[go: up one dir, main page]

JP4531145B2 - Ultra-thin insulating film formation method - Google Patents

Ultra-thin insulating film formation method Download PDF

Info

Publication number
JP4531145B2
JP4531145B2 JP13704497A JP13704497A JP4531145B2 JP 4531145 B2 JP4531145 B2 JP 4531145B2 JP 13704497 A JP13704497 A JP 13704497A JP 13704497 A JP13704497 A JP 13704497A JP 4531145 B2 JP4531145 B2 JP 4531145B2
Authority
JP
Japan
Prior art keywords
film
target
metal
coil
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13704497A
Other languages
Japanese (ja)
Other versions
JPH10324969A (en
Inventor
正 森田
正道 松浦
直志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP13704497A priority Critical patent/JP4531145B2/en
Publication of JPH10324969A publication Critical patent/JPH10324969A/en
Application granted granted Critical
Publication of JP4531145B2 publication Critical patent/JP4531145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスク磁気ヘッド等に適用される極薄の絶縁膜の形成方法に関する。
【0002】
【従来の技術】
従来、ハードディスク読み取り用磁気ヘッドとして、薄膜ヘッドや磁気抵抗(MR:Magneto-Resistance)ヘッドが用いられており、これらのヘッドには1000〜2000Å程度の厚さのAl23膜がギャップ用絶縁膜として設けられている。このAl23膜を形成するには、ターゲットとしてAl23を使用したRFマグネトロンスパッタ法が一般に採用されているが、その生産性を重視する場合には、ターゲットにAlを用い、スパッタ中の雰囲気にO2ガスを導入し、Alをスパッタしながらプラズマ酸化を利用してAl23膜を形成する反応性スパッタ法を採用することも行われている。
【0003】
また、スパッタカソードとして、ターゲットの背後に磁石を設けると共に該ターゲットの前方にRFコイルを設けた誘導結合RFプラズマ支援マグネトロンカソードが出願人により提案されている(特開平6−41739号公報)。このカソードは高真空中でプラズマの発生を持続でき、不純物や2次生成物の発生が少ない利点を持っている。
【0004】
【発明が解決しようとする課題】
ハードディスクに関して記録密度を向上させることの要求があり、これに伴い読み取り用磁気ヘッドもスピンバルブ膜、多層膜やトンネル効果を用いた巨大磁気抵抗(GMR)ヘッドに置き換わると考えられており、そこに用いられる絶縁膜も数十〜数百Åの極めて薄いAl23やAlNなどの化合物絶縁膜が必要になると予想されている。しかし、この程度の極めて薄い例えばAl23膜を、従来のAl23ターゲットを用いたRFマグネトロンスパッタ法や反応性スパッタ法で作製すると、リーク電流が10-6A/mm2以下で絶縁耐圧が5MV/cm以上の電気特性を有する良質な絶縁膜は形成出来ない。これは以下の理由に基づくと考えられている。即ち、下地のメタル膜とAl23は“濡れ”が悪いため、メタル膜に接する領域のAl23層は欠陥が入り易いが、Al23膜が堆積していくにつれこの欠陥が少なくなり、健全なAl23層となっていき、1000Å程度の厚い膜ではその電気特性も満足なものになると考えられ、そのため、数十〜数百Åの極めて薄いAl23膜を形成した場合、界面層近傍の欠陥が多い部分の影響が顕著に現れ、上記電気特性の良好な絶縁膜を形成出来ない、と考えられている。
【0005】
本発明は、従来のスパッタ法では困難であった数十〜数百Åの極薄で磁気ヘッドのギャップ層やトンネル接合型GMRに好都合な化合物絶縁膜を形成する方法を提案することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明では、真空室内に、直流電源に接続されたメタルターゲットとその背後の磁石及び該ターゲットの前方のイオン化率を高めるRFコイルを備えたマグネトロンカソードを設け、プラズマ発生のための該ターゲット及びRFコイルへの投入電力と、該真空室内へ導入するスパッタ用不活性ガス及び反応性ガスの流量とを制御し、該ターゲットに対向して設けたSi基板上又はメタル下地膜が形成された基板にメタル膜の成膜とRFコイルのみのプラズマによる該メタル膜の絶縁化合物化をその順に交互に行うことにより、上記の目的を達成するようにした。また、メタルターゲット及びRFコイルをアルミニウムとし、上記真空室内にアルゴンガスを制御して導入すると共に圧力を調整し、該メタルターゲット及びRFコイルに上記直流電源とRF電源から夫々電力を投入してプラズマを発生させ、Si基板上又はメタル下地膜が形成された基板に極めて30Å程度以下のアルミニウム膜を成膜したのち、該ターゲットへの電力供給を停止し該真空室内にアルゴンガスの他にOガス又はNガスを導入してRFコイルのみによるプラズマで該アルミニウム膜を酸化又は窒化させ、その後この成膜と酸化又は窒化を繰り返して該基板上に約100Åの極薄絶縁膜を形成することにより、磁気ヘッドのギャップ層やトンネル接合型GMRの絶縁膜に適した極薄絶縁膜を形成できる。該ターゲットに対向して設けたSi基板上又はメタル下地膜が形成された基板にメタル膜の成膜とRFコイルのみのプラズマによる該メタル膜の絶縁化合物化を行って第1層の化合物層を形成し、該第1層の化合物層上にメタルのスパッタと反応性ガスによる絶縁化合物化を同時に行う反応性スパッタにより該化合物の成膜を行うことも可能である。
【0007】
【発明の実施の形態】
本発明の実施の形態を図面に基づき説明すると、図1は本発明の実施に使用したスパッタリング装置で、同図の符号1は真空ポンプに連なる排気口2と、アルゴンガス等のスパッタ用ガスの導入口3及びO2やN2等の反応性ガスを導入する反応性ガス導入口4を設けた真空室を示す。該真空室1内には、直流電源5に異常放電防止回路10を介して接続されたAl製等のメタルターゲット6とその背後の磁石7及び該ターゲット6の前方のイオン化率を高めるRFコイル8を備えたマグネトロンカソード9が設けられる。このカソード9は、上記した誘導結合RFプラズマ支援マグネトロンカソードとして公知のもので、RFコイル8はメタルターゲット6の前方周囲を囲繞して設けられ、これにマッチングボックス11を介してRF電源12から電力が供給される。13は、表面に極薄の化合物の絶縁膜を形成すべく該ターゲット6と対向して設けられた例えば直径2インチの基板で、薄膜ヘッドやMRヘッド用の場合はその表面にメタル膜が下地膜として予め形成される。該RFコイル8は該メタルターゲット6と同材質の例えばAlにて形成され、必要な場合は、その内部に冷却水を循環させる。
【0008】
図1の装置を使用して反応性スパッタにより基板13に極薄の化合物絶縁膜を形成するには、まず真空室1内を排気し、スパッタ用アルゴンガスをカソード9の近傍の導入口3から適量導入して圧力を調整したのち、メタルターゲット6に直流電力と、RFコイル8に高周波電力を夫々投入する。これによりターゲット6の前方にプラズマが発生し、イオンによりターゲット6がスパッタされ、スパッタされたメタル粒子が基板13に堆積する。メタルが例えば数十Å程度の極薄く堆積したところで、ターゲット6への投入電力を零にし、RFコイル8への高周波電力のみを投入した状態で反応ガス導入口4から反応ガスを導入する。これによりターゲット6は殆どスパッタされず、導入された反応性ガスはRFコイル8のプラズマで励起・イオン化されるので堆積したメタル膜と速やかに反応し、化合物絶縁膜となる。堆積した該メタル膜は極めて薄いので、薄膜内部までほぼ完全に化合した化合物膜になる。
【0009】
このあと、前記したターゲット6のスパッタ工程と反応ガスの導入による化合物化工程を繰り返し、基板13上に例えば100Å程度の極薄の化合物絶縁膜を形成する。これにより得られた化合物絶縁膜は、極薄でありながらリーク電流が小さく絶縁破壊電圧が高い良好な耐絶縁性をもち、絶縁性にバラつきのない化合物絶縁膜を形成でき、高密度記録を読み取る磁気ヘッドに好都合に適用できる。ターゲット6には化合して絶縁膜を形成する各種のメタルの使用が可能であり、例えばSiを使用すれば、SiO2の極薄絶縁膜を形成でき、ターゲットをAl、反応性ガスにN2を使用してAlNの極薄絶縁膜でき、ターゲットの材料と反応性ガスを適当に選択することで種々の極薄絶縁膜を形成できる。
【0010】
該基板13へのメタルの堆積速度は主にターゲット6へ投入する直流電力に依存し、スパッタされたメタル粒子や反応ガスのイオン化や励起の程度は主にRFコイル8に投入する高周波電力に依存する。これはスパッタされた中性メタル粒子がRFコイル8のつくるプラズマゾーンを通過するときにイオン化されるというイオンプレーティングと同様なポストイオン化機構によるためと考えられる。この傾向は2×10-3Torr以下の低い圧力下でより顕著になる。該メタルターゲット6を堆積させる際には、該ターゲット6への直流電力のみならずRFコイル8に高周波電力を同時に投入することにより、イオン化効率が高まり、基板13の下地の上に被覆性良く緻密で結晶性の良い数十Å程度の極薄いメタル膜を堆積させ得る。そして、ターゲット6への直流電力を零とし、RFコイル8への高周波電力のみとした状態で反応性ガスを導入すると、スパッタされるメタルはほとんどなく、RFコイル8によるプラズマで励起・イオン化され、堆積した極薄いメタル膜を迅速に反応させほぼ完全に化合物絶縁膜にする。
【0011】
尚、RFコイル8による化合物化工程においては、ターゲット6からのスパッタ粒子によりRFコイル8の表面へメタル膜のコーティングが行われないため、むき出しになったRFコイル8の表面が誘導結合プラズマ放電によりスパッタされ、そのコイル材のスパッタ粒子が基板13の表面に付着するという汚染が考えられるが、このような汚染はRFコイル8をターゲット6と同材質で作製しておくことで防げる。
【0012】
また、この反応性ガスのプラズマ励起・イオン化の際、ターゲット6の表面も反応してそこに化合物層が形成され、次のスパッタ工程に於ける直流放電が不安定になる場合がある。これは電気伝導度の小さい化合物や絶縁物がターゲット表面に形成されると、直流放電ではその表面に正電荷が帯電し、カソード(ターゲット)とアノード(基板)との間の電位差を消失する方向に働くことが原因で、放電が不安定になったり、放電が停止する結果になる。この状態を解消するには、ターゲット表面にたまった正電荷をプラズマからの電子で中和すればよく、そのため該ターゲット6の直流電源5に異常放電防止回路10を介在させ、図2に示したように、一定の割合で正電位を発生させるようにし、この正電位となったときにターゲット表面にプラズマからの電子を引き込んでターゲット表面にたまった正電荷を中和するようにした。
【0013】
【実施例】
図1に示した誘導結合RFプラズマ支援マグネトロンカソードを備えた装置を使用して、低抵抗シリコンの基板13上の約100Åの極めて薄いAl23の化合物絶縁膜を形成した。RFコイル8は水冷したAl製で、Al製のターゲット6に異常放電防止回路10を介して直流電源5を接続した。また、スパッタガスとしてアルゴンガスを導入口3から導入できるようにし、反応性ガスとしてO2ガスを反応性ガス導入口4から導入できるようにした。カソード6の直径は2インチである。
【0014】
該化合物絶縁膜の形成に先立ち、真空室1内のアルゴンスパッタガス圧力を8×10-4Torr、ターゲット投入電力をDC40W一定にし、RFコイル8への投入電力を変化させて、Si基板13上へのAl膜堆積速度と基板へ流入するイオン電流の変化を測定した。なお、基板13には基板へ流入するイオン電流を測定できるようにするため、−50Vを印加した。その結果は図3の如くであり、Al膜堆積速度は、RFコイル8への投入電力にあまり依存していないことが分かる。Al膜堆積速度は、通常のマグネトロンスパッタと同様にターゲット6へ投入する電力に比例している。一方、基板13に流入するイオン電流は、RFコイル8への投入電力とともに急激に増加しており、この誘導結合RFプラズマ支援マグネトロンスパッタ法がスパッタ粒子のイオン化促進に極めて有効であること示している。この基板へ流入するイオンは、AlイオンとArイオンである。
【0015】
この結果を基に、図1の装置により、Alメタル膜を堆積するスパッタ工程と、その膜をプラズマ酸化により化合物化する化合物化工程とを図4に示した手順に従って繰り返し、約100Åの極めて薄い電気特性の優れたAl23の化合物絶縁膜を形成した。スパッタアルゴンガス圧力は8×10-4Torr、Si基板の温度は室温とした。
【0016】
詳細には、ターゲット6への直流電力を130W、RFコイル8への高周波電力を50W、Arガスを15sccm、O2ガスを0sccmとし、この条件で18秒スパッタし、まず厚さ約30Å程度のAlメタル膜を基板に堆積させた。続いてターゲットへの直流電力を0V、RFコイル8への高周波電力をそのまま50Wを維持し、スパッタアルゴンガスの流量もそのまま15sccmに維持し、O2ガスを30sccm真空室内へ導入して、RFコイル8による誘導結合プラズマのみを60秒間発生させて堆積した該Alメタル膜をプラズマ酸化させAl23膜とした。更にこのAl23膜の上に次のメタル膜を約30Åの厚さで前記Alメタル膜のスパッタ条件で堆積させ、この次のメタル膜を前記化合物化条件と同条件で堆積させた。このようにしてスパッタ工程と化合物化工程を3回繰り返し約100ÅのAl23膜を基板に形成した。
【0017】
ここで作製した膜の深さ方向組成分析をオージェ電子分光法を用いて評価したところ、膜組成は膜の深さ方向に対して安定しており、検出されたAlの分光ピークはすべて酸素と結合した状態において得られるエネルギー値であった。その分析結果を図5に示す。比較のためメタル膜を約45Åの厚さで同様に前記Alメタル膜のスパッタ条件で堆積させ、同様にプラズマ酸化させて作製した試料を評価すると、膜は、深さ方向に対して酸素の含有量にばらつきがあり、検出されたAlのピークは酸素と結合した状態において得られるエネルギー値に加え、金属状態のAlからのエネルギー値においてもピークが検出されていた(図6)。これは、メタル膜として堆積させたAlの膜厚が厚過ぎたため、プラズマ酸化時にメタルAl膜のすべてが酸化されずに、次のメタルAl層が堆積されたためと考えられる。
【0018】
そして、得られたAl23膜の電気特性を測定するため、特別にこの膜の上に500μm□のCu電極をスパッタ法により堆積させた。このようにして得た膜のV−I特性を図7に示した。このAl23膜は、膜厚が約100Åと極めて薄いにもかかわらず、絶縁物特有のV−I特性になっていることがわかる。また、図8には、測定された絶縁膜のリーク電流と絶縁破壊電圧をプロットした、ここでの絶縁破壊電圧とリーク電流とは、先のV−I測定で膜の絶縁が破れたときの電圧と電流と定義した。また、比較のため、反応性スパッタ法で作成した同じ膜厚のAl23膜の測定結果も併記した。この反応性スパッタの条件は、本発明の方法の化合物化条件にAlをスパッタするための条件の1つであるターゲットに直流電力を130W加えたものである。
【0019】
本発明の方法(メタル堆積/プラズマ酸化積層法)と従来の反応性スパッタ法で得られた膜の特性を比較すると、反応性スパッタ膜の方がバラツキが大きく、小さな電圧で膜の絶縁破壊を起こしている。これは反応性スパッタではじめからAl23膜を堆積すると、下地のSiとAl23膜は“濡れ”が悪く、Siに接するAl23膜には欠陥が入り易いためと考えられる。他方、本発明のメタル堆積/プラズマ酸化積層法では、最初にSiと“濡れ”が良いAl膜がSi下地全面に緻密に形成され、その後プラズマ酸化によりAl23化されるので、形成されたAl23膜は界面近傍でも欠陥の少ない良質な膜が形成されたものと推定される。尚、本発明の方法で約1000Å程度の厚い膜を堆積させ、その屈折率を測定したところ、バルクのAl23と同じ1.71〜1.72の値が得られており、屈折率の値からも本発明の方法により得られた膜がバルクのAl23並の優れた膜であることが裏付けられている。
【0020】
尚、本発明の方法と同様に、最初スパッタ法で所要の膜厚、例えば100ÅのAl膜を形成し、その後別のプラズマ酸化装置で該Al膜を酸化させてみたが、Al膜の表層30Å程度のみが酸化されるだけで、膜内部まで酸化されないため、絶縁物特有のV−I特性を得ることは出来なかった。
【0021】
実施例では、Al23膜の例を示したが、SiO2、AlNなどの種々の絶縁膜や化合物材料への適用が可能である。本発明の方法は、同一チャンバー内に、メタルをスパッタする機構と雰囲気ガスをプラズマで励起できる機構の両方を備えており、且つそれらがほぼ独立に制御出来るようになっていれば、原理的に実施可能である。従って図1に例示した装置以外でも、例えば図9(a)のようにRFコイルがターゲットと基板の中間に設置してあるスパッタ装置、図9(b)のように熱フィラメントにより熱電子を発生させてプラズマを形成できる3極ないし4極型スパッタ装置、図9(c)のようにECR(電子サイクロトロン共鳴)ないしはマイクロ波でプラズマを発生できるECRないしはマイクロ波スパッタ装置などで実施できる。また、実施例ではハードディスク磁気ヘッドの絶縁膜スパッタプロセスについて述べたが、その他、フラットパネルディスプレーはじめ種々の電子機器デバイス薄膜作製プロセスへの適用が可能である。更に、ここでは化合物の厚膜を得るのに、スパッタ工程と化合物化工程を交互に繰り返したが、下地との“濡れ”の悪い第1層の化合物層のみをこの方法により作成し、第2層以降はいわゆる反応性スパッタにより一挙に化合物層を形成してもよい。
【0022】
【発明の効果】
以上のように本発明によるときは、イオン化率を高めるRFコイルを備えたマグネトロンカソードを設け、ターゲット及びRFコイルへの投入電力と、真空室内へ導入するスパッタ用不活性ガス及び反応性ガスの流量とを制御し、基板にメタル膜の成膜と該メタル膜の絶縁化合物化を交互に行うようにしたので、基板に数十〜数百Å程度の従来のスパッタ法では困難であった電気特性の良好な極薄絶縁膜を形成することができ、高密度化されたハードディスク磁気ヘッドの製造に好都合に適用できる等の効果がある。
【図面の簡単な説明】
【図1】本発明の方法の実施に使用した装置の切断側面図
【図2】図1のカソードに印加される電圧の特性図
【図3】RFコイル電力と膜堆積速度の関係図
【図4】本発明方法の実施の手順の線図
【図5】本発明方法で得られた膜のオージェ電子分光法による化学組成分析図(30Å)
【図6】本発明方法で得られた膜のオージェ電子分光法による化学組成分析図(45Å)
【図7】本発明方法で得られた膜のリーク電流と電圧の関係図
【図8】本発明方法で得られた膜のリーク電流と絶縁破壊電圧の関係図
【図9】本発明の方法を実施できる他のスパッタ装置の説明図
【符号の説明】
1 真空室、3 スパッタガス導入口、4 反応性ガス導入口、5 直流電源、6 メタルターゲット、7 磁石、8 RFコイル、9 マグネトロンカソード、10 異常放電防止回路、13 基板、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming an extremely thin insulating film applied to a hard disk magnetic head or the like.
[0002]
[Prior art]
Conventionally, thin film heads and magnetoresistive (MR) heads have been used as magnetic heads for reading hard disks, and Al 2 O 3 films with a thickness of about 1000 to 2000 mm are used for gap insulation for these heads. It is provided as a film. In order to form this Al 2 O 3 film, an RF magnetron sputtering method using Al 2 O 3 as a target is generally employed. However, when importance is placed on the productivity, Al is used as a target and sputtering is performed. A reactive sputtering method is also employed in which an O 2 gas is introduced into the inside atmosphere and an Al 2 O 3 film is formed using plasma oxidation while sputtering Al.
[0003]
Further, an inductively coupled RF plasma assisted magnetron cathode in which a magnet is provided behind the target and an RF coil is provided in front of the target has been proposed by the applicant as a sputter cathode (Japanese Patent Laid-Open No. 6-41739). This cathode has the advantage that it can sustain the generation of plasma in a high vacuum and has less generation of impurities and secondary products.
[0004]
[Problems to be solved by the invention]
There is a demand for improving the recording density of hard disks, and it is considered that the magnetic head for reading is also replaced with a giant magnetoresistive (GMR) head using a spin valve film, a multilayer film or a tunnel effect. It is expected that an insulating film to be used will require an extremely thin compound insulating film such as Al 2 O 3 or AlN of several tens to several hundreds of liters. However, when such an extremely thin Al 2 O 3 film, for example, is produced by the RF magnetron sputtering method or the reactive sputtering method using a conventional Al 2 O 3 target, the leakage current is 10 −6 A / mm 2 or less. A high-quality insulating film having electrical characteristics with a dielectric strength of 5 MV / cm or more cannot be formed. This is believed to be based on the following reasons. That is, since the underlying metal film and Al 2 O 3 are not “wet”, the Al 2 O 3 layer in the region in contact with the metal film is likely to have defects, but this defect is deposited as the Al 2 O 3 film is deposited. It is considered that a thin Al 2 O 3 layer becomes a healthy Al 2 O 3 layer, and a thick film of about 1000 mm is considered to satisfy its electrical characteristics. Therefore, an extremely thin Al 2 O 3 film of several tens to several hundreds of mm In the case of forming the insulating layer, it is considered that the influence of the portion having many defects in the vicinity of the interface layer appears remarkably, and the insulating film having the above-mentioned electrical characteristics cannot be formed.
[0005]
It is an object of the present invention to propose a method for forming a compound insulating film that is extremely thin, several tens to several hundreds of millimeters, which is difficult for conventional sputtering, and is convenient for a magnetic head gap layer or a tunnel junction type GMR. To do.
[0006]
[Means for Solving the Problems]
In the present invention, a magnetron cathode provided with a metal target connected to a DC power source, a magnet behind it and an RF coil for increasing the ionization rate in front of the target is provided in a vacuum chamber, and the target and RF for plasma generation are provided. and power applied to the coil, the vacuum introduced into the chamber by controlling the flow rate of the sputtering inert gas and a reactive gas, on a Si substrate opposed to the target or a metal underlying film is formed on the substrate In addition, the above-mentioned object is achieved by alternately forming a metal film and forming an insulating compound of the metal film by plasma of only the RF coil in this order . Further, the metal target and the RF coil are made of aluminum, the argon gas is controlled and introduced into the vacuum chamber, the pressure is adjusted, and power is supplied to the metal target and the RF coil from the DC power source and the RF power source, respectively. After an aluminum film of about 30 mm or less is formed on the Si substrate or the substrate on which the metal underlayer is formed , the power supply to the target is stopped and O 2 in addition to the argon gas in the vacuum chamber. Introducing a gas or N 2 gas to oxidize or nitride the aluminum film with plasma using only an RF coil, and then repeat this film formation and oxidation or nitridation to form an ultrathin insulating film of about 100 mm on the substrate. Thus, an ultrathin insulating film suitable for a gap layer of a magnetic head or an insulating film of a tunnel junction type GMR can be formed. The first compound layer is formed by forming a metal film on a Si substrate provided opposite to the target or a substrate on which a metal underlayer is formed, and forming the metal film into an insulating compound by plasma of only the RF coil. It is also possible to form the compound by reactive sputtering, in which the metal sputtering and the formation of an insulating compound by a reactive gas are simultaneously performed on the first compound layer .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described. FIG. 1 shows a sputtering apparatus used in the practice of the present invention. Reference numeral 1 in the figure denotes an exhaust port 2 connected to a vacuum pump, and sputtering gas such as argon gas. A vacuum chamber provided with an inlet 3 and a reactive gas inlet 4 for introducing a reactive gas such as O 2 or N 2 is shown. In the vacuum chamber 1, a metal target 6 made of Al or the like connected to a DC power source 5 through an abnormal discharge prevention circuit 10, a magnet 7 behind it, and an RF coil 8 that increases the ionization rate in front of the target 6. A magnetron cathode 9 is provided. The cathode 9 is known as the above-described inductively coupled RF plasma assisted magnetron cathode, and the RF coil 8 is provided so as to surround the front periphery of the metal target 6, and is supplied with power from the RF power source 12 via the matching box 11. Is supplied. Reference numeral 13 denotes a substrate having a diameter of, for example, 2 inches provided to face the target 6 so as to form an extremely thin compound insulating film on the surface. In the case of a thin film head or MR head, a metal film is formed on the surface. It is formed in advance as a base film. The RF coil 8 is made of, for example, Al made of the same material as the metal target 6, and if necessary, cooling water is circulated therein.
[0008]
In order to form an extremely thin compound insulating film on the substrate 13 by reactive sputtering using the apparatus of FIG. 1, first, the inside of the vacuum chamber 1 is evacuated, and argon gas for sputtering is introduced from the inlet 3 near the cathode 9. After adjusting the pressure by introducing an appropriate amount, DC power and high frequency power are input to the metal target 6 and the RF coil 8, respectively. As a result, plasma is generated in front of the target 6, the target 6 is sputtered by the ions, and the sputtered metal particles are deposited on the substrate 13. When the metal is deposited extremely thin, for example, about several tens of millimeters, the reaction gas is introduced from the reaction gas introduction port 4 in a state where the input power to the target 6 is set to zero and only the high-frequency power is applied to the RF coil 8. As a result, the target 6 is hardly sputtered, and the introduced reactive gas is excited and ionized by the plasma of the RF coil 8, so that it reacts quickly with the deposited metal film and becomes a compound insulating film. Since the deposited metal film is extremely thin, it becomes a compound film that is almost completely combined up to the inside of the thin film.
[0009]
Thereafter, the sputtering process of the target 6 and the compounding process by introduction of the reaction gas are repeated, and an ultrathin compound insulating film of about 100 mm, for example, is formed on the substrate 13. The resulting compound insulating film is very thin, has a low leakage current and a high dielectric breakdown voltage, has a good insulation resistance, can form a compound insulating film with no variation in insulation, and reads high-density recording It can be conveniently applied to magnetic heads. Using a variety of metal to the target 6 and compound to form an insulating film are possible, for example, be used to Si, can form a very thin insulating film of SiO 2, N 2 target Al, the reactive gas Can be used to form an ultra-thin insulating film of AlN, and various ultra-thin insulating films can be formed by appropriately selecting a target material and a reactive gas.
[0010]
The deposition rate of the metal on the substrate 13 mainly depends on the DC power supplied to the target 6, and the degree of ionization and excitation of the sputtered metal particles and reactive gas mainly depends on the high frequency power supplied to the RF coil 8. To do. This is considered to be due to a post ionization mechanism similar to ion plating in which the sputtered neutral metal particles are ionized when passing through the plasma zone formed by the RF coil 8. This tendency becomes more remarkable under a low pressure of 2 × 10 −3 Torr or less. When depositing the metal target 6, not only direct current power to the target 6 but also high frequency power is simultaneously applied to the RF coil 8, so that the ionization efficiency is improved and the substrate 13 is densely coated with good coverage. Thus, an extremely thin metal film having a good crystallinity of about several tens of millimeters can be deposited. When the reactive gas is introduced in a state where the direct current power to the target 6 is zero and only the high frequency power to the RF coil 8 is introduced, there is almost no metal to be sputtered, and it is excited and ionized by the plasma from the RF coil 8. The deposited ultra-thin metal film reacts quickly to almost completely form a compound insulating film.
[0011]
In the compounding process using the RF coil 8, since the metal film is not coated on the surface of the RF coil 8 by the sputtered particles from the target 6, the exposed surface of the RF coil 8 is subjected to inductively coupled plasma discharge. Contamination is considered that the sputtered particles of the coil material adhere to the surface of the substrate 13. Such contamination can be prevented by preparing the RF coil 8 with the same material as the target 6.
[0012]
In addition, when the reactive gas is excited and ionized by plasma, the surface of the target 6 also reacts to form a compound layer there, and the DC discharge in the next sputtering process may become unstable. This is because when a compound or insulator with low electrical conductivity is formed on the target surface, a positive charge is charged on the surface in DC discharge, and the potential difference between the cathode (target) and the anode (substrate) disappears. As a result, the discharge becomes unstable or the discharge stops. In order to eliminate this state, the positive charges accumulated on the surface of the target may be neutralized with electrons from the plasma. Therefore, an abnormal discharge prevention circuit 10 is interposed in the DC power source 5 of the target 6 as shown in FIG. Thus, a positive potential is generated at a constant rate, and when this positive potential is reached, electrons from the plasma are drawn into the target surface to neutralize the positive charges accumulated on the target surface.
[0013]
【Example】
Using the apparatus with the inductively coupled RF plasma assisted magnetron cathode shown in FIG. 1, an extremely thin Al 2 O 3 compound insulating film of about 100 mm on a low resistance silicon substrate 13 was formed. The RF coil 8 is made of water-cooled Al, and the DC power source 5 is connected to the Al target 6 via the abnormal discharge prevention circuit 10. In addition, argon gas as a sputtering gas can be introduced from the inlet 3, and O 2 gas as a reactive gas can be introduced from the reactive gas inlet 4. The diameter of the cathode 6 is 2 inches.
[0014]
Prior to the formation of the compound insulating film, the argon sputtering gas pressure in the vacuum chamber 1 is set to 8 × 10 −4 Torr, the target input power is kept constant at 40 W DC, and the input power to the RF coil 8 is changed to change the power on the Si substrate 13. The changes in the Al film deposition rate and the ionic current flowing into the substrate were measured. Note that −50 V was applied to the substrate 13 so that the ion current flowing into the substrate could be measured. The result is as shown in FIG. 3, and it can be seen that the deposition rate of the Al film does not depend much on the input power to the RF coil 8. The Al film deposition rate is proportional to the electric power applied to the target 6 as in the normal magnetron sputtering. On the other hand, the ion current flowing into the substrate 13 increases rapidly with the input power to the RF coil 8, indicating that this inductively coupled RF plasma assisted magnetron sputtering method is extremely effective in promoting ionization of sputtered particles. . The ions flowing into the substrate are Al ions and Ar ions.
[0015]
Based on this result, the sputtering process for depositing the Al metal film and the compounding process for compounding the film by plasma oxidation are repeated according to the procedure shown in FIG. An Al 2 O 3 compound insulating film having excellent electrical characteristics was formed. The sputtering argon gas pressure was 8 × 10 −4 Torr, and the temperature of the Si substrate was room temperature.
[0016]
Specifically, the direct current power to the target 6 is 130 W, the high frequency power to the RF coil 8 is 50 W, Ar gas is 15 sccm, O 2 gas is 0 sccm, and sputtering is performed for 18 seconds under these conditions. First, the thickness is about 30 mm. An Al metal film was deposited on the substrate. Subsequently, the direct current power to the target is kept at 0 V, the high frequency power to the RF coil 8 is kept at 50 W, the flow rate of the sputter argon gas is kept at 15 sccm, and O 2 gas is introduced into the 30 sccm vacuum chamber. The Al metal film deposited by generating only the inductively coupled plasma of No. 8 for 60 seconds was plasma oxidized to obtain an Al 2 O 3 film. Further, a next metal film was deposited on the Al 2 O 3 film with a thickness of about 30 mm under the sputtering conditions of the Al metal film, and the next metal film was deposited under the same conditions as the compounding conditions. In this manner, the sputtering step and the compounding step were repeated three times to form an Al 2 O 3 film of about 100 mm on the substrate.
[0017]
When the composition analysis in the depth direction of the film produced here was evaluated using Auger electron spectroscopy, the film composition was stable in the depth direction of the film, and the detected Al spectral peak was all oxygen and It was the energy value obtained in the combined state. The analysis result is shown in FIG. For comparison, a metal film having a thickness of about 45 mm was similarly deposited under the sputtering conditions of the Al metal film, and a sample produced by plasma oxidation was evaluated. The film contained oxygen in the depth direction. There was variation in the amount, and the detected peak of Al was detected not only in the energy value obtained in the state of binding to oxygen but also in the energy value from Al in the metallic state (FIG. 6). This is presumably because the film thickness of Al deposited as a metal film was too thick, and the entire metal Al film was not oxidized during plasma oxidation, and the next metal Al layer was deposited.
[0018]
Then, in order to measure the electrical characteristics of the obtained Al 2 O 3 film, a Cu electrode of 500 μm □ was specifically deposited on the film by a sputtering method. The VI characteristics of the film thus obtained are shown in FIG. It can be seen that the Al 2 O 3 film has a VI characteristic peculiar to an insulator, although the film thickness is as extremely thin as about 100 mm. Further, FIG. 8 plots the measured leakage current and dielectric breakdown voltage of the insulating film. The dielectric breakdown voltage and leakage current here are obtained when the insulation of the film was broken in the previous VI measurement. Defined as voltage and current. For comparison, the measurement results of the Al 2 O 3 film having the same film thickness prepared by the reactive sputtering method are also shown. The reactive sputtering condition is obtained by adding 130 W of direct current power to a target which is one of the conditions for sputtering Al in the compounding condition of the method of the present invention.
[0019]
When the characteristics of the film obtained by the method of the present invention (metal deposition / plasma oxidation lamination method) and the conventional reactive sputtering method are compared, the reactive sputtering film has more variation, and the dielectric breakdown of the film can be reduced with a small voltage. I am waking up. When this is depositing Al 2 O 3 film from the beginning by reactive sputtering, Si and the Al 2 O 3 film of underlying "wet" poor, the the Al 2 O 3 film in contact with the Si considered liable contains the defect It is done. On the other hand, in the metal deposition / plasma oxidation lamination method of the present invention, an Al film having good wettability with Si is first formed densely on the entire surface of the Si base, and then formed into Al 2 O 3 by plasma oxidation. The Al 2 O 3 film is presumed to have a good quality film with few defects even in the vicinity of the interface. When a thick film of about 1000 mm was deposited by the method of the present invention and its refractive index was measured, the same value of 1.71 to 1.72 as that of bulk Al 2 O 3 was obtained. This value also confirms that the film obtained by the method of the present invention is an excellent film comparable to bulk Al 2 O 3 .
[0020]
Similar to the method of the present invention, an Al film having a required film thickness, for example, 100 mm, was first formed by sputtering, and then the Al film was oxidized by another plasma oxidation apparatus. Since only the degree is oxidized and not the inside of the film, the VI characteristic peculiar to the insulator could not be obtained.
[0021]
In the embodiment, the example of the Al 2 O 3 film is shown, but it can be applied to various insulating films and compound materials such as SiO 2 and AlN. In principle, the method of the present invention has both a mechanism for sputtering metal and a mechanism for exciting atmospheric gas with plasma in the same chamber, and these can be controlled almost independently. It can be implemented. Therefore, in addition to the apparatus illustrated in FIG. 1, for example, a sputtering apparatus in which an RF coil is installed between the target and the substrate as shown in FIG. 9A, and thermoelectrons are generated by a hot filament as shown in FIG. 9B. It can be implemented by a tripolar or quadrupole type sputtering apparatus capable of forming plasma by ECR (electron cyclotron resonance) or an ECR or microwave sputtering apparatus capable of generating plasma by microwaves as shown in FIG. 9C. In the embodiments, the insulating film sputtering process of the hard disk magnetic head has been described. However, the present invention can be applied to various electronic device device thin film manufacturing processes such as flat panel displays. Further, in this case, in order to obtain a thick film of the compound, the sputtering process and the compounding process were alternately repeated. However, only the first compound layer having poor “wetting” with the base was prepared by this method, After the layers, compound layers may be formed all at once by so-called reactive sputtering.
[0022]
【The invention's effect】
As described above, according to the present invention, a magnetron cathode provided with an RF coil for increasing the ionization rate is provided, and the input power to the target and the RF coil, and the flow rates of the sputtering inert gas and the reactive gas introduced into the vacuum chamber. In this way, a metal film is formed on the substrate and an insulating compound is alternately formed on the substrate, so that the electrical characteristics that were difficult with the conventional sputtering method of about several tens to several hundreds of meters on the substrate Can be formed and can be advantageously applied to the manufacture of high-density hard disk magnetic heads.
[Brief description of the drawings]
FIG. 1 is a cut side view of an apparatus used for carrying out the method of the present invention. FIG. 2 is a characteristic diagram of a voltage applied to the cathode of FIG. 1. FIG. 3 is a relationship diagram between RF coil power and film deposition rate. 4] Diagram of the procedure for carrying out the method of the present invention. [Fig. 5] Chemical composition analysis diagram of the film obtained by the method of the present invention by Auger electron spectroscopy (30Å).
FIG. 6 is a chemical composition analysis diagram (45 mm) of the film obtained by the method of the present invention by Auger electron spectroscopy.
FIG. 7 is a diagram showing the relationship between the leakage current and voltage of the film obtained by the method of the present invention. FIG. 8 is a diagram showing the relationship between the leakage current and dielectric breakdown voltage of the film obtained by the method of the present invention. Explanation of other sputtering equipment that can carry out [Explanation of symbols]
1 vacuum chamber, 3 sputter gas inlet, 4 reactive gas inlet, 5 DC power supply, 6 metal target, 7 magnet, 8 RF coil, 9 magnetron cathode, 10 abnormal discharge prevention circuit, 13 substrate,

Claims (3)

真空室内に、直流電源に接続されたメタルターゲットとその背後の磁石及び該ターゲットの前方のイオン化率を高めるRFコイルを備えたマグネトロンカソードを設け、プラズマ発生のための該ターゲット及びRFコイルへの投入電力と、該真空室内へ導入するスパッタ用不活性ガス及び反応性ガスの流量とを制御し、該ターゲットに対向して設けたSi基板上又はメタル下地膜が形成された基板にメタル膜の成膜とRFコイルのみのプラズマによる該メタル膜の絶縁化合物化をその順に交互に行うことを特徴とする極薄絶縁膜形成方法。A magnetron cathode provided with a metal target connected to a DC power source, a magnet behind the vacuum source, and an RF coil for increasing the ionization rate in front of the target in a vacuum chamber is provided, and the target and the RF coil are generated for plasma generation. power and, by controlling the flow rate of the sputtering inert gas and a reactive gas introduced into the vacuum chamber, the metal film on the substrate Si substrate or a metal undercoating was provided opposite to the target has been formed A method of forming an ultrathin insulating film, wherein film formation and formation of an insulating compound of the metal film by plasma of only an RF coil are alternately performed in that order . 上記メタルターゲット及びRFコイルをアルミニウムとし、上記真空室内にアルゴンガスを制御して導入すると共に圧力を調整し、該メタルターゲット及びRFコイルに上記直流電源とRF電源から夫々電力を投入してプラズマを発生させ、Si基板上又はメタル下地膜が形成された基板に30Å程度以下のアルミニウム膜を成膜したのち、該ターゲットへの電力供給を停止し該真空室内にアルゴンガスの他にOガス又はNガスを導入してRFコイルのみによるプラズマで該アルミニウム膜を酸化又は窒化させ、その後この成膜と酸化又は窒化を繰り返して該基板上に約100Åの極薄絶縁膜を形成することを特徴とする請求項1に記載の極薄絶縁膜形成方法。The metal target and the RF coil are made of aluminum, argon gas is controlled and introduced into the vacuum chamber and the pressure is adjusted, and plasma is generated by supplying power from the DC power source and the RF power source to the metal target and the RF coil, respectively. After forming an aluminum film of about 30 mm or less on a Si substrate or a substrate on which a metal underlayer is formed , power supply to the target is stopped, and in addition to argon gas, O 2 gas or Introducing N 2 gas to oxidize or nitride the aluminum film with plasma using only an RF coil, and then repeat this film formation and oxidation or nitridation to form an ultrathin insulating film of about 100 mm on the substrate. The method for forming an ultrathin insulating film according to claim 1. 真空室内に、直流電源に接続されたメタルターゲットとその背後の磁石及び該ターゲットの前方のイオン化率を高めるRFコイルを備えたマグネトロンカソードを設け、プラズマ発生のための該ターゲット及びRFコイルへの投入電力と、該真空室内へ導入するスパッタ用不活性ガス及び反応性ガスの流量とを制御し、該ターゲットに対向して設けたSi基板上又はメタル下地膜が形成された基板にメタル膜の成膜とRFコイルのみのプラズマによる該メタル膜の絶縁化合物化を行って第1層の化合物層を形成し、該第1層の化合物層にメタルのスパッタと反応性ガスによる絶縁化合物化を同時に行う反応性スパッタにより該化合物の成膜を行うことを特徴とする極薄絶縁膜形成方法。A magnetron cathode provided with a metal target connected to a DC power source, a magnet behind the vacuum source, and an RF coil for increasing the ionization rate in front of the target in a vacuum chamber is provided, and the target and the RF coil are generated for plasma generation. The power and the flow rate of the inert gas and reactive gas for sputtering introduced into the vacuum chamber are controlled so that the metal film is formed on the Si substrate provided opposite to the target or on the substrate on which the metal underlayer is formed. the insulating compound of said metal film by only the plasma membrane and the RF coil to form a compound layer of the first layer I a row, the insulating compound into a first layer of compound layer by sputtering and reactive gases metal A method for forming an ultrathin insulating film, wherein the compound is formed by reactive sputtering performed simultaneously.
JP13704497A 1997-05-27 1997-05-27 Ultra-thin insulating film formation method Expired - Lifetime JP4531145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13704497A JP4531145B2 (en) 1997-05-27 1997-05-27 Ultra-thin insulating film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13704497A JP4531145B2 (en) 1997-05-27 1997-05-27 Ultra-thin insulating film formation method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007184880A Division JP2007277730A (en) 2007-07-13 2007-07-13 Sputtering apparatus
JP2007184879A Division JP2007314887A (en) 2007-07-13 2007-07-13 Method for forming extra-thin insulation film

Publications (2)

Publication Number Publication Date
JPH10324969A JPH10324969A (en) 1998-12-08
JP4531145B2 true JP4531145B2 (en) 2010-08-25

Family

ID=15189564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13704497A Expired - Lifetime JP4531145B2 (en) 1997-05-27 1997-05-27 Ultra-thin insulating film formation method

Country Status (1)

Country Link
JP (1) JP4531145B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614212B2 (en) * 1998-07-17 2011-01-19 ヤマハ株式会社 Manufacturing method of magnetic tunnel junction element
JP4351755B2 (en) 1999-03-12 2009-10-28 キヤノンアネルバ株式会社 Thin film forming method and thin film forming apparatus
US6627056B2 (en) * 2000-02-16 2003-09-30 Applied Materials, Inc. Method and apparatus for ionized plasma deposition
US6853520B2 (en) 2000-09-05 2005-02-08 Kabushiki Kaisha Toshiba Magnetoresistance effect element
JP3559513B2 (en) * 2000-09-05 2004-09-02 株式会社東芝 Magnetoresistive element, method and apparatus for manufacturing the same, and magnetic reproducing apparatus
JP3565163B2 (en) * 2000-12-20 2004-09-15 ヤマハ株式会社 Oxide film formation method and manufacturing method of magnetic tunnel junction device
JP2003114313A (en) * 2001-10-03 2003-04-18 Kiyousera Opt Kk Reflecting mirror and image projector device using the same
JP4983087B2 (en) 2006-04-27 2012-07-25 富士通セミコンダクター株式会社 Film-forming method, semiconductor device manufacturing method, computer-readable recording medium, sputtering apparatus
US7488609B1 (en) 2007-11-16 2009-02-10 Hitachi Global Storage Technologies Netherlands B.V. Method for forming an MgO barrier layer in a tunneling magnetoresistive (TMR) device
JP6101533B2 (en) * 2013-03-27 2017-03-22 株式会社Screenホールディングス Aluminum oxide film formation method
FR3043699B1 (en) * 2015-11-16 2019-06-14 Kobus Sas METHOD FOR FORMING OXIDE AND / OR ALUMINUM NITRIDE AND DEVICE FOR CARRYING OUT SAID METHOD
CN115161609B (en) * 2022-07-25 2023-09-12 北京北方华创微电子装备有限公司 Semiconductor process equipment and magnetron sputtering process

Also Published As

Publication number Publication date
JPH10324969A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
JP4531145B2 (en) Ultra-thin insulating film formation method
Takahashi et al. An electron cyclotron resonance plasma deposition technique employing magnetron mode sputtering
JP3774353B2 (en) Method and apparatus for forming metal compound thin film
US7862694B2 (en) Composite coating device and method of forming overcoat on magnetic head using the same
US20020020497A1 (en) Plasma processing apparatus and plasma processing method
JPH07226378A (en) Film forming method and plasma device using for this method
JP4481657B2 (en) Method of forming a titanium nitride film on the surface of a metal substrate in plasma of a chemical vapor deposition chamber
EP0691419A1 (en) A process and apparatus for forming multi-layer optical films
JP2007277730A (en) Sputtering apparatus
JP3190610B2 (en) Method for forming a substantially flat film
JP3735462B2 (en) Method and apparatus for forming metal oxide optical thin film
JPH11200032A (en) Sputtering film forming method of insulated film
JPH08232064A (en) Reactive magnetron sputtering system
WO2006013968A1 (en) Thin-film forming apparatus
JP4557315B2 (en) Method of forming compound barrier film in silicon semiconductor
JP2007314887A (en) Method for forming extra-thin insulation film
JPH0562971A (en) Method for forming silicon nitride film
JP3478561B2 (en) Sputter deposition method
JP4309979B2 (en) Method for manufacturing aluminum nitride film and method for manufacturing magnetic head
JP3143252B2 (en) Hard carbon thin film forming apparatus and its forming method
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
JP3026447B2 (en) Bias sputter deposition method and apparatus
JPH07110912A (en) Magnetic head and manufacture thereof
JP3933793B2 (en) Method for forming silicon oxide film and method for manufacturing thin film magnetic head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070912

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term