帯域およびその近傍における平衡度の周波数依存性を示す線図であり、(a)は振幅平衡度を示す線図、(b)は位相平衡度を示す線図である。It is a diagram which shows the frequency dependence of the balance in the pass band of the surface acoustic wave element of the Example of this invention and a comparative example, and its vicinity, (a) is a diagram which shows an amplitude balance, (b) is a phase It is a diagram which shows a balance degree. 従来の弾性表面波素子の電極構造の1例を模式的に示す平面図である。It is a top view which shows typically an example of the electrode structure of the conventional surface acoustic wave element. 従来の弾性表面波素子の電極構造の他の例を模式的に示す平面図である。It is a top view which shows typically the other example of the electrode structure of the conventional surface acoustic wave element. 従来の弾性表面波素子の電極構造の他の例を模式的に示す平面図である。It is a top view which shows typically the other example of the electrode structure of the conventional surface acoustic wave element.

符号の説明Explanation of symbols

1:圧電基板
2〜5:第1の反射器電極
6:不平衡入(出)力部
7,8:平衡出(入)力部
21〜25:IDT電極群
31〜42:第1のIDT電極
51〜54:第2の反射器電極
55,56:第1の分離電極
61,62:第3のIDT電極
71,72:第3の反射器電極
1: Piezoelectric substrates 2 to 5: First reflector electrode 6: Unbalanced input (out) force portion 7, 8: Balanced out (input) force portion
21-25: IDT electrode group
31-42: 1st IDT electrode
51-54: Second reflector electrode
55, 56: First separation electrode
61, 62: Third IDT electrode
71, 72: Third reflector electrode

Claims (3)

圧電基板と、前記圧電基板上に配設される第1の弾性表面波素子部と、前記圧電基板上に配設される第2の弾性表面波素子部と、を備えた弾性表面波素子であって、
前記第1の弾性表面波素子部は、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1の弾性表面波素子部側の第1のIDT電極の複数を互いに電気的に接続した3つの第1のIDT電極群、これら第1のIDT電極群の前記弾性表面波の伝搬方向の外側の両方に配設され、前記弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第1の弾性表面波素子部側の第1の反射器電極、前記第1のIDT電極群の少なくとも2つの前記第1の弾性表面波素子部側の第1のIDT電極の間に配設され、前記第1の弾性表面波素子部側の第1のIDT電極に電気的に非接続とされた第2のIDT電極および第2の反射器電極の内いずれか1種以上からなる第1の弾性表面波素子部側の第1の分離電極と、を含み、
前記第2の弾性表面波素子部は、弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第2の弾性表面波素子部側の第1のIDT電極の複数を互いに電気的に接続した2つの第2のIDT電極群と、これら第2のIDT電極群の前記弾性表面波の伝搬方向の外側の両方に配設され、前記弾性表面波の伝搬方向に対して直交する方向に長い電極指を複数本有する第2の弾性表面波素子部側の第1の反射器電極と、前記第2のIDT電極群の少なくとも2つの前記第2の弾性表面波素子部側の第1のIDT電極の間に配設され、前記第2の弾性表面波素子部側の第1のIDT電極に電気的に非接続とされた第2の弾性表面波素子部側の第1の分離電極と、前記第2のIDT電極群と前記第2の弾性表面波素子部側の第1の反射器電極との間に配設され、前記第2のIDT電極群とは電気的に非接続の第3のIDT電極からなる第2の分離電極と、を含み、
前記第1の弾性表面波素子部の両端の前記第1のIDT電極群がそれぞれ前記第2の弾性表面波素子部の前記第2の分離電極と縦続接続されており、前記第1の弾性表面波素子部の中央の前記第1のIDT電極群が不平衡入力部または不平衡出力部とされ、前記第2の弾性表面波素子部の2つの前記第2のIDT電極群のそれぞれが平衡出力部または平衡入力部とされていることを特徴とする弾性表面波素子。
A surface acoustic wave device comprising: a piezoelectric substrate; a first surface acoustic wave element portion disposed on the piezoelectric substrate; and a second surface acoustic wave element portion disposed on the piezoelectric substrate. There,
The first surface acoustic wave element unit includes a plurality of first IDT electrodes on the first surface acoustic wave element unit side having a plurality of long electrode fingers in a direction orthogonal to the propagation direction of the surface acoustic wave. electrically connected to the three first IDT electrode group is disposed on both the outer surface acoustic wave propagation direction of these first IDT electrode group, orthogonal to the propagation direction of the surface acoustic wave a first of the first surface acoustic wave element part side of the reflector electrodes in which a plurality inborn long electrode fingers in the direction of, the first of at least two of said first surface acoustic wave element part side of the IDT electrode group disposed between the first IDT electrode, said first second IDT electrode and a second reflector electrode is electrically disconnected to the first IDT electrode of the surface acoustic wave element portion first separation electrode of the first SAW device portion consisting of the inner or 1 or more and It includes,
The second surface acoustic wave element unit includes a plurality of first IDT electrodes on the second surface acoustic wave element unit side having a plurality of long electrode fingers in a direction orthogonal to the propagation direction of the surface acoustic wave. Two second IDT electrode groups that are electrically connected to each other and outside the propagation direction of the surface acoustic wave of the second IDT electrode group , and orthogonal to the propagation direction of the surface acoustic wave A first reflector electrode on the second surface acoustic wave element portion side having a plurality of electrode fingers that are long in the direction, and at least two of the second surface acoustic wave element portion side of the second IDT electrode group The first surface acoustic wave element unit side first electrode disposed between the first IDT electrodes and electrically disconnected from the first IDT electrode on the second surface acoustic wave element unit side . and separate electrodes, a first reflection of said second IDT electrode group second surface acoustic wave element portion Disposed between the electrodes, wherein the second separate electrodes consisting of a third IDT electrodes electrically disconnected from said second IDT electrode group,
The first IDT electrode groups at both ends of the first surface acoustic wave element unit are connected in cascade with the second separation electrodes of the second surface acoustic wave element unit, respectively, and the first surface acoustic wave The first IDT electrode group at the center of the wave element unit is an unbalanced input unit or an unbalanced output unit, and each of the two second IDT electrode groups of the second surface acoustic wave element unit is a balanced output. A surface acoustic wave device, characterized in that the surface acoustic wave device is a part or a balanced input part.
前記第2の弾性表面波素子部の前記第2のIDT電極群と前記第2の分離電極との間に、前記第2のIDT電極群とは電気的に非接続の、第4のIDT電極および第3の反射器電極の内いずれか1種以上を第3の分離電極として配設してなることを特徴とする請求項1記載の弾性表面波素子。 Wherein between the second of the said second IDT electrode group of the surface acoustic wave element part second separate electrodes, wherein the second IDT electrode groups electrically disconnected, the fourth IDT electrode 2. The surface acoustic wave device according to claim 1, wherein at least one of the third reflector electrode and the third reflector electrode is disposed as a third separation electrode. 請求項1または請求項2記載の弾性表面波素子を有する、受信回路および送信回路の少
なくとも一方を備えたことを特徴とする通信装置。
A communication apparatus comprising at least one of a receiving circuit and a transmitting circuit having the surface acoustic wave element according to claim 1.
JP2004375125A 2004-12-27 2004-12-27 Surface acoustic wave element and communication device Expired - Fee Related JP4562517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004375125A JP4562517B2 (en) 2004-12-27 2004-12-27 Surface acoustic wave element and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004375125A JP4562517B2 (en) 2004-12-27 2004-12-27 Surface acoustic wave element and communication device

Publications (2)

Publication Number Publication Date
JP2006186444A JP2006186444A (en) 2006-07-13
JP4562517B2 true JP4562517B2 (en) 2010-10-13

Family

ID=36739249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004375125A Expired - Fee Related JP4562517B2 (en) 2004-12-27 2004-12-27 Surface acoustic wave element and communication device

Country Status (1)

Country Link
JP (1) JP4562517B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092526A (en) * 2001-07-11 2003-03-28 Matsushita Electric Ind Co Ltd Interdigital transducer, surface acoustic wave filter and communication equipment using the same
JP2004235909A (en) * 2003-01-30 2004-08-19 Kyocera Corp Surface acoustic wave filter and communication device using the same
JP2005176254A (en) * 2003-12-15 2005-06-30 Kyocera Corp Surface acoustic wave device and communication device
JP2006128927A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave element and communication device
JP2006128926A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave element and communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092526A (en) * 2001-07-11 2003-03-28 Matsushita Electric Ind Co Ltd Interdigital transducer, surface acoustic wave filter and communication equipment using the same
JP2004235909A (en) * 2003-01-30 2004-08-19 Kyocera Corp Surface acoustic wave filter and communication device using the same
JP2005176254A (en) * 2003-12-15 2005-06-30 Kyocera Corp Surface acoustic wave device and communication device
JP2006128927A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave element and communication device
JP2006128926A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave element and communication device

Also Published As

Publication number Publication date
JP2006186444A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4641036B2 (en) Surface acoustic wave device and communication device
JP5033876B2 (en) Surface acoustic wave device and communication device
US7518470B2 (en) Surface acoustic wave element, surface acoustic wave device and communication device including the same
JP5094074B2 (en) Surface acoustic wave device and surface acoustic wave device
JP4901398B2 (en) Surface acoustic wave device
JP2007181195A (en) Surface acoustic wave element, surface acoustic wave device, and communication device including the same
JP5052172B2 (en) Surface acoustic wave device and communication device
JP4841311B2 (en) Substrate mounted surface acoustic wave device, method for manufacturing the same, and communication device
JP2008028825A (en) Surface acoustic wave device and communication device
JP4502779B2 (en) Surface acoustic wave element and communication device
JP4583243B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP4637718B2 (en) Surface acoustic wave element and communication device
JP4646700B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP4931615B2 (en) Surface acoustic wave device and communication device
JP2008028826A (en) Surface acoustic wave device and communication device
JP4562517B2 (en) Surface acoustic wave element and communication device
JP4550549B2 (en) Surface acoustic wave element and communication device
JP5111585B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP2004235909A (en) Surface acoustic wave filter and communication device using the same
JP4698362B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP5019858B2 (en) Surface acoustic wave device and communication device
JP4688572B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP4741387B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP5111586B2 (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device
JP2007124092A (en) Surface acoustic wave resonator, surface acoustic wave device, and communication device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees