[go: up one dir, main page]

JP4541449B1 - Ground improvement method - Google Patents

Ground improvement method Download PDF

Info

Publication number
JP4541449B1
JP4541449B1 JP2010012909A JP2010012909A JP4541449B1 JP 4541449 B1 JP4541449 B1 JP 4541449B1 JP 2010012909 A JP2010012909 A JP 2010012909A JP 2010012909 A JP2010012909 A JP 2010012909A JP 4541449 B1 JP4541449 B1 JP 4541449B1
Authority
JP
Japan
Prior art keywords
ground improvement
range
width
ground
nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010012909A
Other languages
Japanese (ja)
Other versions
JP2011149246A (en
Inventor
英之 石村
清孝 小高
聖雅 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Chugoku Electric Power Co Inc
Original Assignee
Kajima Corp
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Chugoku Electric Power Co Inc filed Critical Kajima Corp
Priority to JP2010012909A priority Critical patent/JP4541449B1/en
Application granted granted Critical
Publication of JP4541449B1 publication Critical patent/JP4541449B1/en
Publication of JP2011149246A publication Critical patent/JP2011149246A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Abstract

【課題】原子力関連建築物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、工期や施工費を抑えることができる地盤改良工法を提供すること。
【解決手段】地盤改良工法は、原子力関連建築物5の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤2がない場合の地盤改良工法において、原子力関連建築物5における地下部分の周囲であって、地下部分の幅Dに基づき特定した水平面に広がる地盤改良範囲1に、人工岩盤を打設する。
【選択図】図1
[PROBLEMS] To provide a ground improvement method capable of reducing the construction period and construction cost while obtaining the embedding effect even when there is no bedrock up to the embedding depth level at which the embedding effect can be obtained at the construction site of the nuclear related building. To provide.
SOLUTION: The ground improvement method is a ground improvement method in the case where there is no bedrock 2 up to the embedding depth level at which the embedding effect is obtained in the construction site of the nuclear related building 5, and the surrounding area of the underground portion in the nuclear related building 5 Then, the artificial rock mass is placed in the ground improvement range 1 that spreads on the horizontal plane specified based on the width D of the underground portion.
[Selection] Figure 1

Description

本発明は、地盤改良工法に関する。特に、原子力関連建築物の建設において、人工岩盤を打設する地盤改良工法に関する。   The present invention relates to a ground improvement method. In particular, the present invention relates to a ground improvement method for placing artificial rock in the construction of nuclear related buildings.

従来より、原子力関連建築物は、原子力関連建築物の重量や想定される地震による荷重に対して十分な支持性能を持つ岩盤の上に建設する必要がある。   Conventionally, it is necessary to construct a nuclear-related building on a bedrock that has sufficient supporting performance against the weight of the nuclear-related building and an assumed earthquake load.

また、建物の一部を所定の物性を有する岩盤に埋込むことで、建物の側面を拘束し、地震による荷重を低減する効果として埋込み効果を得られる。   Moreover, by embedding a part of the building in the rock having predetermined physical properties, the embedding effect can be obtained as an effect of restraining the side surface of the building and reducing the load caused by the earthquake.

そこで、建物の地下部分を岩盤内に埋込むために、地下部分を施工するためのスペースとして、地下部分の面積より広い範囲の岩盤を掘削し、建物建設後に、建物と岩盤の間に岩盤と同等の物理性状を有する人工岩盤(例えば、マンメイドロック)を打設する建物設置方法が提案されている(特許文献1)。
このような建物設置方法によれば、建物設計において、建物底部の岩盤からの反力のみならず、建物側面の岩盤及び人工岩盤からの反力を利用できるので、建物安定性を確保できる。
Therefore, in order to embed the underground part of the building in the bedrock, as a space for constructing the underground part, excavate the bedrock in a range wider than the area of the underground part, and after the building construction, the bedrock between the building and the bedrock There has been proposed a building installation method in which an artificial bedrock (for example, manmade rock) having equivalent physical properties is placed (Patent Document 1).
According to such a building installation method, in the building design, not only the reaction force from the bedrock at the bottom of the building but also the reaction force from the bedrock and the artificial bedrock at the side of the building can be used, so that the building stability can be ensured.

特開平8−86117号公報JP-A-8-86117

しかしながら、特許文献1の建物設置方法では、建物の建設予定地に、埋込み効果が得られる埋込み深さレベルまで岩盤がない場合には適用できない。   However, the building installation method of Patent Document 1 cannot be applied when there is no bedrock up to the embedding depth level at which the embedding effect can be obtained at the planned construction site of the building.

また、このような場合に人工岩盤を設ける平面的範囲である地盤改良範囲は不明である。
原子力発電所耐震設計技術指針(JEAG4601)には、「地震力算定用の基準面は原則として水平な広がりを有する地表面とし、この面より上の地上部分については地震層せん断力係数で、この面より下の地下部分については地下震度で地震力を評価することとした。」と記載された上で、「しかしながら、実際のサイトにおいては、複数の建物・構築物が近接して建設される場合や近くに斜面等が存在する場合があり、必ずしも水平な地盤面に単独で建物・構築物が埋込まれているとは限らない。そのため、ここでは工学的判断により建物・構築物側面の大部分(75%以上)が地盤と接しかつその地盤が建物・構築物以上の平面的な広がりを有する場合にこれを基準面とすることとした。」と記載されている。
In such a case, the ground improvement range, which is a planar range in which the artificial rock is provided, is unknown.
According to the nuclear power plant seismic design technical guideline (JEAG4601), “The reference plane for the calculation of seismic force should be a ground surface with a horizontal spread as a rule. “The seismic force will be evaluated based on the seismic intensity of the underground part below the surface.”, “However, in the actual site, when multiple buildings and structures are built in close proximity, There are cases where there are slopes, etc., and the buildings / structures are not necessarily embedded alone on the horizontal ground surface. 75% or more) is in contact with the ground, and the ground has a flat area more than that of the building / structure, this is used as the reference plane. "

すなわち、原子力発電所耐震設計技術指針(JEAG4601)には、地震力算定用の基準面を設定するにあたり建物幅分程度の平面的な広がりが必要と解釈できる記載はあるものの、埋込み効果が得られる地盤改良範囲は記載されていない。   In other words, the nuclear power plant seismic design technical guideline (JEAG4601) has a description that it can be interpreted that a plane spread of about the width of the building is necessary in setting the reference plane for calculating the seismic force, but the embedding effect can be obtained. The ground improvement range is not described.

一方、埋込み効果が得られる地盤改良範囲が不明であるとして、地盤改良範囲が半無限に広がっていると想定できるような地盤改良工法を採用した場合、不必要に地盤改良範囲が広くなったり、動的地盤物性の性能が高い人工岩盤(1m当りのセメント量が多い人工岩盤)で地盤改良することとなり、地盤改良工事において、工期が長期間に亘り、多額の施工費が掛かることとなる。 On the other hand, assuming that the ground improvement range where the embedding effect can be obtained is unknown, if a ground improvement method that can be assumed that the ground improvement range has expanded semi-infinitely, the ground improvement range becomes unnecessarily wide, will be ground improvement in dynamic soil properties performance high artificial bedrock (1 m 3 per cement weight is large artificial rock), the ground improvement work, construction period for a long time, so that the large construction costs take .

本発明者らは、建物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合において、埋込み効果が得られる場合の地盤改良範囲の解析的検証を行い、埋込み効果が得られる人工岩盤を設ける平面的範囲である地盤改良範囲を特定した。   In the case where there is no rock up to the embedding depth level at which the embedding effect can be obtained at the planned construction site of the building, the inventors perform analytical verification of the ground improvement range when the embedding effect is obtained, and the embedding effect is obtained. The ground improvement range, which is a flat area where the artificial rock mass is installed, was identified.

本発明は、原子力関連建築物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、工期や施工費を抑えることができる地盤改良工法を提供することを目的とする。   The present invention is a ground improvement method capable of suppressing the construction period and construction cost while obtaining the embedding effect even when there is no rock to the embedding depth level at which the embedding effect is obtained at the construction site of the nuclear related building. The purpose is to provide.

上記目的を達成するため、本発明は、以下のような地盤改良工法を提供する。   In order to achieve the above object, the present invention provides the following ground improvement method.

(1) 原子力関連建築物の建設予定地において、当該原子力関連建築物に対して支持性能を持つ岩盤の地表が、基準面に達していない場合、前記原子力関連建築物における地下部分の周囲であって、前記地下部分の幅に基づき特定した水平面に広がる地盤改良範囲において、前記岩盤の地表を覆う埋土を掘削して前記岩盤の地表を露出させ、前記岩盤の地表から前記基準面まで、人工岩盤を打設する地盤改良工法であって、水平面における所定方向の前記地盤改良範囲の幅は、当該所定方向における前記地下部分の幅と略同一であることを特徴とする地盤改良工法。 (1) Oite the construction site of the nuclear architecture, ground rock with supporting performance for the nuclear buildings, if not reached the reference surface, underground portion in the nuclear building a surrounding, Oite the ground improvement range extending to the specified horizontal plane on the basis of the width of the underground part, by drilling the Umado covering the surface of the rock to expose the surface of the rock, said from the surface of the rock A ground improvement method for placing artificial rock to a reference surface , wherein the width of the ground improvement range in a predetermined direction on a horizontal plane is substantially the same as the width of the underground portion in the predetermined direction Improved construction method.

(1)の発明によれば、岩盤が埋込み効果を得られる埋込み深さレベルまでない場合であっても、原子力関連建築物における地下部分の周囲において水平面に広がる地盤改良範囲に人工岩盤を打設するので、埋込み効果を得られる。ここで、本発明における原子力関連建築物には、原子炉建築物の他、原子力関連施設における建築物を含む。   According to the invention of (1), even if the rock mass is not at the embedding depth level at which the embedding effect can be obtained, the artificial rock mass is placed in the ground improvement range that spreads in the horizontal plane around the underground part in the nuclear related building. Therefore, the embedding effect can be obtained. Here, the nuclear-related building in the present invention includes a building in a nuclear-related facility in addition to a reactor building.

ところで、地盤改良工法においては、地盤改良範囲に存在する埋土を掘削し、この掘削した埋土の一部や、外部から搬入した搬入土等にセメントを混入して人工岩盤を生成し、この人工岩盤を地盤改良範囲に打設する。なお、人工岩盤に用いなかった掘削した埋土は、廃棄されることとなる。すなわち、地盤改良範囲が広くなるほど、掘削する範囲や人工岩盤を打設する範囲が増大するので、地盤改良に必要な工期も長くなる。また、地盤改良範囲が広くなるほど、掘削する埋土、搬入土等、セメント及び廃棄する埋土の量が増大するので、地盤改良の施工費も高くなる。   By the way, in the ground improvement method, excavated soil that exists in the ground improvement range, cement is mixed into a part of the excavated soil, or from the outside, and the artificial rock is generated. Place artificial rock in the ground improvement area. The excavated soil that was not used for the artificial bedrock will be discarded. That is, as the ground improvement range becomes wider, the excavation range and the range where artificial rock is placed are increased, and therefore the construction period required for the ground improvement becomes longer. In addition, the wider the ground improvement range, the greater the amount of cement and waste to be excavated, such as excavated soil and carry-in soil, so the construction cost for ground improvement also increases.

よって、地盤改良範囲を、原子力関連建築物の地下部分の幅に基づき特定したので、人工岩盤が半無限に広がっていると想定するために、人工岩盤の打設範囲を不必要に広くしたり、人工岩盤の動的地盤物性の性能を不必要に高める必要がなくなり、地盤改良工事における工期を短縮することができる。また、搬入土等、混入するセメント及び廃棄する埋土の量を削減することができるので、施工費を抑えることができる。   Therefore, because the ground improvement range was specified based on the width of the underground part of the nuclear-related building, the artificial rock bed placement range was unnecessarily widened to assume that the artificial bedrock had spread infinitely. Therefore, it is not necessary to unnecessarily increase the performance of the dynamic ground physical properties of the artificial rock, and the construction period in the ground improvement work can be shortened. Moreover, since the amount of cement to be mixed and landfill to be discarded, such as carry-in soil, can be reduced, construction costs can be reduced.

したがって、原子力関連建築物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、工期や施工費を抑えることができる地盤改良工法を提供できる。   Therefore, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the construction site of the nuclear related building, we provide a ground improvement method that can reduce the construction period and construction cost while obtaining the embedding effect it can.

また、(1)の発明によれば、水平面における所定方向の地盤改良範囲の幅を、当該所定方向における地下部分の幅と略同一とした。これにより、例えば、地下部分の幅が狭い部分は、地盤改良範囲の幅も狭くできるので、さらに人工岩盤の打設範囲を限定することができる。Moreover, according to invention of (1), the width | variety of the ground improvement range of the predetermined direction in a horizontal surface was made substantially the same as the width | variety of the underground part in the said predetermined direction. Thereby, for example, in the portion where the width of the underground portion is narrow, the width of the ground improvement range can also be narrowed, so that the placement range of the artificial rock can be further limited.
よって、原子力関連建築物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、さらに工期や施工費を抑えることができる地盤改良工法を提供できる。  Therefore, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the construction site of the nuclear related building, a ground improvement method that can further reduce the construction period and construction cost while obtaining the embedding effect. Can be provided.

(2) 前記地盤改良範囲は、所定のせん断波速度を有する第1人工岩盤が打設され、前記原子力関連建築物に接する第1範囲と、前記所定のせん断波速度より低いせん断波速度を有する第2人工岩盤が打設され、前記第1範囲の外側に接する第2範囲とを有することを特徴とする請求項1に記載の地盤改良工法。 (2) In the ground improvement range, a first artificial rock having a predetermined shear wave velocity is placed, and a first range in contact with the nuclear-related building has a shear wave velocity lower than the predetermined shear wave velocity. the second artificial rock is pouring, ground improvement method according to claim 1, characterized in Rukoto to have a second range adjacent to the outside of the first range.

(3) 原子力関連建築物の建設予定地において、当該原子力関連建築物に対して支持性能を持つ岩盤の地表が、基準面に達していない場合に、前記原子力関連建築物における地下部分の周囲であって、前記地下部分の幅に基づき特定した水平面に広がる地盤改良範囲において、前記岩盤の地表を覆う埋土を掘削して前記岩盤の地表を露出させ、前記岩盤の地表から前記基準面まで、人工岩盤を打設する地盤改良工法であって、前記地盤改良範囲は、所定のせん断波速度を有する第1人工岩盤が打設され、前記原子力関連建築物に接する第1範囲と、前記所定のせん断波速度より低いせん断波速度を有する第2人工岩盤が打設され、前記第1範囲の外側に接する第2範囲とを有することを特徴とする地盤改良工法。 (3) In the planned construction site of a nuclear related building, if the ground surface of the rock that has supporting performance for the nuclear related building does not reach the reference plane, In the ground improvement range that spreads in the horizontal plane specified based on the width of the underground part, excavating the soil covering the ground surface of the rock to expose the ground surface of the rock, from the ground surface of the rock to the reference plane, A ground improvement method for placing an artificial rock, wherein the ground improvement range includes a first range in which a first artificial rock having a predetermined shear wave velocity is placed and is in contact with the nuclear related building, and the predetermined range. second artificial rock having a lower shear wave velocity shear wave velocity is pouring, the earth plate improved method you; and a second range adjacent to the outside of the first range.

(2)又は(3)の発明によれば、地盤改良範囲を、原子力関連建築物に接する第1範囲と、第1範囲の外側に接する第2範囲とに分け、第2範囲には、第1範囲に打設する第1人工岩盤よりせん断波速度が低い第2人工岩盤を打設する。
これにより、例えば、第2範囲における第2人工岩盤の1m当りのセメント量を、第1範囲における第1人工岩盤の1m当りのセメント量より少なくすることができるので、さらに地盤改良工事の施工費を抑えることができる。
よって、原子力関連建築物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、さらに工期や施工費を抑えることができる地盤改良工法を提供できる。
According to the invention of (2) or (3), the ground improvement range is divided into a first range in contact with the nuclear related building and a second range in contact with the outside of the first range. A second artificial rock mass having a shear wave velocity lower than that of the first artificial rock mass to be cast in one range is cast.
Thereby, for example, the amount of cement per 1 m 3 of the second artificial rock in the second range can be made smaller than the amount of cement per 1 m 3 of the first artificial rock in the first range. Construction costs can be reduced.
Therefore, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the construction site of the nuclear related building, a ground improvement method that can further reduce the construction period and construction cost while obtaining the embedding effect. Can be provided.

(4) 水平面における所定方向の前記第1範囲の幅、及び当該所定方向の前記第2範囲の幅は、それぞれ当該所定方向における前記地下部分の幅より狭いことを特徴とする(3)に記載の地盤改良工法。   (4) The width of the first range in a predetermined direction on the horizontal plane and the width of the second range in the predetermined direction are each smaller than the width of the underground portion in the predetermined direction. Ground improvement method.

(4)の発明によれば、水平面における所定方向の第1範囲の幅、及び当該所定方向の第2範囲の幅を、当該所定方向における地下部分の幅より狭くした。
これにより、第1人工岩盤の第1範囲及び第2人工岩盤の第2範囲の幅を、地下部分の幅より狭い幅に抑えることで、さらに地盤改良工事の施工費を抑えることができる。
よって、原子力関連建築物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、さらに工期や施工費を抑えることができる地盤改良工法を提供できる。
According to invention of (4), the width | variety of the 1st range of the predetermined direction in a horizontal surface and the width | variety of the 2nd range of the said predetermined direction were made narrower than the width | variety of the underground part in the said predetermined direction.
Thereby, the construction cost of the ground improvement work can be further suppressed by suppressing the width of the first range of the first artificial rock mass and the width of the second range of the second artificial rock mass to a width narrower than the width of the underground portion.
Therefore, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the construction site of the nuclear related building, a ground improvement method that can further reduce the construction period and construction cost while obtaining the embedding effect. Can be provided.

本発明によれば、原子力関連建築物の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、工期や施工費を抑えることができる地盤改良工法を提供できる。   According to the present invention, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the planned construction site of the nuclear related building, the ground can be obtained while the embedding effect is obtained and the construction period and construction cost can be suppressed. An improved construction method can be provided.

図1は、本発明の実施形態に係る地盤改良工法の説明図である。FIG. 1 is an explanatory diagram of a ground improvement method according to an embodiment of the present invention. 動的解析1において地盤改良範囲の幅を無限想定したモデルを示す図である。It is a figure which shows the model which assumed the width | variety of the ground improvement range in the dynamic analysis 1. 動的解析1において地盤改良範囲の幅を原子炉建築物の地下部分の幅の略0.5倍としたモデルを示す図である。It is a figure which shows the model which made the width | variety of the ground improvement range in the dynamic analysis 1 substantially 0.5 times the width | variety of the underground part of a reactor building. 動的解析1において地盤改良範囲の幅を原子炉建築物の地下部分の幅と略同一としたモデルを示す図である。It is a figure which shows the model which made the width | variety of the ground improvement range in dynamic analysis 1 substantially the same as the width | variety of the underground part of a reactor building. 動的解析1において地盤改良範囲の幅を原子炉建築物の地下部分の幅の略3倍としたモデルを示す図である。It is a figure which shows the model which made the width | variety of the ground improvement range in the dynamic analysis 1 substantially 3 times the width | variety of the underground part of a nuclear reactor building. 動的解析1において地盤改良範囲の幅を原子炉建築物の地下部分の幅の略5倍としたモデルを示す図である。It is a figure which shows the model which made the width | variety of the ground improvement range in the dynamic analysis 1 substantially 5 times the width | variety of the underground part of a nuclear reactor building. 動的解析2において全地盤改良範囲に所定のせん断波速度を有する第1人工岩盤を設定したモデルを示す図である。It is a figure which shows the model which set the 1st artificial rock which has a predetermined shear wave velocity in the whole ground improvement range in the dynamic analysis 2. FIG. 動的解析2において全地盤改良範囲に、第1人工岩盤より、せん断波速度が低いせん断波速度を有する第2人工岩盤を設定したモデルを示す図である。It is a figure which shows the model which set the 2nd artificial rock in which the shear wave velocity is lower than the 1st artificial rock in the whole ground improvement range in the dynamic analysis 2. 動的解析2において第1人工岩盤と第2人工岩盤とを地盤改良範囲に半分ずつ設定したモデルを示す図である。It is a figure which shows the model which set the 1st artificial rock mass and the 2nd artificial rock mass in half in the ground improvement range in the dynamic analysis 2.

[実施形態]
以下に、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
[Embodiment]
Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description of the embodiments, the same constituent elements are denoted by the same reference numerals, and the description thereof is omitted or simplified.

図1は、本発明の実施形態に係る地盤改良工法の説明図である。
図1を参照して、本実施形態に係る地盤改良工法について説明する。
本実施形態に係る地盤改良工法は、原子力関連建築物5の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤2がない場合に適用される。
本実施形態において、埋込み効果が得られる埋込み深さレベルを、原子力関連建築物5の基準面3のレベルとする。すなわち、原子力関連建築物5の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合とは、原子力関連建築物5の重量や想定される地震による荷重に対して十分な支持性能を持つ岩盤2の地表が、上記基準面3のレベルに達していない場合である。なお、本実施形態では、岩盤2の地表から基準面3のレベルまで、岩盤2の地表を覆う埋土50が堆積しているが、埋土50は上記支持性能をほとんど有さない。
FIG. 1 is an explanatory diagram of a ground improvement method according to an embodiment of the present invention.
With reference to FIG. 1, the ground improvement construction method which concerns on this embodiment is demonstrated.
The ground improvement method according to the present embodiment is applied when the bedrock 2 does not exist up to the embedding depth level at which the embedding effect is obtained in the planned construction site of the nuclear related building 5.
In the present embodiment, the embedding depth level at which the embedding effect is obtained is the level of the reference plane 3 of the nuclear related building 5. In other words, when there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the planned construction site of the nuclear related building 5, sufficient support performance against the weight of the nuclear related building 5 and the load due to the assumed earthquake. This is a case where the ground surface of the rock mass 2 having the height does not reach the level of the reference plane 3. In the present embodiment, the buried soil 50 covering the ground surface of the rock mass 2 is accumulated from the ground surface of the rock mass 2 to the level of the reference plane 3, but the buried soil 50 has almost no support performance.

本実施形態に係る地盤改良工法は、まず、原子力関連建築物5の地下部分の周囲において水平面に広がる地盤改良範囲1の平面的範囲において、岩盤2の地表を覆う埋土50を掘削して岩盤2を露出させる。次に、露出させた岩盤2を支持層として原子力関連建築物5の地下部分を構築した後、掘削した埋土50の一部にセメントを混入し第1人工岩盤100及び110を生成する。そして、地盤改良範囲1において、基準面3まで第1人工岩盤100及び110を打設する。   In the ground improvement method according to the present embodiment, first, the ground 50 covering the ground surface of the rock mass 2 is excavated in the planar range of the ground improvement range 1 extending in the horizontal plane around the underground portion of the nuclear related building 5. 2 is exposed. Next, after constructing an underground portion of the nuclear-related building 5 using the exposed rock mass 2 as a support layer, cement is mixed into a part of the excavated buried soil 50 to generate the first artificial rock masses 100 and 110. In the ground improvement range 1, the first artificial rocks 100 and 110 are placed up to the reference plane 3.

地盤改良範囲1は、原子力関連建築物5の地下部分外側に接する第1範囲10と、第1範囲10の外側に接する第2範囲11とを備える。   The ground improvement range 1 includes a first range 10 that contacts the outside of the underground portion of the nuclear power related building 5 and a second range 11 that contacts the outside of the first range 10.

第1範囲10は、水平面における所定方向の幅が、当該所定方向における原子力関連建築物5の地下部分の幅Dの略半分(0.5D)である。この第1範囲10には、第1人工岩盤100が打設される。
第1人工岩盤100は、マンメイドロックであり、埋土50に1m当りに所定量のセメントを混入し、所定のせん断波速度を有するように生成される。
In the first range 10, the width in the predetermined direction on the horizontal plane is substantially half (0.5D) of the width D of the underground portion of the nuclear related building 5 in the predetermined direction. The first artificial rock 100 is placed in the first range 10.
The first artificial rock mass 100 is a manmade rock, and is generated so as to have a predetermined shear wave velocity by mixing a predetermined amount of cement per 1 m 3 in the buried soil 50.

第2範囲11は、水平面における所定方向の幅が、当該所定方向における原子力関連建築物5の地下部分の幅Dの略半分(0.5D)である。この第2範囲11には、第2人工岩盤110が打設される。
第2人工岩盤110は、マンメイドロックであり、埋土50に混入する1m当りのセメント量を第1人工岩盤100に混入した所定量のセメントより少なくし、第1範囲10の第1人工岩盤100よりせん断波速度が低いせん断波速度を有するように生成される。
In the second range 11, the width in the predetermined direction on the horizontal plane is approximately half (0.5D) of the width D of the underground portion of the nuclear related building 5 in the predetermined direction. In the second range 11, a second artificial rock 110 is placed.
The second artificial rock 110 is a manmade rock, and the amount of cement per 1 m 3 mixed in the buried soil 50 is made smaller than the predetermined amount of cement mixed in the first artificial rock 100, and the first artificial rock in the first range 10 is used. It is generated so that the shear wave velocity is lower than that of the rock mass 100.

[地盤改良範囲の動的解析1]
<解析概要>
図2〜図6は、地盤改良範囲の動的解析1におけるモデルを示す図である。
動的解析1は、建設予定の原子力関連建築物5(図1参照)の所定方向断面を対象に、地盤改良範囲の幅による応答値の傾向を把握することを目的とする。
動的解析1では、地盤・建物連成2次元FEMモデルに所定の地震動を入力し、原子力関連建築物5を、基礎の上に構築された8階層から成る原子炉建築物としてモデル化した原子炉建築物(以下、R/Bと称する)15に対して引き戻し解析を実施した。
[Dynamic analysis of ground improvement range 1]
<Analysis outline>
2-6 is a figure which shows the model in the dynamic analysis 1 of the ground improvement range.
The purpose of the dynamic analysis 1 is to grasp the tendency of the response value depending on the width of the ground improvement range, with respect to a predetermined direction cross section of the nuclear-related building 5 to be constructed (see FIG. 1).
In the dynamic analysis 1, specified earthquake motion is input to the ground-building coupled 2D FEM model, and the nuclear-related building 5 is modeled as a reactor building consisting of 8 layers built on the foundation. A pullback analysis was performed on the furnace building (hereinafter referred to as R / B) 15.

<解析条件>
動的解析1では、R/B15を動解用質点系バネーマス多軸モデルとし、埋込み側壁部分及び基礎底面部分に剛なビーム要素を配置した。このビーム要素は、各フロアレベルでピン結合とし、バネーマスモデルをフロア毎に剛な水平バネで連結した。また、各フロアは、剛な床と仮定した。なお、図2〜図6では、理解容易とするため動解用質点系バネーマス多軸モデルをR/B15として記載している。
<Analysis conditions>
In the dynamic analysis 1, R / B 15 is a dynamic mass point spring mass multi-axis model, and rigid beam elements are arranged on the embedded side wall portion and the foundation bottom surface portion. This beam element was pin-coupled at each floor level, and the spring mass model was connected to each floor with a rigid horizontal spring. Each floor was assumed to be a rigid floor. In FIG. 2 to FIG. 6, a dynamic mass point spring mass multi-axis model is described as R / B 15 for easy understanding.

地盤は水平成層地盤とし、R/B15の基礎下以深は均一な岩盤2とし、R/B15の埋込み側方部分は第1人工岩盤100及び埋土50としてモデル化した。
各地盤の動的物性(せん断波速度)は、建設予定の原子炉建築物に対して十分な支持性能を有する岩盤2の動的物性を基準とした。第1人工岩盤100の動的物性は、岩盤2の動的物性の略75%に設定した。また、埋土50の動的物性は、岩盤2の動的物性の略10%に設定した。
The ground was a water Heisei layer ground, the base depth of the R / B 15 was a uniform bedrock 2, and the embedded lateral portion of the R / B 15 was modeled as the first artificial rock 100 and the buried soil 50.
The dynamic physical properties (shear wave velocity) of each base were based on the dynamic physical properties of the rock mass 2 having sufficient support performance for the reactor building to be constructed. The dynamic physical properties of the first artificial rock 100 were set to approximately 75% of the dynamic physical properties of the rock 2. The dynamic properties of the buried soil 50 were set to about 10% of the dynamic properties of the bedrock 2.

動的解析1では、地盤改良範囲の幅をパラメータとした5種のモデルにおける応答値を対比して、適正な地盤改良範囲の幅を検証した。ここで、応答値とは、R/B15において、基礎に8階層を加えた全9階層毎の応答値である。をまた、地盤改良範囲の幅は、無限想定した場合を除き、R/B15の地下部分の幅Dに基づき特定している。すなわち、地盤改良範囲の幅が2.0Dであれば、地下部分の幅Dの2倍であり、0.5Dであれば、地下部分の幅Dの0.5倍である。   In dynamic analysis 1, the width of the appropriate ground improvement range was verified by comparing the response values in the five models with the width of the ground improvement range as a parameter. Here, the response value is a response value for every 9 layers in the R / B 15 with 8 layers added to the base. In addition, the width of the ground improvement range is specified based on the width D of the underground portion of the R / B 15 except when infinite. That is, if the width of the ground improvement range is 2.0D, it is twice the width D of the underground portion, and if it is 0.5D, it is 0.5 times the width D of the underground portion.

具体的な動的解析1の5種のモデルは、地盤改良範囲の幅を無限想定した場合の地盤改良範囲1aモデルと、地盤改良範囲の幅を0.5Dとした場合の地盤改良範囲1bモデルと、地盤改良範囲の幅を1.0Dとした場合の地盤改良範囲1cモデルと、地盤改良範囲の幅を3.0Dとした場合の地盤改良範囲1dモデルと、地盤改良範囲の幅を5.0Dとした場合の地盤改良範囲1eモデルである。   The five models of the specific dynamic analysis 1 are the ground improvement range 1a model when the width of the ground improvement range is assumed to be infinite, and the ground improvement range 1b model when the width of the ground improvement range is 0.5D. And the ground improvement range 1c model when the width of the ground improvement range is 1.0D, the ground improvement range 1d model when the width of the ground improvement range is 3.0D, and the width of the ground improvement range 5. It is a ground improvement range 1e model in the case of 0D.

図2は、動的解析1において地盤改良範囲の幅を無限想定した地盤改良範囲1aモデルを示す図である。
図3は、動的解析1において地盤改良範囲の幅を原子炉建築物の地下部分の幅の略0.5倍(0.5D)とした地盤改良範囲1bモデルを示す図である。
図4は、動的解析1において地盤改良範囲の幅を略原子炉建築物の地下部分の幅と略同一(1.0D)とした地盤改良範囲1cモデルを示す図である。
図5は、動的解析1において地盤改良範囲の幅を原子炉建築物の地下部分の幅の略3倍(3.0D)とした地盤改良範囲1dモデルを示す図である。
図6は、動的解析1において地盤改良範囲の幅を原子炉建築物の地下部分の幅の略5倍(5.0D)とした地盤改良範囲1eモデルを示す図である。
FIG. 2 is a diagram showing a ground improvement range 1a model in which the width of the ground improvement range is assumed to be infinite in the dynamic analysis 1. FIG.
FIG. 3 is a diagram illustrating a ground improvement range 1b model in which the width of the ground improvement range in the dynamic analysis 1 is approximately 0.5 times (0.5D) the width of the underground portion of the reactor building.
FIG. 4 is a diagram showing a ground improvement range 1c model in which the width of the ground improvement range in the dynamic analysis 1 is substantially the same as the width of the underground portion of the reactor building (1.0D).
FIG. 5 is a diagram showing a ground improvement range 1d model in which the width of the ground improvement range in the dynamic analysis 1 is approximately three times (3.0 D) the width of the underground portion of the reactor building.
FIG. 6 is a diagram showing a ground improvement range 1e model in which the width of the ground improvement range in the dynamic analysis 1 is approximately five times (5.0D) the width of the underground portion of the reactor building.

<解析結果>
(地盤の最大加速度分布)
地盤の最大加速度分布は、埋土50部分の加速度が大きくなっていたが、地盤改良範囲1a〜1eにおいてR/B15の地下部分での加速度分布に大きな違いはなかった。
<Analysis results>
(Maximum acceleration distribution of the ground)
As for the maximum acceleration distribution of the ground, the acceleration of the buried 50 portion was large, but there was no significant difference in the acceleration distribution in the underground portion of the R / B 15 in the ground improvement ranges 1a to 1e.

(R/B15の最大応答加速度分布)
表1は、R/B15の最大応答加速度分布について、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値に対する地盤改良範囲1b(0.5D)モデル〜地盤改良範囲1e(5.0D)モデルにおける各階層の応答値の比率を示す表である。表1では、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値を1.00としている。
(Maximum response acceleration distribution of R / B15)
Table 1 shows the ground improvement range 1b (0.5D) model to the ground improvement range 1e (5.0D) for the response value of each layer in the ground improvement range 1a (infinite assumption) model for the maximum response acceleration distribution of R / B15. It is a table | surface which shows the ratio of the response value of each hierarchy in a model. In Table 1, the response value of each layer in the ground improvement range 1a (infinite assumption) model is set to 1.00.

Figure 0004541449
Figure 0004541449

表1に示すように、地盤改良範囲の幅が大きくなるほど、地盤改良範囲1a(無限想定)モデルの応答値に近くなった。
また、R/B15の下層部で比較すると、地盤改良範囲1b(0.5D)モデルの応答値は、地盤改良範囲1a(無限想定)モデルの応答値より略10%上回っているが、地盤改良範囲1c(1.0D)モデル,1d(3.0D)モデルの応答値は、地盤改良範囲1a(無限想定)モデルの応答値に近似した。
As shown in Table 1, the larger the width of the ground improvement range, the closer to the response value of the ground improvement range 1a (infinite assumption) model.
Moreover, when compared with the lower layer part of R / B15, the response value of the ground improvement range 1b (0.5D) model is approximately 10% higher than the response value of the ground improvement range 1a (infinite assumption) model. The response values of the range 1c (1.0D) model and 1d (3.0D) model approximated the response value of the ground improvement range 1a (infinite assumption) model.

(R/B15の最大層せん断力分布)
表2は、R/B15の各軸合計の最大層せん断力分布について、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値に対する地盤改良範囲1b(0.5D)モデル〜地盤改良範囲1e(5.0D)モデルにおける各階層の応答値の比率を示す表である。表2では、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値を1.00としている。また、表2では、各階層における上部及び下部の応答値の比率を2段で併記している。
(Maximum shear force distribution of R / B15)
Table 2 shows the ground improvement range 1b (0.5D) model to the ground improvement range 1e with respect to the response value of each layer in the ground improvement range 1a (infinite assumption) model with respect to the maximum layer shear force distribution of each axis of R / B15. It is a table | surface which shows the ratio of the response value of each hierarchy in a (5.0D) model. In Table 2, the response value of each layer in the ground improvement range 1a (infinite assumption) model is set to 1.00. Further, in Table 2, the ratio of the upper and lower response values in each hierarchy is shown in two stages.

Figure 0004541449
Figure 0004541449

表2に示すように、地盤改良範囲1b(0.5D)モデルの応答値は、地盤改良範囲1a(無限想定)モデルの応答値より略10%上回っているが、地盤改良範囲1c(1.0D)モデルの応答値は、地盤改良範囲1a(無限想定)モデルの応答値に比較的近似した。   As shown in Table 2, the response value of the ground improvement range 1b (0.5D) model is approximately 10% higher than the response value of the ground improvement range 1a (infinite assumption) model, but the ground improvement range 1c (1. The response value of the (0D) model was relatively approximate to the response value of the ground improvement range 1a (infinite assumption) model.

(R/B15の最大曲げモーメント分布)
表3は、R/B15の各軸合計の最大曲げモーメント分布について、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値に対する地盤改良範囲1b(0.5D)モデル〜地盤改良範囲1e(5.0D)モデルにおける各階層の応答値の比率を示す表である。表3では、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値を1.00としている。また、表3では、各階層における上部及び下部の応答値の比率を2段で併記している。
(Maximum bending moment distribution of R / B15)
Table 3 shows ground improvement range 1b (0.5D) model to ground improvement range 1e for the response value of each layer in the ground improvement range 1a (infinite assumption) model for the maximum bending moment distribution of each axis of R / B15. 5.0D) It is a table | surface which shows the ratio of the response value of each hierarchy in a model. In Table 3, the response value of each layer in the ground improvement range 1a (infinite assumption) model is set to 1.00. In Table 3, the ratio of the response values at the upper and lower levels in each hierarchy is shown in two stages.

Figure 0004541449
Figure 0004541449

表3に示すように、地盤改良範囲1b(0.5D)モデルの応答値は、地盤改良範囲1a(無限想定)モデルの応答値より略10%上回っていた。
地盤改良範囲1c(1.0D)モデルの応答値は、地盤改良範囲1a(無限想定)モデルの応答値に比較的近似した。
また、地盤改良範囲1d(3.0D)モデル,1e(5.0D)モデルの応答値は、地盤改良範囲1a(無限想定)モデルの応答値と略同等であった。
As shown in Table 3, the response value of the ground improvement range 1b (0.5D) model was approximately 10% higher than the response value of the ground improvement range 1a (infinite assumption) model.
The response value of the ground improvement range 1c (1.0D) model was relatively approximate to the response value of the ground improvement range 1a (infinite assumption) model.
The response values of the ground improvement range 1d (3.0D) model and 1e (5.0D) model were substantially the same as the response values of the ground improvement range 1a (infinite assumption) model.

<検証>
以上の動的解析1の解析結果を検証する。
地盤改良範囲1d(3.0D)モデル,1e(5.0D)モデルの各応答値は、地盤改良範囲1a(無限想定)モデルの各応答値と同等とみなせる。
地盤改良範囲1c(1.0D)モデルの各応答値は、地盤改良範囲1a(無限想定)モデルの各応答値に比較的近似していた。
以上の結果より、地盤改良範囲として、R/B15の地下部分の幅Dと同程度の幅(1.0D)とした地盤改良範囲1c(1.0D)モデルで埋込み効果が得られることがわかった。
<Verification>
The analysis result of the above dynamic analysis 1 is verified.
Each response value of the ground improvement range 1d (3.0D) model and 1e (5.0D) model can be regarded as equivalent to each response value of the ground improvement range 1a (infinite assumption) model.
Each response value of the ground improvement range 1c (1.0D) model was relatively approximate to each response value of the ground improvement range 1a (infinite assumption) model.
From the above results, it is understood that the embedding effect can be obtained with the ground improvement range 1c (1.0D) model in which the ground improvement range is the same width (1.0D) as the width D of the underground portion of R / B15. It was.

[地盤改良範囲の動的解析2]
<解析概要>
図7〜図9は、地盤改良範囲の動的解析2におけるモデルを示す図である。
動的解析2は、動的解析1を追加検討する解析である。なお、以下の動的解析2の説明にあたって、動的解析1と同一構成については同一符号を付し、その説明を省略もしくは簡略化する。また、動的解析1と同一解析条件についても、その説明を省略もしくは簡略化する。
動的解析2は、地盤の種類及びパラメータが動的解析1とは異なる。
<解析条件>
地盤は、水平成層地盤とし、R/B15の基礎下以深を均一な岩盤2とし、R/B15の埋込み側方部分について、第1人工岩盤100及び埋土50としたもの、第2人工岩盤110及び埋土50としたもの、並びに第1人工岩盤100,110及び埋土50としたものの3種類をモデル化した。
第2人工岩盤110の動的物性(せん断波速度)は、第1人工岩盤100の動的物性の略50%〜45%に設定した。
[Dynamic analysis of ground improvement range 2]
<Analysis outline>
7-9 is a figure which shows the model in the dynamic analysis 2 of a ground improvement range.
The dynamic analysis 2 is an analysis for additionally examining the dynamic analysis 1. In the following description of the dynamic analysis 2, the same components as those of the dynamic analysis 1 are denoted by the same reference numerals, and the description thereof is omitted or simplified. Also, the description of the same analysis conditions as those of the dynamic analysis 1 is omitted or simplified.
The dynamic analysis 2 is different from the dynamic analysis 1 in the ground type and parameters.
<Analysis conditions>
The ground is a water Heisei layer ground, the bedrock 2 below the foundation of R / B15 is a uniform bedrock, and the R / B15 embedding side part is the first artificial rock 100 and the buried soil 50, the second artificial rock 110 And three types of the first artificial rock masses 100 and 110 and the buried soil 50 were modeled.
The dynamic physical properties (shear wave velocity) of the second artificial rock mass 110 were set to about 50% to 45% of the dynamic physical properties of the first artificial rock mass 100.

動的解析2では、地盤改良範囲の幅をR/B15の地下部分の幅Dと同程度の幅(1.0D)に設定した。
動的解析2では、地盤改良範囲の幅(1.0D)における人工岩盤の動的物性(せん断波速度)をパラメータとした3種類のモデルにおける応答値を対比した。
In the dynamic analysis 2, the width of the ground improvement range was set to a width (1.0 D) that is approximately the same as the width D of the underground portion of R / B15.
In the dynamic analysis 2, the response values in three types of models using the dynamic physical properties (shear wave velocity) of the artificial rock in the width (1.0D) of the ground improvement range as parameters were compared.

具体的な動的解析2の3種のモデルは、地盤改良範囲全範囲に第1人工岩盤100を設定した地盤改良範囲1fモデル(上記動的解析1における地盤改良範囲1c(1.0D)と同等)と、地盤改良範囲全範囲に第2人工岩盤110を設定した地盤改良範囲1gモデルと、第1人工岩盤100と第2人工岩盤110とを地盤改良範囲に半分ずつ設定した地盤改良範囲1hモデルである。   The three models of the specific dynamic analysis 2 are the ground improvement range 1f model (the ground improvement range 1c (1.0D) in the dynamic analysis 1) and the first artificial rock 100 set in the entire ground improvement range. Equivalent), a ground improvement range 1g model in which the second artificial rock 110 is set in the entire ground improvement range, and a ground improvement range 1h in which the first artificial rock 100 and the second artificial rock 110 are set in half in the ground improvement range. It is a model.

そして、動的解析2では、3種類のモデルと上記地盤改良範囲1a(無限想定)モデル(図2参照)における応答値を対比して、特に地盤改良範囲1hモデルの適正を検証した。ここで、応答値とは、R/B15において、基礎に8階層を加えた全9階層毎の応答値である。   In the dynamic analysis 2, the appropriateness of the ground improvement range 1h model was particularly verified by comparing the response values in the three types of models and the ground improvement range 1a (infinite assumption) model (see FIG. 2). Here, the response value is a response value for every 9 layers in the R / B 15 with 8 layers added to the base.

図7は、動的解析2において全地盤改良範囲に第1人工岩盤100を設定した地盤改良範囲1fモデルを示す図である。
図8は、動的解析2において全地盤改良範囲に第2人工岩盤110を設定した地盤改良範囲1gモデルを示す図である。
図9は、動的解析2において第1人工岩盤100と第2人工岩盤110とを地盤改良範囲に半分ずつ設定した地盤改良範囲1hモデルを示す図である。
FIG. 7 is a diagram showing a ground improvement range if model in which the first artificial rock 100 is set in the entire ground improvement range in the dynamic analysis 2.
FIG. 8 is a diagram showing a ground improvement range 1 g model in which the second artificial rock 110 is set in the entire ground improvement range in the dynamic analysis 2.
FIG. 9 is a diagram showing a ground improvement range 1 h model in which the first artificial rock 100 and the second artificial rock 110 are set in half in the ground improvement range in the dynamic analysis 2.

<解析結果>
(R/B15の最大応答加速度分布)
表4は、R/B15の最大応答加速度分布について、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値に対する地盤改良範囲1f(第1人工岩盤)モデル〜地盤改良範囲1h(第1人工岩盤+第2人工岩盤)モデルにおける各階層の応答値の比率を示す表である。表4では、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値を1.00としている。
<Analysis results>
(Maximum response acceleration distribution of R / B15)
Table 4 shows the ground improvement range 1a (first artificial rock) model to ground improvement range 1h (first artificial rock) for the response value of each layer in the ground improvement range 1a (infinite assumption) model for the maximum response acceleration distribution of R / B15. It is a table | surface which shows the ratio of the response value of each hierarchy in a (rock mass + 2nd artificial rock mass) model. In Table 4, the response value of each layer in the ground improvement range 1a (infinite assumption) model is set to 1.00.

Figure 0004541449
Figure 0004541449

表4に示すように、R/B15の最大応答加速度分布についての地盤改良範囲1a(無限想定)モデルとの対比において、地盤改良範囲1hモデルは、地盤改良範囲1fモデルと明確な差異はなかった。   As shown in Table 4, in comparison with the ground improvement range 1a (infinite assumption) model for the maximum response acceleration distribution of R / B15, the ground improvement range 1h model was not clearly different from the ground improvement range 1f model. .

(R/B15の最大層せん断力分布)
表5は、R/B15の各軸合計の最大層せん断力分布について、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値に対する地盤改良範囲1f(第1人工岩盤)モデル〜地盤改良範囲1h(第1人工岩盤+第2人工岩盤)モデルにおける各階層の応答値の比率を示す表である。表5では、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値を1.00としている。また、表5では、各階層における上部及び下部の応答値の比率を2段で併記している。
(Maximum shear force distribution of R / B15)
Table 5 shows the ground improvement range 1f (first artificial rock) model to the ground improvement range with respect to the response value of each layer in the ground improvement range 1a (infinite assumption) model for the maximum layer shear force distribution of each axis of R / B15. It is a table | surface which shows the ratio of the response value of each hierarchy in 1h (1st artificial rock mass + 2nd artificial rock mass) model. In Table 5, the response value of each layer in the ground improvement range 1a (infinite assumption) model is set to 1.00. In Table 5, the ratios of the upper and lower response values in each layer are shown in two stages.

Figure 0004541449
Figure 0004541449

表5に示すように、R/B15の各軸合計の最大層せん断力分布についての地盤改良範囲1a(無限想定)モデルとの対比において、地盤改良範囲1hモデルは、比較的整合していた。
また、R/B15の下層部の最大層せん断力について、地盤改良範囲1hモデルは、地盤改良範囲1gモデルと比べて、大幅に低下しており、地盤改良の効果が現れていることが確認できた。
As shown in Table 5, the ground improvement range 1h model was relatively consistent with the ground improvement range 1a (infinite assumption) model for the maximum layer shear force distribution of each axis of R / B15.
In addition, regarding the maximum shear force of the lower layer of R / B15, the ground improvement range 1h model is significantly lower than the ground improvement range 1g model, and it can be confirmed that the effect of ground improvement appears. It was.

(R/B15の最大曲げモーメント分布)
表6は、R/B15の最大曲げモーメント分布について、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値に対する地盤改良範囲1f(第1人工岩盤)モデル〜地盤改良範囲1h(第1人工岩盤+第2人工岩盤)モデルにおける各階層の応答値の比率を示す表である。表6では、地盤改良範囲1a(無限想定)モデルにおける各階層の応答値を1.00としている。また、表6では、各階層における上部及び下部の応答値の比率を2段で併記している。
(Maximum bending moment distribution of R / B15)
Table 6 shows the ground improvement range 1f (first artificial rock) model to ground improvement range 1h (first artificial rock) for the response value of each layer in the ground improvement range 1a (infinite assumption) model for the maximum bending moment distribution of R / B15. It is a table | surface which shows the ratio of the response value of each hierarchy in a (rock mass + 2nd artificial rock mass) model. In Table 6, the response value of each layer in the ground improvement range 1a (infinite assumption) model is set to 1.00. Further, in Table 6, the ratio of the upper and lower response values in each layer is shown in two stages.

Figure 0004541449
Figure 0004541449

表6に示すように、R/B15の各軸合計の最大曲げモーメント分布について、地盤改良範囲1hモデルは、地盤改良範囲1a(無限想定)モデルと略一致していた。   As shown in Table 6, with respect to the maximum bending moment distribution of each axis of R / B15, the ground improvement range 1h model was substantially consistent with the ground improvement range 1a (infinite assumption) model.

<検証>
以上の動的解析2の解析結果を検証する。
地盤改良範囲1hモデルの各応答値は、地盤改良範囲1a(無限想定)モデルとの対比において、地盤改良範囲1fモデルと明確な差異はなかった。
以上の結果より、地盤改良範囲として、R/B15の地下部分の幅Dと同程度の幅(1.0D)とした地盤改良範囲において、第1人工岩盤100と第2人工岩盤110(第1人工岩盤100の略50%〜45%の動的物性(せん断波速度)を有する人工岩盤)とを地盤改良範囲に半分ずつ設定した地盤改良範囲1hモデルで埋込み効果が得られることがわかった。
<Verification>
The analysis result of the above dynamic analysis 2 is verified.
Each response value of the ground improvement range 1h model was not clearly different from the ground improvement range 1f model in comparison with the ground improvement range 1a (infinite assumption) model.
From the above results, as the ground improvement range, the first artificial rock 100 and the second artificial rock 110 (the first artificial rock mass 110 (the first artificial rock mass 110) in the ground improvement range having the same width (1.0D) as the width D of the underground portion of the R / B 15). It has been found that the embedding effect can be obtained with a ground improvement range 1 h model in which the artificial rock mass having an approximately 50% to 45% dynamic physical property (shear wave velocity) of the artificial rock mass 100) is set in half in the ground improvement range.

上記実施形態によれば、以下のような効果がある。
岩盤2が埋込み効果を得られる埋込み深さレベル(基準面3)までない場合であっても、原子力関連建築物5における地下部分の周囲において水平面に広がる地盤改良範囲1に人工岩盤100,110を打設するので、埋込み効果を得られる。
According to the embodiment, the following effects are obtained.
Even if the rock mass 2 does not reach the embedding depth level (reference plane 3) at which the embedding effect can be obtained, the artificial rock masses 100, 110 are placed in the ground improvement range 1 extending in the horizontal plane around the underground portion of the nuclear related building 5. Since it is placed, an embedding effect can be obtained.

また、上記動的解析1の解析結果より、地盤改良範囲1を、原子力関連建築物5の地下部分の幅Dに基づき特定した。よって、人工岩盤100の打設範囲を不必要に広くしたり、人工岩盤100の動的地盤物性を不必要に高める必要がなくなったので、地盤改良工事における工期を短縮することができる。また、搬入土等、混入するセメント及び廃棄する埋土50の量を削減することができるので、施工費を抑えることができる。
したがって、原子力関連建築物5の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、工期や施工費を抑えることができる地盤改良工法を提供できる。
Further, from the analysis result of the dynamic analysis 1, the ground improvement range 1 was specified based on the width D of the underground portion of the nuclear related building 5. Therefore, since it is not necessary to unnecessarily widen the placement range of the artificial rock 100 or unnecessarily increase the dynamic ground physical properties of the artificial rock 100, the construction period in the ground improvement work can be shortened. In addition, since the amount of cement to be mixed and the buried soil 50 to be discarded, such as carry-in soil, can be reduced, construction costs can be reduced.
Therefore, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the planned construction site of the nuclear related building 5, a ground improvement method that can suppress the construction period and construction cost while obtaining the embedding effect. Can be provided.

また、上記動的解析1の解析結果より、水平面における所定方向の地盤改良範囲1の幅を、当該所定方向における原子力関連建築物5の地下部分の幅Dと略同一とした。
これにより、例えば、原子力関連建築物5の地下部分の幅Dが狭い部分は、地盤改良範囲1の幅も狭くできるので、さらに人工岩盤100の打設範囲を限定することができる。
よって、原子力関連建築物5の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤2がない場合であっても、埋込み効果を得つつ、さらに工期や施工費を抑えることができる地盤改良工法を提供できる。
Moreover, from the analysis result of the dynamic analysis 1, the width of the ground improvement range 1 in a predetermined direction on the horizontal plane is set to be substantially the same as the width D of the underground portion of the nuclear related building 5 in the predetermined direction.
Thereby, for example, since the width | variety of the ground improvement range 1 can also be narrowed in the part where the width | variety D of the underground part of the nuclear power related building 5 is narrow, the placement range of the artificial bedrock 100 can be further limited.
Therefore, even if there is no bedrock 2 up to the embedding depth level where the embedding effect can be obtained at the planned construction site of the nuclear related building 5, the ground improvement that can further reduce the construction period and construction cost while obtaining the embedding effect A construction method can be provided.

また、上記動的解析2の解析結果より、地盤改良範囲を、原子力関連建築物に接する第1範囲と、第1範囲の外側に接する第2範囲とに分け、第2範囲には、第1範囲に打設する第1人工岩盤よりせん断波速度の低い第2人工岩盤を打設する。
これにより、例えば、第2範囲11における第2人工岩盤110の1m当りのセメント量を、第1範囲10における第1人工岩盤100の1m当りのセメント量より少なくすることができるので、さらに地盤改良工事の施工費を抑えることができる。
よって、原子力関連建築物5の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、さらに工期や施工費を抑えることができる地盤改良工法を提供できる。
Further, based on the analysis result of the dynamic analysis 2, the ground improvement range is divided into a first range in contact with the nuclear-related building and a second range in contact with the outside of the first range. A second artificial rock mass having a shear wave velocity lower than that of the first artificial rock mass to be cast in the range is cast.
Thereby, for example, the amount of cement per 1 m 3 of the second artificial rock 110 in the second range 11 can be made smaller than the amount of cement per 1 m 3 of the first artificial rock 100 in the first range 10. Construction costs for ground improvement work can be reduced.
Therefore, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the planned construction site of the nuclear related building 5, the ground improvement method that can further reduce the construction period and construction cost while obtaining the embedding effect. Can provide.

また、上記動的解析2の解析結果より、水平面における所定方向の第1範囲10の幅、及び当該所定方向の第2範囲11の幅を、当該所定方向における原子力関連建築物5の地下部分の幅Dより狭くした。
これにより、第1人工岩盤100の第1範囲10及び第2人工岩盤110の第2範囲11の幅を、地下部分の幅Dより狭い幅に抑えることで、さらに地盤改良工事の施工費を抑えることができる。
よって、原子力関連建築物5の建設予定地に埋込み効果が得られる埋込み深さレベルまで岩盤がない場合であっても、埋込み効果を得つつ、さらに工期や施工費を抑えることができる地盤改良工法を提供できる。
Further, from the analysis result of the dynamic analysis 2, the width of the first range 10 in the predetermined direction on the horizontal plane and the width of the second range 11 in the predetermined direction are determined based on the underground portion of the nuclear related building 5 in the predetermined direction. Narrower than width D.
Thereby, the construction cost of the ground improvement work is further suppressed by suppressing the width of the first range 10 of the first artificial rock 100 and the width of the second range 11 of the second artificial rock 110 to a width narrower than the width D of the underground portion. be able to.
Therefore, even if there is no bedrock up to the embedding depth level where the embedding effect can be obtained at the planned construction site of the nuclear related building 5, the ground improvement construction method that can further reduce the construction period and construction cost while obtaining the embedding effect. Can provide.

本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上記実施形態では、第1人工岩盤100の第1範囲10及び第2人工岩盤110の第2範囲11の幅を、地下部分の幅Dの略半分である0.5Dとしているが、本発明はこれに限られず、第1範囲10及第2範囲11の幅は、地下部分の幅Dより狭い幅であれば、例えば、第1範囲10を2/3Dとし、第2範囲11の幅を1/3Dとすることができる。
The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the said embodiment, although the width | variety of the 1st range 10 of the 1st artificial rock 100 and the 2nd range 11 of the 2nd artificial rock 110 is 0.5D which is substantially half of the width D of an underground part, The invention is not limited to this, and if the width of the first range 10 and the second range 11 is narrower than the width D of the underground portion, for example, the first range 10 is set to 2 / 3D, and the width of the second range 11 Can be 1 / 3D.

1 地盤改良範囲
10 第1範囲
100 第1人工岩盤
11 第2範囲
110 第2人工岩盤
2 岩盤
5 原子力関連建築物
DESCRIPTION OF SYMBOLS 1 Ground improvement range 10 1st range 100 1st artificial rock mass 11 2nd range 110 2nd artificial rock mass 2 Rock mass 5 Nuclear-related building

Claims (4)

原子力関連建築物の建設予定地において、当該原子力関連建築物に対して支持性能を持つ岩盤の地表が、基準面に達していない場合
前記原子力関連建築物における地下部分の周囲であって、前記地下部分の幅に基づき特定した水平面に広がる地盤改良範囲において、前記岩盤の地表を覆う埋土を掘削して前記岩盤の地表を露出させ、前記岩盤の地表から前記基準面まで、人工岩盤を打設する地盤改良工法であって、
水平面における所定方向の前記地盤改良範囲の幅は、当該所定方向における前記地下部分の幅と略同一であることを特徴とする地盤改良工法。
If the nuclear-related buildings Oite to the planned construction site of, the surface of the bedrock with the support performance for the nuclear-related buildings, does not reach the reference plane,
A surrounding underground portion in the nuclear architecture, Oite the ground improvement range extending to the specified horizontal plane on the basis of the width of the underground portion, the surface of the rock and drilling Umado covering the surface of the rock It is a ground improvement method that exposes and places artificial rock from the ground surface of the rock to the reference plane ,
A ground improvement construction method characterized in that a width of the ground improvement range in a predetermined direction on a horizontal plane is substantially the same as a width of the underground portion in the predetermined direction .
前記地盤改良範囲は、
所定のせん断波速度を有する第1人工岩盤が打設され、前記原子力関連建築物に接する第1範囲と、
前記所定のせん断波速度より低いせん断波速度を有する第2人工岩盤が打設され、前記第1範囲の外側に接する第2範囲とを有することを特徴とする請求項1に記載の地盤改良工法。
The ground improvement range is
A first range in which a first artificial rock having a predetermined shear wave velocity is placed and is in contact with the nuclear related building;
Second artificial rock with low shear wave velocity than the predetermined shear wave velocity is pouring, ground according to claim 1, characterized in Rukoto that having a second range adjacent to the outside of the first range Improved construction method.
原子力関連建築物の建設予定地において、当該原子力関連建築物に対して支持性能を持つ岩盤の地表が、基準面に達していない場合に、
前記原子力関連建築物における地下部分の周囲であって、前記地下部分の幅に基づき特定した水平面に広がる地盤改良範囲において、前記岩盤の地表を覆う埋土を掘削して前記岩盤の地表を露出させ、前記岩盤の地表から前記基準面まで、人工岩盤を打設する地盤改良工法であって、
前記地盤改良範囲は、
所定のせん断波速度を有する第1人工岩盤が打設され、前記原子力関連建築物に接する第1範囲と、
前記所定のせん断波速度より低いせん断波速度を有する第2人工岩盤が打設され、前記第1範囲の外側に接する第2範囲とを有することを特徴とする地盤改良工法。
In the planned construction site of a nuclear related building, when the ground surface of the rock mass that has the supporting performance for the nuclear related building does not reach the reference plane,
In the ground improvement range that extends around the underground portion of the nuclear-related building and spreads on the horizontal plane specified based on the width of the underground portion, the ground covering the surface of the bedrock is excavated to expose the surface of the bedrock. From the ground surface of the bedrock to the reference surface, a ground improvement method for placing artificial rock,
The ground improvement range is
A first range in which a first artificial rock having a predetermined shear wave velocity is placed and is in contact with the nuclear related building;
The second artificial rock having a predetermined low shear wave velocity than the shear wave velocity is pouring, the earth plate improved method you; and a second range adjacent to the outside of the first range.
水平面における所定方向の前記第1範囲の幅、及び当該所定方向の前記第2範囲の幅は、それぞれ当該所定方向における前記地下部分の幅より狭いことを特徴とする請求項3に記載の地盤改良工法。   The ground improvement according to claim 3, wherein a width of the first range in a predetermined direction on a horizontal plane and a width of the second range in the predetermined direction are narrower than the width of the underground portion in the predetermined direction, respectively. Construction method.
JP2010012909A 2010-01-25 2010-01-25 Ground improvement method Active JP4541449B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012909A JP4541449B1 (en) 2010-01-25 2010-01-25 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012909A JP4541449B1 (en) 2010-01-25 2010-01-25 Ground improvement method

Publications (2)

Publication Number Publication Date
JP4541449B1 true JP4541449B1 (en) 2010-09-08
JP2011149246A JP2011149246A (en) 2011-08-04

Family

ID=42824772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012909A Active JP4541449B1 (en) 2010-01-25 2010-01-25 Ground improvement method

Country Status (1)

Country Link
JP (1) JP4541449B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014629B2 (en) * 2018-02-19 2022-02-01 鹿島建設株式会社 Building installation structure and installation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271816A (en) * 1975-11-14 1977-06-15 Mutou Kouzou Rikigaku Kenkiyuu Construction for transmitting horizontal shearing stress of foundation plate for heavy structure
JPS6344020A (en) * 1986-08-08 1988-02-25 Shimizu Constr Co Ltd Construction method for storage facilities related to atomic energy
JPH0886117A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Building installation method
JP2003268757A (en) * 2002-03-15 2003-09-25 Tokyo Electric Power Co Inc:The High strength ground construction method
JP2005171702A (en) * 2003-12-15 2005-06-30 Taisei Corp Seismic control structure of existing structures
JP2007070921A (en) * 2005-09-08 2007-03-22 Takenaka Komuten Co Ltd Liquefaction prevention method of existing building foundations standing in row

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271816A (en) * 1975-11-14 1977-06-15 Mutou Kouzou Rikigaku Kenkiyuu Construction for transmitting horizontal shearing stress of foundation plate for heavy structure
JPS6344020A (en) * 1986-08-08 1988-02-25 Shimizu Constr Co Ltd Construction method for storage facilities related to atomic energy
JPH0886117A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Building installation method
JP2003268757A (en) * 2002-03-15 2003-09-25 Tokyo Electric Power Co Inc:The High strength ground construction method
JP2005171702A (en) * 2003-12-15 2005-06-30 Taisei Corp Seismic control structure of existing structures
JP2007070921A (en) * 2005-09-08 2007-03-22 Takenaka Komuten Co Ltd Liquefaction prevention method of existing building foundations standing in row

Also Published As

Publication number Publication date
JP2011149246A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
CN104652443B (en) Construction method of the interim horizontal support of deep basal pit as permanent structure beam
Zekri et al. Experimental study of remediation measures of anchored sheet pile quay walls using soil compaction
CN103510520A (en) Sectionalized construction method of deep and large foundation pit
CN103410152B (en) A kind of construction method for long and narrow deep foundation pit earthwork digging
JP2010255247A (en) Ground improvement method and structure for ground improvement
CN105421464A (en) Earth excavation method for small foundation pit
JP4541449B1 (en) Ground improvement method
Yue et al. Structure-soil-structure interaction effects for two heavy NPP buildings with large-size embedded foundations
JP2014118752A (en) Subgrade liquefaction countermeasure structure utilizing structure load
JP5975726B2 (en) Ground structure and ground improvement method
Zankoul et al. Simulation of on-shore wind farm construction process in lebanon
JP4968695B2 (en) Ground improvement structure
JP5088619B2 (en) Simplified calculation method for deformation of partially improved ground
Chen et al. Soil-Structure Interaction for Seismic Analysis of A Nuclear Facility
Abdel-Rahman et al. Foundation subsidence due to trenching of diaphragm walls and deep braced excavations in alluvium soils
JP2016041871A (en) Building foundation structure
Roy et al. Study of seismic structure-soil-structure interaction between two heavy structures
Hansen PREDICTION OF THE BEHAVIOR OF BRACED EXCAVATION IN ANISOTROPIC CLAY.
Malik et al. Diaphragm wall supported by ground anchors and inclined struts: A case study
O'Riordan et al. Seismic stability of braced excavations next to tall buildings
JP2010265596A (en) Construction method for structure
Sullivan et al. Wellington Airways Control Tower–Structural Design for Resilience, Case Study
KR20110003638A (en) Order panel structure and construction method
Olariu et al. Effects of Soil Structure Interaction for a Historical Monument Located in Highly Seismic Area
JP2009185546A (en) Evaluation method of the effect of restraining deformation of mountain retaining wall by ground improvement

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4541449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250