JP4531638B2 - Transformer load assumption method, transformer load assumption device - Google Patents
Transformer load assumption method, transformer load assumption device Download PDFInfo
- Publication number
- JP4531638B2 JP4531638B2 JP2005175249A JP2005175249A JP4531638B2 JP 4531638 B2 JP4531638 B2 JP 4531638B2 JP 2005175249 A JP2005175249 A JP 2005175249A JP 2005175249 A JP2005175249 A JP 2005175249A JP 4531638 B2 JP4531638 B2 JP 4531638B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- load
- consumer
- daily load
- transformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
本発明は、配電負荷想定方式に係り、特に配電系統における変圧器の負荷を想定する方法及び装置に関する。 The present invention relates to a distribution load assumption method, and more particularly to a method and apparatus for assuming a load of a transformer in a distribution system.
配電系統は、変電所、発電所もしくは送電線路と電力需要設備との間、または需要設備相互間の電線路およびSW機器(以下、開閉器という)で構成される電力設備であり、電力会社では、配電設備計画に伴って将来の消費電力量(負荷)を想定することを行っている。すなわち、上記の計画に伴って、将来負荷が必要となったときに、配電系統における将来の負荷を想定する。そして、配電系統の設備計画に伴って必要となってくる将来負荷のうち、過去の実績データを基に開閉器間(区間)、フィーダ、変圧器単位の将来日負荷をいかにして高精度に求めるか、が配電負荷想定問題である。 A power distribution system is a power facility composed of electrical lines and SW devices (hereinafter referred to as switches) between substations, power plants or transmission lines and power demand facilities, or between demand facilities. The future power consumption (load) is assumed along with the distribution facility plan. That is, when a future load becomes necessary in accordance with the above plan, a future load in the distribution system is assumed. And among the future loads that will be required in connection with the distribution system facility plan, the future daily load for each switch (section), feeder, and transformer unit will be accurately determined based on past performance data. It is a distribution load assumption problem.
この配電系統において、変圧器は、多数設置されることから、配電系統全体のコストダウンを図る上で、その変圧器を介して給電されている需要家の日負荷に応じて最適な容量のものを設置することが必要である。 In this power distribution system, since many transformers are installed, in order to reduce the cost of the entire power distribution system, the transformer has an optimal capacity according to the daily load of the customer who is fed through the transformer. It is necessary to install.
そして以下の特許文献1には、変圧器に接続されている需要家の日負荷を想定することで、変圧器自体の日負荷を求める配電系統負荷推定装置について記載されている。この特許文献1の装置における負荷想定方式では、日負荷を計測している計測需要家について、日負荷の推移を示すグラフ形状に強い相関がある需要家同士をグループ化し、そのグループに属する需要家の日負荷を平均した日負荷推移グラフをそのグループの日負荷として設定する。また、各グループに属する計測需要家の代表的な属性(契約種別、住居の床面積など)を特定する。そして、日負荷を計測していない非計測需要家の日負荷を当該非計測需要家の属性に基づいていずれかのグループに分類分けする。
And the following
このように全需要家がいずれかのグループに分類分けされたならば、変圧器を介して給電されている全需要家の日負荷をそれぞれの需要家が属する各グループの日負荷によって合成し、変圧器の日負荷を求めている。
従来の日負荷想定手法では、全需要家の日負荷をいずれかのグループに分類分けしている。グループの日負荷は平均であり、非計測需要家の実際の日負荷と平均日負荷とでは、かならず誤差がある。そして、変圧器に接続される需要家の日負荷を合成すれば、その誤差は累積され、結局実際の日負荷とはかけ離れたものとなり、精度に欠ける。精度を上げるために計測器などを多数設置してデータ量を増やそうとすればその計測設置に多大なコストが掛かる。 In the conventional daily load assumption method, the daily load of all customers is classified into any group. The daily load of the group is average, and there is always an error between the actual daily load and the average daily load of non-measurement consumers. And if the daily load of the customer connected to the transformer is synthesized, the error is accumulated, which is far from the actual daily load, and lacks accuracy. In order to increase the amount of data by installing a large number of measuring instruments or the like in order to increase accuracy, the measurement and installation costs a great deal.
上記課題に鑑み本発明を創作した。本発明は、変圧器毎の負荷を安価に、かつ高精度で想定するための変圧器負荷想定方法、および変圧器負荷想定装置を提供することを目的としている。
そして、本発明の基本となるのは、次の事項(1)〜(3)により特定される。
(1) 日負荷計測データを持つ計測需要家と持たない非計測需要家とが混在する配電系統において、変圧器別に負荷を予測する変圧器負荷想定方法であること。
(2) 非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、非計測需要家ごとに予測対象日の日負荷に類似すると想定される計測需要家の日負荷計測データを特定すること。
(3)非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、変圧器ごとに電力供給先となる需要家についての日負荷を総合して変圧器別日負荷を求めること。
The present invention has been created in view of the above problems. An object of the present invention is to provide a transformer load assumption method and a transformer load assumption device for assuming a load for each transformer at low cost and with high accuracy.
The basis of the present invention is specified by the following items (1) to (3).
(1) A transformer load assumption method for predicting a load for each transformer in a distribution system in which a measurement consumer having daily load measurement data and a non-measurement consumer having no daily load are mixed.
(2) Day of measurement customer assumed to be similar to daily load of forecasted day for each non-measurement consumer based on annual fluctuation of past monthly power consumption of both non-measurement consumer and measurement consumer Identify load measurement data.
(3) Demand for daily load based on the specified daily load measurement data for non-measurement consumers, and daily load based on daily load measurement data for measurement consumers, and demand for power supply for each transformer Total daily load on the house to determine the daily load per transformer.
また本発明は、前記(1)〜(3)の事項に加え、以下の(11)〜(16)のいずれかの事項、あるいは(11)〜(16)のいずれかを適宜に組み合わせた事項を備えた配電負荷想定方法としてもよい。
(11)前記変圧器別日負荷に基づいて、各変圧器における最大負荷を特定すること。
(12)ある非計測需要家について、類似すると想定される計測需要家の日負荷計測データを特定する際、前記過去の月間消費電力量の年間変動のパターン形状と絶対消費電力量のそれぞれについての相関を求めるとともに、非計測需要家ごとに予測対象日の日負荷として類似すると想定される計測需要家の日負荷計測データを前記パターン形状と絶対消費電力量のそれぞれの相関に基づいて特定すること。
(13)前記非計測需要家の日負荷は需要家種別が同じ計測需要家の日負荷計測データに基づいて特定されること。
(14)ある非計測需要家について、類似すると想定される計測需要家の日負荷計測データを特定する際、計測需要家の日負荷計測データに対し、前記月間消費電力量の年間推移グラフの形状の相関が強い順に順位を対応付けするとともに、前記月間消費電力量の絶対消費電力量の相関が強い順に順位を対応づけし、各計測需要家の日負荷計測データに対応付けされた、前記形状と絶対消費電力量のそれぞれについての順位の合計値が最も低い日負荷計測データを特定対象とすること。
(15)ある非計測需要家についての日負荷は、予測対象日が属する月における当該非計測需要家とこの非計測需要家に類似すると想定される計測需要家の双方の月間消費電力量の比率に応じて補正されること。
(16)前記日負荷は予測対象日の気温データに応じて補正されること。
In addition to the above items (1) to (3), the present invention includes any of the following items (11) to (16) or any combination of (11) to (16) as appropriate. It is good also as a distribution load assumption method provided with.
(11) Identify the maximum load in each transformer based on the daily load of the transformer.
(12) When specifying daily load measurement data of a measured consumer that is assumed to be similar for a non-measured consumer, the pattern shape of the annual fluctuation of the past monthly power consumption and the absolute power consumption In addition to obtaining the correlation, the daily load measurement data of the measurement consumer that is assumed to be similar to the daily load of the forecast target day for each non-measurement consumer is specified based on the correlation between the pattern shape and the absolute power consumption. .
(13) The daily load of the non-measurement consumer is specified based on the daily load measurement data of the measurement consumer having the same consumer type.
(14) When specifying daily load measurement data of a measured consumer that is assumed to be similar for a non-measurement consumer, the shape of the annual transition graph of the monthly power consumption for the daily load measurement data of the measurement consumer The shapes are associated in the order of strong correlation with each other, and the ranks are associated in order of strong correlation of the absolute power consumption of the monthly power consumption, and are associated with the daily load measurement data of each measurement consumer. And daily load measurement data with the lowest total sum of ranks for absolute power consumption and absolute power consumption.
(15) The daily load for a non-measurement consumer is the ratio of the monthly power consumption of both the non-measurement consumer and the measurement consumer assumed to be similar to this non-measurement consumer in the month to which the forecast date belongs. To be corrected accordingly.
(16) The daily load should be corrected according to the temperature data of the prediction target day.
本発明は、上記変圧器負荷想定方法に基づいて、配電負荷を想定する装置にも及んでおり、次の事項(21)〜(24)を備えている。
(21)日負荷計測データを持つ計測需要家と持たない非計測需要家とが混在する配線系統において、変圧器別に負荷を予測する変圧器負荷想定装置であること。
(22)需要家別に個人情報、日負荷計測データ、月間消費電力量などの情報を蓄積管理するデータベースにアクセスする手段を備えること。
(23)非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、非計測需要家ごとに予測対象日の日負荷として最も類似すると想定される1つの計測需要家の日負荷計測データを特定する手段を備えること。
(24)非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、変圧器ごとに電力供給先となる需要家についての日負荷を総合して変圧器別日負荷を求める手段を備えること。
The present invention extends to a device that assumes a distribution load based on the above transformer load assumption method, and includes the following items (21) to (24).
(21) A transformer load assumption device that predicts a load for each transformer in a wiring system in which a measurement customer having daily load measurement data and a non-measurement customer having no daily load are mixed.
(22) Provide a means for accessing a database for storing and managing information such as personal information, daily load measurement data, and monthly power consumption for each consumer.
(23) One measured demand that is assumed to be the most similar as the daily load of the forecasted day for each non-measured consumer based on the annual fluctuations in past monthly power consumption of both the non-measured consumer and the measured consumer Provide a means to identify the daily load measurement data of the house.
(24) Demand for daily load based on the specified daily load measurement data for non-measured consumers, and daily load based on the daily load measurement data for measured consumers, as well as demand to be the power supply destination for each transformer Provide a means to determine the daily load of each transformer by integrating the daily load of the house.
本発明の配電負荷想定装置は、上記事項(21)〜(24)に加え、以下の事項(31)〜(36)のいずれかの事項、あるいは(31)〜(36)のいずれかを適宜に組み合わせた事項を備えていてもよい。
(31)前記変圧器別日負荷に基づいて、各変圧器における最大負荷を特定する手段を備えること。
(32)前記日負荷計測データを特定する手段は、前記過去の月間消費電力量の年間変動のパターン形状と絶対消費電力量のそれぞれについての相関を求めるとともに、非計測需要家ごとに予測対象日の日負荷に類似すると想定される計測需要家の日負荷計測データを前記パターン形状と絶対消費電力量のそれぞれの相関に基づいて特定すること。
(33)日負荷計測データを特定する手段は、各非計測需要家の日負荷をそれぞれの非計測需要家の種別と同じ種別の計測需要家から特定すること。
(34)日負荷計測データを特定する手段は、計測需要家の日負荷計測データに対し、前記月間消費電力量の年間変動のパターン形状の相関が強い順に順位を対応付けするとともに、前記月間消費電力量の絶対消費電力量の相関が強い順に順位を対応づけし、各計測需要家の日負荷計測データに対応付けされた、前記パターン形状と絶対消費電力量のそれぞれについての順位の合計値が最も低い日負荷計測データを特定対象とすること。
(35)ある非計測需要家についての日負荷を、予測対象日が属する月における当該非計測需要家とこの非計測需要家に類似すると想定される計測需要家の双方の月間消費電力量の比率に応じて補正する手段を備えること。
(36)日負荷の予測対象日の気温データを取得する手段と、日負荷を当該予測対象日の気温データに応じて補正する手段とを備えること。
In addition to the above items (21) to (24), the power distribution load assumption device of the present invention appropriately applies any of the following items (31) to (36) or (31) to (36): You may provide the matter combined with.
(31) Provide a means for specifying the maximum load in each transformer based on the daily load of the transformer.
(32) The means for specifying the daily load measurement data obtains a correlation for each of the pattern shape of the annual fluctuation of the past monthly power consumption and the absolute power consumption, and predicts the target date for each non-measurement consumer. The daily load measurement data of the measurement consumer assumed to be similar to the daily load is specified based on the correlation between the pattern shape and the absolute power consumption.
(33) The means for specifying the daily load measurement data is to specify the daily load of each non-measurement consumer from the same type of measurement consumer as the type of each non-measurement consumer.
(34) The means for identifying the daily load measurement data associates a ranking with the daily load measurement data of the measurement consumer in order of increasing correlation of the pattern shape of the annual fluctuation of the monthly power consumption, and the monthly consumption Associating ranks in descending order of the correlation between the absolute power consumption and the power consumption, the total value of the ranks for each of the pattern shape and the absolute power consumption associated with the daily load measurement data of each measurement consumer is The lowest daily load measurement data should be specified.
(35) Percentage of daily power consumption of a non-measurement consumer for both the non-measurement consumer and the measurement consumer assumed to be similar to this non-measurement consumer in the month to which the forecast target day belongs Provide a means to correct according to.
(36) Provided with means for acquiring the temperature data of the daily load prediction target day, and means for correcting the daily load according to the temperature data of the prediction target day.
本発明の変圧器負荷想定方法によれば、月間消費電力量に基づいて各変圧器の将来負荷を正確に想定することができる。そのため、日負荷の推移を計測する装置などを多数の需要家に追加設置することなく、負荷想定にかかるコストを安価にすることができる。また、正確に負荷を想定できることから、設置する変圧器の容量を適切に設定でき、実際よりも大容量の変圧器を設置することによる過剰投資や、容量不足による事故を防止することができる。 According to the transformer load estimation method of the present invention, the future load of each transformer can be accurately estimated based on the monthly power consumption. Therefore, it is possible to reduce the cost for load assumption without additionally installing a device for measuring the daily load transition to a large number of consumers. In addition, since the load can be accurately assumed, the capacity of the transformer to be installed can be set appropriately, and an excessive investment by installing a transformer with a capacity larger than the actual or an accident due to a lack of capacity can be prevented.
===配電系統===
図1は、本発明の変圧器負荷想定方法が適用される配電系統の一例を示している。この例における配電系統は、変電所における配電線用遮断器(CB)1を介して接続される。配電系統には、複数の開閉器2が設置され、各開閉器2の間を「区間」5としている。各区間5には多数の需要家(電力を消費する施設)4が所属している。変電所出口からの高電圧の電力は各区間5の変圧器3にて降圧され、各主需要家(住宅4a、商店4b、事務所4cなど)へ配電される。このようにして、CB1から各需要家4へ電力を供給する配電線網(フィーダ)10が構成される。
=== Distribution system ===
FIG. 1 shows an example of a distribution system to which the transformer load assumption method of the present invention is applied. The power distribution system in this example is connected via a distribution line breaker (CB) 1 in a substation. A plurality of
CB1では、フィーダ10全体の負荷を時間刻みで計測した実績データが記録されているが、開閉器2や変圧器3では負荷の実績データは記録されていない。また、需要家4には日負荷を計測するためのロードサーベイ計量器を持つ計測需要家と、持たない非計測需要家とが混在する。周知の通り、ロードサーベイ計量器は、1日における消費電力(負荷)の時間推移を記録する。
In
図2(A)〜(C)に各種計測需要家についての日負荷計測データの例を示した。この図では一般的な住宅(A)と、深夜電力を消費する需要家(B)と、商業施設(C)の日負荷計測データをそれぞれ示した。なお、非計測需要家には、電力量計が設置され、電力会社では、検針員がこの電力量計を毎月の検針することで、非計測需要家における月間消費電力量を記録している。図3に月間消費電力量の年間変動の例を示した。 The example of the daily load measurement data about various measurement consumers was shown in Drawing 2 (A)-(C). This figure shows the daily load measurement data of a general house (A), a consumer (B) who consumes midnight power, and a commercial facility (C). In addition, the electricity meter is installed in the non-measurement consumer, and the electric power company records the monthly power consumption in the non-measurement consumer by the meter reader reading the electricity meter every month. Fig. 3 shows an example of annual fluctuation of monthly power consumption.
===変圧器負荷想定方法の概略===
本発明の変圧器負荷想定方法によれば、全需要家4の日負荷データを変圧器3ごとに総合し、各変圧器3の日負荷データを求めている。また、その変圧器3の日負荷データに基づいて変圧器3における最大負荷(ピーク負荷)を抽出している。しかし、需要家4には計測需要家と非計測需要家とが存在することから、非計測需要家の日負荷については計測需要家の日負荷計測データを参考にして想定する必要がある。
=== Outline of Transformer Load Assumption Method ===
According to the transformer load assumption method of the present invention, the daily load data of all the
本発明者らは、同じ種別の需要者同士の場合、双方の日負荷が類似する可能性が高いことを経験的に知見している。なお種別とは、商業施設と住宅などの施設の区別、化学工場と縫製工場などの業種の区別、100Vと6.6kVなどの受電電圧である。また、月間電力消費量の年間変動のパターン形状(図3のグラフ形状)が類似している需要者同士ほど、日負荷の傾向(図2のグラフ形状)がより類似していることも知見している。しかしながら、例えば、同じ種別として「化学工場」という同じ業種の需要家同士の月間電力消費量の年間推移の傾向を見る場合、大工場と町工場とでは、消費電力量の絶対量が異なり、ある非計測需要家の日負荷として、同じ業種の日負荷計測データをそのまま採用することはできない。 The present inventors have empirically found that there is a high possibility that both daily loads are similar between consumers of the same type. The type is a distinction between facilities such as commercial facilities and houses, a distinction between industries such as chemical factories and garment factories, and received voltages such as 100 V and 6.6 kV. In addition, it is also found that the tendency of daily load (graph shape in FIG. 2) is more similar between consumers who have similar pattern shapes (graph shape in FIG. 3) of annual fluctuation of monthly power consumption. ing. However, for example, when looking at the annual trend of monthly power consumption between customers of the same industry, “Chemical Factory” as the same type, the absolute amount of power consumption differs between large factories and town factories. The daily load measurement data of the same industry cannot be adopted as the daily load of non-measurement consumers.
本実施例では、ある非計測需要家の1年間の月間消費電力量の変動パターンと月間消費電力量の絶対値のそれぞれを、この非計測需要家と同じ種別の全計測需要家における消費電力量の推移と絶対値と比較している。そして、月間消費電力量の変動パターンと絶対値との相関関係に基づいて、最も類似・近似していると思われる計測需要家の日負荷計測データを特定し、その日負荷計測データを非計測需要家の日負荷を想定するための最も適した起源として採用している。それによって、同じ種別の需要家の月間消費電力量同士を比較し、かつその消費電力量の年間変動のパターン形状と月間消費電力量の絶対値のそれぞれの相関に基づいて非計測需要家の日負荷の起源となる日負荷計測データを特定しているため、比較対象を絞り込んでその特定処理に掛かる負荷や時間を抑えるとともに、より類似する日負荷計測データを抽出することができる。なお本実施例では、計測需要家については前年のその想定日と同じ月/週/曜日の日負荷計測データに基づいて想定日の日負荷を求め、非計測需要家については、同じ種別で最も類似した需要家の過去年の同じ月/週/曜日の日負荷計測データに基づいて想定日の日負荷を求めている。 In the present embodiment, the fluctuation pattern of the monthly power consumption for a certain non-measurement consumer for one year and the absolute value of the monthly power consumption are respectively represented by the power consumption of all measurement consumers of the same type as this non-measurement consumer. Compare the transition and absolute value. Based on the correlation between the fluctuation pattern of the monthly power consumption and the absolute value, the daily load measurement data of the measurement consumer that seems to be the most similar / approximate is identified, and the daily load measurement data is determined as non-measurement demand. It is adopted as the most suitable origin for assuming the daily load of the house. As a result, the monthly power consumption of the same type of consumers is compared, and based on the correlation between the annual fluctuation pattern shape of the power consumption and the absolute value of the monthly power consumption, Since the daily load measurement data that is the origin of the load is specified, it is possible to narrow down the comparison target and suppress the load and time required for the specifying process and extract more similar daily load measurement data. In this example, for the measured consumer, the daily load of the expected date is obtained based on the daily load measurement data of the same month / week / day of the week as the expected date of the previous year. The daily load of the assumed date is obtained based on the daily load measurement data of the same month / week / day of the past year of similar customers.
このようにして全需要家4について想定日の日負荷を得たら、変圧器3ごとに、所属する全需要家4の日負荷を各想定日について合計する。それによって、変圧器3別5の日負荷が求まる。図4に変圧器別の日負荷についての概略を示した。ある変圧器3を介して電力が供給される需要家a〜cの時間ごとの負荷20a〜20cを合計するとその変圧器3の日負荷30が求まる。このようにして変圧器3の日負荷を年間など所定期間に渡って想定することで、ピーク負荷とその日時を取得できる。
When the daily load of the assumed date is obtained for all the
===変圧器別負荷想定装置===
ここで、本発明の方法に基づいて配電系統上の各変圧器3の日負荷を想定し、その想定結果に基づいて各変圧器3におけるピーク負荷を想定する装置(以下、負荷想定装置)を本発明の一実施形態として挙げる。図5にその負荷想定装置の機能ブロック構成を示した。変圧器負荷想定装置40は、データベース42を付帯したコンピュータを主体として構成され、データベース42には、配電系統に属する全需要家4についての個人情報(氏名、住所、電話番号、契約番号、需要家種別、所属電柱番号、日負荷データの有無など)や、過去の月間消費電力量や計測需要家であればその日負荷計測データなどが蓄積管理されている。遠隔監視制御装置60は、本実施例では、変圧器負荷想定装置40とは別のコンピュータであり、適宜な通信手段により、開閉器2の開閉状態や電力潮流など、配電系統の状態を監視したり、開閉器の開閉動作を遠隔操作したりする。
=== Load Assumption Device by Transformer ===
Here, a daily load of each
負荷想定計算制御部(以下、計算制御部)43は、変圧器負荷想定装置40に実装されているプログラムの実行により実現され、本発明の方法に従って変圧器3ごとの日負荷を想定するための各種演算を行う。この計算制御部43に含まれる主な処理部としては、需要家種別判別判定部(以下、種別判定部)44、相関処理部45、類似需要家抽出部46、負荷補正部47、処理結果出力部48がある。そして、全体制御部41は、キーボードなど変圧器負荷想定装置40に付帯する入力装置49からの情報入力や、遠隔監視制御部60から出力される情報の入力、あるいはデータベース42の格納情報の取得、および、これらの入力/取得情報を計算制御部43に与えたり、この計算制御部43からの処理結果をディスプレイやプリンタなどの出力装置50や遠隔監視制御装置60に出力したり、あるいはデータベース42に記憶させたりするための入出力インタフェース機能を備える。
The load assumption calculation control unit (hereinafter, calculation control unit) 43 is realized by executing a program installed in the transformer
===変圧器別日負荷想定処理===
図6に、本実施例の変圧器負荷想定装置40により、想定対象の変圧器におけるピーク負荷とその負荷となる日時を求めるための変圧器ピーク負荷抽出処理の流れを示した。この例では、ピーク負荷を抽出するためのサンプルを将来の所定期間に含まれる想定日の日負荷から取得する。そのために、まず、来年度の1年間、などサンプルとなる想定日の期間を指定する(s1)。つぎに、想定期間中のある想定日における想定対象変圧器に接続されている全需要家についての日負荷を想定し(s2)、この日想定処理(s2)により抽出された当該変圧器に属する全需要家の日負荷を積算する(s3)。それによって当該変圧器のある想定日の日負荷(変圧器日負荷)が求まる。そして、この想定日の日負荷におけるピーク負荷とその時刻を抽出する(s4)。
=== Transformer daily load assumption processing ===
FIG. 6 shows the flow of the transformer peak load extraction process for obtaining the peak load in the assumed transformer and the date and time of the load by the transformer
このようにして、想定期間の各日における変圧器日負荷を順次求めていく(s5→s6,s2〜s4)。想定期間の全日分のピーク負荷とその時刻を得たならば、全日分のピーク負荷の内、最大値を当該変圧器のピーク負荷とする(s5→s7)。 In this way, the transformer daily load on each day of the assumed period is sequentially obtained (s5 → s6, s2 to s4). When the peak load and the time for all days in the assumed period are obtained, the maximum value among the peak loads for all days is set as the peak load of the transformer (s5 → s7).
上記の変圧器ピーク負荷抽出処理の流れにおいて、日負荷想定処理(s2)は本発明の要点である。図7にこの日負荷想定処理(s2)の流れを示した。ここでは、想定対象の変圧器に接続されている非計測需要家の数をN、配電系統全体における計測需要家をLとし、日負荷データを想定しようとしているある非計測需要家(想定需要家)をi(i=1,2,…,N)とし、そのiと同種別の計測需要家の数をMとし、そのiと同種別の計測需要家をk(k=1,2,…,M)とする。したがって、Mはiに応じて可変する数となる。また、ある計測需要家をj(j=1,2,…,L)とする。 In the flow of the above transformer peak load extraction process, the daily load assumption process (s2) is the main point of the present invention. FIG. 7 shows the flow of the daily load assumption process (s2). Here, the number of non-measurement consumers connected to the assumed transformer is N, the measurement consumer in the entire distribution system is L, and a non-measurement consumer (assumed consumer) who is going to assume daily load data. ) Is i (i = 1, 2,..., N), the number of measurement consumers of the same type as i is M, and measurement consumers of the same type as i is k (k = 1, 2,...). , M). Therefore, M is a number that varies according to i. Further, a certain measurement consumer is assumed to be j (j = 1, 2,..., L).
全体制御部41は、データベース42から非計測需要家の月間消費電力量データx(i)と、計測需要家の日負荷計測データy(j)を読み込む(s11、s12)。さらに本実施例では、気温によって日負荷が変動することから、入力装置を介して入力される、想定日における想定需要家の所在地域の気温を取得することとしている(s13)。なお気温に関するデータは、地域別に時間刻みで気象庁から入手することができる。もちろん、変圧器負荷想定装置40を気象庁などにある気温データを提供している外部のコンピュータと通信可能に構成しておき、この外部コンピュータから気温データを入手してもよい。
The
必要な気温データを入力したら、つぎに、計測需要家について月別に日負荷計測データを積算して月間の消費電力量を算出する(s14)。なお、計測需要家も検針により月間消費電力量が記録されていることから、非計測需要家と同様にその検針によって取得される月間消費電力量をそのままデータベース42から読み出すようにしてもよい。そして全体制御部41は、取得した日負荷の想定に関わる各種データを計算制御部43へ与える。計算制御部43は、日負荷の想定対象となる非計測需要家(想定需要家)iを抽出し(s15)、このiについて付帯する各種処理部により、非計測需要家についての日負荷を想定する。
Once the necessary temperature data has been input, the daily load measurement data is integrated for each measured consumer by month to calculate the monthly power consumption (s14). In addition, since the measurement consumer also records the monthly power consumption by meter reading, the monthly power consumption acquired by the meter reading may be read from the
以下に具体的な日負荷の想定処理について説明する。まず種別判定部44により、想定需要家と同じ種別の計測需要家kをデータベースより検索し(s16)、相関処理部45により、想定需要家iと計測需要家kの月間電力量について、その年間推移の傾向を示すグラフの形状相関係数r1と、月間電力量の絶対量相関係数r2を、それぞれ以下の式(数1)と(数2)により算出する(s17,s18)。なお数1、数2において、Si、Skは、非計測需要家iおよび計測需要家kのそれぞれの月間消費電力量に関する標準偏差であり、mは月である。そして、fim、fiaveは、それぞれ非計測需要家iのm月の月間消費電力量と月平均消費電力量であり、fkm、fkaveは、それぞれ計測需要家kのm月の月間消費電力量と月平均消費電力量である。なお標準偏差Sについては(数3)により求めている。
A specific daily load assumption process will be described below. First, the
ある想定需要家iについて、上記2つの相関係数r1とr2をiと同種別の全ての計測需要家(総数M)について算出し終えたら、類似需要家抽出部46により、このiの日負荷として最も類似する日負荷計測データとその計測データを持つ計測需要家(類似需要家)を特定する(s19→s21)。本実施例では、この類似需要家の特定に際し「ランキング手法」と呼ばれる方式を採用している。ランキング手法は、r1とr2のそれぞれについて、その値が大きな方から順に該当する計測需要家に順位を付与してリストアップし、それぞれの順位の合計が最も少ない需要家を類似需要家とし、その類似需要家の日負荷計測データを想定需要家の日負荷(想定日負荷)の算出起源として採用する(s22→s23)。図8(A)(B)にそのランキング手法についての概略を示した。ある想定需要家iについて、r1とr2の値の大きさに応じてa〜eの計測需要家に順位が付与されている(図8A)。そして、r1とr2の値に対する順位の合計を計測需要家ごとに求める(図8B)。図8に示した例では、計測需要家bが類似需要家であると判定され、その類似需要家bの日負荷計測データに基づいて想定日負荷を求める。このように、2つの順位の合計値に基づいて相関関係を判定することで、実体が異なるとともに均等に重要視されるべき2つの相関関係を公平に扱うことができ、より適切な日負荷計測データを抽出することができる。なお本実施例では、r1やr2の値があらかじめ設定されている閾値を超えない場合には、想定需要家iの日負荷として、そのiと同種別の計測需要家の日負荷計測データの平均を求め、その平均日負荷を想定日負荷を求めるための起源として採用することとしている(s22→s24)。
When the above two correlation coefficients r1 and r2 are calculated for all measured consumers (total number M) of the same type as i for a certain assumed customer i, the similar
類似需要家と想定需要家iとは消費電力量が異なることから、類似需要家の日負荷計測データをそのまま想定需要家iの日負荷として採用するわけにはいかない。そこで、負荷補正部47は、想定需要家iの月間消費電力と類似需要家の月間消費電力とに基づいて類似需要家の日負荷計測データを補正する。具体的には、例えば、過去の想定日の月と同じ月について、想定需要家と類似需要家の月間消費電力量を取得し、双方の電力量の比を求め、この比を類似需要家の日負荷データに乗算してまず第1の補正をする(s25)。この第1の補正により、想定需要家の消費電力量を時間刻みで正確に求めることができる。
Since the similar consumer and the assumed consumer i have different power consumption, the daily load measurement data of the similar consumer cannot be directly adopted as the daily load of the assumed consumer i. Therefore, the
さらに負荷補正部47は、想定日の平均気温に基づいて類似需要家の日負荷計測データを補正する(s26)。本実施例では、データベース42に過去の日平均気温データが格納されており、負荷補正部47は、過去一年間の平均気温データと計測需要家についての過去一年間の日負荷計測データとを取得する。なお、この場合の計測需要家は、想定需要家と同種別の需要家であってもよいし、先に特定した類似需要家であってもよい。そして、過去一年間の各日について平均負荷を算出し、気温と平均負荷との相関を求める。図9にその相関関係を示した。平均気温に対する平均負荷の実測値をプロットした散布図70から、気温−平均負荷の相関を示す回帰曲線71の関数を導出する。導出した関数に想定日の予報平均気温を代入して想定日の平均負荷を算出する。そして、この気温に対する平均負荷と第1の補正により得た日負荷の平均との比を求め、この比を第1の補正により得た日負荷にさらに乗算する。それによって、最終的に想定日の気温を加味したより精度の高い想定需要家の日負荷を得ることができる。
Furthermore, the
計算制御部43は、このようにして、想定対象となる全非計測需要家についての日負荷が得られたならば、需要家についての日負荷を変圧器別に総合する処理(s3)へ移行する。処理結果出力部は、上述の変圧器別最大負荷抽出処理や日負荷想定処理の過程で求められる各種情報を、例えば、ディスプレイやプリンタなどの出力装置50に向けて出力したり、データベース42への格納データとして出力したりする。出力される情報やその情報の提示形式としては、例えば、フィーダ全体の想定日の日負荷をグラフにして表示出力したり、需要家や変圧器を選択する利用者入力を受け付けて、指定の需要家や変圧器についての想定日負荷グラフや負荷のピーク値やその日時を出力したりするなど、適宜に出力することができる。
If the daily load for all non-measurement consumers to be assumed is obtained in this way, the
1 配電線用遮断器(CB)
2 開閉器
3 変圧器
4,4a〜4c 需要家
10 フィーダ
40 変圧器負荷想定装置
41 全体制御部
42 データベース
43 負荷想定計算制御部
60 遠隔監視制御装置
1 Circuit breaker for distribution line (CB)
DESCRIPTION OF
Claims (14)
非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、非計測需要家ごとに類似すると想定される計測需要家の日負荷計測データを特定し、
非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、変圧器ごとに電力供給先となる需要家についての日負荷を総合して変圧器別日負荷を求める、
ことを特徴とする変圧器負荷想定方法。 In a distribution system where measurement customers with daily load measurement data and non-measurement customers without it,
Based on annual fluctuations in past monthly power consumption of both non-measurement consumers and measurement consumers, identify daily load measurement data of measurement consumers that are assumed to be similar for each non-measurement consumer,
For non-measurement consumers, the daily load based on the specified daily load measurement data is obtained, and for the measurement consumer, the daily load based on the daily load measurement data is obtained, and for each consumer who is a power supply destination for each transformer. Total daily load to determine the daily load per transformer,
Transformer load assumption method characterized by this.
計測需要家の日負荷計測データに対し、前記月間消費電力量の年間変動のパターン形状の相関が強い順に順位を対応付けするとともに、前記月間消費電力量の絶対消費電力量の相関が強い順に順位を対応づけし、
各計測需要家の日負荷計測データに対応付けされた、前記パターン形状と絶対消費電力量のそれぞれについての順位の合計値が最も低い日負荷計測データを特定対象とする、
ことを特徴とする変圧器負荷想定方法。 In any one of Claims 1-4, when specifying the daily load measurement data of one measurement consumer assumed to be the most similar about a certain non-measurement consumer,
Corresponding ranks in order of increasing correlation of the pattern shape of the annual fluctuation of the monthly power consumption to the daily load measurement data of the measurement consumer, and ranking in order of strong correlation of the absolute power consumption of the monthly power consumption , And
The daily load measurement data that is associated with the daily load measurement data of each measurement consumer and has the lowest total value of the ranks for each of the pattern shape and the absolute power consumption is targeted for identification.
Transformer load assumption method characterized by this.
需要家別に個人情報、日負荷計測データ、月間消費電力量などの情報を蓄積管理するデータベースにアクセスする手段と、
非計測需要家と計測需要家の双方の過去の月間消費電力量の年間変動に基づいて、非計測需要家ごとに予測対象日の日負荷に類似すると想定される計測需要家の日負荷計測データを特定する手段と、
非計測需要家については前記特定した日負荷計測データに基づく日負荷を、計測需要家については日負荷計測データに基づく日負荷をそれぞれ求めるとともに、変圧器ごとに電力供給先となる需要家についての日負荷を総合して変圧器別日負荷を求める手段と、
を備えたことを特徴とする変圧器負荷想定装置。 Transformer load assumption device that predicts the load for each transformer in a wiring system in which measurement customers with daily load measurement data and non-measurement consumers who do not have
Means for accessing a database for storing and managing information such as personal information, daily load measurement data, and monthly power consumption for each consumer;
Daily load measurement data of measured consumers that are assumed to be similar to the daily load of the forecasted day for each non-measured consumer, based on the annual fluctuations in past monthly power consumption of both the non-measured consumer and the measured consumer A means of identifying
For non-measurement consumers, the daily load based on the specified daily load measurement data is obtained, and for the measurement consumer, the daily load based on the daily load measurement data is obtained, and for each consumer who is a power supply destination for each transformer. A means to determine the daily load by transformer by integrating the daily load;
A transformer load assumption device characterized by comprising:
The method according to any one of claims 8 to 13, comprising means for acquiring temperature data of a daily load prediction target day, and means for correcting the daily load according to the temperature data of the prediction target day. Transformer load assumption device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005175249A JP4531638B2 (en) | 2005-06-15 | 2005-06-15 | Transformer load assumption method, transformer load assumption device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005175249A JP4531638B2 (en) | 2005-06-15 | 2005-06-15 | Transformer load assumption method, transformer load assumption device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006352996A JP2006352996A (en) | 2006-12-28 |
JP4531638B2 true JP4531638B2 (en) | 2010-08-25 |
Family
ID=37648231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005175249A Expired - Fee Related JP4531638B2 (en) | 2005-06-15 | 2005-06-15 | Transformer load assumption method, transformer load assumption device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4531638B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5560828B2 (en) * | 2010-03-26 | 2014-07-30 | 東京電力株式会社 | Transformer load estimation method |
JP5711623B2 (en) * | 2010-07-22 | 2015-05-07 | 中部電力株式会社 | Transformer management apparatus, method and program thereof |
JP5654866B2 (en) * | 2010-12-22 | 2015-01-14 | 中部電力株式会社 | Reverse flow assumption method |
JP5638546B2 (en) * | 2012-02-07 | 2014-12-10 | 三菱電機株式会社 | Load estimation device |
JP6006072B2 (en) * | 2012-10-02 | 2016-10-12 | 東京瓦斯株式会社 | Energy consumption prediction system |
JP5483503B1 (en) * | 2012-12-26 | 2014-05-07 | 中国電力株式会社 | Transformer management system |
JP5998081B2 (en) * | 2013-03-08 | 2016-09-28 | 株式会社日立製作所 | Electric power demand adjustment system and demand adjustment execution system |
CN111313428A (en) * | 2020-03-18 | 2020-06-19 | 卫爱静 | Intelligent transformer load carrying control system, method, terminal and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003224931A (en) * | 2002-01-28 | 2003-08-08 | Hitachi Ltd | Distribution system load estimation device |
JP2004320963A (en) * | 2003-04-21 | 2004-11-11 | Hitachi Ltd | Power load estimation method, device and power billing method |
JP2005237187A (en) * | 2004-01-23 | 2005-09-02 | Hitachi Ltd | Method and device for assuming distribution system load |
JP2006204039A (en) * | 2005-01-21 | 2006-08-03 | Chugoku Electric Power Co Inc:The | Distribution system load assumption method, distribution system load assumption device |
-
2005
- 2005-06-15 JP JP2005175249A patent/JP4531638B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003224931A (en) * | 2002-01-28 | 2003-08-08 | Hitachi Ltd | Distribution system load estimation device |
JP2004320963A (en) * | 2003-04-21 | 2004-11-11 | Hitachi Ltd | Power load estimation method, device and power billing method |
JP2005237187A (en) * | 2004-01-23 | 2005-09-02 | Hitachi Ltd | Method and device for assuming distribution system load |
JP2006204039A (en) * | 2005-01-21 | 2006-08-03 | Chugoku Electric Power Co Inc:The | Distribution system load assumption method, distribution system load assumption device |
Also Published As
Publication number | Publication date |
---|---|
JP2006352996A (en) | 2006-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4266011B2 (en) | Distribution system load assumption method, distribution system load assumption device | |
US8065098B2 (en) | Progressive humidity filter for load data forecasting | |
JP3994910B2 (en) | Electricity trading support system | |
US20190147465A1 (en) | Demand prediction system and demand prediction method | |
JP4648482B1 (en) | Analysis device and measurement management system | |
US20040225649A1 (en) | Identifying energy drivers in an energy management system | |
US20110282505A1 (en) | Power demand-supply management server and power demand-supply management system | |
US20090094173A1 (en) | Intelligent Power Unit, and Applications Thereof | |
JP2009089594A (en) | Temporal-spatial load analysis system of power facility utilizing inspection data and calculation method of load | |
KR102550856B1 (en) | Electric energy measuring apparatus capable of recommending tariff system based on artificial intellignence and recommending method thereof | |
US20160364807A1 (en) | Electric power business profit and loss calculation system and electric power business profit and loss calculation method | |
JPWO2015087470A1 (en) | Demand forecasting device, program | |
CN105612546A (en) | Device, server, system and method for energy measurement | |
JP6094369B2 (en) | Power demand forecasting device, power demand forecasting method, and power demand forecasting program | |
JP4531638B2 (en) | Transformer load assumption method, transformer load assumption device | |
WO2015087473A1 (en) | Demand prediction device, energy conservation assisting system | |
JP2015106952A (en) | Estimation program, estimation method, and estimation apparatus | |
JP2021052588A (en) | Electric power demand forecasting device and electric power demand forecasting method | |
JP4261471B2 (en) | Distribution system load assumption method and apparatus | |
Liu et al. | A methodology to analyze conservation voltage reduction performance using field test data | |
JP2017034797A (en) | Baseline load estimation device and baseline load estimation program | |
JP5560828B2 (en) | Transformer load estimation method | |
KR20170060361A (en) | Device for analyzing power demands and system comprising the same | |
JP2016140230A (en) | Sample extraction apparatus, sample extraction method, and sample extraction program | |
US20190050430A1 (en) | Systems and Methods for Disaggregating Appliance Loads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20100209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100608 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100609 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4531638 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |