JP4544600B2 - Drawn composite fiber - Google Patents
Drawn composite fiber Download PDFInfo
- Publication number
- JP4544600B2 JP4544600B2 JP2000380187A JP2000380187A JP4544600B2 JP 4544600 B2 JP4544600 B2 JP 4544600B2 JP 2000380187 A JP2000380187 A JP 2000380187A JP 2000380187 A JP2000380187 A JP 2000380187A JP 4544600 B2 JP4544600 B2 JP 4544600B2
- Authority
- JP
- Japan
- Prior art keywords
- drawn
- composite fiber
- stretching
- composite
- stretched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims description 145
- 239000000835 fiber Substances 0.000 title claims description 109
- 239000000463 material Substances 0.000 claims description 42
- 239000011162 core material Substances 0.000 claims description 39
- 229920006395 saturated elastomer Polymers 0.000 claims description 22
- 229920000642 polymer Polymers 0.000 claims description 17
- 229920001155 polypropylene Polymers 0.000 claims description 17
- 229920000098 polyolefin Polymers 0.000 claims description 10
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 8
- 239000004743 Polypropylene Substances 0.000 claims description 7
- -1 polypropylene Polymers 0.000 claims description 7
- 229920001903 high density polyethylene Polymers 0.000 claims description 5
- 239000004700 high-density polyethylene Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 77
- 238000000034 method Methods 0.000 description 37
- 230000000704 physical effect Effects 0.000 description 34
- 238000004519 manufacturing process Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 239000004745 nonwoven fabric Substances 0.000 description 9
- 238000009987 spinning Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000004711 α-olefin Substances 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012681 fiber drawing Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229920005629 polypropylene homopolymer Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 229920001384 propylene homopolymer Polymers 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 239000012209 synthetic fiber Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229920006240 drawn fiber Polymers 0.000 description 2
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Multicomponent Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、延伸複合繊維に関し、さらに詳しくは、鞘芯構造の複合型であって、高強度を有し、かつ工業的に安価に生産性よく製造することができ、乾式不織布や、電池用セパレータ等の湿式不織布などの用途に好適な延伸複合繊維に関するものである。
【0002】
【従来の技術】
合成繊維、樹脂フィルム、樹脂シート等の結晶性高分子製品の物性は、その内部構造(結晶性高分子の微細構造)の影響を強く受け、当該内部構造は延伸や熱処理によって比較的容易に変化する。そして、未延伸物よりも延伸物の方が実用上好ましい物性を有していることが多く、より高倍率で延伸した方が強度、ヤング率等の物性に優れた延伸物が得られる。このため、結晶性高分子製品、特に合成繊維、樹脂フィルム、樹脂シート等を得る場合には、通常、延伸処理が施される。また、延伸処理後に必要に応じて熱処理が施される。
【0003】
結晶性高分子製品を得る際の延伸方法としては種々の方法が知られているが、例えば延伸合成繊維を得る際には、金属加熱ロールや金属加熱板等を用いての接触加熱延伸、あるいは温水、常圧〜0.2MPa程度の水蒸気、遠赤外線等を用いての非接触加熱延伸等の延伸方法が適用されている。
【0004】
ところで、不織布などにおいては、鞘芯構造を有する複合繊維、例えばポリプロピレン樹脂を芯材とし、ポリエチレン樹脂を鞘材とする鞘芯複合繊維を使用することが行われている。そして、この鞘芯複合繊維は、強度を高めるために、通常前記の各方法による延伸処理が施されている。
【0005】
この場合、前記延伸方法では、複合繊維における鞘材の融点未満で、かつできるだけ高い温度下、低変形速度で高倍率に延伸するほど、その延伸繊維の強度が向上するが、高変形速度で高倍率に延伸しようとすると、容易に延伸切れが生じる。このため、工業的に生産し得る延伸複合繊維の繊維強度、すなわち50m/分以上の速度で生産し得る延伸複合繊維の繊維強度は、一般に3.97cN/dTex(センチニュートン/デシテックス)程度で、伸度は30%以上、ヤング率は43.1cN/dTex程度である。
【0006】
上述したように、結晶性高分子の微細構造の変化は延伸条件に大きく左右され、その結果として結晶性高分子製品の物性もまた延伸条件に大きく左右されるわけであるが、無理に延伸しようとすると延伸切れ等の不具合が生じる。このため、従来の延伸方法を利用して工業的に製造することのできる結晶性高分子からなる延伸繊維の物性値には、その材質に応じた上限がある。しかしながら、結晶性高分子製品は様々な分野において利用されており、その需要の増加に伴って、該結晶性高分子製品については、物性の向上が常に求められていた。
【0007】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、鞘芯構造の複合型であって、高強度を有し、かつ工業的に安価に生産性よく製造することができ、乾式不織布や、電池用セパレータ等の湿式不織布などの用途に好適な延伸複合繊維を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、結晶性プロピレン系重合体を芯材とし、他のオレフィン系重合体を鞘材とする溶融紡糸された複合未延伸糸を延伸処理、好ましくは加圧飽和水蒸気中で延伸処理してなる特定の物性を有する延伸複合繊維が、その目的に適合し得ることを見出し、この知見に基づいて本発明を完成するに至った。
【0009】
すなわち、本発明は、結晶性プロピレン系重合体を芯材とし、かつ上記結晶性プロピレン系重合体以外のオレフィン系重合体を鞘材とする溶融紡糸された複合未延伸糸を延伸処理してなるものであって、前記芯材を構成する結晶性ポリプロピレン系重合体の重量平均分子量/数平均分子量が6以下であり、破断強度が5.74cN/dTexより高く、伸度が30%以下で、かつヤング率が43.1cN/dTex以上であることを特徴とする延伸複合繊維、好ましくは前記複合未延伸糸を、100℃以上で、かつ鞘材の融点未満の温度を有する加圧飽和水蒸気中で延伸処理して得られた延伸複合繊維を提供するものである。
【0010】
【発明の実施の形態】
本発明の延伸複合繊維は、結晶性プロピレン系重合体を芯材とし、かつ上記結晶性プロピレン系重合体以外のオレフィン系重合体を鞘材とする溶融紡糸された複合未延伸糸を延伸処理することにより、得られたものであって、延伸処理後に特に捲縮付与工程を経ることなく非捲縮繊維としたものが好ましい。
【0011】
上記複合未延伸糸における芯材を構成する結晶性プロピレン系重合体としては、アイソタクチックポリプロピレン系樹脂が好ましく用いられる。中でもアイソタクチックペンタッド分率(IPF)が、好ましくは85%以上、より好ましくは90%以上のものが有利である。また、分子量分布の指標であるQ値(重量平均分子量/数平均分子量Mw/Mn比)は6以下、メルトインデックスMI(温度230℃、荷重2.16kg)は3〜50g/10分の範囲が好ましい。上記IPFが85%未満では立体規則性が不充分で結晶性が低く、得られる延伸繊維における強度などの物性に劣る。
【0012】
なお、アイソタクチックペンタッド分率(IPF)(一般にmmmm分率ともいわれる)は、任意の連続する5つのプロピレン単位で構成される炭素−炭素結合による主鎖に対して、側鎖である5つのメチル基がいずれも同方向に位置する立体構造の割合を示すものであって、同位体炭素核磁気共鳴スペクトル(13C−NMR)にけるPmmmm(プロピレン単位が5個連続してアイソタクチック結合した部位における第3単位目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)から、式
IPF(%)=(Pmmmm/Pw)×100
によって求めることができる。
【0013】
また、このポリプロピレン系未延伸繊維に用いられるポリプロピレン系樹脂は、プロピレンの単独重合体であってもよいし、プロピレンとα−オレフィン(例えばエチレン、ブテン−1など)との共重合体であってもよい。
すなわち、結晶性プロピレン系重合体としては、例えば結晶性を有するアイソタクチックプロピレン単独重合体、エチレン単位の含有量の少ないエチレン−プロピレンランダム共重合体、プロピレン単独重合体からなるホモ部とエチレン単位の含有量の比較的多いエチレン−プロピレンランダム共重合体からなる共重合部とから構成されたプロピレンブロック共重合体、さらに前記プロピレンブロック共重合体における各ホモ部または共重合部が、さらにブテン−1などのα−オレフィンを共重合したものからなる結晶性プロピレン−エチレン−α−オレフィン共重合体などが挙げられる。
【0014】
このような結晶性プロピレン系重合体は、チーグラー・ナッタ型触媒、あるいはメタロセン系触媒などを用いて、プロピレンを単独重合又はプロピレンと他のα−オレフィンとを共重合させることにより、得ることができる。
【0015】
一方、該複合未延伸糸における鞘材を構成する上記結晶性プロピレン系重合体以外のオレフィン系重合体としては、例えば高密度、中密度、低密度ポリエチレンや直鎖状低密度ポリエチレンなどのエチレン系重合体、プロピレンと他のα−オレフィンとの共重合体、具体的にはプロピレン−ブテン−1ランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体、あるいは軟質ポリプロピレンなどの非結晶性プロピレン系重合体、ポリ4−メチルペンテン−1などを挙げることができる。これらのオレフィン系重合体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよいが、これらの中で、特に強度の点から高密度ポリエチレンが好適である。
【0016】
この鞘成分として用いられるオレフィン系重合体のメルトインデックスMI(温度190℃、荷重2.16kg)は、1〜40g/10分の範囲が好ましい。
また、この複合未延伸糸における鞘材と芯材との比率としては特に制限はないが、断面積比において70:30ないし40:60の範囲が好ましくは、強度を上げる目的であれば、芯材の比率を高めるのが好ましい。
【0017】
本発明で用いる複合未延伸糸は、前記の芯材とそれを被覆する鞘材とから構成されたものであり、その製造方法については特に制限はなく、従来、鞘芯複合型繊維の製造において使用されている公知の方法を用いることができる。例えば、前記の鞘材および芯材を用い、押出し機2台と複合型繊維用ノズルを備えた複合紡糸装置により、紡糸温度200〜260℃程度で溶融紡糸することにより、鞘心構造の複合未延伸糸が得られる。
【0018】
本発明の延伸複合繊維は、前記の鞘芯構造の複合延伸糸を延伸処理してなるものであり、その物性としては、まず、破断強度は、5.74cN/dTex(約6.5g/デニール)より高く、好ましくは6.0cN/dTex以上、より好ましくは6.3cN/dTex以上である。その上限については特に制限はないが、一般的には50cN/dTexである。
【0019】
伸度は30%以下であり、またヤング率は、43.1cN/dTex(約400kg/mm2)以上、好ましくは44.2cN/dTex以上、より好ましくは48.5cN/dTex以上である。その上限については特に制限はないが、一般的には110cN/dTex以下である。
【0020】
このような物性を有する本発明の延伸複合繊維は、不織布にした場合には、強度、ヤング率が高いために、金属などの鋭利な硬質部材に対する耐貫通性に優れるなどの特徴がある。
【0021】
このように、本発明の延伸複合繊維は、優れた物性を有し、その延伸処理方法としては、前述の物性を有する延伸複合繊維が得られる方法であればよく、特に制限はないが、以下に示すように、加圧飽和水蒸気中で前述の鞘芯構造の複合未延伸糸を延伸処理することにより、所望の物性を有する延伸複合繊維を効果的に得ることができる。
【0022】
本発明においては、加圧飽和水蒸気中での延伸処理を行う前に、所望により予備延伸処理を行ってもよい。
この予備延伸工程においては、続いて行われる本延伸工程における延伸温度よりも低い温度で複合未延伸糸の延伸処理が行われる。この予備延伸処理方法としては、例えば一般的に知られている金属加熱ロールや金属加熱板などを用いた接触加熱延伸、あるいは温水、常圧〜0.2MPa程度の水蒸気や熱風などの加熱流体、遠赤外線などの熱線を用いた非接触加熱延伸などの方法を適用することができる。さらに、本延伸工程で使用する高圧蒸気延伸槽と同じシステムにより、本延伸工程における延伸温度よりも低い温度で予備延伸処理することも可能である。
【0023】
この予備延伸工程における延伸倍率としては、本延伸処理を含めた全延伸倍率の25〜90%の範囲が適しており、予備延伸装置のシステム、延伸状態などによって、延伸条件を適宜選択すればよい。特に、予備延伸処理を1段で行ったのち、本延伸処理を行う2段階延伸の場合、予備延伸倍率は、全延伸倍率の25〜85%の範囲が好ましく、さらに35〜80%の範囲が好ましい。また、該予備延伸処理は1段階で行ってもよいし、2段以上の多段階で行なってもよく、多段階で行う場合には、延伸温度を一定とし、予備延伸倍率を多段階にする方法や、延伸温度に勾配を与えながら、延伸倍率を多段階にする方法を用いることができる。
【0024】
一方、本延伸工程は、複合未延伸糸または前述の予備延伸工程で得られた複合未延伸糸の予備延伸処理物を、100℃以上で、かつ鞘材の融点未満の温度を有する加圧飽和水蒸気により直接加熱して、本延伸処理する工程である。
【0025】
ここで、本延伸処理するには、例えば下記の装置を用い、延伸処理する方法を採用することができる。
すなわち、延伸装置として、複合未延伸糸またはその予備延伸処理物を導入するための被本延伸処理物導入孔と延伸複合繊維を引き出すための延伸複合繊維引き出し孔を有する気密性容器からなり、かつ絶対圧が好ましくは1.5MPa以上の加圧飽和水蒸気を充填した延伸槽が用いられる。この延伸槽においては、被本延伸処理物導入孔および延伸複合繊維引き出し孔には、それぞれ延伸槽内の加圧水蒸気が洩出するのを防止するために、加圧水を利用した漏出防止機構が設けられている。
【0026】
まず、複合未延伸糸またはその予備延伸処理物を、被本延伸処理物導入孔に設けられた漏出防止機構における加圧水中に導き、被本延伸処理物の表面に水分を付着させたのち、これを被本延伸処理物導入孔から延伸槽内に導き、本延伸処理する。この際、被本延伸処理物が水中を通過するのに要する時間は、概ね0.1秒以上とするのが有利である。
本延伸処理は1段階で行ってもよいし、2段以上の多段で行ってもよい。
【0027】
延伸複合繊維は、延伸複合繊維引き出し孔から引き出されて、該引き出し孔に設けられた漏出防止機構における加圧水中に導かれ、速やかに冷却される。この際、延伸複合繊維が水中を通過するのに要する時間は、概ね0.2秒以上とするのが有利である。
【0028】
上記本延伸処理においては、通常110℃以上の加圧飽和水蒸気が用いられる。この温度が110℃未満では高倍率延伸および高速延伸を行うことが困難となり、実用的でない。また、加圧飽和水蒸気の温度は、鞘材のオレフィン系重合体が軟化しない範囲であれば、高い方が基本的には好ましいが、あまり高すぎると高圧を必要とし延伸装置の設備費が高くつき、経済的に不利となる。延伸倍率、延伸速度および経済性などを考慮すると、この加圧飽和水蒸気の好ましい温度は115℃〜140℃の範囲であり、特に120〜135℃の温度になるような加圧飽和水蒸気が好適である。
【0029】
本延伸倍率は、複合未延伸糸またはその予備延伸処理物の繊度に応じて適宜選定されるが、通常全延伸倍率が4.0〜15.0倍、好ましくは6.0〜10.0倍になるように選定される。また、本延伸速度は、一般に40〜200m/分程度である。
【0030】
前記本延伸処理に用いられる延伸装置の具体例としては、以下に示す構造のものを挙げることができる。
すなわち、複合未延伸糸またはその予備延伸処理物を導入するための被本延伸処理物導入孔と延伸複合繊維を引き出すための延伸複合繊維引き出し孔を有する気密性容器からなり、かつ延伸媒体として加圧飽和水蒸気が充填されている延伸槽部と、当該延伸槽部における上記被本延伸処理物導入孔側に密接配置されている第1の加圧水槽部と、前記の延伸槽部における延伸複合繊維引き出し孔側に密接配置されている第2の加圧水槽部と、前記第1の加圧水槽部の外側から当該第1の加圧水槽部内、前記の被本延伸処理物導入孔、前記の延伸槽部内、前記の延伸複合繊維引き出し孔および前記第2の加圧水槽部内を経由して前記第2の加圧水槽の外へ延伸複合繊維を導くことができるように前記第1の加圧水槽部および前記第2の加圧水槽部それぞれに形成されている透孔と、前記第1の加圧水槽部内に被本延伸処理物を送り込むための被本延伸処理物送出機構と、この送出機構による被本延伸処理物の送り込み速度よりも高速で前記第2の加圧水槽部から延伸複合繊維を引き出すための延伸複合繊維引き出し機構とを有している延伸装置が挙げられる。
【0031】
上記の延伸槽部は、所望の絶対圧を有する加圧飽和水蒸気を延伸媒体として使用し得るだけの気密性および強度を有し、かつ、所望の大きさ(長さ)を確保できるものであればよい。
【0032】
また、上記第1の加圧水槽部は、延伸槽部に形成されている被本延伸処理物導入孔から加圧飽和水蒸気が延伸槽部の外に漏出するのを防止するためのものであると同時に、被本備延伸処理物を加圧水中に導いて当該被本延伸処理物の表面に水分を付着させるためのものであり、当該第1の加圧水槽部には延伸槽部内の加圧飽和水蒸気と同等乃至は僅かに高い絶対圧を有する加圧水が貯留される。一方、上記第2の加圧水槽部は、前記の延伸複合繊維引き出し孔から加圧飽和水蒸気が延伸槽部の外に漏出するのを防止するためのものであると同時に、延伸複合繊維引き出し孔から引き出された延伸複合繊維を加圧水中に導いて冷却するためのものであり、当該第2の加圧水槽部内にも延伸槽部内の加圧飽和水蒸気と同等乃至は僅かに高い絶対圧を有する加圧水が貯留される。これら第1の加圧水槽部および第2の加圧水槽部は、それぞれ延伸槽部の外側に配置されている。
【0033】
延伸槽部、第1の加圧水槽部および第2の加圧水槽部は、それぞれ別個に形成されたものをこれらが所定の関係となるように密接配置したものであってもよいし、単一の容器または筒体を所定間隔で仕切ることによって形成されたものであってもよい。また、延伸槽部と第1の加圧水槽部とは、これらの間の隔壁を共有するものであってもよい。同様に、延伸槽部と第2の加圧水槽部とは、これらの間の隔壁を共有するものであってもよい。
【0034】
被本延伸処理物は、第1の加圧水槽部の外側から当該第1の加圧水槽部内を経由して上記の被本延伸処理物導入孔から延伸槽部内に入る。したがって、第1の加圧水槽部の容器壁の所望箇所には、被本延伸処理物を第1の加圧水槽部内に引き込むための透孔(以下「透孔A」という。)および被本延伸処理物を第1の加圧水槽部から引き出すための透孔(以下「透孔B」という。)が設けられている。
【0035】
同様に、延伸槽部内に送り込まれた被本延伸処理物が延伸されたことによって生じた延伸複合繊維は、延伸槽部に設けられている上記の延伸複合繊維引き出し孔から第2の加圧水槽部内を経由して当該第2の加圧水槽部の外へ引き出されなければならないので、第2の加圧水槽部の容器壁の所望箇所には、前記の延伸複合繊維を延伸槽部内から第2の加圧水槽部内に引き込むための透孔(以下「透孔C」という。)および前記の延伸複合繊維を第2の加圧水槽部内から引き出すための透孔(以下「透孔D」という。)が設けられている。
【0036】
上記の被本延伸処理物導入孔、延伸複合繊維引き出し孔、透孔A,B,C,D、特に透孔B,Cは、これらの孔を被本延伸処理物または延伸複合繊維が通過する際に当該被本延伸処理物または延伸複合繊維と容器壁との接触が起こらないように形成されていると共に配置されていることが好ましく、また、これらの孔から延伸槽部内の加圧飽和水蒸気ができるだけ噴出しないように設計されていることが好ましい。
【0037】
上記の延伸装置を構成している被本延伸処理物送出機構は、被本延伸処理物を第1の加圧水槽部内へ一定の速度で送り込むためのものであり、この送出機構は第1の加圧水槽部の外側に設けられている。また、延伸複合繊維引き出し機構は、第2の加圧水槽部を経由してきた延伸複合繊維を被本延伸処理物送出機構による被本延伸処理物の送り込み速度より高速で第2の加圧水槽部から一定の速度の下に引き出すためのものであり、これによって、主として延伸槽部内で被本延伸処理物が延伸される。当該延伸複合繊維引き出し機構は第2の加圧水槽部の外側に設けられている。
【0038】
被本延伸処理物送出機構による被本延伸処理物の送り込み速度と延伸複合繊維引き出し機構による延伸複合繊維の引き出し速度とは、所望の生産速度の下に所定の延伸倍率の延伸複合繊維が得られるように適宜選択される。被本延伸処理物送出機構および本延伸処理物引き出し機構としては、従来延伸処理に使用されている各種のローラを用いることができる。
【0039】
なお、上述した延伸装置を構成している第1の加圧水槽部に形成されている前記の透孔Aから当該第1の加圧水槽部内の加圧水が漏出することを抑制するうえからは、透孔Aを水没させることによって当該透孔Aからの漏水を緩和させる緩衝水槽部を第1の加圧水槽部の外側に設けることが好ましい。同様に、第2の加圧水槽部に形成されている前記の透孔Dから当該第2の加圧水槽部内の加圧水が漏出することを抑制するうえからは、透孔Dを水没させることによって当該透孔Dからの漏水を緩和させる緩衝水槽部を第2の加圧水槽部の外側に設けることが好ましい。
【0040】
本発明においては、予備延伸槽を設ける場合には、この予備延伸槽と本延伸槽は、一般に、紡糸工程と延伸工程が別々に設けられた製造方法(アウトライン方式)、紡糸工程と延伸工程が連続して設けられた製造方法(インライン方式)にかかわらず、連続して延伸設備ラインに配置されるのが有利である。
【0041】
このようにして、複合未延伸糸またはその予備延伸処理物を、加圧飽和水蒸気中で延伸処理することにより、前述の物性を有する鞘芯構造の延伸複合繊維を得ることができる。
上記延伸複合繊維は、フィラメント、ショートカットチョップのいずれの繊維形態を有するものであってもよい。
【0042】
本発明の延伸複合繊維は様々な用途に用いることができる。具体的には、繊維形態をフィラメントとした場合、例えば織布タイプのフィルター(ろ材)、筒体ケースに繊維を直接ワインディングしたカートリッジタイプのフィルター(ろ材)、編み加工したネット(建築用)、織り加工したシート(建築用シート基材)、ロープ、ベルト等の材料繊維として利用することができる。また、繊維形態をショートカットチョップとした場合、例えば自動車タイヤ用補強繊維、コンクリート用補強繊維、抄紙不織布用繊維等として利用することができる。
【0043】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、未延伸繊維および延伸繊維の物性は、下記の方法により測定した。
(1)単糸の繊度(dTex)
JIS L 1013の重量法により測定した。
(2)繊維強度、ヤング率、伸度
JIS L 1013により、つかみ間隔200mm、引張速度200mm/分の定速伸長形条件で引張破断試験を行って測定した。
(3)熱収縮率
JIS L1013の熱収縮率(B法)に基づき、温度120℃のオーブン乾燥機を用い、30分間熱処理して測定した。
【0044】
実施例1
(1)複合未延伸糸の作製
鞘材として、高密度ポリエチレン「J310」[旭化成工業(株)製、MI=20g/10分、Q値=6.7]を、芯材としてホモポリプロピレン「ZS1337」[グランドポリマー(株)製、MI=27g/10分、Q値=5.2]を用い、一軸押出機2台と、径0.4mmのホール300個を有する複合型繊維用ノズルとを備えた複合紡糸装置により、シリンダー温度250℃、ノズル温度255℃にて、巻き取り速度500m/分の条件で紡糸し、鞘材と芯材との断面積比が50:50で、単糸繊度が5.56dTexの複合未延伸糸マルチフィラメントを作製した。
【0045】
(2)延伸複合繊維の作製
予備延伸槽(1段)および本延伸槽が連続して配置された延伸装置を用意した。
本延伸槽は、中央部に透孔を有するシリコーンゴムパッキンを筒体の両端および内部(それぞれ4箇所)に配置することによって延伸槽部(全長12.5m)、第1の加圧水槽部および第2の加圧水槽部が形成されており、第1の加圧水槽の外側に予備延伸糸送出手段としてのローラが、また第2の加圧水槽の外側に繊維引き出し手段としてのローラがそれぞれ配設されている。
【0046】
本延伸槽においては、温度123℃の加圧飽和水蒸気を延伸槽部に充填し、当該延伸槽部の内圧よりわずかに高い圧力の高圧水を第1の加圧水槽部および第2の加圧水槽部にそれぞれ貯留させた。まず、上記(1)で得た複合未延伸糸マルチフィラメントを、予備延伸槽にて、導入ローラ(G1ローラ)速度15.0m/分、予備延伸糸送出しローラ(G2ローラ)速度45.0m/分の条件で、80℃の熱風により予備延伸処理したのち、本延伸槽にて、延伸繊維引出しローラ(G3ローラ)速度105m/分の条件で本延伸処理を行い、複合延伸繊維を作製した。原料の物性および延伸条件などを表1に示すと共に、延伸複合繊維の物性を表3に示す。
【0047】
比較例1
(1)複合未延伸糸の作製
実施例1(1)と同様にして、鞘材と芯材との断面積比が50:50で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントを90℃の温水延伸槽にて、導入ローラ(G1ローラ)速度11.1m/分、送出しローラ(G2ローラ)速度50.0m/分の条件にて一段延伸処理を行い、延伸複合繊維を作製した。
原料の物性および延伸条件などを表1に示すと共に、延伸複合繊維の物性を表3に示す。
【0048】
比較例2
(1)複合未延伸糸の作製
実施例1(1)と同様にして、鞘材と芯材との断面積比が50:50で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントを90℃の金属加熱ロールにて、導入ローラ(G1ローラ)速度11.1m/分、送出しローラ(G2ローラ)速度50.0m/分の条件にて一段延伸処理を行い、延伸複合繊維を作製した。
原料の物性および延伸条件などを表1に示すと共に、延伸複合繊維の物性を表3に示す。
【0049】
実施例2
(1)複合未延伸糸の作製
鞘材として、高密度ポリエチレン「J310」[旭化成工業(株)製、MI=20g/10分、Q値=6.7]を、芯材としてホモポリプロピレン「SA2D」[日本ポリケム(株)製、MI=14g/10分、Q値=3.2]を用い、一軸押出機2台と、径0.6mmのホール60個を有する複合型繊維用ノズルとを備えた複合紡糸装置により、シリンダー温度250℃、ノズル温度255℃にて、巻き取り速度1000m/分の条件で紡糸し、鞘材と芯材との断面積比が30:70で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
【0050】
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントについて、実施例1(2)と同じ延伸装置を用いたが、予備延伸は行わず、130℃の加圧飽和水蒸気による一段延伸処理を、G1ローラ速度15.0m/分、G3ローラ速度105m/分の条件で行い、延伸複合繊維を作製した。原料の物性および延伸条件などを表1に示すと共に、延伸複合繊維の物性を表3に示す。
【0051】
比較例3
(1)複合未延伸糸の作製
実施例2(1)と同様にして、鞘材と芯材との断面積比が30:70で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントを90℃の温水延伸槽にて、導入ローラ(G1ローラ)速度12.5m/分、送出しローラ(G2ローラ)速度50.0m/分の条件にて一段延伸処理を行い、延伸複合繊維を作製した。
原料の物性および延伸条件などを表1に示すと共に、延伸複合繊維の物性を表3に示す。
【0052】
比較例4
(1)複合未延伸糸の作製
実施例2(1)と同様にして、鞘材と芯材との断面積比が30:70で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントを90℃の金属加熱ロールにて、導入ローラ(G1ローラ)速度12.5m/分、送出しローラ(G2ローラ)速度50.0m/分の条件にて一段延伸処理を行い、延伸複合繊維を作製した。
原料の物性および延伸条件などを表2に示すと共に、延伸複合繊維の物性を表3に示す。
【0053】
実施例3
(1)複合未延伸糸の作製
実施例2(1)と同様にして、鞘材と芯材との断面積比が30:70で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントについて、実施例1(2)と同じ延伸装置を用いたが、予備延伸は行わず、125℃の加圧飽和水蒸気による一段延伸処理を、G1ローラ速度15.0m/分、G3ローラ速度90.0m/分の条件で行い、延伸複合繊維を作製した。
原料の物性および延伸条件などを表2に示すと共に、延伸複合繊維の物性を表3に示す。
【0054】
実施例4
(1)複合未延伸糸の作製
実施例2(1)と同様にして、鞘材と芯材との断面積比が50:50で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントについて、実施例1(2)と同じ延伸装置を用いたが、予備延伸は行わず、127℃の加圧飽和水蒸気による一段延伸処理を、G1ローラ速度15.0m/分、G3ローラ速度97.5m/分の条件で行い、延伸複合繊維を作製した。原料の物性および延伸条件などを表2に示すと共に、延伸複合繊維の物性を表3に示す。
【0055】
実施例5
(1)複合未延伸糸の作製
実施例2(1)と同様にして、鞘材と芯材との断面積比が40:60で、単糸繊度が8.89dTexの複合未延伸糸マルチフィラメントを作製した。
(2)延伸複合繊維の作製
上記(1)で得た複合未延伸糸マルチフィラメントについて、実施例1(2)と同じ延伸装置を用いたが、予備延伸は行わず、130℃の加圧飽和水蒸気による一段延伸処理を、G1ローラ速度15.0m/分、G3ローラ速度102m/分の条件で行い、延伸複合繊維を作製した。
原料の物性および延伸条件などを表2に示すと共に、延伸複合繊維の物性を表3に示す。
【0056】
実施例6
(1)複合未延伸糸の作製
鞘材として、高密度ポリエチレン「J310」[旭化成工業(株)製、MI=20g/10分、Q値=6.7]を、芯材としてホモポリプロピレン「2005GP」[出光石油化学(株)製、MI=22g/10分、Q値=3.8]を用い、一軸押出機2台と、径0.4mmのホール1200個を有する複合型繊維用ノズルとを備えた複合紡糸装置により、シリンダー温度240℃、ノズル温度240℃にて、巻き取り速度350m/分の条件で紡糸し、鞘材と芯材との断面積比が30:70で、単糸繊度が17.8dTexの複合未延伸糸マルチフィラメントを作製した。
【0057】
(2)延伸複合繊維の作製
実施例1(2)と同じ延伸装置を用い、上記(1)で得た複合未延伸糸マルチフィラメントを、まず予備延伸槽にて、G1ローラ速度8.0m/分、G2ローラ速度36.0m/分の条件で、90℃の熱水により予備延伸処理したのち、本延伸槽にて、G3ローラ速度52.0m/分の条件で本延伸処理を行い、複合延伸繊維を作製した。原料の物性および延伸条件などを表2に示すと共に、延伸複合繊維の物性を表3に示す。
【0058】
【表1】
【0059】
【表2】
【0060】
【表3】
【0061】
【発明の効果】
本発明の延伸複合繊維は、結晶性プロピレン系重合体を芯材とし、他のオレフィン系重合体を鞘材とする、破断強度およびヤング率の高い高強度化された鞘芯構造を有する延伸複合繊維であり、加圧飽和水蒸気中で、鞘芯構造の複合未延伸糸を延伸処理することにより、得ることができる。なお、このものは、破断強度が6.6cN/dTex以上であれば、繊維構造として、偏光下、クロスニコルの状態で観察した時に竹の節構造を発現する場合があり、この場合は、繊維外周部は明部として、繊維内部は暗部としてそれぞれ視認され、前記暗部を横断するようにして繊維径方向に伸びている線状の明部が断続的に視認される。
上記延伸複合繊維は、乾式不織布や電池用セパレータ等の湿式不織布などの用途に好適に用いられる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stretched composite fiber, and more particularly, a composite type with a sheath-core structure, which has high strength, can be manufactured industrially at low cost with high productivity, and is used for dry nonwoven fabrics and batteries. The present invention relates to a stretched composite fiber suitable for applications such as a wet nonwoven fabric such as a separator.
[0002]
[Prior art]
The physical properties of crystalline polymer products such as synthetic fibers, resin films, and resin sheets are strongly influenced by the internal structure (fine structure of crystalline polymer), and the internal structure changes relatively easily by stretching and heat treatment. To do. The stretched product often has practically preferred properties than the unstretched product, and a stretched product having excellent physical properties such as strength and Young's modulus can be obtained by stretching at a higher magnification. For this reason, when obtaining crystalline polymer products, especially synthetic fiber, a resin film, a resin sheet, etc., a drawing process is usually given. Further, heat treatment is performed as necessary after the stretching treatment.
[0003]
Various methods are known as stretching methods for obtaining a crystalline polymer product. For example, when obtaining a stretched synthetic fiber, contact heating stretching using a metal heating roll, a metal heating plate, or the like, or Stretching methods such as non-contact heating stretching using warm water, steam at atmospheric pressure to about 0.2 MPa, far infrared rays, and the like are applied.
[0004]
By the way, in a nonwoven fabric etc., using the composite fiber which has a sheath core structure, for example, the sheath core composite fiber which uses a polypropylene resin as a core material and uses a polyethylene resin as a sheath material is performed. And in order to raise intensity | strength, this sheath-core composite fiber is normally extended | stretched by each said method.
[0005]
In this case, in the stretching method, the strength of the stretched fiber is improved as it is stretched at a high deformation ratio at a low deformation rate at a temperature lower than the melting point of the sheath material in the composite fiber, but as high as possible at a high deformation rate. When trying to stretch at a magnification, the stretch breaks easily. Therefore, the fiber strength of the drawn composite fiber that can be industrially produced, that is, the fiber strength of the drawn composite fiber that can be produced at a speed of 50 m / min or more is generally about 3.97 cN / dTex (centinewton / dtex). The elongation is 30% or more, and the Young's modulus is about 43.1 cN / dTex.
[0006]
As described above, the change in the microstructure of the crystalline polymer greatly depends on the stretching conditions, and as a result, the physical properties of the crystalline polymer product also greatly depend on the stretching conditions. Then, problems such as stretching breakage occur. For this reason, there exists an upper limit according to the material in the physical-property value of the stretched fiber which consists of crystalline polymer which can be manufactured industrially using the conventional extending | stretching method. However, crystalline polymer products are used in various fields, and with the increase in demand, improvements in physical properties of the crystalline polymer products have always been required.
[0007]
[Problems to be solved by the invention]
Under such circumstances, the present invention is a composite type with a sheath-core structure, has high strength, can be manufactured industrially at low cost with good productivity, and is suitable for dry nonwoven fabrics and batteries. An object of the present invention is to provide a drawn composite fiber suitable for uses such as a wet nonwoven fabric such as a separator.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have made a melt-spun composite undrawn yarn having a crystalline propylene polymer as a core and another olefin polymer as a sheath. It was found that a drawn composite fiber having specific physical properties obtained by drawing treatment, preferably in a saturated saturated steam, can meet the purpose, and based on this finding, the present invention has been completed. .
[0009]
That is, the present invention is obtained by drawing a melt-spun composite undrawn yarn having a crystalline propylene polymer as a core material and an olefin polymer other than the crystalline propylene polymer as a sheath material. And The weight average molecular weight / number average molecular weight of the crystalline polypropylene polymer constituting the core material is 6 or less, A drawn composite fiber having a breaking strength higher than 5.74 cN / dTex, an elongation of 30% or less, and a Young's modulus of 43.1 cN / dTex or more, preferably the composite undrawn yarn, 100 The present invention provides a drawn composite fiber obtained by drawing treatment in pressurized saturated steam having a temperature of not lower than ° C and lower than the melting point of the sheath material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The drawn composite fiber of the present invention is obtained by drawing a melt-spun composite undrawn yarn using a crystalline propylene polymer as a core material and an olefin polymer other than the crystalline propylene polymer as a sheath material. Thus, it is preferable to obtain a non-crimped fiber without any particular crimping step after the stretching treatment.
[0011]
As the crystalline propylene polymer constituting the core material in the composite undrawn yarn, an isotactic polypropylene resin is preferably used. Among them, those having an isotactic pentad fraction (IPF) of preferably 85% or more, more preferably 90% or more are advantageous. The Q value (weight average molecular weight / number average molecular weight Mw / Mn ratio), which is an index of molecular weight distribution, is 6 or less, and the melt index MI (temperature 230 ° C., load 2.16 kg) ranges from 3 to 50 g / 10 min. preferable. When the IPF is less than 85%, the stereoregularity is insufficient and the crystallinity is low, and the physical properties such as strength of the drawn fiber obtained are inferior.
[0012]
The isotactic pentad fraction (IPF) (generally also referred to as mmmm fraction) is a side chain with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. This shows the proportion of the three-dimensional structure in which two methyl groups are located in the same direction, and isotope carbon nuclear magnetic resonance spectrum ( 13 Pmmmm (absorption intensity derived from the methyl group of the third unit at a site where five propylene units are isotactically bonded) and Pw (absorption intensity derived from all the methyl groups of the propylene unit) in C-NMR) ) From the formula
IPF (%) = (Pmmmm / Pw) × 100
Can be obtained.
[0013]
Further, the polypropylene resin used for the polypropylene-based unstretched fiber may be a propylene homopolymer or a copolymer of propylene and an α-olefin (for example, ethylene, butene-1). Also good.
That is, as the crystalline propylene polymer, for example, isotactic propylene homopolymer having crystallinity, ethylene-propylene random copolymer having a small ethylene unit content, homo-part consisting of propylene homopolymer and ethylene unit A propylene block copolymer composed of a copolymer part composed of an ethylene-propylene random copolymer having a relatively large content, and each homo part or copolymer part in the propylene block copolymer further comprises a butene- Examples thereof include crystalline propylene-ethylene-α-olefin copolymers formed by copolymerizing α-olefin such as 1.
[0014]
Such a crystalline propylene polymer can be obtained by homopolymerizing propylene or copolymerizing propylene with another α-olefin using a Ziegler-Natta type catalyst or a metallocene catalyst. .
[0015]
On the other hand, as the olefin polymer other than the crystalline propylene polymer constituting the sheath material in the composite undrawn yarn, for example, an ethylene-based polymer such as high density, medium density, low density polyethylene or linear low density polyethylene Polymers, copolymers of propylene and other α-olefins, specifically non-crystalline such as propylene-butene-1 random copolymer, propylene-ethylene-butene-1 random copolymer, or soft polypropylene Examples thereof include propylene-based polymers and poly-4-methylpentene-1. These olefin polymers may be used alone or in combination of two or more. Among these, high-density polyethylene is particularly preferable from the viewpoint of strength.
[0016]
The melt index MI (temperature 190 ° C., load 2.16 kg) of the olefin polymer used as the sheath component is preferably in the range of 1 to 40 g / 10 min.
Further, the ratio of the sheath material to the core material in the composite undrawn yarn is not particularly limited, but the cross-sectional area ratio is preferably in the range of 70:30 to 40:60. It is preferable to increase the ratio of the material.
[0017]
The composite undrawn yarn used in the present invention is composed of the core material and a sheath material covering the core material, and the production method is not particularly limited. Conventionally, in the production of a sheath-core composite fiber Any known method used can be used. For example, by using the above-described sheath material and core material, by performing melt spinning at a spinning temperature of about 200 to 260 ° C. with a composite spinning device equipped with two extruders and a composite type fiber nozzle, the composite structure of the sheath core structure is not obtained. A drawn yarn is obtained.
[0018]
The drawn composite fiber of the present invention is obtained by drawing a composite drawn yarn having the above-described sheath-core structure. As its physical properties, first, the breaking strength is 5.74 cN / dTex (about 6.5 g / denier). ) Higher, preferably 6.0 cN / dTex or more, more preferably 6.3 cN / dTex or more. Although there is no restriction | limiting in particular about the upper limit, Generally, it is 50 cN / dTex.
[0019]
The elongation is 30% or less, and the Young's modulus is 43.1 cN / dTex (about 400 kg / mm 2 ) Or more, preferably 44.2 cN / dTex or more, more preferably 48.5 cN / dTex or more. Although there is no restriction | limiting in particular about the upper limit, Generally, it is 110 cN / dTex or less.
[0020]
The drawn conjugate fiber of the present invention having such physical properties has characteristics such as excellent penetration resistance to sharp hard members such as metals because it has high strength and Young's modulus when made into a nonwoven fabric.
[0021]
As described above, the stretched composite fiber of the present invention has excellent physical properties, and the stretching treatment method is not particularly limited as long as it is a method by which the stretched composite fiber having the above-described physical properties can be obtained. As shown in the drawing, a drawn composite fiber having desired physical properties can be effectively obtained by drawing the above-mentioned composite undrawn yarn having a sheath-core structure in pressurized saturated steam.
[0022]
In the present invention, a preliminary stretching treatment may be performed as desired before performing the stretching treatment in pressurized saturated steam.
In this preliminary drawing step, the composite undrawn yarn is drawn at a temperature lower than the drawing temperature in the subsequent main drawing step. As this pre-stretching treatment method, for example, generally known contact heating stretching using a metal heating roll or a metal heating plate, or heated fluid such as warm water, steam of normal pressure to 0.2 MPa or hot air, A method such as non-contact heating stretching using heat rays such as far infrared rays can be applied. Furthermore, it is also possible to perform a preliminary stretching treatment at a temperature lower than the stretching temperature in the main stretching step by the same system as the high-pressure steam stretching tank used in the main stretching step.
[0023]
As the draw ratio in this pre-stretching step, a range of 25 to 90% of the total draw ratio including the main stretching process is suitable, and the stretching conditions may be appropriately selected depending on the system of the pre-stretching apparatus, the stretching state, and the like. . In particular, in the case of two-stage stretching in which the main stretching process is performed after the preliminary stretching process is performed in one stage, the preliminary stretching ratio is preferably in the range of 25 to 85% of the total stretching ratio, and more preferably in the range of 35 to 80%. preferable. Further, the preliminary stretching treatment may be performed in one stage, or may be performed in multiple stages of two or more stages. In the case of performing in multiple stages, the stretching temperature is constant and the preliminary stretching ratio is multistage. The method and the method of making a draw ratio multistage, giving a gradient to extending | stretching temperature can be used.
[0024]
On the other hand, in this drawing step, the pre-stretched product of the composite undrawn yarn or the composite undrawn yarn obtained in the above-described predrawing step is subjected to pressure saturation having a temperature of 100 ° C. or more and less than the melting point of the sheath material. In this process, the film is directly heated with water vapor and subjected to a main stretching process.
[0025]
Here, for the main stretching process, for example, the following apparatus can be used to employ a stretching process.
That is, the stretching device comprises an airtight container having a composite stretched product introduction hole for introducing a composite unstretched yarn or a prestretched treated product thereof and a stretched composite fiber lead-out hole for drawing out the stretched composite fiber, and A stretching tank filled with pressurized saturated water vapor having an absolute pressure of preferably 1.5 MPa or more is used. In this drawing tank, the original drawn material introduction hole and the drawn composite fiber lead-out hole are each provided with a leakage prevention mechanism using pressurized water in order to prevent the pressurized water vapor in the drawing tank from leaking. ing.
[0026]
First, the composite undrawn yarn or its pre-drawn product is introduced into pressurized water in the leakage prevention mechanism provided in the original drawn product introduction hole, and moisture is adhered to the surface of the original drawn product. Is introduced into the stretching tank from the material to be stretched product introduction hole and subjected to the main stretching treatment. At this time, it is advantageous that the time required for the material to be stretched to pass through the water is approximately 0.1 seconds or longer.
This stretching process may be performed in one stage, or may be performed in two or more stages.
[0027]
The drawn conjugate fiber is drawn out from the drawn conjugate fiber drawing hole, guided into the pressurized water in the leakage prevention mechanism provided in the drawing hole, and quickly cooled. At this time, it is advantageous that the time required for the drawn composite fiber to pass through the water is approximately 0.2 seconds or more.
[0028]
In the main stretching treatment, pressurized saturated steam at 110 ° C. or higher is usually used. If this temperature is less than 110 ° C., it is difficult to carry out high magnification stretching and high speed stretching, which is not practical. The temperature of the pressurized saturated steam is basically preferably higher if the olefin polymer of the sheath material is not softened, but if it is too high, a high pressure is required and the equipment cost of the stretching apparatus is high. It is economically disadvantageous. Considering the draw ratio, draw speed, economy, etc., the preferred temperature of the pressurized saturated steam is in the range of 115 ° C. to 140 ° C., and in particular, the saturated saturated steam is preferably a temperature of 120 to 135 ° C. is there.
[0029]
The actual draw ratio is appropriately selected according to the fineness of the composite undrawn yarn or its predrawn product, but the total draw ratio is usually 4.0 to 15.0 times, preferably 6.0 to 10.0 times. To be selected. Moreover, generally this extending | stretching speed | velocity is about 40-200 m / min.
[0030]
Specific examples of the stretching apparatus used in the main stretching process include the structures shown below.
In other words, it consists of a hermetic container having a main stretched product introduction hole for introducing a composite unstretched yarn or a prestretched product thereof and a stretched composite fiber lead-out hole for drawing out the stretched composite fiber, and is added as a stretching medium. Stretch tank filled with pressure-saturated water vapor, first pressurized water tank section closely arranged on the side of the stretched product introduction hole in the stretch tank section, and stretched composite fiber in the stretch tank section A second pressurized water tank part closely arranged on the drawing hole side, the first pressurized water tank part from the outside of the first pressurized water tank part, the original stretched product introduction hole, and the extension tank part The first pressurized water tank unit and the second pressurized water tank part can be led out of the second pressurized water tank via the drawn composite fiber lead-out hole and the second pressurized water tank unit. Pressurized water tank Through-holes formed in each, a stretched product delivery mechanism for feeding the stretched product into the first pressurized water tank, and a feed rate of the stretched material to be processed by the delivery mechanism A drawing device having a drawn composite fiber drawing mechanism for drawing drawn composite fibers from the second pressurized water tank at a higher speed than the second pressurized water tank.
[0031]
The above-mentioned stretching tank section has sufficient airtightness and strength that can use pressurized saturated steam having a desired absolute pressure as a stretching medium, and can secure a desired size (length). That's fine.
[0032]
Further, the first pressurized water tank part is for preventing pressurized saturated steam from leaking out of the stretching tank part from the to-be-drawn processed material introduction hole formed in the stretching tank part. At the same time, it is for guiding the stretched product to be treated into pressurized water and adhering moisture to the surface of the stretched product to be treated, and the first pressurized water tank part has pressurized saturated water vapor in the stretching tank part. The pressurized water having an absolute pressure that is equivalent to or slightly higher than that is stored. On the other hand, the second pressurized water tank part is for preventing pressurized saturated steam from leaking out of the drawn composite fiber lead hole from the drawn composite fiber lead hole, and at the same time from the drawn composite fiber lead hole. The drawn composite fiber is drawn into pressurized water for cooling, and pressurized water having an absolute pressure that is equal to or slightly higher than the pressurized saturated water vapor in the drawn tank is also present in the second pressurized water tank. Stored. These 1st pressurized water tank parts and 2nd pressurized water tank parts are each arrange | positioned on the outer side of the extending | stretching tank part.
[0033]
The stretching tank part, the first pressurized water tank part, and the second pressurized water tank part may be arranged separately so that they are in a predetermined relationship with each other, It may be formed by partitioning a container or a cylinder at a predetermined interval. Moreover, the extending | stretching tank part and a 1st pressurized water tank part may share the partition between these. Similarly, the stretching tank part and the second pressurized water tank part may share a partition wall therebetween.
[0034]
The material to be stretched enters from the outside of the first pressurized water tank through the inside of the first pressurized water tank to the inside of the stretched tank through the above-described stretched material introduction hole. Therefore, at a desired location on the container wall of the first pressurized water tank section, a through hole (hereinafter referred to as “through hole A”) for drawing the material to be stretched into the first pressurized water tank section and the principal stretching process. A through hole (hereinafter referred to as “through hole B”) for pulling out an object from the first pressurized water tank is provided.
[0035]
Similarly, the stretched composite fiber produced by stretching the original stretched product sent into the stretch tank is drawn into the second pressurized water tank from the stretched composite fiber lead-out hole provided in the stretch tank. Since it has to be drawn out of the second pressurized water tank section via the second pressurized water tank section, the above-mentioned drawn composite fiber is placed in the second pressurized water tank from the inside of the drawn tank section at a desired location on the container wall of the second pressurized water tank section. A through-hole (hereinafter referred to as “through-hole C”) for drawing into the tank part and a through-hole (hereinafter referred to as “through-hole D”) for drawing out the drawn composite fiber from the second pressurized water tank part are provided. ing.
[0036]
The above-mentioned stretched product introduction hole, stretched composite fiber lead-out hole, through-holes A, B, C, and D, especially through-holes B and C, pass through the stretched product or stretched composite fiber. It is preferable that the formed stretched product or stretched composite fiber and the container wall are formed so as not to come into contact with each other at the time. Is preferably designed so as not to eject as much as possible.
[0037]
The stretched product delivery mechanism that constitutes the stretching apparatus is for feeding the stretched product into the first pressurized water tank at a constant speed, and the delivery mechanism includes the first pressurized water. It is provided outside the tank part. In addition, the drawn composite fiber pulling mechanism is constant from the second pressurized water tank unit at a higher speed than the speed at which the drawn stretched product is fed through the second pressurized water tank unit by the drawn stretched product sending mechanism. Thus, the material to be stretched is stretched mainly in the stretching tank. The drawn composite fiber drawing mechanism is provided outside the second pressurized water tank.
[0038]
The drawing speed of the stretched composite fiber by the stretched composite fiber delivery mechanism and the drawing speed of the stretched composite fiber by the stretched composite fiber pulling-out mechanism yield a stretched composite fiber having a predetermined draw ratio under a desired production speed. Is appropriately selected. Various rollers conventionally used in the stretching process can be used as the stretched article delivery mechanism and the stretched article pulling mechanism.
[0039]
In order to prevent the pressurized water in the first pressurized water tank part from leaking out from the through hole A formed in the first pressurized water tank part constituting the stretching device described above, the through hole It is preferable to provide the buffer water tank part which relieves the water leak from the said through-hole A by submerging A in the outer side of a 1st pressurized water tank part. Similarly, in order to prevent the pressurized water in the second pressurized water tank part from leaking out from the through hole D formed in the second pressurized water tank part, the through hole D is submerged. It is preferable to provide a buffer water tank part for relaxing water leakage from the hole D outside the second pressurized water tank part.
[0040]
In the present invention, when a preliminary stretching tank is provided, the preliminary stretching tank and the main stretching tank generally have a manufacturing method (outline method) in which a spinning process and a stretching process are separately provided, a spinning process and a stretching process. Regardless of the manufacturing method (inline method) provided continuously, it is advantageous to arrange them continuously in the drawing equipment line.
[0041]
In this way, a drawn composite fiber having a sheath-core structure having the above-described physical properties can be obtained by drawing a composite undrawn yarn or a predrawed product thereof in pressurized saturated steam.
The drawn composite fiber may have any fiber form of a filament and a shortcut chop.
[0042]
The drawn conjugate fiber of the present invention can be used for various applications. Specifically, when the fiber form is a filament, for example, a woven cloth type filter (filter medium), a cartridge type filter (filter medium) in which fibers are wound directly on a cylindrical case, a knitted net (for construction), a weave It can be used as material fibers for processed sheets (architectural sheet base materials), ropes, belts and the like. Moreover, when the fiber form is a shortcut chop, it can be used as, for example, a reinforcing fiber for automobile tires, a reinforcing fiber for concrete, or a fiber for papermaking nonwoven fabric.
[0043]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
The physical properties of undrawn fibers and drawn fibers were measured by the following methods.
(1) Fineness of single yarn (dTex)
It measured by the weight method of JISL1013.
(2) Fiber strength, Young's modulus, elongation
According to JIS L 1013, a tensile fracture test was performed under constant speed extension type conditions with a grip interval of 200 mm and a tensile speed of 200 mm / min.
(3) Thermal contraction rate
Based on the heat shrinkage rate (Method B) of JIS L1013, it was measured by heat treatment for 30 minutes using an oven dryer at a temperature of 120 ° C.
[0044]
Example 1
(1) Preparation of composite undrawn yarn
As a sheath material, high-density polyethylene “J310” [Asahi Kasei Kogyo Co., Ltd., MI = 20 g / 10 min, Q value = 6.7], and as a core material homopolypropylene “ZS1337” [Grand Polymer Co., Ltd.] MI = 27 g / 10 min, Q value = 5.2], using a compound spinning device equipped with two single-screw extruders and a composite fiber nozzle having 300 holes with a diameter of 0.4 mm, the cylinder temperature Composite undrawn yarn spun at 250 ° C. and nozzle temperature of 255 ° C. under a winding speed of 500 m / min. The cross-sectional area ratio of the sheath material to the core material is 50:50 and the single yarn fineness is 5.56 dTex. A multifilament was produced.
[0045]
(2) Production of drawn composite fiber
A stretching apparatus in which a preliminary stretching tank (one stage) and a main stretching tank were continuously arranged was prepared.
This stretching tank has a stretching tank part (total length 12.5 m), a first pressurized water tank part, and a first pressurized water tank part by disposing silicone rubber packing having a through-hole in the central part at both ends and inside (four locations each). 2 is formed, and a roller as a predrawn yarn feeding means is disposed outside the first pressurized water tank, and a roller as a fiber pulling means is disposed outside the second pressurized water tank. Yes.
[0046]
In this stretching tank, the saturated saturated steam at a temperature of 123 ° C. is filled in the stretching tank section, and high-pressure water having a pressure slightly higher than the internal pressure of the stretching tank section is used as the first pressurized water tank section and the second pressurized water tank section. Respectively. First, the composite undrawn yarn multifilament obtained in the above (1) is introduced into a predrawing tank in a pre-drawing roller (G1 roller) speed of 15.0 m / min, and a pre-drawing yarn feeding roller (G2 roller) speed of 45.0 m. Pre-stretching with hot air at 80 ° C. under the conditions of / min, and then performing the main stretching process under the condition of a stretched fiber drawing roller (G3 roller) speed of 105 m / min in the main stretching tank to produce a composite stretched fiber. . The physical properties and drawing conditions of the raw materials are shown in Table 1, and the physical properties of the drawn composite fiber are shown in Table 3.
[0047]
Comparative Example 1
(1) Preparation of composite undrawn yarn
In the same manner as in Example 1 (1), a composite undrawn yarn multifilament having a cross-sectional area ratio between the sheath material and the core material of 50:50 and a single yarn fineness of 8.89 dTex was produced.
(2) Production of drawn composite fiber
The composite undrawn yarn multifilament obtained in the above (1) is introduced into a 90 ° C. hot water drawing tank at an introduction roller (G1 roller) speed of 11.1 m / min and a delivery roller (G2 roller) speed of 50.0 m / min. A one-stage drawing process was performed under the conditions to produce a drawn composite fiber.
The physical properties and drawing conditions of the raw materials are shown in Table 1, and the physical properties of the drawn composite fiber are shown in Table 3.
[0048]
Comparative Example 2
(1) Preparation of composite undrawn yarn
In the same manner as in Example 1 (1), a composite undrawn yarn multifilament having a cross-sectional area ratio between the sheath material and the core material of 50:50 and a single yarn fineness of 8.89 dTex was produced.
(2) Production of drawn composite fiber
The composite undrawn yarn multifilament obtained in the above (1) is fed by a metal heating roll at 90 ° C. with an introduction roller (G1 roller) speed of 11.1 m / min and a feed roller (G2 roller) speed of 50.0 m / min. A one-stage drawing process was performed under the conditions to produce a drawn composite fiber.
The physical properties and drawing conditions of the raw materials are shown in Table 1, and the physical properties of the drawn composite fiber are shown in Table 3.
[0049]
Example 2
(1) Preparation of composite undrawn yarn
As a sheath material, high-density polyethylene “J310” [Asahi Kasei Kogyo Co., Ltd., MI = 20 g / 10 min, Q value = 6.7], and as a core material homopolypropylene “SA2D” [manufactured by Nippon Polychem Co., Ltd., MI = 14 g / 10 min, Q value = 3.2], using a compound spinning apparatus equipped with two single-screw extruders and a composite fiber nozzle having 60 holes with a diameter of 0.6 mm, the cylinder temperature A composite undrawn yarn which is spun at 250 ° C. and a nozzle temperature of 255 ° C. under a winding speed of 1000 m / min, the cross-sectional area ratio of the sheath material to the core material is 30:70, and the single yarn fineness is 8.89 dTex. A multifilament was produced.
[0050]
(2) Production of drawn composite fiber
For the composite undrawn yarn multifilament obtained in (1) above, the same drawing device as in Example 1 (2) was used, but preliminary drawing was not performed, and a one-stage drawing treatment with pressurized saturated steam at 130 ° C. was performed using G1 A drawn composite fiber was produced under the conditions of a roller speed of 15.0 m / min and a G3 roller speed of 105 m / min. The physical properties and drawing conditions of the raw materials are shown in Table 1, and the physical properties of the drawn composite fiber are shown in Table 3.
[0051]
Comparative Example 3
(1) Preparation of composite undrawn yarn
In the same manner as in Example 2 (1), a composite undrawn yarn multifilament having a sectional area ratio of the sheath material to the core material of 30:70 and a single yarn fineness of 8.89 dTex was produced.
(2) Production of drawn composite fiber
The composite undrawn yarn multifilament obtained in the above (1) is introduced in a hot water drawing tank at 90 ° C., the introduction roller (G1 roller) speed is 12.5 m / min, and the feed roller (G2 roller) speed is 50.0 m / min. A one-stage drawing process was performed under the conditions to produce a drawn composite fiber.
The physical properties and drawing conditions of the raw materials are shown in Table 1, and the physical properties of the drawn composite fiber are shown in Table 3.
[0052]
Comparative Example 4
(1) Preparation of composite undrawn yarn
In the same manner as in Example 2 (1), a composite undrawn yarn multifilament having a sectional area ratio of the sheath material to the core material of 30:70 and a single yarn fineness of 8.89 dTex was produced.
(2) Production of drawn composite fiber
The composite undrawn yarn multifilament obtained in the above (1) is fed by a metal heating roll at 90 ° C. with an introduction roller (G1 roller) speed of 12.5 m / min and a feed roller (G2 roller) speed of 50.0 m / min. A one-stage drawing process was performed under the conditions to produce a drawn composite fiber.
The physical properties and drawing conditions of the raw materials are shown in Table 2, and the physical properties of the drawn composite fiber are shown in Table 3.
[0053]
Example 3
(1) Preparation of composite undrawn yarn
In the same manner as in Example 2 (1), a composite undrawn yarn multifilament having a sectional area ratio of the sheath material to the core material of 30:70 and a single yarn fineness of 8.89 dTex was produced.
(2) Production of drawn composite fiber
For the composite undrawn yarn multifilament obtained in (1) above, the same drawing device as in Example 1 (2) was used, but preliminary drawing was not performed, and a one-stage drawing treatment with pressurized saturated steam at 125 ° C. A drawn composite fiber was produced under conditions of a roller speed of 15.0 m / min and a G3 roller speed of 90.0 m / min.
The physical properties and drawing conditions of the raw materials are shown in Table 2, and the physical properties of the drawn composite fiber are shown in Table 3.
[0054]
Example 4
(1) Preparation of composite undrawn yarn
In the same manner as in Example 2 (1), a composite undrawn yarn multifilament having a sectional area ratio of the sheath material to the core material of 50:50 and a single yarn fineness of 8.89 dTex was produced.
(2) Production of drawn composite fiber
For the composite undrawn yarn multifilament obtained in (1) above, the same drawing apparatus as in Example 1 (2) was used, but preliminary drawing was not performed, and a one-stage drawing treatment with pressurized saturated steam at 127 ° C. was performed. A drawn composite fiber was produced under the conditions of a roller speed of 15.0 m / min and a G3 roller speed of 97.5 m / min. The physical properties and drawing conditions of the raw materials are shown in Table 2, and the physical properties of the drawn composite fiber are shown in Table 3.
[0055]
Example 5
(1) Preparation of composite undrawn yarn
In the same manner as in Example 2 (1), a composite undrawn yarn multifilament having a cross-sectional area ratio between the sheath material and the core material of 40:60 and a single yarn fineness of 8.89 dTex was produced.
(2) Production of drawn composite fiber
For the composite undrawn yarn multifilament obtained in (1) above, the same drawing device as in Example 1 (2) was used, but preliminary drawing was not performed, and a one-stage drawing treatment with pressurized saturated steam at 130 ° C. was performed using G1 A drawn composite fiber was produced under the conditions of a roller speed of 15.0 m / min and a G3 roller speed of 102 m / min.
The physical properties and drawing conditions of the raw materials are shown in Table 2, and the physical properties of the drawn composite fiber are shown in Table 3.
[0056]
Example 6
(1) Preparation of composite undrawn yarn
High-density polyethylene “J310” [manufactured by Asahi Kasei Kogyo Co., Ltd., MI = 20 g / 10 min, Q value = 6.7] as the sheath material, and homopolypropylene “2005GP” [manufactured by Idemitsu Petrochemical Co., Ltd.] as the core material , MI = 22 g / 10 min, Q value = 3.8], using a compound spinning apparatus equipped with two single-screw extruders and a composite fiber nozzle having 1200 holes with a diameter of 0.4 mm, Spinning at a temperature of 240 ° C. and a nozzle temperature of 240 ° C. under a winding speed of 350 m / min, a cross-sectional area ratio between the sheath material and the core material of 30:70, and a composite undrawn with a single yarn fineness of 17.8 dTex A yarn multifilament was produced.
[0057]
(2) Production of drawn composite fiber
Using the same drawing apparatus as in Example 1 (2), the composite undrawn yarn multifilament obtained in (1) above was first subjected to a G1 roller speed of 8.0 m / min and a G2 roller speed of 36.0 m in a preliminary drawing tank. The film was pre-stretched with hot water at 90 ° C. under the conditions of / min, and then subjected to the main stretching process under the condition of a G3 roller speed of 52.0 m / min in the main stretching tank to produce a composite stretched fiber. The physical properties and drawing conditions of the raw materials are shown in Table 2, and the physical properties of the drawn composite fiber are shown in Table 3.
[0058]
[Table 1]
[0059]
[Table 2]
[0060]
[Table 3]
[0061]
【The invention's effect】
The drawn composite fiber of the present invention is a drawn composite having a highly strong sheath core structure with high breaking strength and Young's modulus using a crystalline propylene polymer as a core material and another olefin polymer as a sheath material. It is a fiber and can be obtained by drawing a composite undrawn yarn having a sheath core structure in pressurized saturated steam. In this case, if the breaking strength is 6.6 cN / dTex or more, a bamboo knot structure may be exhibited when the fiber structure is observed in a crossed Nicol state under polarized light. The outer peripheral part is visually recognized as a bright part, the inside of the fiber is visually recognized as a dark part, and the linear bright part extending in the fiber radial direction so as to cross the dark part is intermittently visually recognized.
The stretched conjugate fiber is suitably used for applications such as dry nonwoven fabrics and wet nonwoven fabrics such as battery separators.
Claims (4)
前記芯材を構成する結晶性ポリプロピレン系重合体の重量平均分子量/数平均分子量が6以下であり、
破断強度が5.74cN/dTexより高く、伸度が30%以下で、かつヤング率が43.1cN/dTex以上であることを特徴とする延伸複合繊維。A melt-spun composite undrawn yarn having a crystalline propylene-based polymer as a core material and an olefin polymer other than the crystalline propylene-based polymer as a sheath material,
The weight average molecular weight / number average molecular weight of the crystalline polypropylene polymer constituting the core material is 6 or less,
A drawn composite fiber having a breaking strength higher than 5.74 cN / dTex, an elongation of 30% or less, and a Young's modulus of 43.1 cN / dTex or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000380187A JP4544600B2 (en) | 2000-12-14 | 2000-12-14 | Drawn composite fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000380187A JP4544600B2 (en) | 2000-12-14 | 2000-12-14 | Drawn composite fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002180330A JP2002180330A (en) | 2002-06-26 |
JP4544600B2 true JP4544600B2 (en) | 2010-09-15 |
Family
ID=18848420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000380187A Expired - Lifetime JP4544600B2 (en) | 2000-12-14 | 2000-12-14 | Drawn composite fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4544600B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1689008B1 (en) | 2005-01-26 | 2011-05-11 | Japan Vilene Company, Ltd. | Battery separator and battery comprising the same |
JP4758804B2 (en) * | 2005-04-12 | 2011-08-31 | ダイワボウホールディングス株式会社 | Non-woven |
JP5046539B2 (en) | 2006-03-24 | 2012-10-10 | 三洋電機株式会社 | Nickel metal hydride storage battery |
EP2077593B1 (en) | 2006-09-28 | 2019-04-10 | Japan Vilene Company, Ltd. | Alkaline battery separator, process for production thereof and alkaline batteries |
JP6022787B2 (en) * | 2012-03-27 | 2016-11-09 | 日本バイリーン株式会社 | Nonwoven fabric and separator for lithium ion secondary battery |
WO2014024720A1 (en) * | 2012-08-09 | 2014-02-13 | 宇部エクシモ株式会社 | Strand for combining into optical fiber unit |
CN105308227B (en) | 2013-07-23 | 2018-07-31 | 宇部爱科喜模株式会社 | It stretches the manufacturing method of composite fibre and stretches composite fibre |
JP6246579B2 (en) * | 2013-12-11 | 2017-12-13 | 宇部エクシモ株式会社 | Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body |
US20170028793A1 (en) * | 2014-04-11 | 2017-02-02 | Bridgestone Corporation | Pneumatic tire |
JP6546500B2 (en) * | 2015-10-14 | 2019-07-17 | 株式会社ブリヂストン | Pneumatic tire and method of manufacturing the same |
ES2968967T3 (en) | 2018-11-13 | 2024-05-14 | Japan Vilene Co Ltd | Nonwoven fabric and separator for electrochemical devices |
JP7432994B2 (en) | 2019-03-29 | 2024-02-19 | 宇部エクシモ株式会社 | Method for producing drawn composite fibers, nonwoven fabrics, and drawn composite fibers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02251612A (en) * | 1989-03-17 | 1990-10-09 | Chisso Corp | Heat bonding conjugate yarn |
JPH059809A (en) * | 1991-07-02 | 1993-01-19 | Daiwabo Create Kk | Hot-melt conjugate and fiber aggregate |
JPH10292240A (en) * | 1997-04-16 | 1998-11-04 | Mitsubishi Rayon Co Ltd | Drawing of fiber with pressured steam and device therefor |
JPH11269717A (en) * | 1997-12-26 | 1999-10-05 | Ube Nitto Kasei Co Ltd | Polypropylene fiber and its production |
JPH11350283A (en) * | 1997-10-24 | 1999-12-21 | Ube Nitto Kasei Co Ltd | Drawing and drawn product |
-
2000
- 2000-12-14 JP JP2000380187A patent/JP4544600B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02251612A (en) * | 1989-03-17 | 1990-10-09 | Chisso Corp | Heat bonding conjugate yarn |
JPH059809A (en) * | 1991-07-02 | 1993-01-19 | Daiwabo Create Kk | Hot-melt conjugate and fiber aggregate |
JPH10292240A (en) * | 1997-04-16 | 1998-11-04 | Mitsubishi Rayon Co Ltd | Drawing of fiber with pressured steam and device therefor |
JPH11350283A (en) * | 1997-10-24 | 1999-12-21 | Ube Nitto Kasei Co Ltd | Drawing and drawn product |
JPH11269717A (en) * | 1997-12-26 | 1999-10-05 | Ube Nitto Kasei Co Ltd | Polypropylene fiber and its production |
Also Published As
Publication number | Publication date |
---|---|
JP2002180330A (en) | 2002-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI441863B (en) | Fibers and non-wovens prepared with propylene-based elastomers | |
US6518208B2 (en) | Continuous fiber nonwoven and the method for producing it | |
JP4544600B2 (en) | Drawn composite fiber | |
JP4365249B2 (en) | Woven fabric and its woven fabric processed products | |
JPH02127553A (en) | Stretchable non-woven fabric and production thereof | |
WO2015012281A1 (en) | Method for producing drawn conjugated fiber, and drawn conjugated fiber | |
JP3934061B2 (en) | Method for producing polyolefin-based drawn fiber | |
JP4726319B2 (en) | Method for producing polypropylene fiber reinforced polypropylene resin molding | |
JP2006152482A (en) | Method for producing polyolefin fiber and polyolefin fiber obtained by the method | |
JP2002348737A (en) | Heat-fusible conjugate fiber and fiber molded article using the same | |
JP3962582B2 (en) | Polypropylene sewing thread | |
JP4540083B2 (en) | Method for producing polypropylene-based drawn fiber | |
JP4379127B2 (en) | Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber | |
JP4641367B2 (en) | Method for producing crystalline polymer stretched product | |
JP2003328233A (en) | Polyolefin-based drawn conjugate fiber and nonwoven fabric obtained therefrom | |
JP7432994B2 (en) | Method for producing drawn composite fibers, nonwoven fabrics, and drawn composite fibers | |
JP3132202B2 (en) | Method for producing heat-fusible conjugate fiber | |
JP4266247B2 (en) | Production method of polypropylene fiber | |
JP2006214019A (en) | Sheath-core type composite polyolefin fiber and method for producing the same | |
JPS62184118A (en) | Elastic conjugate fiber and production thereof | |
JP5273995B2 (en) | Composite materials and molded bodies containing polypropylene fibers | |
JP2002285446A (en) | Method for producing stretched crystalline polymer | |
JP3997613B2 (en) | High-strength polypropylene fiber and method for producing the same | |
JP4518894B2 (en) | Polypropylene multifilament drawn yarn for false twisting, method for producing the same, and polypropylene drawn false twisted yarn | |
JP2003129364A (en) | Polypropylene-based thermocompression nonwoven fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100414 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100624 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100628 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4544600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |