[go: up one dir, main page]

JP4529892B2 - Fuel injection control device for multi-cylinder engine - Google Patents

Fuel injection control device for multi-cylinder engine Download PDF

Info

Publication number
JP4529892B2
JP4529892B2 JP2005367605A JP2005367605A JP4529892B2 JP 4529892 B2 JP4529892 B2 JP 4529892B2 JP 2005367605 A JP2005367605 A JP 2005367605A JP 2005367605 A JP2005367605 A JP 2005367605A JP 4529892 B2 JP4529892 B2 JP 4529892B2
Authority
JP
Japan
Prior art keywords
injection
cylinder
fuel injection
correction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005367605A
Other languages
Japanese (ja)
Other versions
JP2007170246A (en
Inventor
佳史 葛谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005367605A priority Critical patent/JP4529892B2/en
Publication of JP2007170246A publication Critical patent/JP2007170246A/en
Application granted granted Critical
Publication of JP4529892B2 publication Critical patent/JP4529892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、多気筒エンジンの燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device for a multi-cylinder engine.

ディーゼルエンジンにおいては、燃料の噴射圧に相当する高圧の燃料をコモンレール内に蓄圧するとともに、該コモンレール内に蓄圧した高圧燃料を燃料噴射弁を介してエンジンに噴射供給するコモンレール式燃料噴射システムが実用化されている。燃料噴射量制御として、一般にはドライバによるアクセル操作量やエンジン回転速度に基づいて基本噴射量が算出されるとともに、その基本噴射量に対して各種補正が施されて噴射量指令値が算出される。そして、その噴射量指令値に応じた噴射期間にて燃料噴射弁の電磁ソレノイド部が通電されて燃料噴射が行われる。   In diesel engines, a common rail fuel injection system that accumulates high-pressure fuel equivalent to the fuel injection pressure in the common rail and injects the high-pressure fuel accumulated in the common rail to the engine via the fuel injection valve is practical. It has become. As fuel injection amount control, generally, a basic injection amount is calculated based on an accelerator operation amount by a driver and an engine speed, and various corrections are applied to the basic injection amount to calculate an injection amount command value. . And in the injection period according to the injection amount command value, the electromagnetic solenoid part of the fuel injection valve is energized to perform fuel injection.

また、多気筒エンジンにおいて、各気筒に対して個別の燃料噴射弁により燃料噴射を行う構成では、燃料噴射弁の個体差や経時劣化などに起因してエンジン気筒間で燃料噴射量がばらつく。そのため、気筒間の噴射量ばらつきを解消するための技術が各種提案されている。例えば、特許文献1の燃料噴射制御装置では、燃料噴射弁によって1燃料サイクル内で複数回の燃料噴射を行う、いわゆる多段噴射を実施可能とする構成とし、所定のエンジン運転状態下において、多段噴射の噴射回数が異なる2通りの燃料噴射パターンを設定するとともに、各噴射パターンにおいて噴射量を均等配分して燃料噴射を実施する。そして、各噴射パターンによる多段噴射の実施時にそれぞれの噴射量指令値を算出し、更にそれら噴射量指令値に基づいて気筒間補正量を算出することとしている。また、気筒間の噴射量ばらつきは、燃料噴射弁の劣化の進行に伴い変化するため、燃料噴射弁の劣化を検出する技術も併せて検討されている。   In a multi-cylinder engine, in a configuration in which fuel injection is performed with respect to each cylinder by individual fuel injection valves, the fuel injection amount varies between engine cylinders due to individual differences in fuel injection valves, deterioration with time, and the like. For this reason, various techniques for eliminating variations in the injection amount between cylinders have been proposed. For example, the fuel injection control device of Patent Document 1 is configured to enable so-called multistage injection, in which fuel injection is performed a plurality of times within one fuel cycle by a fuel injection valve, and multistage injection is performed under a predetermined engine operating state. The two fuel injection patterns with different numbers of injections are set, and the fuel injection is performed by equally distributing the injection amount in each injection pattern. Then, each of the injection amount command values is calculated at the time of performing the multi-stage injection by each injection pattern, and the inter-cylinder correction amount is calculated based on these injection amount command values. In addition, since the variation in the injection amount between the cylinders changes as the deterioration of the fuel injection valve progresses, a technique for detecting the deterioration of the fuel injection valve is also being studied.

しかしながら、上記特許文献1では、特殊な燃料噴射パターンを設定しているため、エンジン運転状態への影響を考えると、実施の機会が種々の条件により制約されると考えられる。また、一連の処理を実施するには比較的長い時間を要する。そのため、気筒間ばらつきを把握するための改善技術が望まれている。
特開2004−19637号公報
However, since the patent document 1 sets a special fuel injection pattern, it is considered that the implementation opportunity is restricted by various conditions in consideration of the influence on the engine operating state. In addition, it takes a relatively long time to perform a series of processes. Therefore, an improvement technique for grasping the variation between cylinders is desired.
JP 200419637 A

本発明は、簡易にかつ精度良く気筒間ばらつきを把握し、ひいては燃料噴射制御の制御性を向上させることができる多気筒エンジンの燃料噴射制御装置を提供することを主たる目的とするものである。   The main object of the present invention is to provide a fuel injection control device for a multi-cylinder engine that can easily and accurately grasp variations among cylinders, and thus improve the controllability of fuel injection control.

請求項1に記載の発明では前提として、アイドル運転状態の回転速度を安定させるためのISC補正とエンジントルクの気筒間ばらつきを補正するための気筒間ばらつき補正とを実施して気筒ごとの燃料噴射量を算出するとともに、該算出した燃料噴射量に基づいて前記燃料噴射弁の駆動を制御する。また特に、1燃焼サイクルで少なくとも2回燃料噴射を行う多段噴射を実施し、その際先の噴射に対して前記ISC補正を実施して同ISC補正を完了するとともに、後続の噴射に対しては、前記ISC補正を実施せず前記気筒間ばらつき補正を実施する。そして、その多段噴射を実施した時の気筒ごとの回転変動量に基づいて燃料噴射弁の劣化判定を実施する。 In the first aspect of the invention, as a premise, fuel injection for each cylinder is performed by performing ISC correction for stabilizing the rotational speed in the idling operation state and inter-cylinder variation correction for correcting variation between cylinders in the engine torque. The amount is calculated, and the driving of the fuel injection valve is controlled based on the calculated fuel injection amount. In particular, 1 to perform the multi-stage injection for performing at least 2 times the fuel injection in the combustion cycle, as well as complete the ISC correction implementation to the ISC correction to the injection of the Saisaki for subsequent injection The inter-cylinder variation correction is performed without performing the ISC correction . Then, the deterioration determination of the fuel injection valve is performed based on the rotational fluctuation amount for each cylinder when the multistage injection is performed.

上記構成によれば、多段噴射における先の噴射に対してISC補正を実施することでエンジン回転が安定する。また、その状態で後続の噴射に対して気筒間ばらつき補正を実施することで、燃料噴射弁の劣化に伴い気筒間ばらつきが生じた際に、その気筒間ばらつきに起因する回転変動の気筒間差を適正に把握することができる。したがって、燃料噴射弁の劣化判定を精度良く実施することができる。この場合、特殊な燃料噴射パターンによる燃料噴射が実施されることもなく、劣化判定に要する時間も比較的短いものとなる。以上により、簡易にかつ精度良く気筒間ばらつきを把握し、ひいては燃料噴射制御の制御性を向上させることができる。   According to the said structure, an engine rotation is stabilized by implementing ISC correction | amendment with respect to the previous injection in multistage injection. In addition, by performing the inter-cylinder variation correction for the subsequent injection in that state, when the variation between the cylinders occurs due to the deterioration of the fuel injection valve, the difference in the rotation variation due to the variation between the cylinders is caused. Can be grasped appropriately. Accordingly, it is possible to accurately determine the deterioration of the fuel injection valve. In this case, fuel injection by a special fuel injection pattern is not performed, and the time required for deterioration determination is relatively short. As described above, the variation among the cylinders can be grasped easily and accurately, and the controllability of the fuel injection control can be improved.

請求項2に記載の発明では、前記多段噴射の実施に際し、気筒ごとの回転変動情報に基づいて、前記気筒間ばらつき補正のための気筒間補正量を算出する。そして、気筒間補正量に基づいて燃料噴射弁の劣化判定を実施する。つまり、燃料噴射弁の劣化に伴い回転変動の気筒間差が生じると、それに対応して気筒間補正量が気筒ごとにばらつく。故に、気筒間補正量に基づく劣化判定が可能となる。   According to the second aspect of the present invention, when the multi-stage injection is performed, an inter-cylinder correction amount for correcting the inter-cylinder variation correction is calculated based on rotation fluctuation information for each cylinder. Then, deterioration determination of the fuel injection valve is performed based on the inter-cylinder correction amount. That is, when a difference in rotation fluctuation occurs between the cylinders due to deterioration of the fuel injection valve, the correction amount between the cylinders varies correspondingly. Therefore, it is possible to determine the deterioration based on the correction amount between cylinders.

請求項3に記載の発明では、燃料噴射弁で劣化が生じていると判定された場合、気筒間ばらつき補正のための気筒間補正量を算出し、該気筒間補正量を学習値として記憶保持する。本発明では、上記のとおり燃料噴射弁の劣化判定を精度良く実施できることから、気筒間補正量の学習の要否判定も精度良く実施できる。   In the third aspect of the present invention, when it is determined that the fuel injection valve has deteriorated, an inter-cylinder correction amount for correcting variation among cylinders is calculated, and the inter-cylinder correction amount is stored as a learning value. To do. In the present invention, since the deterioration determination of the fuel injection valve can be performed with high accuracy as described above, the necessity determination of learning of the correction amount between cylinders can be performed with high accuracy.

一方、請求項4に記載の発明では、気筒間ばらつき補正のための気筒間補正量を逐次算出し直し学習値として記憶保持する構成において、気筒間補正量の算出の要否を判定し、気筒間補正量の算出を要すると判定された際、1燃焼サイクルで少なくとも2回燃料噴射を行う多段噴射を実施することとし、その際先の噴射に対して前記ISC補正を実施して同ISC補正を完了するとともに、後続の噴射に対しては、前記ISC補正を実施せず前記気筒間ばらつき補正を実施する。また、その多段噴射を実施した時の気筒ごとの回転変動情報に基づいて気筒間補正量を算出する。 On the other hand, in the invention according to claim 4, in the configuration in which the inter-cylinder correction amount for correcting the variation between cylinders is sequentially calculated and stored as a learning value, it is determined whether or not the calculation of the inter-cylinder correction amount is necessary, When it is determined that it is necessary to calculate the intermediate correction amount, multistage injection is performed in which fuel injection is performed at least twice in one combustion cycle, and the ISC correction is performed by performing the ISC correction on the previous injection. And the inter-cylinder variation correction is performed for the subsequent injections without performing the ISC correction . Further, an inter-cylinder correction amount is calculated based on rotation fluctuation information for each cylinder when the multistage injection is performed.

上記構成によれば、多段噴射における先の噴射に対してISC補正を実施することでエンジン回転が安定する。また、その状態で後続の噴射に対して気筒間ばらつき補正を実施することで、燃料噴射弁の劣化に伴い気筒間ばらつきが生じた際に、その気筒間ばらつきに起因する回転変動の気筒間差を適正に把握することができる。したがって、気筒間補正量を精度良く算出することができる。この場合、特殊な燃料噴射パターンによる燃料噴射が実施されることもなく、気筒間補正量の算出に要する時間も比較的短いものとなる。以上により、簡易にかつ精度良く気筒間ばらつきを把握し、ひいては燃料噴射制御の制御性を向上させることができる。   According to the said structure, an engine rotation is stabilized by implementing ISC correction | amendment with respect to the previous injection in multistage injection. Also, by correcting the variation between cylinders for subsequent injections in that state, when the variation between cylinders occurs due to the deterioration of the fuel injection valve, the difference in rotation fluctuation caused by the variation between the cylinders Can be grasped appropriately. Therefore, the correction amount between cylinders can be calculated with high accuracy. In this case, fuel injection by a special fuel injection pattern is not performed, and the time required for calculating the correction amount between cylinders is relatively short. As described above, the variation among the cylinders can be grasped easily and accurately, and the controllability of the fuel injection control can be improved.

コモンレール内に蓄えた高圧燃料を燃料噴射弁から噴射するコモンレール式燃料噴射システムでは、請求項5に記載したように、コモンレール内の燃料圧力の水準を複数設定しておき、その圧力水準ごとに前記気筒間補正量を算出すると良い。これにより、エンジン運転状態等に応じてコモンレール内の燃料圧力が変化しても、都度の燃料圧力に則した好適な気筒間ばらつき補正を実施することができるようになる。   In the common rail type fuel injection system for injecting high pressure fuel stored in the common rail from the fuel injection valve, as described in claim 5, a plurality of fuel pressure levels in the common rail are set, and the pressure level is set for each pressure level. It is preferable to calculate the correction amount between cylinders. As a result, even if the fuel pressure in the common rail changes according to the engine operating state or the like, it is possible to perform a suitable correction between cylinders in accordance with the fuel pressure at each time.

また、請求項6に記載したように、燃料噴射弁による噴射量が比較的少ない場合と、比較的多い場合とについて前記気筒間補正量をそれぞれ算出すると良い。これにより、燃料噴射弁による噴射量が変化しても、都度の噴射量に則した好適な気筒間ばらつき補正を実施することができるようになる。   Further, as described in claim 6, it is preferable to calculate the inter-cylinder correction amount when the injection amount by the fuel injection valve is relatively small and when it is relatively large. As a result, even when the injection amount by the fuel injection valve changes, it is possible to carry out suitable correction for variation between cylinders in accordance with the injection amount at each time.

請求項7に記載の発明では、前記多段噴射として少なくともメイン噴射とその後の後噴射とを実施することとし、メイン噴射に対して前記ISC補正を実施するとともに、後噴射に対して前記気筒間ばらつき補正を実施する。つまり、多段噴射では、他の噴射の比べてメイン噴射の燃料量が多いと考えられる。したがって、メイン噴射に対してISC補正を実施することにより、エンジン回転の安定化をより確実に実現することができる。これにより、劣化判定の精度や気筒間補正量の算出精度を高めることができる。   In the seventh aspect of the invention, at least main injection and subsequent post-injection are performed as the multi-stage injection, the ISC correction is performed on the main injection, and the inter-cylinder variations with respect to the post-injection. Make corrections. That is, in the multi-stage injection, it is considered that the fuel amount of the main injection is larger than the other injections. Therefore, the engine rotation can be stabilized more reliably by performing the ISC correction on the main injection. Thereby, the accuracy of deterioration determination and the accuracy of calculating the correction amount between cylinders can be increased.

以下、本発明を具体化した一実施の形態を図面に従って説明する。本実施の形態は、車両ディーゼルエンジンのコモンレール式燃料噴射システムとして本発明を具体化しており、その詳細な構成を以下に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. The present embodiment embodies the present invention as a common rail fuel injection system for a vehicle diesel engine, and a detailed configuration thereof will be described below.

図1は、コモンレール式燃料噴射システムの概要を示す構成図である。図1において、多気筒ディーゼルエンジン(以下、エンジンという)10には気筒ごとに電磁式インジェクタ11が配設され、これらインジェクタ11は各気筒共通のコモンレール(蓄圧配管)12に接続されている。コモンレール12には燃料供給ポンプとしての高圧ポンプ13が接続され、高圧ポンプ13の駆動に伴い噴射圧相当の高圧燃料がコモンレール12に連続的に蓄圧される。高圧ポンプ13はエンジン10の回転に伴い駆動され、エンジン回転に同期して燃料の吸入及び吐出が繰り返し行われる。高圧ポンプ13には、その燃料吸入部に電磁駆動式の吸入調量弁(SCV)14が設けられており、フィードポンプ15によって燃料タンク16から汲み上げられた低圧燃料は吸入調量弁14を介して当該ポンプ13の燃料室に吸入される。なお実際には、高圧ポンプ13、吸入調量弁14及びフィードポンプ15は一体化されてポンプユニットとして構成されている。   FIG. 1 is a configuration diagram showing an outline of a common rail fuel injection system. In FIG. 1, a multi-cylinder diesel engine (hereinafter referred to as an engine) 10 is provided with an electromagnetic injector 11 for each cylinder, and these injectors 11 are connected to a common rail (pressure accumulation pipe) 12 common to each cylinder. A high pressure pump 13 as a fuel supply pump is connected to the common rail 12, and high pressure fuel corresponding to the injection pressure is continuously accumulated in the common rail 12 as the high pressure pump 13 is driven. The high-pressure pump 13 is driven as the engine 10 rotates, and the intake and discharge of fuel are repeatedly performed in synchronization with the engine rotation. The high pressure pump 13 is provided with an electromagnetically driven suction metering valve (SCV) 14 at its fuel suction portion, and the low pressure fuel pumped from the fuel tank 16 by the feed pump 15 passes through the suction metering valve 14. And sucked into the fuel chamber of the pump 13. In practice, the high-pressure pump 13, the suction metering valve 14, and the feed pump 15 are integrated into a pump unit.

コモンレール12にはコモンレール圧センサ17が設けられており、このコモンレール圧センサ17によりコモンレール12内の燃料圧(コモンレール圧)が検出される。図示は省略するが、コモンレール12には電磁駆動式(又は機械式)の減圧弁が設けられており、コモンレール圧が過剰に上昇した場合にはこの減圧弁が開放されて減圧が行われるようになっている。   A common rail pressure sensor 17 is provided in the common rail 12, and the fuel pressure (common rail pressure) in the common rail 12 is detected by the common rail pressure sensor 17. Although not shown, the common rail 12 is provided with an electromagnetically driven (or mechanical) pressure reducing valve. When the common rail pressure rises excessively, the pressure reducing valve is opened to perform pressure reduction. It has become.

ECU20は、CPU、ROM、RAM、EEPROM等からなる周知のマイクロコンピュータを備えた電子制御ユニットであり、ECU20には、上述したコモンレール圧センサ17からの検出信号の他、エンジン回転速度を検出するための回転速度センサ21、ドライバによるアクセル操作量(アクセル開度)を検出するためのアクセルセンサ22、エンジン冷却水の温度を検出するための水温センサ23、コモンレール12内の燃料温度を検出するための燃温センサ24などの各種センサから検出信号が逐次入力される。そして、ECU20は、エンジン回転速度やアクセル開度等のエンジン運転情報に基づいて最適な燃料噴射量及び噴射時期を決定し、それに応じた噴射制御信号をインジェクタ11に出力する。これにより、各気筒においてインジェクタ11から燃焼室への燃料噴射が制御される。   The ECU 20 is an electronic control unit including a known microcomputer including a CPU, ROM, RAM, EEPROM, and the like. The ECU 20 detects the engine rotation speed in addition to the detection signal from the common rail pressure sensor 17 described above. A rotation speed sensor 21, an accelerator sensor 22 for detecting an accelerator operation amount (accelerator opening) by a driver, a water temperature sensor 23 for detecting the temperature of engine cooling water, and a fuel temperature in the common rail 12 Detection signals are sequentially input from various sensors such as the fuel temperature sensor 24. Then, the ECU 20 determines an optimal fuel injection amount and injection timing based on engine operation information such as the engine rotation speed and the accelerator opening, and outputs an injection control signal corresponding to the fuel injection amount to the injector 11. Thus, fuel injection from the injector 11 to the combustion chamber is controlled in each cylinder.

また、ECU20は、その時々のエンジン回転速度及び燃料噴射量に基づきコモンレール圧(噴射圧)の目標値を算出するとともに、実際のコモンレール圧が目標コモンレール圧となるように高圧ポンプ13の燃料吐出量をフィードバック制御する。実際には、コモンレール圧の目標値と実際値との偏差に基づいて高圧ポンプ13の目標吐出量を決定し、それに応じて高圧ポンプ13の吸入調量弁14の開度を制御する。このとき、吸入調量弁14の電磁ソレノイドに対する指示電流値が制御されることにより、吸入調量弁14の開度が増減され、それに伴い高圧ポンプ13による燃料吐出量が調整される。   Further, the ECU 20 calculates a target value of the common rail pressure (injection pressure) based on the engine speed and the fuel injection amount at that time, and the fuel discharge amount of the high-pressure pump 13 so that the actual common rail pressure becomes the target common rail pressure. Feedback control. Actually, the target discharge amount of the high-pressure pump 13 is determined based on the deviation between the target value and the actual value of the common rail pressure, and the opening degree of the suction metering valve 14 of the high-pressure pump 13 is controlled accordingly. At this time, by controlling the command current value for the electromagnetic solenoid of the intake metering valve 14, the opening degree of the intake metering valve 14 is increased and decreased, and the fuel discharge amount by the high-pressure pump 13 is adjusted accordingly.

ここで、ECU20による燃料噴射量制御について詳しく説明する。本実施の形態では、燃料噴射量制御に際し、アイドル回転速度を安定化させるためのISC補正(ISC:Idle Speed Control)と、燃料噴射量の気筒間ばらつきを解消するためのFCCB補正(FCCB:Fuel Control Cylinder Balance)とを実施することとしており、エンジン回転速度とアクセル開度とに基づいて算出した基本噴射量に基づいてISC補正やFCCB補正を実施して最終の燃料噴射量を算出することとしている。   Here, the fuel injection amount control by the ECU 20 will be described in detail. In the present embodiment, when controlling the fuel injection amount, ISC correction (ISC: Idle Speed Control) for stabilizing the idling rotational speed and FCCB correction (FCCB: Fuel) for eliminating the variation in the fuel injection amount among cylinders. Control Cylinder Balance), and the final fuel injection amount is calculated by performing ISC correction and FCCB correction based on the basic injection amount calculated based on the engine speed and the accelerator opening. Yes.

図2は、燃料噴射量の気筒間ばらつきに起因する気筒間の回転変動の様子を示すタイムチャートである。図2において、(a)にはFCCB補正非実行時の各気筒の回転変動を示し、(b)にはFCCB補正実行時の各気筒の回転変動を示している。なお、(b)には、便宜上(a)に示す回転変動を点線で示している。   FIG. 2 is a time chart showing the state of fluctuation in rotation between cylinders due to variation in the fuel injection amount between cylinders. In FIG. 2, (a) shows the rotational fluctuation of each cylinder when FCCB correction is not executed, and (b) shows the rotational fluctuation of each cylinder when FCCB correction is executed. In (b), the rotational fluctuation shown in (a) is indicated by a dotted line for convenience.

図2の(a)に示すように、#1〜#4の各気筒ではそれぞれ回転上昇と回転降下とが繰り返し生じており、その回転変動は気筒間で図示の如くばらついている。このとき、各気筒#1〜#4の回転変動量はそれぞれΔNE1,ΔNE2,ΔNE3,ΔNE4である。そして、各気筒の燃料噴射量に対してFCCB補正が実施されることによって、(b)に示すように回転変動量がほぼ均等に平滑化される。かかる場合実際には、全気筒の回転変動量ΔNE1〜ΔNE4の平均値と気筒ごとの回転変動量との差分が算出され、その差分値に基づいてFCCB補正量が算出されるようになっている。   As shown in FIG. 2 (a), in each of the cylinders # 1 to # 4, a rotational increase and a rotational decrease are repeatedly generated, and the rotational fluctuation varies among the cylinders as illustrated. At this time, the rotational fluctuation amounts of the cylinders # 1 to # 4 are ΔNE1, ΔNE2, ΔNE3, and ΔNE4, respectively. Then, by performing FCCB correction on the fuel injection amount of each cylinder, the rotational fluctuation amount is smoothed almost uniformly as shown in FIG. In such a case, actually, the difference between the average value of the rotational fluctuation amounts ΔNE1 to ΔNE4 of all the cylinders and the rotational fluctuation amount for each cylinder is calculated, and the FCCB correction amount is calculated based on the difference value. .

図3は、燃料噴射量制御に関する制御ロジックの概要を示す制御ブロック図である。   FIG. 3 is a control block diagram showing an outline of control logic relating to fuel injection amount control.

図3では、まずあらかじめ規定したマップデータ等を用い、都度のエンジン回転速度とアクセル開度とに基づいて基本噴射量Qbaseを算出する。次に、前記基本噴射量Qbaseに対してISC補正やFCCB補正など各種補正を実施し、最終の燃料噴射量Qfinを算出する。ISC補正とFCCB補正とを実施する場合について述べると、基本噴射量Qbaseに対してISC補正量QiscとFCCB補正量Qfccbとを加算して最終の燃料噴射量Qfinを算出する(Qfin=Qbase+Qisc+Qfccb)。なお、燃料噴射量Qfinの算出時には、ISC補正及びFCCB補正以外に、エンジン水温、燃料温度、コモンレール圧等に基づく噴射量補正が適宜実施される。   In FIG. 3, first, the basic injection amount Qbase is calculated based on the engine speed and the accelerator opening each time using map data defined in advance. Next, various corrections such as ISC correction and FCCB correction are performed on the basic injection amount Qbase to calculate the final fuel injection amount Qfin. In the case where the ISC correction and the FCCB correction are performed, the final fuel injection amount Qfin is calculated by adding the ISC correction amount Qisc and the FCCB correction amount Qfccb to the basic injection amount Qbase (Qfin = Qbase + Qisc + Qfccb). When calculating the fuel injection amount Qfin, in addition to the ISC correction and FCCB correction, injection amount correction based on the engine water temperature, fuel temperature, common rail pressure, and the like is appropriately performed.

また、燃料噴射量Qfinに基づいて噴射信号を生成する。このとき、1燃焼サイクル内で複数回の燃料噴射を行う、いわゆる多段噴射を実施する場合には、前記燃料噴射量Qfinを多段噴射の噴射回数で分割し、各噴射での噴射量を決定する。そしてその各噴射の噴射量に基づいて噴射信号を生成する。多段噴射は、例えば最大5段で実施され、メイン噴射に先立ってパイロット噴射とプレ噴射とが実施され、メイン噴射後にアフタ噴射とポスト噴射とが実施される。   Further, an injection signal is generated based on the fuel injection amount Qfin. At this time, when performing so-called multistage injection in which fuel injection is performed a plurality of times within one combustion cycle, the fuel injection amount Qfin is divided by the number of injections of multistage injection to determine the injection amount for each injection. . An injection signal is generated based on the injection amount of each injection. Multi-stage injection is performed, for example, with a maximum of five stages, pilot injection and pre-injection are performed prior to main injection, and after injection and post-injection are performed after main injection.

ところで、インジェクタ11では経時変化により噴射特性が変化し、それに伴い燃料噴射量の気筒間ばらつきが変化すると考えられる。その要因としては、インジェクタ11を構成する弁体の摺動部や着座部の摩耗、噴口部のデポジットの付着などが挙げられる。かかる場合、インジェクタ11の経時変化の状態に応じてFCCB補正量Qfccbを更新する必要がある。そこで本実施の形態では、所定条件の成立時にインジェクタ11の劣化判定を実施するとともに、インジェクタ劣化時において新たにFCCB補正量Qfccbを算出し、Qfccbの今回値で前回値を更新する。このとき、FCCB補正量Qfccbは、EEPROM(電気的に消去及び書き込み可能な不揮発性メモリ)やバックアップRAM等のバックアップ用メモリに記憶保持されるようになっており、FCCB補正量Qfccbの更新時には、EEPROM等においてデータの書き換えが行われる。   By the way, it is considered that in the injector 11, the injection characteristics change with time, and the variation in the fuel injection amount among the cylinders changes accordingly. The factors include wear of the sliding part and seating part of the valve body constituting the injector 11 and adhesion of deposits at the nozzle part. In such a case, it is necessary to update the FCCB correction amount Qfccb in accordance with the state of change of the injector 11 with time. Therefore, in the present embodiment, the deterioration determination of the injector 11 is performed when a predetermined condition is satisfied, and the FCCB correction amount Qfccb is newly calculated when the injector is deteriorated, and the previous value is updated with the current value of Qfccb. At this time, the FCCB correction amount Qfccb is stored and held in a backup memory such as an EEPROM (electrically erasable and writable nonvolatile memory) or a backup RAM, and when the FCCB correction amount Qfccb is updated, Data is rewritten in an EEPROM or the like.

インジェクタ11の劣化判定に際しては、少なくとも2段の多段噴射からなる噴射パターンを実施することとし、そのうち先の燃料噴射に対してISC補正を実施するとともに、後続の燃料噴射に対してFCCB補正を実施する。この場合、先の燃料噴射に対するISC補正によりエンジンの回転を安定させ、その状態で気筒間ばらつきの反映として気筒ごとの回転変動をモニタする。これにより、気筒間ばらつきを適正に求めることができ、各気筒のインジェクタ11の劣化判定を精度良く行うことができる。   When determining the deterioration of the injector 11, an injection pattern consisting of at least two stages of multi-stage injection is carried out. Among them, ISC correction is performed for the previous fuel injection, and FCCB correction is performed for the subsequent fuel injection. To do. In this case, the engine rotation is stabilized by the ISC correction for the previous fuel injection, and the rotation fluctuation for each cylinder is monitored as a reflection of the variation between the cylinders in this state. Thereby, the dispersion | variation between cylinders can be calculated | required appropriately and the deterioration determination of the injector 11 of each cylinder can be performed accurately.

図4は、インジェクタ11の劣化判定時における噴射パターンを示すタイムチャートである。図4の(a)では、多段噴射として、メイン噴射及びアフタ噴射の2段の燃料噴射(図のf1,f2)を行うこととし、その際、先のメイン噴射に対してISC補正を実施するとともに、後続のアフタ噴射に対してFCCB補正を実施するようにしている。又は、図4の(b)のように、多段噴射として、パイロット噴射、メイン噴射及びアフタ噴射の3段の燃料噴射(図のf11,f12,f13)を行うこととし、その際、メイン噴射に対してISC補正を実施するとともに、該メイン噴射の前後の各噴射に対してFCCB補正を実施するようにしても良い。   FIG. 4 is a time chart showing an injection pattern when determining the deterioration of the injector 11. In FIG. 4A, two-stage fuel injection (f1, f2 in the figure) of main injection and after injection is performed as multi-stage injection, and at that time, ISC correction is performed on the previous main injection. At the same time, FCCB correction is performed for subsequent after injection. Alternatively, as shown in FIG. 4 (b), as the multi-stage injection, three-stage fuel injection (f11, f12, f13 in the figure) of pilot injection, main injection, and after injection is performed. On the other hand, the ISC correction may be performed and the FCCB correction may be performed on the respective injections before and after the main injection.

インジェクタ11での劣化発生の旨が判定された時においてあらためてFCCB補正量Qfccbを算出する場合にも、前記劣化判定を行う場合と同様に、少なくとも2段の多段噴射からなる噴射パターンを実施することとし、そのうち先の燃料噴射に対してISC補正を実施するとともに、後続の燃料噴射に対してFCCB補正を実施する(前記図4参照)。   When the FCCB correction amount Qfccb is calculated again when it is determined that the injector 11 has deteriorated, an injection pattern consisting of at least two stages of multi-stage injection is performed as in the case of performing the deterioration determination. Among them, ISC correction is performed for the previous fuel injection, and FCCB correction is performed for the subsequent fuel injection (see FIG. 4).

次に、学習値としてのFCCB補正量Qfccbを更新すべくECU20により実施される処理手順について詳細に説明する。図5は、学習値更新の処理手順を示すフローチャートであり、本処理は例えば所定の時間周期でECU20により実施される。本処理によって、各気筒のインジェクタ11の劣化判定と、気筒ごとのFCCB補正量Qfccbの更新とが適時実施される。   Next, a processing procedure executed by the ECU 20 to update the FCCB correction amount Qfccb as a learning value will be described in detail. FIG. 5 is a flowchart showing a learning value update processing procedure, and this processing is performed by the ECU 20 at a predetermined time period, for example. By this process, the deterioration determination of the injector 11 of each cylinder and the update of the FCCB correction amount Qfccb for each cylinder are performed in a timely manner.

図5において、ステップS101では、劣化判定の要否判定を実施する。例えば、今回のECU起動後(すなわちイグニッションスイッチのオン後)において既に劣化判定処理が実施済みであれば、劣化判定が不要であるとしてステップS106に進む。また、劣化判定処理が実施されていなければ、劣化判定を要するとしてステップS102に進む。   In FIG. 5, in step S101, the necessity determination of deterioration determination is performed. For example, if the deterioration determination process has already been performed after the current ECU activation (that is, after the ignition switch is turned on), the process proceeds to step S106 because the deterioration determination is unnecessary. If the deterioration determination process is not performed, it is determined that the deterioration determination is necessary, and the process proceeds to step S102.

ステップS102では、劣化判定の実行条件が成立するか否かを判定する。この実行条件は、例えばアイドル運転状態であること、エンジン水温が所定温度以上であること(エンジン暖機完了後であること)などを含み、これらすべてが成立する場合に、前記実行条件が成立したとされる。実行条件の成立時には後続のステップS103に進み、非成立時にはそのまま本処理を終了する。   In step S102, it is determined whether or not an execution condition for deterioration determination is satisfied. This execution condition includes, for example, that the engine is in an idle operation state, and that the engine water temperature is equal to or higher than a predetermined temperature (after completion of engine warm-up). It is said. When the execution condition is satisfied, the process proceeds to the subsequent step S103, and when the execution condition is not satisfied, the process is terminated.

ステップS103では、劣化判定用噴射パターンに基づく燃料噴射を実施する。このとき、前記図4で説明した噴射パターンにより気筒ごとに燃料噴射を実施する。続くステップS104では、上記のとおり劣化判定用噴射パターンに基づく燃料噴射を実施した際の気筒ごとの回転変動量に基づいて各気筒のインジェクタ11の劣化判定を実施する。このとき、気筒ごとに最大回転速度(ピーク値)と最小回転速度(ボトム値)とを算出するとともにその差分により回転変動量(前記図2のΔNE1〜ΔNE4に相当)を算出し、その回転変動量を劣化判定パラメータとして各気筒のインジェクタ11の劣化判定を実施する。例えば、回転変動量の気筒間ばらつきが所定のしきい値よりも大きい場合には、インジェクタ11が劣化状態にあると判定する。   In step S103, fuel injection is performed based on the deterioration determination injection pattern. At this time, fuel injection is performed for each cylinder according to the injection pattern described in FIG. In the subsequent step S104, the deterioration determination of the injector 11 of each cylinder is performed based on the rotational fluctuation amount for each cylinder when the fuel injection based on the deterioration determination injection pattern is performed as described above. At this time, the maximum rotation speed (peak value) and the minimum rotation speed (bottom value) are calculated for each cylinder, and the rotation fluctuation amount (corresponding to ΔNE1 to ΔNE4 in FIG. 2) is calculated based on the difference between the rotation speed fluctuations. The deterioration determination of the injector 11 of each cylinder is performed using the amount as a deterioration determination parameter. For example, when the variation in the amount of rotation fluctuation between cylinders is larger than a predetermined threshold value, it is determined that the injector 11 is in a deteriorated state.

ステップS105では、前記ステップS104においてインジェクタ11が劣化状態にあるとされたか否かを判定する。そして、劣化状態であると判定されたのであれば、ステップS106以降の一連の学習処理を実施する。   In step S105, it is determined whether or not the injector 11 is in a deteriorated state in step S104. And if it determines with it being in a degradation state, a series of learning processes after step S106 will be implemented.

ステップS106では、FCCB補正量Qfccbの学習条件が成立しているか否かを判定する。この条件判定は、エンジン運転状態が定常状態であることを判定するものであり、学習条件として具体的には、エンジンの負荷変動(例えばアクセル変化)が少ないこと、エアコン用コンプレッサやオルタネータといった補機類の稼働による負荷が少ないことなどが含まれる。学習条件の成立時には後続のステップS107に進み、学習条件の不成立時にはそのまま本処理を終了する。   In step S106, it is determined whether a learning condition for the FCCB correction amount Qfccb is satisfied. This condition determination is to determine that the engine operating state is a steady state. Specifically, the learning condition is that there are few engine load fluctuations (for example, accelerator change), and auxiliary equipment such as an air conditioner compressor and an alternator. This includes the fact that the load caused by the operation of the class is small. When the learning condition is satisfied, the process proceeds to the subsequent step S107, and when the learning condition is not satisfied, the present process is terminated.

ステップS107では、学習用噴射パターンに基づく燃料噴射を実施する。このとき、前記図4で説明した噴射パターンにより気筒ごとに燃料噴射を実施する。続くステップS108では、気筒ごとに回転変動量を算出するとともに、その回転変動量に基づいて各気筒のFCCB補正量Qfccbを算出する。このとき、全気筒の回転変動量の平均値と気筒ごとの回転変動量との差分を算出し、その差分値に基づいてFCCB補正量Qfccbを算出する。ステップS109では、今回算出したFCCB補正量Qfccbに基づいて、EEPROM等に記憶した学習値(Qfccb学習値)の更新を実施する。   In step S107, fuel injection based on the learning injection pattern is performed. At this time, fuel injection is performed for each cylinder according to the injection pattern described in FIG. In the subsequent step S108, the rotation fluctuation amount is calculated for each cylinder, and the FCCB correction amount Qfccb of each cylinder is calculated based on the rotation fluctuation amount. At this time, the difference between the average value of the rotation fluctuation amount of all the cylinders and the rotation fluctuation amount of each cylinder is calculated, and the FCCB correction amount Qfccb is calculated based on the difference value. In step S109, the learning value (Qfccb learning value) stored in the EEPROM or the like is updated based on the FCCB correction amount Qfccb calculated this time.

ここで実際には、上記ステップS108で算出したFCCB補正量Qfccbは、気筒間のばらつき量を表したいわば相対的なFCCB補正値であり、その相対的なFCCB補正値が絶対的なFCCB補正値に変換され、その絶対値に変換したFCCB補正値(絶対値)が学習値としてメモリに書き込まれる。ここでその手順についてより詳細に説明する。つまり、上記ステップS107,S108の処理実行により気筒ごとのFCCB補正量Qfccbを算出した後、ECU20は、そのFCCB補正量Qfccbを反映して燃料噴射量制御を実施する。このとき、ISC制御を同時に行い、その制御の結果としてアイドル運転時の制御噴射量、すなわち制御噴射期間の偏差を算出する。そして、その偏差に応じて各気筒のFCCB補正量Qfccbを相対的なデータから絶対的なデータに変換するとともに、該絶対的なデータとして求めたQfccb値をEEPROM等に新たな学習値として記憶する。   Actually, the FCCB correction amount Qfccb calculated in step S108 is a relative FCCB correction value representing the variation amount between cylinders, and the relative FCCB correction value is an absolute FCCB correction value. The FCCB correction value (absolute value) converted into the absolute value is written in the memory as a learning value. Here, the procedure will be described in more detail. That is, after calculating the FCCB correction amount Qfccb for each cylinder by executing the processes in steps S107 and S108, the ECU 20 performs the fuel injection amount control reflecting the FCCB correction amount Qfccb. At this time, ISC control is performed simultaneously, and the control injection amount during idle operation, that is, the deviation of the control injection period is calculated as a result of the control. Then, the FCCB correction amount Qfccb of each cylinder is converted from relative data to absolute data in accordance with the deviation, and the Qfccb value obtained as the absolute data is stored as a new learning value in an EEPROM or the like. .

学習値を更新した後、ステップS110では、コモンレール圧に関し、全ての圧力水準で各気筒のFCCB補正量Qfccbの算出が終了したか否かを判定する。本実施の形態では、コモンレール圧の使用範囲内で複数の圧力水準が設定されており、圧力水準ごとにFCCB補正量Qfccbの算出が終了したか否かを判定する。そして、ステップS110がNOであれば本処理をそのまま終了し、YESであればステップS111に進んで一連の学習処理が終了したとする(例えば、学習終了フラグのセット等を行う)。   After the learning value is updated, in step S110, it is determined whether the calculation of the FCCB correction amount Qfccb for each cylinder has been completed for all the pressure levels with respect to the common rail pressure. In the present embodiment, a plurality of pressure levels are set within the use range of the common rail pressure, and it is determined whether the calculation of the FCCB correction amount Qfccb is completed for each pressure level. If step S110 is NO, the process is terminated as it is. If YES, the process proceeds to step S111, and a series of learning processes is completed (for example, a learning end flag is set).

以上詳述した本実施の形態によれば、以下の優れた効果が得られる。   According to the embodiment described above in detail, the following excellent effects can be obtained.

インジェクタ11の劣化判定に際して多段噴射を実施することとし、その際先の噴射に対してISC補正を実施するとともに、後続の噴射に対して気筒間ばらつき補正を実施するようにしたため、インジェクタ11の劣化に伴い気筒間ばらつきが生じた際においてその気筒間ばらつきに起因する回転変動の気筒間差を適正に把握することができる。したがって、インジェクタ11の劣化判定を精度良く実施することができる。この場合、燃料噴射パターンは一般的な多段噴射(例えばメイン噴射+アフタ噴射)であるため、特殊な燃料噴射パターンによる燃料噴射が実施されることもなく、劣化判定に要する時間も比較的短いものとなる。以上により、簡易にかつ精度良く気筒間ばらつきを把握し、ひいては燃料噴射制御の制御性を向上させることができる。   Since the multistage injection is performed when determining the deterioration of the injector 11, the ISC correction is performed for the previous injection, and the inter-cylinder variation correction is performed for the subsequent injection. Accordingly, when variation between cylinders occurs, it is possible to properly grasp the difference between the cylinders in the rotational fluctuation caused by the variation between the cylinders. Therefore, the deterioration determination of the injector 11 can be performed with high accuracy. In this case, since the fuel injection pattern is a general multistage injection (for example, main injection + after injection), fuel injection by a special fuel injection pattern is not performed, and the time required for deterioration determination is relatively short. It becomes. As described above, the variation among the cylinders can be grasped easily and accurately, and the controllability of the fuel injection control can be improved.

また、上記のとおりインジェクタ11の劣化判定を精度良く実施できることから、FCCB補正量Qfccbの学習の要否判定も精度良く実施できる。   Further, since the deterioration determination of the injector 11 can be performed with high accuracy as described above, the necessity determination of learning of the FCCB correction amount Qfccb can also be performed with high accuracy.

FCCB補正量Qfccbの学習時においても、前記同様、多段噴射を実施することとし、その際先の噴射に対してISC補正を実施するとともに、後続の噴射に対して気筒間ばらつき補正を実施するようにしたため、FCCB補正量Qfccbを精度良く算出することができる。   Even when the FCCB correction amount Qfccb is learned, similarly to the above, multistage injection is performed, and at that time, ISC correction is performed for the previous injection and inter-cylinder variation correction is performed for the subsequent injection. Therefore, the FCCB correction amount Qfccb can be calculated with high accuracy.

コモンレール圧の水準を複数設定しておき、その圧力水準ごとにFCCB補正量Qfccbを算出するようにしたため、エンジン運転状態等に応じてコモンレール圧が変化しても、都度の燃料圧力に則した好適な気筒間ばらつき補正を実施することができるようになる。   Since multiple common rail pressure levels are set and the FCCB correction amount Qfccb is calculated for each pressure level, even if the common rail pressure changes depending on the engine operating conditions, etc., it is suitable for each fuel pressure. Correction between cylinders can be performed.

なお、本発明は上記実施の形態の記載内容に限定されず、例えば次のように実施しても良い。   In addition, this invention is not limited to the content of description of the said embodiment, For example, you may implement as follows.

上記実施の形態では、気筒ごとの回転変動量に基づいて各気筒のインジェクタ11の劣化判定を実施する構成としたが、その劣化判定方法を変更する。気筒ごとの回転変動量に基づいて各気筒のFCCB補正量Qfccbを算出するとともに、そのFCCB補正量Qfccbに基づいて各気筒のインジェクタ11の劣化判定を実施するようにしても良い。つまり、インジェクタ11の劣化に伴い回転変動の気筒間差が生じると、それに対応してFCCB補正量Qfccbが気筒ごとにばらつく。故に、FCCB補正量Qfccbに基づく劣化判定が可能となる。   In the above-described embodiment, the deterioration determination of the injector 11 of each cylinder is performed based on the rotation fluctuation amount for each cylinder. However, the deterioration determination method is changed. The FCCB correction amount Qfccb of each cylinder may be calculated based on the rotation fluctuation amount for each cylinder, and the deterioration determination of the injector 11 of each cylinder may be performed based on the FCCB correction amount Qfccb. That is, when a difference in rotation fluctuation between cylinders occurs due to deterioration of the injector 11, the FCCB correction amount Qfccb varies corresponding to each cylinder. Therefore, deterioration determination based on the FCCB correction amount Qfccb can be performed.

上記実施の形態では、全気筒の回転変動量の平均値と気筒ごとの回転変動量との差分を算出し、その差分値に基づいてFCCB補正量Qfccbを算出したが、その算出方法を変更する。例えば、気筒間の回転変動を平滑化するように各気筒への燃料噴射量を個々に補正し、その時の補正量に基づいてFCCB補正量Qfccbを算出するようにしても良い。   In the above embodiment, the difference between the average value of the rotation fluctuation amount of all the cylinders and the rotation fluctuation amount of each cylinder is calculated, and the FCCB correction amount Qfccb is calculated based on the difference value. However, the calculation method is changed. . For example, the fuel injection amount to each cylinder may be individually corrected so as to smooth the rotational fluctuation between the cylinders, and the FCCB correction amount Qfccb may be calculated based on the correction amount at that time.

インジェクタ11による噴射量が比較的少ない場合と、比較的多い場合とについてFCCB補正量Qfccbをそれぞれ算出すると良い。これにより、インジェクタ11による噴射量が変化しても、都度の噴射量に則した気筒間ばらつき補正を実施することができるようになる。   The FCCB correction amount Qfccb may be calculated for the case where the injection amount by the injector 11 is relatively small and the case where the injection amount is relatively large. Thereby, even if the injection amount by the injector 11 changes, it becomes possible to carry out inter-cylinder variation correction in accordance with the injection amount at each time.

上記実施の形態では、劣化判定用噴射パターンと学習用噴射パターンとを同じ燃料噴射パターンとしたが、これを変更しても良い。例えば、学習用噴射パターンとして、多段噴射の噴射回数が異なる2通りの燃料噴射パターンを設定するとともに、各噴射パターンにおいて噴射量を均等配分して燃料噴射を実施する。そして、各噴射パターンによる多段噴射の実施時にそれぞれの噴射量指令値を算出し、更にそれら噴射量指令値に基づいて気筒間補正量を算出しても良い(特開2004−19637号公報参照)。   In the above embodiment, the deterioration determination injection pattern and the learning injection pattern are the same fuel injection pattern, but this may be changed. For example, as the learning injection pattern, two types of fuel injection patterns with different numbers of multi-stage injections are set, and the fuel injection is performed by equally distributing the injection amount in each injection pattern. And each injection amount command value is calculated at the time of implementation of the multistage injection by each injection pattern, and the correction amount between cylinders may be calculated based on these injection amount command values (refer to JP, 2004-19637, A). .

インジェクタ11の劣化判定時又はFCCB補正量Qfccbの算出時における多段噴射に際し、各噴射に対するISC補正及びFCCB補正の形態を他に変更することも可能である。広義には、多段噴射において、最後の噴射に対してFCCB補正(気筒間ばらつき補正)を実施するとともに、それよりも先の噴射に対してISC補正を実施するものであれば良い。   In the case of multistage injection at the time of determining the deterioration of the injector 11 or calculating the FCCB correction amount Qfccb, it is also possible to change the forms of ISC correction and FCCB correction for each injection in other ways. In a broad sense, in multi-stage injection, any FCCB correction (inter-cylinder variation correction) may be performed for the last injection, and ISC correction may be performed for an earlier injection.

上記実施の形態では、先にインジェクタ11の劣化判定を実施し、劣化発生の旨が判定された場合においてFCCB補正量Qfccbの算出を実施したが、これに代えて、インジェクタ11の劣化判定を要件とせずにFCCB補正量Qfccbの算出を適時実施することも可能である。例えば、車両走行距離が所定距離になるたびにFCCB補正量Qfccbの算出(学習)を実施する。   In the above embodiment, the deterioration determination of the injector 11 is performed first, and the FCCB correction amount Qfccb is calculated when it is determined that the deterioration has occurred. Instead, the deterioration determination of the injector 11 is a requirement. It is also possible to calculate the FCCB correction amount Qfccb in a timely manner without doing so. For example, the FCCB correction amount Qfccb is calculated (learned) every time the vehicle travel distance becomes a predetermined distance.

発明の実施の形態におけるエンジン制御システムの概略を示す構成図である。It is a block diagram which shows the outline of the engine control system in embodiment of invention. 気筒間の回転変動の様子を示すタイムチャートである。It is a time chart which shows the mode of the rotation fluctuation between cylinders. 燃料噴射量制御に関する制御ロジックの概要を示す制御ブロック図である。It is a control block diagram which shows the outline | summary of the control logic regarding fuel injection amount control. インジェクタ劣化判定時における噴射パターンを説明するためのタイムチャートである。It is a time chart for demonstrating the injection pattern at the time of injector deterioration determination. 学習値更新の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of learning value update.

符号の説明Explanation of symbols

10…エンジン、11…インジェクタ、12…コモンレール、13…高圧ポンプ、20…ECU。   DESCRIPTION OF SYMBOLS 10 ... Engine, 11 ... Injector, 12 ... Common rail, 13 ... High pressure pump, 20 ... ECU.

Claims (7)

アイドル運転状態の回転速度を安定させるためのISC補正とエンジントルクの気筒間ばらつきを補正するための気筒間ばらつき補正とを実施して気筒ごとの燃料噴射量を算出するとともに、該算出した燃料噴射量に基づいて燃料噴射弁の駆動を制御するようにした多気筒エンジンの燃料噴射制御装置において、
1燃焼サイクルで少なくとも2回燃料噴射を行う多段噴射を実施し、その際先の噴射に対して前記ISC補正を実施して同ISC補正を完了するとともに、後続の噴射に対しては、前記ISC補正を実施せず前記気筒間ばらつき補正を実施する多段噴射実施手段と、
該多段噴射実施手段により多段噴射を実施した時の気筒ごとの回転変動量に基づいて前記燃料噴射弁の劣化判定を実施する劣化判定手段と、
を備えたことを特徴とする多気筒エンジンの燃料噴射制御装置。
The fuel injection amount for each cylinder is calculated by performing the ISC correction for stabilizing the rotational speed in the idling operation state and the inter-cylinder variation correction for correcting the inter-cylinder variation of the engine torque, and the calculated fuel injection In a fuel injection control device for a multi-cylinder engine that controls the drive of a fuel injection valve based on an amount,
We conducted a multi-stage injection for performing at least 2 times the fuel injection in one combustion cycle, as well as complete the ISC correction was performed the ISC correction to the injection of the Saisaki for subsequent injection, the ISC a multi-injection means for executing the cylinder variation correction without performing correction,
Deterioration determining means for performing deterioration determination of the fuel injection valve based on the rotational fluctuation amount for each cylinder when the multistage injection is performed by the multistage injection performing means;
A fuel injection control device for a multi-cylinder engine.
前記多段噴射実施手段による多段噴射の実施に際し、気筒ごとの回転変動情報に基づいて、前記気筒間ばらつき補正のための気筒間補正量を算出する手段を備え、前記劣化判定手段は、前記気筒間補正量に基づいて前記燃料噴射弁の劣化判定を実施することを特徴とする請求項1に記載の多気筒エンジンの燃料噴射制御装置。   When performing the multi-stage injection by the multi-stage injection execution means, it comprises means for calculating an inter-cylinder correction amount for correcting variation among the cylinders based on rotation fluctuation information for each cylinder, and the deterioration determination means The fuel injection control device for a multi-cylinder engine according to claim 1, wherein the deterioration determination of the fuel injection valve is performed based on a correction amount. 前記劣化判定手段により前記燃料噴射弁で劣化が生じていると判定された場合、前記気筒間ばらつき補正のための気筒間補正量を算出し、該気筒間補正量を学習値として記憶保持することを特徴とする請求項1又は2に記載の多気筒エンジンの燃料噴射制御装置。   When it is determined by the deterioration determining means that the fuel injection valve has deteriorated, an inter-cylinder correction amount for correcting the inter-cylinder variation correction is calculated, and the inter-cylinder correction amount is stored and held as a learning value. The fuel injection control device for a multi-cylinder engine according to claim 1 or 2. アイドル運転状態の回転速度を安定させるためのISC補正とエンジントルクの気筒間ばらつきを補正するための気筒間ばらつき補正とを実施して気筒ごとの燃料噴射量を算出するとともに、該算出した燃料噴射量に基づいて燃料噴射弁の駆動を制御する一方、前記気筒間ばらつき補正のための気筒間補正量を逐次算出し直し学習値として記憶保持するようにした多気筒エンジンの燃料噴射制御装置において、
前記気筒間補正量の算出の要否を判定する要否判定手段と、
前記要否判定手段により気筒間補正量の算出を要すると判定された際、1燃焼サイクルで少なくとも2回燃料噴射を行う多段噴射を実施することとし、その際先の噴射に対して前記ISC補正を実施して同ISC補正を完了するとともに、後続の噴射に対しては、前記ISC補正を実施せず前記気筒間ばらつき補正を実施する多段噴射実施手段と、
該多段噴射実施手段により多段噴射を実施した時の気筒ごとの回転変動情報に基づいて前記気筒間補正量を算出する気筒間補正量算出手段と、
を備えたことを特徴とする多気筒エンジンの燃料噴射制御装置。
The fuel injection amount for each cylinder is calculated by performing the ISC correction for stabilizing the rotational speed in the idling operation state and the inter-cylinder variation correction for correcting the inter-cylinder variation of the engine torque, and the calculated fuel injection In the fuel injection control device for a multi-cylinder engine that controls the drive of the fuel injection valve based on the amount, and sequentially calculates the inter-cylinder correction amount for correcting the variation among the cylinders and stores it as a learning value,
Necessity determination means for determining necessity of calculation of the correction amount between cylinders;
When it is determined by the necessity determination means that it is necessary to calculate the correction amount between cylinders, multi-stage injection in which fuel injection is performed at least twice in one combustion cycle is performed, and the ISC correction is performed with respect to the previous injection at that time. To complete the ISC correction, and for the subsequent injection, the multistage injection execution means for performing the inter-cylinder variation correction without performing the ISC correction ,
An inter-cylinder correction amount calculating means for calculating the inter-cylinder correction amount based on rotation fluctuation information for each cylinder when the multi-stage injection is performed by the multi-stage injection means;
A fuel injection control device for a multi-cylinder engine.
噴射圧に相当する高圧の燃料を蓄えるコモンレールを備え、該コモンレール内の燃料圧力を都度の目標圧力に調整するとともに、前記コモンレール内の高圧燃料を前記燃料噴射弁によって気筒に噴射する燃料噴射制御装置であって、
前記コモンレール内の燃料圧力の水準を複数設定しておき、その圧力水準ごとに前記気筒間補正量を算出することを特徴とする請求項2乃至4のいずれかに記載の多気筒エンジンの燃料噴射制御装置。
A fuel injection control device that includes a common rail that stores high-pressure fuel corresponding to the injection pressure, adjusts the fuel pressure in the common rail to a target pressure each time, and injects the high-pressure fuel in the common rail into the cylinder by the fuel injection valve Because
The fuel injection for a multi-cylinder engine according to any one of claims 2 to 4, wherein a plurality of fuel pressure levels in the common rail are set and the inter-cylinder correction amount is calculated for each pressure level. Control device.
前記燃料噴射弁による噴射量が比較的少ない場合と、比較的多い場合とについて前記気筒間補正量をそれぞれ算出することを特徴とする請求項2乃至5のいずれかに記載の多気筒エンジンの燃料噴射制御装置。   6. The fuel for a multi-cylinder engine according to claim 2, wherein the inter-cylinder correction amount is calculated for each of a case where the injection amount by the fuel injection valve is relatively small and a case where the injection amount is relatively large. Injection control device. 前記多段噴射実施手段は、前記多段噴射として少なくともメイン噴射とその後の後噴射とを実施することとし、前記メイン噴射に対して前記ISC補正を実施するとともに、前記後噴射に対して前記気筒間ばらつき補正を実施することを特徴とする請求項1乃至6のいずれかに記載の多気筒エンジンの燃料噴射制御装置。   The multi-stage injection execution means performs at least main injection and subsequent post-injection as the multi-stage injection, performs the ISC correction on the main injection, and varies between the cylinders with respect to the post-injection. The fuel injection control device for a multi-cylinder engine according to any one of claims 1 to 6, wherein correction is performed.
JP2005367605A 2005-12-21 2005-12-21 Fuel injection control device for multi-cylinder engine Expired - Fee Related JP4529892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367605A JP4529892B2 (en) 2005-12-21 2005-12-21 Fuel injection control device for multi-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367605A JP4529892B2 (en) 2005-12-21 2005-12-21 Fuel injection control device for multi-cylinder engine

Publications (2)

Publication Number Publication Date
JP2007170246A JP2007170246A (en) 2007-07-05
JP4529892B2 true JP4529892B2 (en) 2010-08-25

Family

ID=38297123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367605A Expired - Fee Related JP4529892B2 (en) 2005-12-21 2005-12-21 Fuel injection control device for multi-cylinder engine

Country Status (1)

Country Link
JP (1) JP4529892B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245517B2 (en) * 2008-04-28 2013-07-24 いすゞ自動車株式会社 Engine fuel injection control device
JP4968319B2 (en) * 2009-12-24 2012-07-04 トヨタ自動車株式会社 Abnormality judgment device for fuel injection valve
JP6191451B2 (en) * 2013-12-27 2017-09-06 スズキ株式会社 Control device
JP6115513B2 (en) * 2014-04-23 2017-04-19 株式会社デンソー Deposit detection device and fuel injection control device
US10280863B2 (en) * 2017-02-02 2019-05-07 Ford Global Technologies, Llc Fuel injector diagnostics in a variable displacement engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242740A (en) * 2001-02-15 2002-08-28 Denso Corp Fuel injector
JP2003314330A (en) * 2002-04-26 2003-11-06 Denso Corp Injection quantity control device for internal combustion engine
JP2003343328A (en) * 2002-05-30 2003-12-03 Denso Corp Fuel injection controller for internal combustion engine
JP2004011511A (en) * 2002-06-06 2004-01-15 Denso Corp Injection rate control device for internal combustion engine
JP2004251272A (en) * 2003-01-30 2004-09-09 Denso Corp Fuel injection device
JP2004308464A (en) * 2003-04-03 2004-11-04 Denso Corp Fault diagnosis device of fuel injection device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002242740A (en) * 2001-02-15 2002-08-28 Denso Corp Fuel injector
JP2003314330A (en) * 2002-04-26 2003-11-06 Denso Corp Injection quantity control device for internal combustion engine
JP2003343328A (en) * 2002-05-30 2003-12-03 Denso Corp Fuel injection controller for internal combustion engine
JP2004011511A (en) * 2002-06-06 2004-01-15 Denso Corp Injection rate control device for internal combustion engine
JP2004251272A (en) * 2003-01-30 2004-09-09 Denso Corp Fuel injection device
JP2004308464A (en) * 2003-04-03 2004-11-04 Denso Corp Fault diagnosis device of fuel injection device for internal combustion engine

Also Published As

Publication number Publication date
JP2007170246A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US7933712B2 (en) Defective injection detection device and fuel injection system having the same
EP2039919B1 (en) Fuel injection system learning average of injection quantities for correcting injection characteristic of fuel injector
EP1990528B1 (en) Injection characteristic detection apparatus, control system, and method for the same
US7664592B2 (en) Fuel injection control apparatus
JP4509171B2 (en) Injection amount control device for internal combustion engine
US7925419B2 (en) Fuel injection control system
EP2028355B1 (en) Fuel injection control device and fuel injection system using the same
JP2009097385A (en) Fuel injection state detection device
JP2005171931A (en) Fuel injection control device
US20070181095A1 (en) Fuel injection controller
JP2001289099A (en) Fuel pressure control device for internal combustion engine
JP4269975B2 (en) Injection amount learning control device
JP4529892B2 (en) Fuel injection control device for multi-cylinder engine
JP4605182B2 (en) Pump control device and fuel injection system using the same
JP4501776B2 (en) Control device for fuel supply system
CN100357580C (en) Fuel injection system of internal combustion engine
JP4882883B2 (en) Fuel injection control device and fuel injection system using the same
JP4784571B2 (en) Fuel injection control device
JP5821666B2 (en) Fuel pump control device
JP5644805B2 (en) Fuel injection control device
JP5648646B2 (en) Fuel injection control device
JP2015203316A (en) fuel supply control device
JP6213351B2 (en) Injection amount learning device for internal combustion engine
CN115750124A (en) High-pressure common rail fuel pressure control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees