[go: up one dir, main page]

JP4549226B2 - Wafer with many crystal units formed - Google Patents

Wafer with many crystal units formed Download PDF

Info

Publication number
JP4549226B2
JP4549226B2 JP2005133149A JP2005133149A JP4549226B2 JP 4549226 B2 JP4549226 B2 JP 4549226B2 JP 2005133149 A JP2005133149 A JP 2005133149A JP 2005133149 A JP2005133149 A JP 2005133149A JP 4549226 B2 JP4549226 B2 JP 4549226B2
Authority
JP
Japan
Prior art keywords
crystal
wafer
large number
resonators
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005133149A
Other languages
Japanese (ja)
Other versions
JP2006311342A (en
Inventor
学 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005133149A priority Critical patent/JP4549226B2/en
Publication of JP2006311342A publication Critical patent/JP2006311342A/en
Application granted granted Critical
Publication of JP4549226B2 publication Critical patent/JP4549226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は水晶デバイスに属し、主として通信分野の伝送系装置に使用される水晶発振器に用いられるATカットの厚み滑り振動をする水晶振動子が多数個形成されたウェハーに関する。
The present invention relates to a wafer in which a large number of quartz resonators that perform AT-cut thickness-slip vibration used in a crystal oscillator mainly used in a transmission system apparatus in the communication field are formed .

従来の水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体と成った形状をしたATカットの厚み滑り振動をする水晶振動子においては、不要なスプリアス振動の発生の回避の為に、電極面の大きさに対して振動面の大きさを出来得る限り大きくとる形状とすることが一般的であった。           In the case of a crystal resonator that performs AT-cut thickness-slip vibration in which the vibration portion of the conventional quartz base plate thin plate and the reinforcement portion of the quartz base plate thick plate surrounding the quartz plate are integrated, unnecessary spurious vibration is generated. In order to avoid the occurrence, it has been common to make the vibration surface as large as possible with respect to the electrode surface.

一方、最近の傾向では通信分野の伝送系装置等を中核として、その搭載部品についての非常に急激な市場からの小型化や低背化、更に加えて軽量化や低価格化の要求があるのが実際であり、このような搭載部品のダウンサイジングの流れに伴い、水晶振動子片の寸法が1mm以下と成ることが予想される。           On the other hand, the recent trend is centered on transmission systems in the communications field, etc., and there is a very rapid demand for miniaturization and low profile from the market, as well as weight reduction and price reduction. It is expected that the size of the quartz crystal resonator piece will be 1 mm or less in accordance with the downsizing flow of such mounted parts.

特許3221609号公報Japanese Patent No. 3221609

なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。           The applicant has not found any prior art documents related to the present invention other than the prior art documents specified by the prior art document information described above by the time of filing of the present application.

しかしながら、前述の振動子の振動部の厚みは、例えば主振動周波数が150MHzの場合ではその振動部分の厚みが10μm程度といったような非常に薄い薄板であり、その為に振動子の振動部の周囲部分の僅かな機械的な歪みの影響も受けやすく、その機械的な歪みは先述の振動部の薄板の厚みを変化させて、その結果、主振動以外の多数の不要なスプリアス振動の発生を招く結果となる。           However, the thickness of the vibrating portion of the vibrator is a very thin thin plate having a thickness of about 10 μm when the main vibration frequency is 150 MHz. It is also susceptible to slight mechanical distortion of the part, and the mechanical distortion changes the thickness of the thin plate of the vibration part described above, resulting in the generation of many unnecessary spurious vibrations other than the main vibration. Result.

こういった非常に外部の影響を受けやすい微細な加工を必要とされることを鑑みて、この様な形状の水晶振動子はエッチング加工によって形成され、上述したように水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とから成る形状をしている水晶振動子が、多数個一枚のウェハー上にパターンニングされていることが一般的である。           In view of the need for such fine processing that is very susceptible to external influences, the crystal resonator having such a shape is formed by etching processing, and as described above, the vibrating portion of the quartz base plate thin plate In general, a large number of crystal resonators each having a shape including a reinforcing portion of a quartz base plate thick plate surrounding the periphery thereof are patterned on a single wafer.

一枚のウェハー上に多数個の水晶振動子がパターンニングされた各々の水晶振動子は、スクライバーなどの、実際にはダイシングブレードにより、それぞれの振動子に個割りされた後、水晶振動子容器に収容される。この水晶振動子の水晶振動子容器への収容は、従来は水晶振動子容器の内部絶縁基板上に載置された支持台の上に図3に示されるように導電性接着剤を用いて水晶振動子を片持ちの状態で支持するといった方法がとられていた。           Each crystal resonator in which a large number of crystal resonators are patterned on a single wafer is divided into each resonator by a dicing blade, such as a scriber, and then a crystal resonator container. Is housed in. Conventionally, this crystal unit is accommodated in a crystal unit container using a conductive adhesive as shown in FIG. 3 on a support base placed on the internal insulating substrate of the crystal unit container. A method of supporting the vibrator in a cantilever state has been taken.

しかしながら、ウェハー上にパターンニングされた多数個の水晶振動子をそれぞれの振動子に個割りする際、従来の引き回し電極パターンでは、個々の水晶振動子の表裏の主電極につなぐ引き回し電極をダイシングブレードで切断して、その電気的導通を確保出来なくなるおそれがあるといった問題があった。           However, when a large number of crystal resonators patterned on the wafer are divided into the respective resonators, with the conventional lead electrode pattern, the lead electrodes connected to the main electrodes on the front and back of each crystal resonator are dicing blades. There is a problem that the electrical continuity may not be ensured.

また、先述の水晶振動子のダウンサイジングの流れに伴い、水晶振動子片の寸法が1mm以下と成り、水晶振動子の取り扱い方法も更に困難なものと成って行くものと予想され、現在の水晶振動子の引き回し電極のパターンでは、水晶振動子の加工中での破損や紛失の可能性が増大するおそれがあるといった問題があった。           In addition, along with the downsizing process of the crystal unit described above, the size of the crystal unit piece is 1 mm or less, and it is expected that the handling method of the crystal unit will become more difficult. In the pattern of the lead-out electrode of the vibrator, there is a problem that the possibility of damage or loss during processing of the crystal vibrator may increase.

本発明は、以上のような技術的背景のもとで成されたものであり、従がってその目的は、作業効率が良く、信頼性の高い水晶振動子が多数個形成されたウェハーを提供することである。
The present invention has been made based on the technical background as described above. Therefore, the object of the present invention is to provide a wafer on which a large number of crystal resonators with high work efficiency and high reliability are formed. Is to provide.

上記の目的を達成するために、本発明は、一枚のウェハー上に多数個の水晶振動子が形成されており、水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体に成ったATカットの厚み滑り振動をする該水晶振動子が多数個形成されたウェハーにおいて、該水晶振動子の表裏の一方の主電極につながる引き回し電極パターンが、該水晶振動子側面において、少なくとも該引き回し電極パターン幅で該ウェハーに形成されたスリットの部分を通して該水晶振動子の他方の主面に延在することを特徴とする。
In order to achieve the above object, the present invention provides a reinforcement of a quartz base plate thick plate surrounding a vibrating portion of a quartz base plate thin plate and its periphery, in which a large number of crystal resonators are formed on a single wafer. In a wafer on which a large number of AT-cut thickness-sliding vibrations are integrally formed , the lead electrode pattern connected to one main electrode on the front and back of the crystal oscillator is A side surface is characterized in that it extends to the other main surface of the crystal resonator through a slit formed in the wafer with at least the lead electrode pattern width.

本発明の水晶振動子が多数個形成されたウェハーによれば、水晶振動子の表裏の電極パターンが確実に導通を確保して、個割りすること無く、一枚のウェハー上に多数個の水晶振動子が形成された状態で、水晶振動子の下地電極蒸着工程を一括的多数同時に行うことが出来る為に、水晶振動子の外形加工の作業効率を著しく向上し、かつ、更に小型化した場合の水晶振動子の紛失の発生を抑制し、より信頼性の高い水晶振動子を製造することが出来る。
According to the wafer on which a large number of crystal resonators of the present invention are formed , the electrode patterns on the front and back sides of the crystal resonator ensure the conduction and do not divide the crystal resonators on a single wafer. When the resonator is formed, the crystal resonator base electrode deposition process can be performed in a batch at the same time, so the work efficiency of crystal resonator outline processing is significantly improved and the size is further reduced. Therefore, it is possible to manufacture a crystal resonator with higher reliability.

また、本発明の水晶振動子が多数個形成されたウェハーによれば、スリット幅がダイシングブレードの幅よりも十分大きい為に、それぞれの水晶振動子への個割りの際に、引き回し電極パターン材の切りくずである、微細な電極材料の粒子を発生することが無く、従って先述の微細な電極材料の粒子が水晶振動子の振動面に付着して、水晶振動子の信頼性を損なうといったおそれを著しく低減することが出来る。
Further, according to the wafer in which a large number of crystal resonators of the present invention are formed , the slit width is sufficiently larger than the width of the dicing blade, and therefore, when the individual crystal resonators are divided, the lead electrode pattern material Therefore, there is a risk that the fine electrode material particles, which are chips of the above, are not generated, and therefore the fine electrode material particles described above may adhere to the vibration surface of the crystal unit and impair the reliability of the crystal unit. Can be significantly reduced.

また、本発明の水晶振動子が多数個形成されたウェハーによれば、一枚のウェハー上に多数個の水晶振動子が形成された状態で、多数個同時に一括的に取り扱うことが出来るために、水晶振動子の小片を下地電極蒸着の為に、個々にひとつずつ枠入れする工程を無くすことが出来、その結果、水晶振動子の生産効率を著しく高めて、その製造コストを低減することが出来る。
Further, according to the wafer in which a large number of crystal resonators of the present invention are formed, since a large number of crystal resonators can be handled simultaneously in a state where a large number of crystal resonators are formed on a single wafer. , It is possible to eliminate the process of individually framing small pieces of crystal units one by one for the deposition of the base electrode, and as a result, the production efficiency of crystal units can be remarkably increased and the manufacturing cost can be reduced. I can do it.

以下に図面を参照しながら本発明の実施の一形態について説明する。
なお、各図においての同一の符号は同じ対象を示すものとする。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In addition, the same code | symbol in each figure shall show the same object.

図1は本発明の水晶振動子2を上面からみた概略の上面模式図である。即ち、水晶振動子2の表裏の主電極5につながる引き回し電極パターン6が、水晶振動子側面7において、少なくとも引き回し電極パターン幅8で形成されたスリット9の部分を通して水晶振動子2の一方の主面へとつながっている。また、スリットの短辺幅11が、一枚のウェハー1上に多数個形成された水晶振動子2を個割りする際に用いられるダイシングブレード幅の1.8倍〜3倍の幅と成っているために、この図1においてそれぞれのスリット9の孔内の部分は、実際には上面からは見えないが、それぞれのスリットの水晶振動子2の側面にわたり、水晶振動子2の表裏の主電極5から延びた引き回し電極パターン6が形成されている。このように本発明の水晶振動子2によれば、それぞれの水晶振動子2への個割りの際に、ダイシングブレードの幅に対して十分大きな幅のスリット9を設けているために、パターン材の切りくずである微細な電極材料の粒子を発生することが無く、従って先の微細な電極材料の粒子が水晶振動子2の振動面3に付着して水晶振動子2の信頼性を損なうおそれが無いという効果を奏する。なお、水晶振動子2上の表裏の主電極5や引き回し電極パターン6は、蒸着やスパッタリングにより形成されるものである。また、引き回し電極パターン6は、水晶振動子2の短辺側面を介して、水晶振動子2の一方の主面につながっていても構わず、この場合においても本発明の技術的範囲に含まれることは言うまでも無い。           FIG. 1 is a schematic top view of a crystal resonator 2 according to the present invention as viewed from above. That is, the lead electrode pattern 6 connected to the main electrodes 5 on the front and back sides of the crystal resonator 2 passes through the slit 9 formed at least with the lead electrode pattern width 8 on the side surface 7 of the crystal resonator. Connected to the surface. Further, the short side width 11 of the slit is 1.8 to 3 times the width of the dicing blade used when dividing a large number of crystal resonators 2 formed on one wafer 1. Therefore, in FIG. 1, the portions in the holes of the respective slits 9 are not actually visible from the upper surface, but the main electrodes on the front and back surfaces of the crystal unit 2 are extended over the side surfaces of the crystal units 2 of the respective slits. A lead electrode pattern 6 extending from 5 is formed. As described above, according to the crystal resonator 2 of the present invention, the slit 9 having a sufficiently large width with respect to the width of the dicing blade is provided when the crystal resonator 2 is divided. Therefore, there is no possibility that particles of fine electrode material, which are chips of the above, are generated, and thus the fine particles of electrode material adhere to the vibration surface 3 of the crystal resonator 2 and impair the reliability of the crystal resonator 2. There is an effect that there is no. Note that the front and back main electrodes 5 and the lead-out electrode pattern 6 on the crystal unit 2 are formed by vapor deposition or sputtering. Further, the lead electrode pattern 6 may be connected to one main surface of the crystal resonator 2 via the short side surface of the crystal resonator 2, and this case is also included in the technical scope of the present invention. Needless to say.

図2は本発明の水晶振動子2が一枚のウェハー1上に多数個形成された様子を示す、先述のウェハー1を上面方向からみた概略の上面模式図である。本発明の水晶振動子が多数個形成されたウェハー1によれば、一枚のウェハー1上に多数個形成された水晶振動子2が表裏の電極パターンが確実に導通を確保されて一方の主面に延びるために、個割りすること無く、水晶振動子2の下地電極蒸着工程を一括的、かつ多数同時に行うことが出来る為、水晶振動子2の外形加工の作業効率を著しく向上し、かつ、更に小型化した場合の水晶振動子2の紛失の発生を抑制し、より信頼性の高い水晶振動子2を製造することが出来る。また、一枚のウェハー1上に多数個の水晶振動子2が形成された状態でプロービングによるそれぞれの水晶振動子2の特性を作業効率良く測定することが出来るといった効果も奏する。 FIG. 2 is a schematic top view of the above-described wafer 1 as viewed from above, showing a large number of crystal resonators 2 of the present invention formed on a single wafer 1. According to the wafer 1 in which a large number of crystal resonators according to the present invention are formed, the crystal resonators 2 formed in a large number on a single wafer 1 ensure that the electrode patterns on the front and back surfaces are electrically connected to each other. Since the surface electrode deposition process of the quartz crystal resonator 2 can be performed collectively and simultaneously without dividing the crystal resonator 2 because it extends to the surface, the working efficiency of the external processing of the crystal resonator 2 is remarkably improved, and Further, it is possible to suppress the occurrence of the loss of the crystal unit 2 when the size is further reduced, and to manufacture the crystal unit 2 with higher reliability. In addition, in the state where a large number of crystal resonators 2 are formed on a single wafer 1, the characteristics of each crystal resonator 2 by probing can be measured with high work efficiency.

図3は従来の水晶振動子2を、導電性接着剤を用いて片持ちの状態で水晶振動子2容器内部の底部絶縁基板上に設けられた支持台のうえに載置する模様を示す、水晶振動子2の短辺方向からみた概略の上面斜視図である。すなわち、多数個の水晶振動子2が形成された一枚のウェハー1を個割りした後、水晶振動子2容器に収納される一形態を示すものである。           FIG. 3 shows a pattern in which the conventional crystal unit 2 is placed on a support base provided on the bottom insulating substrate inside the crystal unit 2 container in a cantilevered state using a conductive adhesive. 3 is a schematic top perspective view of the crystal resonator 2 as viewed from the short side direction. FIG. That is, it shows an embodiment in which a single wafer 1 on which a large number of crystal resonators 2 are formed is divided and then stored in a crystal resonator 2 container.

図4は従来の水晶振動子2が多数個一枚のウェハー1上に形成される様子を示す、ウェハー1を上面方向からみた概略の上面模式図である。従来は、ウェハー1を個割りして、それぞれ個々の水晶片とした後に、個々にマスクなどに装填して表裏の主電極5を蒸着により形成する必要があった。           FIG. 4 is a schematic top schematic view of the wafer 1 as viewed from the top direction, showing a state in which a large number of conventional crystal resonators 2 are formed on a single wafer 1. Conventionally, it has been necessary to divide the wafer 1 into individual crystal pieces and load them individually on a mask or the like to form the front and back main electrodes 5 by vapor deposition.

本発明の水晶振動子を上面方向からみた概略の上面模式図である。1 is a schematic top view of a crystal resonator according to the present invention as viewed from above. 本発明の水晶振動子が多数個一枚のウェハー上に形成される様子を示す、ウェハーを上面方向からみた概略の上面模式図である。FIG. 3 is a schematic top view schematically showing a wafer as viewed from above, showing a state in which a large number of crystal resonators of the present invention are formed on a single wafer. 従来の水晶振動子を、導電性接着剤を用いて片持ちの状態で水晶振動子容器内部の底部絶縁基板上に設けられた支持台のうえに載置する模様を示す、水晶振動子の短辺方向からみた概略の上面斜視図である。A short crystal resonator showing a pattern in which a conventional crystal resonator is cantilevered using a conductive adhesive on a support base provided on a bottom insulating substrate inside the crystal resonator container. It is a schematic top perspective view seen from the side direction. 従来の水晶振動子が多数個一枚のウェハー上に形成される様子を示す、ウェハーを上面方向からみた概略の上面模式図である。It is the general | schematic upper surface schematic diagram which looked at a wafer from the upper surface direction, and shows a mode that many conventional crystal oscillators are formed on one wafer.

符号の説明Explanation of symbols

1 ウェハー
2 水晶振動子
3 水晶素板薄板の振動部
4 水晶素板厚板の補強部
5 表裏の主電極
6 引き回し電極パターン
7 水晶振動子側面
8 引き回し電極パターン幅
9 スリット
10 水晶振動子の一方の主面
11 スリットの短辺幅
DESCRIPTION OF SYMBOLS 1 Wafer 2 Crystal oscillator 3 Crystal base plate thin plate vibration part 4 Crystal base plate thick plate reinforcement part 5 Main electrode 6 on the front and back 6 Leading electrode pattern 7 Crystal vibrator side face 8 Leading electrode pattern width 9 Slit 10 One side of the crystal oscillator Main surface 11 Short side width of slit

Claims (1)

一枚のウェハー上に多数個の水晶振動子が形成されており、水晶素板薄板の振動部とその周囲を囲う水晶素板厚板の補強部とが一体に成ったATカットの厚み滑り振動をする該水晶振動子が多数個形成されたウェハーにおいて、

該水晶振動子の表裏の一方の主電極につながる引き回し電極パターンが、該水晶振動子側面において、少なくとも該引き回し電極パターン幅で該ウェハーに形成されたスリットの部分を通して該水晶振動子の他方の主面に延在することを特徴とする水晶振動子が多数個形成されたウェハー
Single and multiple on the wafer number of the crystal oscillator is formed, AT-cut thickness shear vibration vibration part of the quartz crystal substrate sheet and the reinforcing portion of the quartz crystal substrate slab surrounding the periphery thereof became integrated In a wafer on which a large number of the crystal resonators are formed ,

Routing electrode pattern connected to one main electrode of the front and back of the quartz oscillator, in the crystal oscillator side, mainly the other of the quartz oscillator through a portion of the slit formed in the wafer at least the lead-out electrode pattern width wafer said crystal resonator is a large number formed, characterized in that extending surface.
JP2005133149A 2005-04-28 2005-04-28 Wafer with many crystal units formed Expired - Fee Related JP4549226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133149A JP4549226B2 (en) 2005-04-28 2005-04-28 Wafer with many crystal units formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133149A JP4549226B2 (en) 2005-04-28 2005-04-28 Wafer with many crystal units formed

Publications (2)

Publication Number Publication Date
JP2006311342A JP2006311342A (en) 2006-11-09
JP4549226B2 true JP4549226B2 (en) 2010-09-22

Family

ID=37477672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133149A Expired - Fee Related JP4549226B2 (en) 2005-04-28 2005-04-28 Wafer with many crystal units formed

Country Status (1)

Country Link
JP (1) JP4549226B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955635A (en) * 1995-08-11 1997-02-25 Toyo Commun Equip Co Ltd Method for slitting piezoelectric devices
JP2002325022A (en) * 2001-04-26 2002-11-08 Seiko Epson Corp Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator
JP2003198300A (en) * 2001-12-27 2003-07-11 Seiko Epson Corp Manufacturing method of piezoelectric vibrating reed, mask for forming electrodes of piezoelectric vibrating reed, piezoelectric vibrating reed, piezoelectric vibrator, and piezoelectric oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955635A (en) * 1995-08-11 1997-02-25 Toyo Commun Equip Co Ltd Method for slitting piezoelectric devices
JP2002325022A (en) * 2001-04-26 2002-11-08 Seiko Epson Corp Piezoelectric vibrating reed and method of manufacturing piezoelectric vibrator
JP2003198300A (en) * 2001-12-27 2003-07-11 Seiko Epson Corp Manufacturing method of piezoelectric vibrating reed, mask for forming electrodes of piezoelectric vibrating reed, piezoelectric vibrating reed, piezoelectric vibrator, and piezoelectric oscillator

Also Published As

Publication number Publication date
JP2006311342A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
KR100712758B1 (en) Piezoelectric resonator element and piezoelectric device
JP3995987B2 (en) Manufacturing method of crystal unit
JP2005094410A5 (en)
US20130241358A1 (en) Quartz crystal device and method for fabricating the same
US20130033153A1 (en) Piezoelectric device and method for manufacturing the same
KR20170022976A (en) A new type of quartz crystal blank with double convex structure and its processing technology
JP6112505B2 (en) Method for manufacturing piezoelectric wafer and piezoelectric vibration element
JP2007318350A (en) Piezoelectric vibrating piece and manufacturing method thereof
JP2002374146A (en) Piezoelectric vibrating reed and piezoelectric device
JP2008206000A (en) Piezoelectric vibrating piece, piezoelectric device, and method of manufacturing piezoelectric vibrating piece
JP5251369B2 (en) Method for manufacturing piezoelectric vibrating piece
JP4549226B2 (en) Wafer with many crystal units formed
JP2010109526A (en) Crystal vibration piece, and method of manufacturing the same
JP4472381B2 (en) Manufacturing method of crystal unit
KR101892651B1 (en) One type of quartz crystal blank with single convex structure
JP4441258B2 (en) Crystal oscillator
JP4825952B2 (en) Piezoelectric wafer etching method and piezoelectric device
JP5877746B2 (en) Piezoelectric vibrating piece and method for manufacturing the same
JP4507551B2 (en) Quartz crystal resonator element, method for manufacturing the same, and surface mount crystal device using the crystal resonator element
JP6927768B2 (en) Crystal device
KR20170029232A (en) Piezoelectric vibration piece, and piezoelectric device
JP2016174328A (en) Wafer manufacturing method and wafer
JP6901378B2 (en) Tuning fork type crystal element and crystal device using the tuning fork type crystal element
JP6904851B2 (en) Tuning fork type crystal element and crystal device using the tuning fork type crystal element
JP6525789B2 (en) Quartz crystal vibrator assembly wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4549226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees