[go: up one dir, main page]

JP4556727B2 - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet Download PDF

Info

Publication number
JP4556727B2
JP4556727B2 JP2005084073A JP2005084073A JP4556727B2 JP 4556727 B2 JP4556727 B2 JP 4556727B2 JP 2005084073 A JP2005084073 A JP 2005084073A JP 2005084073 A JP2005084073 A JP 2005084073A JP 4556727 B2 JP4556727 B2 JP 4556727B2
Authority
JP
Japan
Prior art keywords
sintered magnet
rare earth
hydrogen
powder
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005084073A
Other languages
Japanese (ja)
Other versions
JP2006265610A (en
Inventor
英樹 中村
徹也 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005084073A priority Critical patent/JP4556727B2/en
Publication of JP2006265610A publication Critical patent/JP2006265610A/en
Application granted granted Critical
Publication of JP4556727B2 publication Critical patent/JP4556727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、割れや欠け等の不良が存在する希土類焼結磁石を、焼結磁石の原料として再利用する方法に関するものである。   The present invention relates to a method for reusing a rare earth sintered magnet having defects such as cracks and chips as a raw material for a sintered magnet.

希土類焼結磁石の中でもR−T−B系焼結磁石は、磁気特性に優れていること、主成分であるNdが従来のSm−Co系焼結磁石に比べて資源的に豊富で比較的安価であることから、種々の用途に使用されている。
R−T−B系焼結磁石は、主成分であるNdが従来のSm−Co系焼結磁石に比べて資源的に豊富であるとはいえ、資源は有限であり、R−T−B系焼結磁石の現在の使用状況を考慮すると、資源の枯渇が懸念される。このため、近年、R−T−B系焼結磁石の再利用について関心が高まっている。
例えば、特許文献1では、スクラップされたR214B系焼結磁石合金の合金粉末99〜70wt%に対して、上記合金にM(MはAl,Cu,Zn等)を加えた合金粉末を1〜30wt%混合し、この混合合金粉末を磁場中加圧成形し、該成形体を真空または不活性ガス雰囲気中で焼結し、さらに焼結温度以下の温度で時効熱処理することを特徴とする希土類焼結永久磁石の製造方法を提案している。
Among the rare earth sintered magnets, the RTB-based sintered magnet has excellent magnetic properties, and the main component Nd is relatively abundant compared to conventional Sm-Co-based sintered magnets. Since it is inexpensive, it is used for various purposes.
Although the RTB-based sintered magnet is rich in resources compared to the conventional Sm-Co-based sintered magnet, Nd, which is the main component, is limited in resources, and RTB Considering the current usage of sintered magnets, there is a concern about resource depletion. For this reason, in recent years, there has been an increasing interest in reusing R-T-B based sintered magnets.
For example, in Patent Document 1, an alloy powder in which M (M is Al, Cu, Zn, etc.) is added to the above alloy with respect to 99 to 70 wt% of the scraped R 2 T 14 B sintered magnet alloy powder. 1 to 30 wt% is mixed, this mixed alloy powder is pressed in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere, and further subjected to an aging heat treatment at a temperature lower than the sintering temperature. A method for producing a rare earth sintered permanent magnet is proposed.

特開平6−340902号公報JP-A-6-340902

特許文献1では、再利用に供される焼結磁石合金の酸化分を補う合金を添加するというアプローチを提案しているが、本発明は、特許文献1とは異なるアプローチで不良材を再利用し、磁気特性に優れた希土類焼結磁石を提供することを目的とする。   Patent Document 1 proposes an approach of adding an alloy that supplements the oxidized content of a sintered magnet alloy to be reused, but the present invention reuses defective materials by an approach different from Patent Document 1. Another object of the present invention is to provide a rare earth sintered magnet having excellent magnetic properties.

R−T−B系焼結磁石の主相比率を高めて高特性化を図るには、合金中の酸素量を低下させることが必要である。ところが、再利用に供される不良材は、通常、3000〜5000ppm程度の酸素を含有している焼結磁石であり、このような焼結磁石を磁石用原料として再利用しても、酸素量は高いままであり、高い磁気特性を有する焼結磁石を得ることはできない。このような焼結磁石に対し還元処理を施した後、再利用することも考えられるが、それではコスト高となってしまう。
本発明者等は、コスト高を招くことなく不良材を用いても高い磁気特性を示す焼結磁石を得るための検討を行った。その結果、酸素量が2000ppm以下の低酸素焼結磁石であれば、還元工程を要せず、しかも水素粉砕することができるために高磁気特性の焼結磁石を得ることができることを確認した。ここで、水素粉砕とは、合金に水素を吸蔵させることにより合金を膨張させて粉砕する方法であり、粉砕後の粉末中の酸素の増大を防ぐ粉砕方法として有効な方法である。3000〜5000ppm程度の酸素を含有している焼結磁石は、水素雰囲気中に暴露しても、水素を吸蔵せず水素粉砕処理を施すことができない。水素粉砕処理に代えて焼結磁石に対し機械的な粉砕を行うと、粉砕後の粉末中の酸素量が増加してしまい、高磁気特性の希土類焼結磁石を得ることができない。しかしながら、酸素量が2000ppm以下の低酸素焼結磁石であれば、水素粉砕処理を施すことができるので、高磁気特性の焼結磁石を得ることができるのである。
In order to increase the main phase ratio of the RTB-based sintered magnet and achieve high performance, it is necessary to reduce the amount of oxygen in the alloy. However, the defective material used for reuse is usually a sintered magnet containing about 3000 to 5000 ppm of oxygen. Even if such a sintered magnet is reused as a magnet raw material, the amount of oxygen is reduced. Remains high and a sintered magnet with high magnetic properties cannot be obtained. Such a sintered magnet may be reused after being subjected to a reduction treatment, but this increases the cost.
The present inventors have studied to obtain a sintered magnet that exhibits high magnetic properties even when a defective material is used without incurring high costs. As a result, it was confirmed that a low-magnetism sintered magnet having an oxygen content of 2000 ppm or less does not require a reduction step and can be pulverized with hydrogen, so that a sintered magnet having high magnetic properties can be obtained. Here, the hydrogen pulverization is a method of expanding and pulverizing the alloy by occluding hydrogen in the alloy, and is an effective method as a pulverization method for preventing an increase in oxygen in the pulverized powder. A sintered magnet containing about 3000 to 5000 ppm of oxygen does not occlude hydrogen and cannot be subjected to hydrogen pulverization even when exposed to a hydrogen atmosphere. If mechanical pulverization is performed on the sintered magnet instead of hydrogen pulverization, the amount of oxygen in the pulverized powder increases, and a rare-earth sintered magnet with high magnetic properties cannot be obtained. However, if a low oxygen sintered magnet having an oxygen content of 2000 ppm or less can be subjected to hydrogen pulverization, a sintered magnet having high magnetic properties can be obtained.

すなわち、本発明は、酸素量が2000ppm以下の焼結磁石を水素粉砕する工程(1)と、水素粉砕された粉末を用いて成形体を作製する工程(2)と、成形体を焼結する工程(3)とを備え、最終的に得られる希土類焼結磁石の酸素量を2000ppm以下に抑えるために、上記の工程(1)、(2)、(3)における雰囲気を、300ppm未満の酸素濃度に制御することを特徴とする希土類焼結磁石の製造方法である。
本発明は、低酸素焼結磁石のみを用いて新たに希土類焼結磁石を作製する形態の他、再利用に供される低酸素焼結磁石と新規の鋳造合金材料(以下、新規材ということがある)とを併用して希土類焼結磁石を作製する形態も包含する。この場合は、酸素量が1000ppm以下である新規材を水素粉砕して得られたA粉末と、酸素量が2000ppm以下の焼結磁石(以下、再利用材ということがある)を水素粉砕して得られたB粉末とを用いて成形体を作製すればよい。A粉末とB粉末との比率は、99wt%:1wt%〜70wt%:30wt%とすることが好ましい。
That is, the present invention includes a step (1) of hydrogen-sintering a sintered magnet having an oxygen content of 2000 ppm or less, a step (2) of producing a molded body using hydrogen-pulverized powder, and sintering the molded body. and a step (3), the oxygen content of the rare earth sintered magnet finally obtained to suppress the 2000ppm or less, the above steps (1), (2), the atmosphere in (3), of less than 300ppm oxygen It is a manufacturing method of the rare earth sintered magnet characterized by controlling to a concentration .
In the present invention, a rare earth sintered magnet is newly produced using only a low oxygen sintered magnet, and a low oxygen sintered magnet to be reused and a new cast alloy material (hereinafter referred to as a new material). A rare earth sintered magnet is also included. In this case, A powder obtained by hydrogen pulverizing a new material having an oxygen amount of 1000 ppm or less and a sintered magnet (hereinafter sometimes referred to as a recycled material) having an oxygen amount of 2000 ppm or less are hydrogen crushed. What is necessary is just to produce a molded object using the obtained B powder. The ratio of the A powder to the B powder is preferably 99 wt%: 1 wt% to 70 wt%: 30 wt%.

水素粉砕に供される焼結磁石として、平均結晶粒径が1〜30μm、結晶粒の配向度が88%以上のものを用いることができる。   As a sintered magnet to be subjected to hydrogen pulverization, a magnet having an average crystal grain size of 1 to 30 μm and a crystal grain orientation degree of 88% or more can be used.

[製造方法]
はじめに、図1を参照して本発明によるR−T−B系焼結磁石の製造方法の概要を説明する。本発明では、鋳造合金からなるA材(新規材)と焼結磁石からなるB材(再利用材)とを磁石用原料として使用し、R−T−B系焼結磁石を製造する。
A材は、原料金属を真空または不活性ガス、好ましくはAr雰囲気中でストリップキャスティングすることにより得られる。なお、ストリップキャスト法に限らず、他の鋳造方法を用いてもよい。
原料金属としては、希土類金属あるいは希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。得られた原料合金は、凝固偏析がある場合は必要に応じて溶体化処理を行なう。その条件は真空又はAr雰囲気下、700〜1300℃の領域で1時間以上保持すれば良い。
[Production method]
First, with reference to FIG. 1, the outline | summary of the manufacturing method of the RTB type | system | group sintered magnet by this invention is demonstrated. In the present invention, an A-material (new material) made of a cast alloy and a B-material (recycled material) made of a sintered magnet are used as magnet raw materials to produce an RTB-based sintered magnet.
The A material is obtained by strip casting the raw metal in a vacuum or an inert gas, preferably in an Ar atmosphere. In addition, you may use not only a strip casting method but another casting method.
As the raw material metal, rare earth metals or rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. The obtained raw material alloy is subjected to a solution treatment as necessary when there is solidification segregation. The conditions may be maintained for 1 hour or more in a region of 700 to 1300 ° C. in a vacuum or Ar atmosphere.

再利用材であるB材は、焼結磁石である。この焼結磁石は、A材と同様にストリップキャスティングにより得られた原料合金を水素粉砕する粗粉砕工程、粗粉砕工程で得られた粗粉末をさらに微粉砕する微粉砕工程、微粉砕工程で得られた微粉末を所定形状に成形する成形工程、成形工程で得られた成形体を焼結する焼結工程を経ることにより、得られたものである。例えば、寸法精度の問題、割れ、欠け等の問題によって、製品として出荷されなかった焼結磁石が対象となる。なお、粗粉砕工程、微粉砕工程、成形工程、焼結工程の詳細は後述する。   B material which is a reuse material is a sintered magnet. This sintered magnet is obtained in a coarse pulverization process in which the raw material alloy obtained by strip casting is pulverized with hydrogen, a fine pulverization process in which the coarse powder obtained in the coarse pulverization process is further finely pulverized, and the fine pulverization process. The obtained fine powder is obtained by a molding process for molding the fine powder into a predetermined shape and a sintering process for sintering the molded body obtained in the molding process. For example, sintered magnets that have not been shipped as products due to problems of dimensional accuracy, cracks, chipping, and the like are targeted. Details of the coarse pulverization step, fine pulverization step, molding step, and sintering step will be described later.

本発明ではB材として、酸素量が2000ppm以下の低酸素焼結磁石を使用する。酸素量が2000ppmを超えると、水素粉砕による粗粉砕化が困難となる。十分に粗粉砕されなかった粉末を微粉砕工程に供すると、微粉砕が困難になるか、または微粉砕時間が長くなりコスト高につながる。
粗粉砕は、水素粉砕に限らず、機械的な手段、例えばスタンプミル、ジョークラッシャー、ブラウンミルを用いて行うこともできる。しかしながら、機械的な手段による粗粉砕では、粉砕後の粉末中の酸素量が増加するため、最終的に酸素量が少なく高磁気特性の焼結磁石を得ることが困難となるので好ましくない。本発明において、低酸素焼結磁石の望ましい酸素量は1500ppm以下、さらに望ましくは1000ppm以下である。
In the present invention, a low oxygen sintered magnet having an oxygen content of 2000 ppm or less is used as the B material. When the amount of oxygen exceeds 2000 ppm, coarse pulverization by hydrogen pulverization becomes difficult. If a powder that has not been sufficiently coarsely pulverized is subjected to a fine pulverization step, fine pulverization becomes difficult, or the fine pulverization time becomes long, leading to high costs.
Coarse pulverization is not limited to hydrogen pulverization but can be performed using mechanical means such as a stamp mill, a jaw crusher, and a brown mill. However, coarse pulverization by mechanical means is not preferable because the amount of oxygen in the powder after pulverization increases, and it becomes difficult to finally obtain a sintered magnet having a small amount of oxygen and high magnetic properties. In the present invention, the desirable oxygen content of the low oxygen sintered magnet is 1500 ppm or less, more desirably 1000 ppm or less.

B材の結晶粒径は、平均結晶粒径で1〜30μmである。1μm未満の結晶粒が存在すると、主相を構成するR214B相とは異なる相が多く存在する傾向があり、磁気特性低下の原因となる。一方、50μmを超える結晶粒が存在すると、水素粉砕による粗粉砕化が困難となる。よって、本発明では平均結晶粒径が1〜30μmである低酸素焼結磁石を用いる。低酸素焼結磁石の好ましい平均結晶粒径は1〜20μm、より好ましい平均結晶粒径は2〜15μmである。 なお、本発明における平均結晶粒径は数平均粒径であり、その測定方法は以下のとおりとした。SEM(走査型電子顕微鏡)写真を撮影し、個々の結晶粒を認識した後、画像解析により個々の結晶粒の重心を通る最大径を求め、それを結晶粒径とした。そして、平均結晶粒径は1つの磁石あたり100個程度の結晶粒について計測を行い、全測定粒子の結晶粒径の平均値を平均結晶粒径とした。 The crystal grain size of the B material is 1 to 30 μm as an average crystal grain size. When crystal grains of less than 1 μm are present, there is a tendency that many phases different from the R 2 T 14 B phase constituting the main phase are present, which causes a decrease in magnetic properties. On the other hand, if there are crystal grains exceeding 50 μm, rough pulverization by hydrogen pulverization becomes difficult. Therefore, in the present invention, a low oxygen sintered magnet having an average crystal grain size of 1 to 30 μm is used. The preferred average crystal grain size of the low oxygen sintered magnet is 1 to 20 μm, and the more preferred average crystal grain size is 2 to 15 μm. In addition, the average crystal grain diameter in this invention is a number average particle diameter, The measuring method was as follows. After taking an SEM (scanning electron microscope) photograph and recognizing each crystal grain, the maximum diameter passing through the center of gravity of each crystal grain was determined by image analysis, and this was taken as the crystal grain size. The average crystal grain size was measured for about 100 crystal grains per magnet, and the average value of the crystal grain sizes of all the measured particles was defined as the average crystal grain size.

B材は、結晶配向度が88%以上である。通常、焼結磁石用原料合金として用いられる。なお、鋳造合金の結晶配向度は約60%、ストリップキャスト合金の結晶配向度は約70%である。本発明で用いるB材は、高い場合には90%以上の結晶配向度を備えている。なお、結晶配向度は、例えばB−Hトレーサを用いて配向方向の残留磁化と配向方向と直交する方向の残留磁化とを測定し、両者の比を求めることにより算出することができる。   The B material has a crystal orientation degree of 88% or more. Usually, it is used as a raw material alloy for sintered magnets. The crystal orientation of the cast alloy is about 60%, and the crystal orientation of the strip cast alloy is about 70%. The B material used in the present invention has a degree of crystal orientation of 90% or more when it is high. The degree of crystal orientation can be calculated, for example, by measuring the residual magnetization in the orientation direction and the residual magnetization in the direction orthogonal to the orientation direction using a BH tracer and determining the ratio between the two.

いわゆる新規材であるA材と、再利用材であるB材は別々に又は一緒に粉砕される。ここでは、図1にしたがって粉砕工程を説明する。
粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、A材およびB材を、それぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、水素を吸蔵させることにより合金を粉砕するいわゆる水素粉砕にて行う。水素吸蔵を行った後は、脱水素することが望ましい。R−T−B系焼結磁石にとって、水素は不純物だからである。
なお、A材については機械的な粉砕を行ってもよい。機械的な粉砕によれば、粉砕後に得られた粉末の酸素量が増加するが、新規材であるA材の酸素含有量は50〜500ppm程度とB材よりも少なく、酸素量の増加はB材ほど問題にならないからである。
The so-called new material A and the recycled material B are pulverized separately or together. Here, the grinding step will be described with reference to FIG.
The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the A material and the B material are coarsely pulverized until the particle diameter is about several hundred μm. The coarse pulverization is performed by so-called hydrogen pulverization in which the alloy is pulverized by storing hydrogen. It is desirable to dehydrogenate after hydrogen storage. This is because hydrogen is an impurity for the RTB-based sintered magnet.
Note that the A material may be mechanically pulverized. According to mechanical pulverization, the oxygen content of the powder obtained after pulverization increases, but the oxygen content of the new material A is about 50 to 500 ppm, which is less than that of the B material. This is because it is not as problematic as wood.

粗粉砕工程後、A材の粗粉末とB材の粗粉末を非酸化性ガス雰囲気中で混合する。A材とB材の混合比率は、99wt%:1wt%〜70wt%:30wt%とすることが望ましい。B材の混合比率が1wt%未満では、不良材の再利用率が低く、不良材を混合することによる低コスト化が図れない。一方、B材の混合比率が30wt%を超えると、新規材のみから得られた希土類焼結磁石と同等の特性を得ることが困難となる。また、新規材であるA材と再利用材であるB材とでは焼結時の縮率が異なり、一旦焼結がなされているB材の方が縮率が小さい。このため、B材の混合比率が30wt%を超えると、同じ金型を使用したとしてもA材のみを用いて得られた磁石と同じ寸法の希土類焼結磁石を得るのが困難となる。
B材の好ましい混合比率は、3〜20wt%、より好ましくは3〜15wt%である。
但し、本発明ではB材の混合比率を30wt%を超えるものとすることを排除するものではない。希土類焼結磁石の用途によっては、特性よりもコスト面を重視したい場合もあるからである。B材を30wt%を超えて混合する形態、さらにはB材のみから希土類焼結磁石を作製する形態も、本願発明は包含する。
After the coarse pulverization step, the coarse powder of the A material and the coarse powder of the B material are mixed in a non-oxidizing gas atmosphere. The mixing ratio of the A material and the B material is desirably 99 wt%: 1 wt% to 70 wt%: 30 wt%. If the mixing ratio of the B material is less than 1 wt%, the reuse rate of the defective material is low, and the cost cannot be reduced by mixing the defective material. On the other hand, when the mixing ratio of the B material exceeds 30 wt%, it becomes difficult to obtain characteristics equivalent to those of the rare earth sintered magnet obtained from only the new material. Moreover, the A material which is a new material and the B material which is a reuse material have different shrinkage ratios during sintering, and the B material which has been sintered once has a smaller shrinkage ratio. For this reason, when the mixing ratio of the B material exceeds 30 wt%, it is difficult to obtain a rare earth sintered magnet having the same size as the magnet obtained using only the A material even if the same mold is used.
A preferable mixing ratio of the B material is 3 to 20 wt%, more preferably 3 to 15 wt%.
However, in the present invention, it is not excluded that the mixing ratio of the B material exceeds 30 wt%. This is because, depending on the use of the rare earth sintered magnet, there is a case where it is desired to place importance on the cost rather than the characteristics. The present invention includes a form in which the B material is mixed in excess of 30 wt%, and further a form in which the rare earth sintered magnet is produced only from the B material.

続く微粉砕は、主にジェットミルが用いられ、粒径数百μm程度の粗粉砕粉末が、平均粒径3〜5μmになるまで粉砕される。ジェットミルは、高圧の非酸化性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。微粉砕時に、ステアリン酸亜鉛等の添加剤を0.01〜0.3wt%程度添加することにより、成形時の配向性が高い微粉を得ることができる。   In the subsequent fine pulverization, a jet mill is mainly used, and a coarsely pulverized powder having a particle size of about several hundreds of μm is pulverized until the average particle size becomes 3 to 5 μm. The jet mill opens a high-pressure non-oxidizing gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, accelerates the coarsely pulverized powder by this high-speed gas flow, This is a method of crushing by generating a collision with a target or a container wall. By adding about 0.01 to 0.3 wt% of an additive such as zinc stearate at the time of fine pulverization, a fine powder having high orientation during molding can be obtained.

次いで、A材粉末及びB材粉末からなる混合粉末を、磁場印加によってその結晶軸を配向させた状態で加圧成形する。この磁場中成形は、940〜1400kA/mの磁場中で、70〜150MPaの圧力で行なえばよい。   Next, the mixed powder composed of the A material powder and the B material powder is pressure-molded in a state where the crystal axis is oriented by applying a magnetic field. The forming in the magnetic field may be performed at a pressure of 70 to 150 MPa in a magnetic field of 940 to 1400 kA / m.

磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1100℃で1〜5時間程度焼結すればよい。   After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a difference of a particle size and a particle size distribution, what is necessary is just to sinter at 1000-1100 degreeC for about 1 to 5 hours.

焼結後、得られた焼結磁石に時効処理を施すことができる。時効処理は、保磁力を制御する上で重要である。時効処理を2段に分けて行なう場合には、800℃近傍、500℃近傍での所定時間保持することが有効である。800℃近傍での熱処理を焼結後に行なうと、保磁力が増大するため、混合法においては特に有効である。また、500℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、500℃近傍の時効処理を施すとよい。   After sintering, the obtained sintered magnet can be subjected to an aging treatment. The aging treatment is important for controlling the coercive force. When the aging treatment is performed in two stages, it is effective to hold for a predetermined time at around 800 ° C. and around 500 ° C. When the heat treatment at around 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by the heat treatment at around 500 ° C., when the aging treatment is performed in one stage, the aging treatment at around 500 ° C. is preferably performed.

酸素量が2000ppm以下の低酸素焼結磁石を磁石原料として使用することを要旨とする本発明によれば、コスト高を招くことなく、不良材の再利用を図ることができ、材料の歩留まり向上にも寄与する。また、後述する実施例で示すように、本発明によれば、1400mT以上の残留磁束密度(Br)および1200kA/m以上の保磁力(HcJ)を兼備した希土類焼結磁石を得ることができる。   According to the present invention, which uses a low-oxygen sintered magnet having an oxygen content of 2000 ppm or less as a magnet raw material, it is possible to reuse a defective material without increasing the cost, and to improve the yield of the material. Also contributes. Further, as shown in the examples described later, according to the present invention, a rare earth sintered magnet having a residual magnetic flux density (Br) of 1400 mT or more and a coercive force (HcJ) of 1200 kA / m or more can be obtained.

なお、図1では、A材およびB材をそれぞれ粗粉砕し、A材の粗粉末とB材の粗粉末とを混合する形態を示したが、他の形態を採用することもできる。例えば図2に示すように、A材およびB材を一緒に粗粉砕、ならびに微粉砕するようにしてもよい。この場合には、図1に示した混合処理は不要となる。または、図3に示すように、A材およびB材をそれぞれ粗粉砕および微粉砕した後、両者を混合するようにしてもよい。   In FIG. 1, the form in which the A material and the B material are roughly pulverized and the coarse powder of the A material and the coarse powder of the B material are mixed is shown, but other forms may be adopted. For example, as shown in FIG. 2, the A material and the B material may be coarsely pulverized and finely pulverized together. In this case, the mixing process shown in FIG. 1 is unnecessary. Alternatively, as shown in FIG. 3, the A material and the B material may be coarsely pulverized and finely pulverized, respectively, and then both may be mixed.

また、例えば、A材については粗粉砕、微粉砕を行う一方、B材については粗粉砕のみを行い、微粉砕は省略する。そしてA材の微粉末とB材の粗粉末とを混合して成形体を作製するようにしてもよい。微粉末に粗粉末を介在させた状態で成形を行うようにすれば、金型への充填性が向上し、最終的に高密度の成形体を得ることができる。そして、高密度の成形体を焼結することにより、残留磁束密度(Br)の高い焼結磁石を得ることができる。但し、B材について微粉砕を省略する場合には、粗粉砕後のB材の平均粒径が1〜30μmとなっていることを条件とする。B材は一旦、磁場中成形および焼結を経たものであり、A材とともに新たに焼結されたときに粒成長しにくいため、平均粒径が30μmを超えるほど大きいB材粉末を成形および焼結に供すると、最終的に焼結磁石体の高密度化を図ることができず、残留磁束密度(Br)が低くなり、また、保磁力(HcJ)が高いR−T−B系焼結磁石を得ることが困難となるからである。   Further, for example, the A material is coarsely pulverized and finely pulverized, while the B material is only coarsely pulverized and the fine pulverization is omitted. A compact may be prepared by mixing the fine powder of the A material and the coarse powder of the B material. If the molding is performed with the coarse powder interposed in the fine powder, the filling property into the mold can be improved, and finally a high-density molded product can be obtained. And a sintered magnet with a high residual magnetic flux density (Br) can be obtained by sintering a high-density molded object. However, in the case where fine pulverization is omitted for the B material, the average particle size of the B material after coarse pulverization is 1 to 30 μm. The material B is once subjected to molding and sintering in a magnetic field, and when it is newly sintered together with the material A, it is difficult for the grains to grow. When used for sintering, the sintered magnet body cannot be finally densified, the residual magnetic flux density (Br) becomes low, and the RTB-based sintering has a high coercive force (HcJ). This is because it becomes difficult to obtain a magnet.

[化学組成]
次に、化学組成について説明する。
まず、最終的に得られるR−T−B系焼結磁石の組成について言及する。
本発明が適用されるR−T−B系焼結磁石の組成は、目的に応じ適宜設定すればよいが、磁気特性に優れた磁石を得るためには、焼結後の磁石組成においてR:20〜40wt%、B:0.5〜4.5wt%、T:残部、となるような配合組成とすることが望ましい。ここで、本発明におけるRはYを含む概念を有しており、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu及びYの1種又は2種以上から選択される。Rの量が20wt%未満であると、R−TM−B系焼結磁石の主相となるR2Fe14B相の生成が十分ではなく軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rが40wt%を超えると主相であるR2Fe14B相の体積比率が低下し、残留磁束密度が低下する。またRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なR−リッチ相が減少し、保磁力の低下を招くため、Rの量は20〜40wt%とする。Ndは資源的に豊富で比較的安価であることから、希土類元素Rとしての主成分をNdとすることが好ましい。
[Chemical composition]
Next, the chemical composition will be described.
First, the composition of the finally obtained RTB-based sintered magnet will be described.
The composition of the RTB-based sintered magnet to which the present invention is applied may be appropriately set according to the purpose, but in order to obtain a magnet having excellent magnetic properties, R: It is desirable that the composition be 20 to 40 wt%, B: 0.5 to 4.5 wt%, and T: the balance. Here, R in the present invention has a concept including Y, and one or two of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, and Y Selected from more than species. If the amount of R is less than 20 wt%, the R 2 Fe 14 B phase, which is the main phase of the R-TM-B sintered magnet, is not sufficiently generated, and α-Fe having soft magnetism is precipitated and retained. The magnetic force is significantly reduced. On the other hand, when R exceeds 40 wt%, the volume ratio of the R 2 Fe 14 B phase, which is the main phase, decreases, and the residual magnetic flux density decreases. Further, R reacts with oxygen, the amount of oxygen contained increases, and accordingly, the R-rich phase effective for the generation of coercive force decreases and the coercive force decreases, so the amount of R is set to 20 to 40 wt%. . Since Nd is abundant in resources and relatively inexpensive, it is preferable that the main component as the rare earth element R is Nd.

また、ホウ素Bが0.5wt%未満の場合には高い保磁力を得ることができない。ただし、ホウ素Bが4.5wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を4.5wt%とする。望ましいホウ素Bの量は0.5〜1.5wt%である。   Moreover, when boron B is less than 0.5 wt%, a high coercive force cannot be obtained. However, when boron B exceeds 4.5 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit is 4.5 wt%. A desirable amount of boron B is 0.5 to 1.5 wt%.

本発明のR−T−B系焼結磁石は、Coを2.0wt%以下(0を含まず)、望ましくは0.1〜1.0wt%、さらに望ましくは、0.3〜0.7wt%含有することができる。CoはFeと同様の相を形成するが、キュリー温度の向上、粒界相の耐食性向上に効果がある。
また、本発明のR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.02〜0.5wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られる焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は、0.05〜0.25wt%である。また、Cuを添加する場合において、望ましいCuの量は0.15wt%以下(0を含まず)、さらに望ましいCuの量は0.03〜0.12wt%である。
The RTB-based sintered magnet of the present invention has a Co content of 2.0 wt% or less (excluding 0), preferably 0.1 to 1.0 wt%, more preferably 0.3 to 0.7 wt%. % Can be contained. Co forms the same phase as Fe, but is effective in improving the Curie temperature and improving the corrosion resistance of the grain boundary phase.
Moreover, the RTB system sintered magnet of this invention can contain 1 type or 2 types of Al and Cu in 0.02-0.5 wt%. By containing one or two of Al and Cu in this range, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained sintered magnet. In the case of adding Al, the desirable amount of Al is 0.03 to 0.3 wt%, and the more desirable amount of Al is 0.05 to 0.25 wt%. Further, in the case of adding Cu, the desirable amount of Cu is 0.15 wt% or less (not including 0), and the more desirable amount of Cu is 0.03 to 0.12 wt%.

本発明のR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge等の元素を適宜含有させることができる。一方で、酸素、窒素、炭素等の不純物元素を極力低減することが望ましい。特に磁気特性を害する酸素は、その量を2000ppm以下、さらには1500ppm以下、より好ましくは1000ppm以下とすることが望ましい。酸素量が多いと非磁性成分である希土類酸化物相が増大して、磁気特性を低下させるからである。
但し、高磁気特性を得るためにR−T−B系焼結磁石中の酸素量を低下させると、焼結工程において異常粒成長が起こりやすく、角形比が低下する。合金中の酸素が形成している酸化物が結晶粒の成長を抑制しているためである。このような焼結過程における粒成長を抑制するために、本発明のR−T−B系焼結磁石は、Zr、NbおよびTaのうち、少なくとも1種を含有することが望ましい。焼結磁石の磁気特性向上を図るために酸素含有量を低減する際に、Zr、NbおよびTaはいずれも焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結磁石の組織を均一かつ微細にする。
R−T−B系焼結磁石におけるZrの含有量は0.05〜0.3wt%、Nbの含有量は0.05〜0.3wt%、Taの含有量は0.1〜2.0wt%であることが好ましい。より好ましいZrの含有量は0.1〜0.25wt%、さらに好ましいZrの含有量は0.1〜0.2wt%である。より好ましいNbの含有量は0.1〜0.25wt%、さらに好ましいNbの含有量は0.1〜0.2wt%である。より好ましいTaの含有量は0.2〜1.7wt%、さらに好ましいTaの含有量は0.3〜1.5wt%である。
The RTB-based sintered magnet of the present invention allows the inclusion of other elements. For example, elements such as Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, and Ge can be appropriately contained. On the other hand, it is desirable to reduce impurity elements such as oxygen, nitrogen, and carbon as much as possible. In particular, the amount of oxygen that impairs magnetic properties is desirably 2000 ppm or less, further 1500 ppm or less, and more preferably 1000 ppm or less. This is because when the amount of oxygen is large, the rare-earth oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated.
However, if the amount of oxygen in the RTB-based sintered magnet is reduced in order to obtain high magnetic properties, abnormal grain growth is likely to occur in the sintering process, and the squareness ratio is reduced. This is because the oxide formed by oxygen in the alloy suppresses the growth of crystal grains. In order to suppress such grain growth in the sintering process, it is desirable that the RTB-based sintered magnet of the present invention contains at least one of Zr, Nb and Ta. When reducing the oxygen content in order to improve the magnetic properties of the sintered magnet, Zr, Nb and Ta all exert the effect of suppressing abnormal growth of crystal grains during the sintering process, Make the tissue uniform and fine.
In the RTB-based sintered magnet, the Zr content is 0.05 to 0.3 wt%, the Nb content is 0.05 to 0.3 wt%, and the Ta content is 0.1 to 2.0 wt%. % Is preferred. A more preferable Zr content is 0.1 to 0.25 wt%, and a more preferable Zr content is 0.1 to 0.2 wt%. A more preferable Nb content is 0.1 to 0.25 wt%, and a still more preferable Nb content is 0.1 to 0.2 wt%. A more preferable Ta content is 0.2 to 1.7 wt%, and a more preferable Ta content is 0.3 to 1.5 wt%.

A材の組成は、最終的に得たいR−T−B系焼結磁石の組成およびB材の組成に応じて決定すればよい。
具体的には、最終的に得たいR−T−B系焼結磁石の組成と同等の組成を有するB材を使用する場合には、A材の組成もR−T−B系焼結磁石の組成と同等のものとする。
一方、最終的に得たいR−T−B系焼結磁石の組成とは異なる組成を有するB材を使用する場合には、A材とB材との割合、所望するR−T−B系焼結磁石の組成および使用予定のB材の組成を考慮して、A材の組成を決定すればよい。
What is necessary is just to determine the composition of A material according to the composition of the RTB system sintered magnet to obtain finally, and the composition of B material.
Specifically, when a B material having a composition equivalent to the composition of the RTB-based sintered magnet to be finally obtained is used, the composition of the A material is also an RTB-based sintered magnet. The composition is equivalent to
On the other hand, when using the B material having a composition different from the composition of the R-T-B system sintered magnet to be finally obtained, the ratio of the A material to the B material, the desired R-T-B system The composition of the A material may be determined in consideration of the composition of the sintered magnet and the composition of the B material to be used.

B材の組成は、最終的に得たいR−T−B系焼結磁石の組成と同等であることが好ましいが、必ずしもそのようなB材を準備できるとは限らない。よって、最終的に得たいR−T−B系焼結磁石の組成とは異なる組成を有するB材を使用する場合には、上述したようにA材の組成ならびにA材とB材との割合を調整すればよい。   The composition of the B material is preferably equivalent to the composition of the RTB-based sintered magnet to be finally obtained, but such a B material cannot always be prepared. Therefore, when using the B material having a composition different from the composition of the RTB-based sintered magnet to be finally obtained, the composition of the A material and the ratio of the A material and the B material as described above. Can be adjusted.

また、A材およびB材よりも希土類元素量が多い高R合金をさらに準備し、これら3種を組み合わせて焼結磁石を得るようにしてもよい。高R合金の使用は、B材の酸素量が2000ppm以下の範囲内ではあるが比較的酸素量が多いときに有効である。B材の酸素量が比較的多い場合には、粒界相のなかのRリッチ相が酸化により不足して磁気特性が劣化することが想定されるが、粒界相の酸化分を補う希土類元素を補充してあげることにより、磁気特性の劣化を抑制することができる。
高R合金の添加量はA材およびB材の合計量に対して0.5〜10wt%とすることができる。この範囲で高R合金を添加することにより、保磁力(HcJ)および/または残留磁束密度(Br)を向上させることができる。但し、添加量が10wt%を超えると、焼結磁石全体に占める希土類元素量が増えるため、残留磁束密度(Br)が低下してしまう。
Further, a high R alloy having a larger amount of rare earth elements than materials A and B may be further prepared, and these three types may be combined to obtain a sintered magnet. The use of the high R alloy is effective when the oxygen content of the B material is within a range of 2000 ppm or less but the oxygen content is relatively large. When the amount of oxygen in the B material is relatively large, it is assumed that the R-rich phase in the grain boundary phase is insufficient due to oxidation and the magnetic properties are deteriorated, but the rare earth element that supplements the oxidation content of the grain boundary phase. By supplementing, it is possible to suppress the deterioration of the magnetic characteristics.
The addition amount of the high R alloy can be 0.5 to 10 wt% with respect to the total amount of the A material and the B material. By adding the high R alloy in this range, the coercive force (HcJ) and / or the residual magnetic flux density (Br) can be improved. However, if the addition amount exceeds 10 wt%, the amount of rare earth elements in the entire sintered magnet increases, and the residual magnetic flux density (Br) decreases.

次に、具体的な実施例を挙げて本発明をさらに詳細に説明する。
本実施例では、図1に示す製造工程にしたがって、希土類焼結磁石を作製した。なお、高磁気特性を得るために、本実験では最終的に得られる希土類焼結磁石の酸素量を2000ppm以下に抑えるために、水素処理(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の雰囲気を、300ppm未満の酸素濃度に抑えた。
まず、A材(合金)として、ストリップキャスト法により、29.6wt%Nd−1.0wt%Dy−0.5wt%Co−0.05wt%Cu−0.1wt%Zr−0.2wt%Al−1.1wt%B−bal.Feの組成を有する合金を作製した。A材中の酸素量は320ppmであった。B材(再利用材)として、29.4wt%Nd−1.0wt%Dy−0.5wt%Co−0.05wt%Cu−0.1wt%Zr−0.2wt%Al−1.1wt%B−bal.Fe(wt%)の組成を有する焼結磁石を準備した。B材中の酸素量は950ppmであった。また、B材の平均結晶粒径を上記した方法にて求めたところ、4.1μmであった。
続いて、室温にてA材及びB材に水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行なう水素粉砕処理を行なった。この水素粉砕処理は、A材、B材ごとに行った。
得られたA材の粗粉末及びB材の粗粉末をVミキサを用いて表1に示す割合で混合し、その後、ジェットミルを用いてA材粉末及びB材粉末がそれぞれ平均粒径4.0μm程度になるまで微粉砕を行なった。得られた微粉末を1200kA/mの磁場中で120MPaの圧力で成形し、成形体を得た。微粉砕、A材及びB材の混合ならびに成形も、低酸素プロセスで行っている。
この成形体を真空中において1050℃で4時間焼結した後、急冷した。次いで得られた焼結磁石に800℃×1時間と540℃×1時間(ともにAr雰囲気中)の2段時効処理を施した。
Next, the present invention will be described in more detail with specific examples.
In this example, a rare earth sintered magnet was manufactured according to the manufacturing process shown in FIG. In order to obtain high magnetic properties, in this experiment, in order to suppress the oxygen content of the rare earth sintered magnet finally obtained to 2000 ppm or less, from hydrogen treatment (recovery after pulverization treatment) to sintering (to a sintering furnace). The atmosphere of each step until (input) was suppressed to an oxygen concentration of less than 300 ppm.
First, as the A material (alloy), 29.6 wt% Nd-1.0 wt% Dy-0.5 wt% Co-0.05 wt% Cu-0.1 wt% Zr-0.2 wt% Al-- 1.1 wt% B-bal. An alloy having a composition of Fe was produced. The amount of oxygen in the A material was 320 ppm. As B material (reuse material), 29.4 wt% Nd-1.0 wt% Dy-0.5 wt% Co-0.05 wt% Cu-0.1 wt% Zr-0.2 wt% Al-1.1 wt% B -Bal. A sintered magnet having a composition of Fe (wt%) was prepared. The amount of oxygen in the B material was 950 ppm. Moreover, it was 4.1 micrometers when the average crystal grain diameter of B material was calculated | required by the above-mentioned method.
Subsequently, hydrogen was occluded in the A material and the B material at room temperature, and then hydrogen pulverization treatment was performed in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere. This hydrogen pulverization treatment was performed for each of the A material and the B material.
The obtained coarse powder of the A material and the coarse powder of the B material were mixed at a ratio shown in Table 1 using a V mixer, and thereafter, the A material powder and the B material powder each had an average particle size of 4. Fine grinding was performed until the thickness became about 0 μm. The obtained fine powder was molded at a pressure of 120 MPa in a magnetic field of 1200 kA / m to obtain a molded body. Fine grinding, mixing of A material and B material and molding are also performed by a low oxygen process.
The molded body was sintered in a vacuum at 1050 ° C. for 4 hours and then rapidly cooled. Next, the obtained sintered magnet was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 540 ° C. × 1 hour (both in an Ar atmosphere).

得られたR−T−B系焼結磁石について、残留磁束密度(Br)および保磁力(HcJ)をB−Hトレーサにより測定した。その結果を表1および図4、5に併せて示す。   About the obtained RTB-based sintered magnet, the residual magnetic flux density (Br) and the coercive force (HcJ) were measured with a BH tracer. The results are also shown in Table 1 and FIGS.

Figure 0004556727
Figure 0004556727

表1に示すように、再利用材であるB合金を5〜20wt%添加しても、1400mT以上の残留磁束密度(Br)および1250kA/m以上の保磁力(HcJ)を得ることができた。
但し、図4および図5に示すように、再利用材であるB合金の添加量が増えるにつれて、保磁力(HcJ)および残留磁束密度(Br)が徐々に低下するため、再利用材を添加しない場合(試料No.1)と同等の特性を得るには、再利用材の添加量を1〜30wt%とすることが望ましい。
As shown in Table 1, even when 5 to 20 wt% of the B alloy as a reusable material was added, a residual magnetic flux density (Br) of 1400 mT or more and a coercive force (HcJ) of 1250 kA / m or more could be obtained. .
However, as shown in FIG. 4 and FIG. 5, the coercive force (HcJ) and the residual magnetic flux density (Br) are gradually reduced as the amount of addition of the B alloy as the reuse material increases. In order to obtain the same characteristics as in the case of not performing (Sample No. 1), it is desirable that the amount of the recycled material added is 1 to 30 wt%.

<比較例>
B材(再利用材)として、上記実施例と同様の組成を有するが、酸素量が3500ppmであるものを準備した。このB材に対して、実施例と同様に水素吸蔵、脱水素処理を施したが、B材を水素粉砕することはできなかった。
<Comparative example>
As the B material (recycled material), a material having the same composition as in the above example but having an oxygen content of 3500 ppm was prepared. The B material was subjected to hydrogen storage and dehydrogenation treatment in the same manner as in the example, but the B material could not be pulverized with hydrogen.

本実施形態における希土類焼結磁石の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the rare earth sintered magnet in this embodiment. 本実施形態における希土類焼結磁石の他の製造工程を示すフローチャートである。It is a flowchart which shows the other manufacturing process of the rare earth sintered magnet in this embodiment. 本実施形態における希土類焼結磁石の他の製造工程を示すフローチャートである。It is a flowchart which shows the other manufacturing process of the rare earth sintered magnet in this embodiment. 実施例における再利用材添加量と、残留磁束密度(Br)との関係を示すグラフである。It is a graph which shows the relationship between the reuse material addition amount in an Example, and a residual magnetic flux density (Br). 実施例における再利用材添加量と、保磁力(HcJ)との関係を示すグラフである。It is a graph which shows the relationship between the reuse material addition amount in an Example, and a coercive force (HcJ).

Claims (5)

酸素量が2000ppm以下の焼結磁石を水素粉砕する工程(1)と、
水素粉砕された粉末を用いて成形体を作製する工程(2)と、
前記成形体を焼結する工程(3)と、を備え
最終的に得られる希土類焼結磁石の酸素量を2000ppm以下に抑えるために、前記工程(1)、前記工程(2)、および前記工程(3)における雰囲気を、300ppm未満の酸素濃度に制御することを特徴とする希土類焼結磁石の製造方法。
A step (1) of hydrogen-pulverizing a sintered magnet having an oxygen amount of 2000 ppm or less;
A step (2) of producing a molded body using hydrogen-pulverized powder;
And (3) a step of sintering the molded body ,
In order to suppress the oxygen content of the finally obtained rare earth sintered magnet to 2000 ppm or less, the atmosphere in the step (1), the step (2), and the step (3) is controlled to an oxygen concentration of less than 300 ppm. A method for producing a rare earth sintered magnet.
酸素量が1000ppm以下の鋳造合金を水素粉砕して得られたA粉末と、酸素量が2000ppm以下の前記焼結磁石を水素粉砕して得られたB粉末とを用いて前記成形体を作製することを特徴とする請求項1に記載の希土類焼結磁石の製造方法。   The compact is produced using A powder obtained by hydrogen pulverizing a cast alloy having an oxygen content of 1000 ppm or less and B powder obtained by hydrogen pulverizing the sintered magnet having an oxygen content of 2000 ppm or less. The method for producing a rare earth sintered magnet according to claim 1. 前記A粉末と前記B粉末との比率が、99wt%:1wt%〜70wt%:30wt%であることを特徴とする請求項2に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 2, wherein a ratio of the A powder and the B powder is 99 wt%: 1 wt% to 70 wt%: 30 wt%. 前記水素粉砕に供される前記焼結磁石は、平均結晶粒径が1〜30μmであることを特徴とする請求項1〜3のいずれかに記載の希土類焼結磁石の製造方法。 The method for producing a rare earth sintered magnet according to any one of claims 1 to 3, wherein the sintered magnet subjected to the hydrogen pulverization has an average crystal grain size of 1 to 30 µm. 前記水素粉砕に供される前記焼結磁石は、結晶粒の配向度が88%以上であることを特徴とする請求項1〜4のいずれかに記載の希土類焼結磁石の製造方法。 The method for producing a rare earth sintered magnet according to any one of claims 1 to 4, wherein the sintered magnet subjected to the hydrogen pulverization has an orientation degree of crystal grains of 88% or more.
JP2005084073A 2005-03-23 2005-03-23 Manufacturing method of rare earth sintered magnet Expired - Lifetime JP4556727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005084073A JP4556727B2 (en) 2005-03-23 2005-03-23 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005084073A JP4556727B2 (en) 2005-03-23 2005-03-23 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2006265610A JP2006265610A (en) 2006-10-05
JP4556727B2 true JP4556727B2 (en) 2010-10-06

Family

ID=37201880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084073A Expired - Lifetime JP4556727B2 (en) 2005-03-23 2005-03-23 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4556727B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650079B (en) * 2011-06-30 2017-11-28 日立金属株式会社 The method that manufacture eliminates the R Fe B systems permanet magnet alloy regeneration material of carbon
US9044834B2 (en) * 2013-06-17 2015-06-02 Urban Mining Technology Company Magnet recycling to create Nd—Fe—B magnets with improved or restored magnetic performance
US9336932B1 (en) 2014-08-15 2016-05-10 Urban Mining Company Grain boundary engineering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049234A (en) * 2001-05-30 2003-02-21 Sumitomo Special Metals Co Ltd Method for producing sintered compact for rare earth magnet
JP2004244702A (en) * 2003-02-17 2004-09-02 Tdk Corp Method of producing rare earth permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049234A (en) * 2001-05-30 2003-02-21 Sumitomo Special Metals Co Ltd Method for producing sintered compact for rare earth magnet
JP2004244702A (en) * 2003-02-17 2004-09-02 Tdk Corp Method of producing rare earth permanent magnet

Also Published As

Publication number Publication date
JP2006265610A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP6504044B2 (en) Rare earth permanent magnet
JP2016152246A (en) Rare earth based permanent magnet
JP2014216338A (en) R-T-B sintered magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP4766452B2 (en) Rare earth permanent magnet
JPWO2004029999A1 (en) R-T-B rare earth permanent magnet
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP6468435B2 (en) R-T-B sintered magnet
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
WO2018101409A1 (en) Rare-earth sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP4753024B2 (en) Raw material alloy for RTB-based sintered magnet, RTB-based sintered magnet, and manufacturing method thereof
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP2020161692A (en) R-t-b based permanent magnet
JP2006100434A (en) Method of manufacturing r-t-b based rare earth permanent magnet
US10256017B2 (en) Rare earth based permanent magnet
JP4529180B2 (en) Rare earth permanent magnet
JP7408921B2 (en) RTB series permanent magnet
JP2005159053A (en) Method for manufacturing r-t-b-based permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250