[go: up one dir, main page]

JP4526679B2 - Hydraulic damper for vibration control - Google Patents

Hydraulic damper for vibration control Download PDF

Info

Publication number
JP4526679B2
JP4526679B2 JP2000323769A JP2000323769A JP4526679B2 JP 4526679 B2 JP4526679 B2 JP 4526679B2 JP 2000323769 A JP2000323769 A JP 2000323769A JP 2000323769 A JP2000323769 A JP 2000323769A JP 4526679 B2 JP4526679 B2 JP 4526679B2
Authority
JP
Japan
Prior art keywords
circuit
control
signal
valve
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000323769A
Other languages
Japanese (ja)
Other versions
JP2002130368A (en
Inventor
祐治 小竹
志偉 銭
光雄 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senqcia Corp
Toyooki Kogyo Co Ltd
Original Assignee
Senqcia Corp
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senqcia Corp, Toyooki Kogyo Co Ltd filed Critical Senqcia Corp
Priority to JP2000323769A priority Critical patent/JP4526679B2/en
Publication of JP2002130368A publication Critical patent/JP2002130368A/en
Application granted granted Critical
Publication of JP4526679B2 publication Critical patent/JP4526679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば地震等の外力による建築物等の揺れを低減させるために用いられる制震用油圧ダンパに関し、特にその制御部品の故障による制震効果の低下を最小限度に抑えることができるようにした制震用油圧ダンパに関するものである。
【0002】
【従来の技術】
従来において、建築物等の揺れを低減させるために用いられる制震用油圧ダンパとしては、例えば、図3に示すような制震用油圧ダンパがある(特許第2959554号公報)。
【0003】
図3に示す従来の制震用油圧ダンパ1は、油圧シリンダ2内で往復動するピストン3の両側の、油圧シリンダ2内に設けられた一対の油圧室4A,4Bと、これらの両油圧室4A,4B間をつなぐ流路5を開閉する開閉制御弁6と、両油圧室4A,4Bの各々に取り付けた圧力計8,9(センサ)と、油圧シリンダ2とピストン3との間の相対変位を測定する変位計10(センサ)と、圧力計8,9によって検出された圧力p1,p2(機能状態)、及び変位計10によって検出された相対変位△d(機能状態)に基づいて、予め設定された制御手順によって開閉制御弁6の開閉動作を制御する制御回路7とを備え、外部からの制御指令を必要としない閉じた制御系を構成している。
【0004】
つまり、このような従来の制震用油圧ダンパは、上記のような構成とすることにより、その閉じた制御系の外部に、他のセンサや制御コンピュータ及び外部配線等を設ける必要がなくなって、コスト面や施工面で有利となるという利点を有している。
【0005】
また他の従来の制震用油圧ダンパとしては、図4に示すような制震用油圧ダンパ11がある。同図に示す制震用油圧ダンパ11と上記従来の制震用油圧ダンパ1の異なる点は、上記開閉制御弁6の代りに、開閉制御弁V1、リリーフ弁V2、及び断電時作動絞り弁V3が流路5に並列に設けられていることである。
【0006】
そして上記制震用油圧ダンパ11の開閉制御弁V1は、制御回路17からのON信号を入力して開くことにより、油圧室4Aから油圧室4Bに向かって油が流れるようにする第1の開閉制御弁と、制御回路17からのON信号を入力して開くことにより、油圧室4Bから油圧室4Aに向かって油が流れるようにする第2の開閉制御弁との、2つの開閉制御弁を有する構造となっている。
【0007】
すなわち、圧力計8,9により検出された油圧室4A,4Bの圧力p1,p2と、変位計10により検出された油圧シリンダ2とピストン3との間の相対変位△dに基づいて、予め設定された制御手順によって制御回路17が、開閉制御弁V1の2つの開閉制御弁の開閉動作を交互に制御するようになっている。
【0008】
断電時作動絞り弁V3は、常時、制御回路17からの通電制御時(入力信号がONの時)はそのソレノイドが流路5を閉じるように作動しているが、停電や故障により制御回路17からの通電が断電したとき(入力信号がOFFの時)はそのソレノイドが流路5を開いて、その絞り弁を通って油が流れるようになっている。
【0009】
これは、万一制御回路17から開閉制御弁V1への通電が断電したとき(入力信号がOFFの時)は、その第1,第2の2つの開閉制御弁が閉じたままとなって地震時等に制御不能となってしまうので、その開閉制御弁V1に代って断電時作動絞り弁V3が流路5を開いて、油圧室4A,4Bの一方から他方に流れる油を所定開度の絞り弁を通って流すことにより、制震用油圧ダンパ11がダンパ作用を行うようになっている。
【0010】
リリーフ弁V2は、制御回路17に制御されるものではなく、流路5や油圧室4A又は4Bが限界に近い高圧力となったときに、その高圧力により制震用油圧ダンパ11の油圧室4A,4Bや流路5が破壊するのを防止するために開いて、高圧力の流路5や油圧室4A,4Bの油を一部他方に逃がすように動作するものである。
【0011】
図5は、図4の制震用油圧ダンパ11の制御回路17を詳しく示すブロック回路図である。
同図において、油圧室4A,4Bの圧力p1,p2を検出した圧力計8,9からの信号S(p1),S(p2)、及び油圧シリンダ2とピストン3との間の相対変位△dを検出した変位計10からの信号S(△d)は、まず制御回路17のA/D変換回路12に入力し、そこでアナログ信号からデジタル信号に変換された後CPU回路14に入力される。
【0012】
CPU回路14は、圧力計8,9及び変位計10からの信号に基づいて、予め設定された制御手順によって演算を行ない、たとえば、開閉制御弁V1の第1の開閉制御弁を開にするON状態の制御信号S1を、その第1の開閉制御弁のソレノイドSOL1に向けて出力したり、或は開閉制御弁V1の第2の開閉制御弁を開にするON状態の制御信号S2を、その第2の開閉制御弁のソレノイドSOL2に向けて出力する。またCPU回路14は、断電時作動絞り弁V3を閉にするON状態の制御信号S3を、その断電時作動絞り弁V3のソレノイドSOL3に向けて出力する。
【0013】
上記制御信号S1,S2は、後述するタイマー回路19を介してソレノイド駆動素子SSR1,SSR2(弁駆動素子)に入力され、上記制御信号S3はタイマー回路19を介することなくソレノイド駆動素子SSR3(弁駆動素子)に直接入力される。
【0014】
ソレノイド駆動素子SSR1,SSR2,SSR3には電源が、ソレノイド駆動電源回路SBL(弁駆動電源回路)を通って印加されている。このため、ソレノイド駆動素子SSR1,SSR2,SSR3は、CPU回路14からの制御信号S1,S2,S3の有無により駆動電流D1,D2,D3をソレノイドSOL1,SOL2,SOL3に向けて流したり遮断したりする。
【0015】
上記駆動電流D2がOFFで駆動電流D1がON状態のときは、上記第1の開閉制御弁を開にするようそのソレノイドSOL1を駆動し、駆動電流D1がOFFで駆動電流D2がON状態のときは、上記第2の開閉制御弁を開にするようそのソレノイドSOL2を駆動電流D2が駆動し、駆動電流D3がON状態のときは断電時作動絞り弁V3を閉にするようそのソレノイドSOL3を駆動電流D3が駆動するようになっている。
【0016】
制御回路17には電源が入力されており、この電源は、前述のようにソレノイド駆動電源回路SBLを通ってソレノイド駆動素子SSR1,SSR2,SSR3に入力される他に、直流・交流変換器IN4により交流100Vから、例えば直流24Vに変換されてからCPU回路14に入力されるようになっている。
【0017】
タイマー回路19は、油圧室4A,4Bの圧力p1,p2を検出した圧力計8,9からの、信号S(p1),S(p2)の入力に基づくCPU回路14からの制御信号S1,S2が入力してから、所定時間以内に各々の信号がON状態からOFF状態に反転するのを監視する。
【0018】
そして、所定時間以内にその反転がないことを検出したら、その検出信号をCPU回路14に入力させて、圧力計8,9、A/D変換回路12やCPU回路14の異常か、圧力計8,9とA/D変換回路12の接続部、或はA/D変換回路12とCPU回路14の接続部等に断線などの異常があることを知らせる。
【0019】
CPU回路14はこのようなタイマー回路19からの異常検出信号を入力すると、リレースイッチCRに信号を出力してソレノイド駆動電源回路SBLの通電を遮断する。このことにより駆動電流D1,D2,D3はOFF状態となり、開閉制御弁V1の2つの開閉制御弁は共に閉のままとなって油圧室4A,4B間の油の流れを阻止することになる。
【0020】
ところが、断電時作動絞り弁V3は駆動電流D3がOFF状態となることにより、それまでの閉状態から開状態に切り換って、所定の固定開度の絞り弁を通って油圧室4A,4B間で油を流れるようにする。このため、前記のような異常により制震用油圧ダンパ11が地震時等に全く作動できなくなることを防止することができる。
【0021】
前記のような異常の他に、CPU回路14がテストルーチンプログラム等の実行により自からの異常を自から判断したときも、CPU回路14はリレースイッチCRに信号を出力し、その信号を入力したリレースイッチCRによりソレノイド駆動電源回路SBLの通電は遮断される。
【0022】
そして、停電によっても制御回路17のソレノイド駆動電源回路SBLの通電は遮断されて、開閉制御弁V1は作動できなくなるが断電時作動絞り弁V3が開くので、停電時でも制震用油圧ダンパ11が地震時等において全く作動できなくなることを防止することができる。
【0023】
【発明が解決しようとする課題】
しかしながら、前記のような従来の制震用油圧ダンパ11にあっては、前記のような異常が発生した場合にはそれまで閉じていた断電時作動絞り弁V3を開くように作動させることにより、制震用油圧ダンパ11が地震時等に全く作動できなくなることを防止することはできるが、ソレノイド駆動素子SSR1,SSR2,SSR3に異常が発生した場合に対しては、その場合に発生する問題を解決することができないという問題があった。
【0024】
たとえば、ソレノイド駆動素子SSR1,SSR2間がショートした場合には、CPU回路14からの制御信号S1,S2の各々が所定時間以内にON状態からOFF状態に反転したとしても、ソレノイド駆動素子SSR1,SSR2は共にONのままとなって、前記2つの開閉制御弁のソレノイドSOL1,SOL2を共に開いたままにして油圧室4A,4B間が常時連通してしまうため、地震時等に制震用油圧ダンパ11が全くダンパ作用を行うことができなくなる。
【0025】
また、ソレノイド駆動素子SSR3の故障により、CPU回路14からの制御信号S3がON状態であるにもかかわらず、ソレノイド駆動素子SSR3からの駆動電流D3がOFF状態となってしまった場合には、ソレノイドSOL3がOFF状態となって断電時作動絞り弁V3が開状態となってしまい、地震時に開閉制御弁V1のみにより行うはずのその正常な動作を邪魔して、制震用油圧ダンパ11が正常にダンパ作用を行うことができなくなる。
【0026】
そこで本発明は、上記問題点に鑑みて、弁駆動素子が故障したときでも必ずダンパ作用を行うことができて、その故障による制震効果の低下を最小限度に抑えることができる制震用油圧ダンパを提供することを課題とするものである。
【0027】
【課題を解決するための手段】
上記課題を解決するために、本発明の制震用油圧ダンパは、
油圧シリンダ内のピストンの両側の一対の油圧室の各々の圧力を検出する圧力計と、油圧シリンダとピストンとの間の相対変位を検出する変位計とを有し、制震用油圧ダンパの機能状態を検出するセンサと、
油圧シリンダ内のピストンの両側の一対の油圧室間の油路を入力信号がON及びOFFの一方のときに開き入力信号がON及びOFFの他方のときに閉じる開閉制御弁と、
前記油圧室間の油路を入力信号がONのときに閉じ入力信号がOFFのときに開く断電時作動絞り弁と、
前記センサから入力した検出信号に基づいて前記開閉制御弁及び前記断電時作動絞り弁の動作を制御する制御手段とを備え、
前記制御手段が、
前記センサから入力した検出信号に基づいて前記開閉制御弁及び前記断電時作動絞り弁を制御するための制御信号を出力すると共に、自らの異常を検出した場合に異常信号を出力するCPU回路と、
前記開閉制御弁及び前記断電時作動絞り弁と前記CPU回路との間に配置されCPU回路から入力した制御信号に基づいて開閉制御弁及び断電時作動絞り弁に駆動電流を出力する弁駆動素子と、
前記弁駆動素子を動作させる電源を入力させる弁駆動電源回路と、
前記制御信号及びこれに対応する前記駆動電流が入力され、両者のON/OFF状態を比較する不一致検出回路と、前記不一致検出回路から出力された信号が前記制御信号と前記駆動電流のON/OFF状態が一致しないことを示す場合に前記CPU回路を介さずに前記弁駆動電源回路の通電を遮断する遮断信号を出力すると共に、前記CPU回路から異常信号を入力した場合に前記弁駆動電源回路の通電を遮断する遮断信号を出力するOR回路と、前記OR回路が遮断信号を一定時間以上出力し続けた場合にのみ当該遮断信号を通過させるタイマー回路とを備える故障救済手段とを有する構成としたものである。
【0028】
このような構成の制震用油圧ダンパによれば、故障救済手段が、制御手段からの制御信号のON/OFF状態と、この制御信号に対応する弁駆動素子からの駆動電流のON/OFF状態を比較して、両者のON/OFF状態が一致しない場合には弁駆動電源回路の通電を遮断するような構成としたため、上記両者のON/OFF状態が一致しない場合には開閉制御弁の動作を積極的に停止させると共に、断電時作動絞り弁を積極的に動作させるようにして、断電時作動絞り弁を介して油圧室間の油を移動させることができるので、必ずダンパ作用を行うことができて、弁駆動素子の故障による制震用油圧ダンパの制震効果の低下を最小限度に抑えることができる。
【0029】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づいて具体的に説明する。
図1,図2は、本発明による制震用油圧ダンパの一実施の形態について説明するために参照する図である。前記従来の制震用油圧ダンパ11と同様の部品には同一の符号を付して、その詳しい説明は省略する。
【0030】
図1に示すように、本発明の一実施の形態に係る制震用油圧ダンパ31は、前記従来の制震用油圧ダンパ11とほとんど同様の構成であるが、本実施の形態に係る制震用油圧ダンパ31はその制御回路27(制御手段)が、前記従来の制震用油圧ダンパ11の制御回路17と異なる構成を有している。
【0031】
すなわち図2に示すように、本実施の形態に係る制震用油圧ダンパ31の制御回路27は、基本的には従来の制震用油圧ダンパ11の制御回路17と共通しているが、次のような点において異なっている。
【0032】
すなわち、制震用油圧ダンパ31の制御回路27にはOR回路23が設けられ、このOR回路23の入力側には、3つの不一致検出回路24,25,26と、タイマー回路19及びCPU回路14が接続されている。不一致検出回路24,25,26の各々は、CPU回路14からの制御信号S1,S2,S3の各々のON/OFF状態と、それらの信号に対応するソレノイド駆動素子SSR1,SSR2,SSR3の各々からの駆動電流D1,D2,D3のON/OFF状態が、不一致か否かを検出するためのものである。
【0033】
このため、不一致検出回路24の入力側は直流・交流変換器IN1を介してソレノイド駆動素子SSR1の出力側と接続されると共に、CPU回路14の制御信号S1の出力側と接続されている。また、不一致検出回路25の入力側は直流・交流変換器IN2を介してソレノイド駆動素子SSR2の出力側と接続されると共に、CPU回路14の制御信号S2の出力側と接続されている。また、不一致検出回路26の入力側は直流・交流変換器IN3を介してソレノイド駆動素子SSR3の出力側と接続されると共に、CPU回路14の制御信号S3の出力側と接続されている。
【0034】
OR回路23の出力側にはタイマー回路29が接続され、タイマー回路29の出力側にはリレースイッチCRが接続されている他に、CPU回路14にも接続されている。上記直流・交流変換器IN1,IN2,IN3、不一致検出回路24,25,26、OR回路23、タイマー回路29、及びリレースイッチCRは、全体として請求項1の故障救済手段を構成している。
【0035】
このような構成の制御回路27の動作について、以下に説明する。
図2において、油圧室4A,4Bの圧力p1,p2(機能状態)を検出した圧力計8,9(センサ)からの信号S(p1),S(p2)、及び、油圧シリンダ2とピストン3との間の相対変位△d(機能状態)を検出した変位計10(センサ)からの信号S(△d)は、まず制御回路27のA/D変換回路12に入力し、そこでアナログ信号からデジタル信号に変換された後CPU回路14に入力される。
【0036】
CPU回路14は、圧力計8,9及び変位計10からの信号に基づいて、予め設定された制御手順によって演算を行ない、開閉制御弁V1の第1の開閉制御弁を開にするON状態の制御信号S1を、その第1の開閉制御弁のソレノイドSOL1に向けて出力したり、開閉制御弁V1の第2の開閉制御弁を開にするON状態の制御信号S2を、その第2の開閉制御弁のソレノイドSOL2に向けて出力したりする。
【0037】
またCPU回路14は、何らかの異常とか停電がないときは、断電時作動絞り弁V3を閉にするON状態の制御信号S3を、その断電時作動絞り弁V3のソレノイドSOL3に向けて出力する。
【0038】
上記制御信号S1,S2は、後述するタイマー回路19を介してソレノイド駆動素子SSR1,SSR2(弁駆動素子)に入力され、上記制御信号S3はタイマー回路19を介することなくソレノイド駆動素子SSR3(弁駆動素子)に直接入力される。
【0039】
ソレノイド駆動素子SSR1,SSR2,SSR3には電源が、ソレノイド駆動電源回路SBL(弁駆動電源回路)を通って印加されている。このため、ソレノイド駆動素子SSR1,SSR2,SSR3は、CPU回路14からの制御信号S1,S2,S3の有無により駆動電流D1,D2,D3をソレノイドSOL1,SOL2,SOL3に向けて流したり遮断したりする。
【0040】
CPU回路14からの制御信号S1,S2はタイマー回路19に入力する他に、各々不一致検出回路24,25にも入力する。また、CPU回路14からの制御信号S3はスイッチング駆動素子SSR3に入力する他に、不一致検出回路26にも入力する。
【0041】
また、ソレノイド駆動素子SSR1からの駆動電流D1は上記ソレノイドSOL1に入力する他に、直流・交流変換器IN1を介して不一致検出回路24に入力する。また、ソレノイド駆動素子SSR2からの駆動電流D2は上記ソレノイドSOL2に入力する他に、直流・交流変換器IN2を介して不一致検出回路25に入力する。また、ソレノイド駆動素子SSR3からの駆動電流D3は断電時作動絞り弁V3のソレノイドSOL3に入力する他に、直流・交流変換器IN3を介して不一致検出回路26に入力する。
【0042】
不一致検出回路24,25,26からの出力信号はOR回路23に入力し、タイマー回路19及びCPU回路14からの出力信号もOR回路23に入力する。
【0043】
OR回路23は、それに入力する信号が次のような条件をすべて充足する場合には、リレースイッチCRにソレノイド駆動電源回路SBLの通電を遮断するような指令を出力することはない。
(a) 不一致検出回路24からの入力信号が、制御信号S1と駆動電流D1のON/OFF状態が一致することを示す信号のとき。
(b) 不一致検出回路25からの入力信号が、制御信号S2と駆動電流D2のON/OFF状態が一致することを示す信号のとき。
(c) 不一致検出回路26からの入力信号が、制御信号S3と駆動電流D3のON/OFF状態が一致することを示す信号のとき。
(d) タイマー回路19からの入力信号が、圧力計8,9、変位計10、A/D変換回路12、CPU回路14の動作、及びそれらの接続状態が正常であることを示す信号のとき。
(e) CPU回路14からの入力信号が、CPU回路14自からの動作が正常であることを示す信号のとき。
【0044】
ところがOR回路23は、それに入力する信号が次のような条件のうち少なくとも1つでも該当する場合には、リレースイッチCRにソレノイド駆動電源回路SBLの通電を遮断するような指令を出力する。
(イ) 不一致検出回路24からの入力信号が、制御信号S1と駆動電流D1のON/OFF状態が不一致であることを示す信号のとき。
(ロ) 不一致検出回路25からの入力信号が、制御信号S2と駆動電流D2のON/OFF状態が不一致であることを示す信号のとき。
(ハ) 不一致検出回路26からの入力信号が、制御信号S3と駆動電流D3のON/OFF状態が不一致であることを示す信号のとき。
(ニ) タイマー回路19からの入力信号が、圧力計8,9、変位計10、A/D変換回路12、CPU回路14の動作、及びそれらの接続状態のいずれかが異常であることを示す信号のとき。
(ホ) CPU回路14からの入力信号が、CPU回路14自からの動作が異常であることを示す信号のとき。
【0045】
上記(イ)〜(ホ)の条件の少なくとも1つが直ちに該当したときでも、タイマー回路29は、一定時間以上、上記条件の少なくとも1つが該当した状態が維持されたかを監視し、一定時間以内に上記条件の少なくとも1つに該当していた状態が1つも該当しない状態に変化したときは、リレースイッチCRにソレノイド駆動電源回路SBLの通電を遮断させる指令信号を入力させることはない。
【0046】
しかし、一定時間以上を経過しても上記(イ)〜(ホ)の条件の少なくとも1つが該当した状態が維持された場合は、リレースイッチCRにソレノイド駆動電源回路SBLの通電を遮断させる指令信号を入力させてその遮断を実行させる。
【0047】
これは、特に不一致検出回路24,25,26において、制御信号S1,S2,S3が入力する速度に比べて、駆動電流D1,D2,D3が直流・交流変換器IN1,IN2,IN3により電圧変換処理されてから入力する速度の方が遅れるので、両方の信号が不一致検出回路に入力してから落ち着くまで待って、OR回路23により正確な判断ができるようにするためである。
【0048】
タイマー回路29からリレースイッチCRにソレノイド駆動電源回路SBLの通電を遮断させる指令信号を入力させたときは、CPU回路14にもソレノイド駆動電源回路SBLの通電を遮断させたことを示す信号を入力させる。
【0049】
このことによりCPU回路14は、ソレノイド駆動電源回路SBLの通電を遮断させることを示す表示を図示していない表示装置に表示させたり、ソレノイド駆動電源回路SBLの通電を遮断させたことを図示していない記憶装置に日時と共に記録させて後のメンテナンスに役立てることができると共に、制御信号S1,S2,S3を出力することを停止する。
【0050】
タイマー回路19は、油圧室4A,4Bの圧力p1,p2を検出した圧力計8,9からの信号の入力に基づくCPU回路14からの制御信号S1,S2が入力してから、所定時間以内に各々の信号がON状態からOFF状態に反転するのを監視する。
【0051】
上記所定時間以内に上記反転がない場合は、圧力計8,9、A/D変換回路12やCPU回路14の異常か、圧力計8,9とA/D変換回路12の接続部、或はA/D変換回路12とCPU回路14の接続部等に断線などの異常があることが考えられる。
【0052】
タイマー回路29からリレースイッチCRに信号を出力してソレノイド駆動電源回路SBLの通電を遮断することにより、駆動電流D1,D2,D3はOFFとなる。すると、開閉制御弁V1の2つの開閉制御弁は共に閉のままとなって油圧室4A,4B間の油の流れを阻止することになるが、断電時作動絞り弁V3はそれまでの閉状態から開状態に切り換って、所定の固定開度の絞り弁を通って油圧室4A,4B間で油を流れるようにする。
【0053】
このため、ソレノイド駆動素子SSR1,SSR2,SSR3の故障や前記のような異常があっても、断電時作動絞り弁V3が開くことにより必ずダンパ作用を行うことができて、制震用油圧ダンパ31が地震時等に全く作動できなくなることを防止することができる。
【0054】
従ってこのような構成の制震用油圧ダンパ31によれば、故障救済手段のOR回路23とタイマー回路29が、CPU回路14からの制御信号S1,S2,S3のON/OFF状態と、この制御信号S1,S2,S3に対応するソレノイド駆動素子SSR1,SSR2,SSR3からの駆動電流D1,D2,D3のON/OFF状態を比較して、両者のON/OFF状態が一致しない場合にはソレノイド駆動電源回路SBLの通電を遮断するような構成としたため、上記両者のON/OFF状態が一致しない場合には開閉制御弁V1の動作を積極的に停止させると共に、断電時作動絞り弁V3を積極的に動作させるようにして、断電時作動絞り弁V3を介して油圧室4A,4B間の油を移動させることができるので、制震用油圧ダンパ31は必ずダンパ作用を行うことができて、ソレノイド駆動素子SSR1,SSR2,SSR3の故障による制震用油圧ダンパ31の制震効果の低下を最小限度に抑えることができる。
【0055】
なお、本発明の上記実施の形態においては、制震用油圧ダンパ31の開閉制御弁V1が2つの開閉制御弁を有するものの場合について説明したが、開閉制御弁V1が1つの開閉制御弁のみを有する制震用油圧ダンパの場合にも本発明は適用することができる。
【0056】
また、上記実施の形態に係る制震用油圧ダンパ31は、ビルや住居等の人が居住する建築物に設けることができるだけでなく、鉄塔や灯台のような人が居住しない構築物にも設けることができる。
【0057】
また、上記実施の形態に係る制震用油圧ダンパ31は、図1においてはアキュムレータの図示が省略されているが、一般的な制震用油圧ダンパと同様に、制震用油圧ダンパ31の油圧室4A,4Bの流路5にもアキュムレータが設けられていることはいうまでもない。
【0058】
また、上記実施の形態に係る制震用油圧ダンパ31は、油圧シリンダ内の一対の油圧室間の油路を、入力信号がONのときに開き入力信号がOFFのときに閉じる開閉制御弁を用いたが、入力信号がOFFのときに開き入力信号がONのときに閉じる開閉制御弁を用いてもよい。
【0059】
以上、本発明の実施の形態について具体的に述べてきたが、本発明は上記の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて、その他にも各種の変更が可能なものである。
【0060】
【発明の効果】
以上説明したように、本発明によれば、故障救済手段が、制御手段からの制御信号のON/OFF状態と、この制御信号に対応する弁駆動素子からの駆動電流のON/OFF状態を比較して、両者のON/OFF状態が一致しない場合には弁駆動電源回路の通電を遮断するような構成としたため、上記両者のON/OFF状態が一致しない場合には開閉制御弁の動作を積極的に停止させると共に、断電時作動絞り弁を積極的に動作させるようにして、断電時作動絞り弁を介して油圧室間の油を移動させることができるので、必ずダンパ作用を行うことができて、弁駆動素子の故障による制震用油圧ダンパの制震効果の低下を最小限度に抑えることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る制震用油圧ダンパ31を示す概略ブロック構成図である。
【図2】図1の制震用油圧ダンパ31の制御回路27の構成を示すブロック回路図である。
【図3】従来の制震用油圧ダンパ1を示す概略ブロック構成図である。
【図4】他の従来の制震用油圧ダンパ11を示す概略ブロック構成図である。
【図5】図4の制震用油圧ダンパ11の制御回路17の構成を示すブロック回路図である。
【符号の説明】
1 制震用油圧ダンパ
2 油圧シリンダ
3 ピストン
4A,4B 油圧室
5 流路
6 開閉制御弁
7 制御回路
8,9 圧力計
10 変位計
11 制震用油圧ダンパ
12 A/D変換回路
14 CPU回路
17 制御回路
19 タイマー回路
23 OR回路
24,25,26 不一致検出回路
27 制御回路
29 タイマー回路
31 制震用油圧ダンパ
CR リレースイッチ
D1,D2,D3 駆動電流
IN1,IN2,IN3,IN4 直流・交流変換器
S1,S2,S3 制御信号
SBL ソレノイド駆動電源回路
SOL1,SOL2,SOL3 ソレノイド
SSR1,SSR2,SSR3 ソレノイド駆動素子
V1 開閉制御弁
V2 リリーフ弁
V3 断電時作動絞り弁
1,p2 圧力
△d 相対変位
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydraulic damper for vibration control that is used, for example, to reduce the shaking of a building or the like due to an external force such as an earthquake, and in particular, it is possible to minimize a decrease in the vibration control effect due to a failure of the control component. This relates to the hydraulic damper for vibration control.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a seismic control hydraulic damper used for reducing shaking of a building or the like, there is a seismic control hydraulic damper as shown in FIG. 3 (Japanese Patent No. 2959554).
[0003]
The conventional damping hydraulic damper 1 shown in FIG. 3 includes a pair of hydraulic chambers 4A and 4B provided in the hydraulic cylinder 2 on both sides of the piston 3 reciprocating in the hydraulic cylinder 2, and both of these hydraulic chambers. The opening / closing control valve 6 that opens and closes the flow path 5 that connects between 4A and 4B, the pressure gauges 8 and 9 (sensors) attached to each of the hydraulic chambers 4A and 4B, and the relative relationship between the hydraulic cylinder 2 and the piston 3 Displacement meter 10 (sensor) for measuring displacement, and pressure p detected by pressure gauges 8 and 9 1 , P 2 (Functional state) and a control circuit 7 for controlling the opening / closing operation of the opening / closing control valve 6 according to a preset control procedure based on the relative displacement Δd (functional state) detected by the displacement meter 10, and an external A closed control system that does not require a control command from is configured.
[0004]
In other words, such a conventional seismic damping hydraulic damper is configured as described above, so that it is not necessary to provide other sensors, a control computer, external wiring, etc. outside the closed control system. It has the advantage of being advantageous in terms of cost and construction.
[0005]
As another conventional damping hydraulic damper, there is a damping hydraulic damper 11 as shown in FIG. The difference between the damping hydraulic damper 11 shown in the figure and the conventional damping hydraulic damper 1 is that, instead of the opening / closing control valve 6, the opening / closing control valve V 1, the relief valve V 2, and the power cut-off operating throttle valve. V3 is provided in parallel with the flow path 5.
[0006]
The opening / closing control valve V1 of the damping hydraulic damper 11 is a first opening / closing valve that allows oil to flow from the hydraulic chamber 4A toward the hydraulic chamber 4B by opening an ON signal from the control circuit 17. Two open / close control valves including a control valve and a second open / close control valve that allows oil to flow from the hydraulic chamber 4B toward the hydraulic chamber 4A by opening an ON signal from the control circuit 17 are opened. It has a structure.
[0007]
That is, the pressure p of the hydraulic chambers 4A and 4B detected by the pressure gauges 8 and 9 1 , P 2 Based on the relative displacement Δd between the hydraulic cylinder 2 and the piston 3 detected by the displacement meter 10, the control circuit 17 controls the two open / close control valves V1 of the open / close control valve V1 by a preset control procedure. Opening and closing operations are controlled alternately.
[0008]
The operation throttle valve V3 is always operated when the energization control from the control circuit 17 (when the input signal is ON) is operated so that the solenoid closes the flow path 5, but the control circuit is caused by a power failure or failure. When the energization from 17 is cut off (when the input signal is OFF), the solenoid opens the flow path 5 so that oil flows through the throttle valve.
[0009]
This is because when the energization from the control circuit 17 to the open / close control valve V1 is cut off (when the input signal is OFF), the first and second open / close control valves remain closed. Since it becomes impossible to control in the event of an earthquake or the like, instead of the opening / closing control valve V1, the operation throttle valve V3 at the time of power disconnection opens the flow path 5, and the oil flowing from one of the hydraulic chambers 4A, 4B to the other is predetermined. By flowing through the throttle valve of the opening degree, the damping hydraulic damper 11 performs a damper action.
[0010]
The relief valve V2 is not controlled by the control circuit 17, and when the flow path 5 or the hydraulic chamber 4A or 4B reaches a high pressure close to the limit, the hydraulic chamber of the damping hydraulic damper 11 is controlled by the high pressure. It opens to prevent the 4A, 4B and the flow path 5 from being broken, and operates so as to allow some of the oil in the high pressure flow path 5 and the hydraulic chambers 4A, 4B to escape to the other.
[0011]
FIG. 5 is a block circuit diagram showing in detail the control circuit 17 of the damping hydraulic damper 11 of FIG.
In the figure, the pressure p of the hydraulic chambers 4A, 4B 1 , P 2 S (p) from pressure gauges 8 and 9 1 ), S (p 2 ), And the signal S (Δd) from the displacement meter 10 that has detected the relative displacement Δd between the hydraulic cylinder 2 and the piston 3 is first input to the A / D conversion circuit 12 of the control circuit 17 where it is analog. The signal is converted into a digital signal and then input to the CPU circuit 14.
[0012]
The CPU circuit 14 performs an operation according to a preset control procedure based on the signals from the pressure gauges 8 and 9 and the displacement gauge 10, for example, ON to open the first opening / closing control valve of the opening / closing control valve V1. The control signal S1 in the state is output to the solenoid SOL1 of the first open / close control valve, or the control signal S2 in the ON state for opening the second open / close control valve of the open / close control valve V1 is Output toward the solenoid SOL2 of the second opening / closing control valve. Further, the CPU circuit 14 outputs an ON-state control signal S3 for closing the power-off operating throttle valve V3 toward the solenoid SOL3 of the power-off operating throttle valve V3.
[0013]
The control signals S1 and S2 are input to solenoid drive elements SSR1 and SSR2 (valve drive elements) via a timer circuit 19 to be described later, and the control signal S3 is input to a solenoid drive element SSR3 (valve drive) without passing through the timer circuit 19. Device).
[0014]
Power is applied to the solenoid drive elements SSR1, SSR2, and SSR3 through a solenoid drive power supply circuit SBL (valve drive power supply circuit). For this reason, the solenoid drive elements SSR1, SSR2, and SSR3 cause the drive currents D1, D2, and D3 to flow toward or off from the solenoids SOL1, SOL2, and SOL3 depending on the presence or absence of the control signals S1, S2, and S3 from the CPU circuit 14. To do.
[0015]
When the drive current D2 is OFF and the drive current D1 is ON, the solenoid SOL1 is driven to open the first opening / closing control valve. When the drive current D1 is OFF and the drive current D2 is ON The drive current D2 drives the solenoid SOL2 so as to open the second opening / closing control valve, and the solenoid SOL3 is closed so that the operation throttle valve V3 is closed when the drive current D3 is ON. The drive current D3 is driven.
[0016]
The control circuit 17 is supplied with power, and this power is input to the solenoid drive elements SSR1, SSR2 and SSR3 through the solenoid drive power supply circuit SBL as described above, and also by the DC / AC converter IN4. The alternating current 100V is converted to a direct current 24V, for example, and then input to the CPU circuit 14.
[0017]
The timer circuit 19 is configured to adjust the pressure p of the hydraulic chambers 4A and 4B. 1 , P 2 From the pressure gauges 8 and 9 that detected 1 ), S (p 2 ) Based on the input of the control signals S1 and S2 from the CPU circuit 14 are monitored to observe that each signal is inverted from the ON state to the OFF state within a predetermined time.
[0018]
When it is detected that there is no inversion within a predetermined time, the detection signal is input to the CPU circuit 14 to check whether the pressure gauges 8 and 9, the A / D conversion circuit 12 or the CPU circuit 14 are abnormal, or the pressure gauge 8. , 9 and the A / D conversion circuit 12 connection or the connection between the A / D conversion circuit 12 and the CPU circuit 14 or the like is notified of an abnormality such as disconnection.
[0019]
When the CPU circuit 14 receives such an abnormality detection signal from the timer circuit 19, it outputs a signal to the relay switch CR to cut off the energization of the solenoid drive power supply circuit SBL. As a result, the drive currents D1, D2, and D3 are turned off, and the two open / close control valves V1 are kept closed to block the flow of oil between the hydraulic chambers 4A and 4B.
[0020]
However, when the drive current D3 is in the OFF state, the operation throttle valve V3 at the time of power interruption switches from the closed state until then to the open state, and passes through the throttle valve with a predetermined fixed opening degree to the hydraulic chamber 4A, Allow oil to flow between 4B. For this reason, it can prevent that the hydraulic damper 11 for damping | damping control becomes impossible at all at the time of an earthquake etc. by the abnormality as mentioned above.
[0021]
In addition to the abnormalities as described above, when the CPU circuit 14 determines that it is abnormal by executing a test routine program or the like, the CPU circuit 14 outputs a signal to the relay switch CR and inputs the signal. The energization of the solenoid drive power supply circuit SBL is cut off by the relay switch CR.
[0022]
Even when a power failure occurs, the solenoid drive power circuit SBL of the control circuit 17 is de-energized, and the open / close control valve V1 becomes inoperable. Can be prevented from operating at all during an earthquake or the like.
[0023]
[Problems to be solved by the invention]
However, in the conventional vibration damper 11 for vibration control as described above, when the abnormality as described above occurs, it is operated so as to open the operation throttle valve V3 that has been closed until then. Although it is possible to prevent the seismic control hydraulic damper 11 from becoming inoperable at the time of an earthquake or the like, in the case where an abnormality occurs in the solenoid drive elements SSR1, SSR2, and SSR3, problems that occur in that case There was a problem that could not be solved.
[0024]
For example, when the solenoid drive elements SSR1, SSR2 are short-circuited, even if each of the control signals S1, S2 from the CPU circuit 14 is inverted from the ON state to the OFF state within a predetermined time, the solenoid drive elements SSR1, SSR2 Both remain ON and the solenoid chambers SOL1 and SOL2 of the two open / close control valves remain open, and the hydraulic chambers 4A and 4B are always in communication with each other. 11 cannot perform a damper action at all.
[0025]
Further, when the drive current D3 from the solenoid drive element SSR3 is turned off even though the control signal S3 from the CPU circuit 14 is turned on due to a failure of the solenoid drive element SSR3, the solenoid When SOL3 is turned off and the operation throttle valve V3 is in an open state, the normal operation that should be performed only by the opening / closing control valve V1 at the time of an earthquake is disturbed, and the hydraulic damper 11 for vibration control is normal. This makes it impossible to perform a damper action.
[0026]
Therefore, in view of the above-described problems, the present invention provides a damping hydraulic pressure that can always perform a damper action even when a valve drive element breaks down, and can minimize a reduction in damping effect due to the failure. It is an object to provide a damper.
[0027]
[Means for Solving the Problems]
In order to solve the above problems, the hydraulic damper for vibration control of the present invention is
A pressure gauge that detects the pressure of each of the pair of hydraulic chambers on both sides of the piston in the hydraulic cylinder, and a displacement gauge that detects the relative displacement between the hydraulic cylinder and the piston, A sensor for detecting the functional state of the hydraulic damper for vibration control,
The oil path between a pair of hydraulic chambers on both sides of the piston in the hydraulic cylinder , Open when the input signal is either ON or OFF , An open / close control valve that closes when the input signal is the other of ON and OFF;
The oil path between the hydraulic chambers , Closed when input signal is ON , A throttle valve that is activated when the input signal is OFF,
Control means for controlling the operation of the open / close control valve and the power-off operating throttle valve based on a detection signal input from the sensor;
The control means is
Based on a detection signal input from the sensor, a control signal for controlling the open / close control valve and the power-off operating throttle valve is output. In addition, when an abnormality is detected, an abnormality signal is output. A CPU circuit;
Arranged between the CPU circuit and the open / close control valve and the power-off throttle valve , A valve drive element that outputs a drive current to the on-off control valve and the power-off operating throttle valve based on a control signal input from the CPU circuit;
A valve drive power supply circuit for inputting a power supply for operating the valve drive element;
The control signal and the drive current corresponding to the control signal are input, and a mismatch detection circuit that compares the ON / OFF states of the control signal and the signal output from the mismatch detection circuit are ON / OFF of the control signal and the drive current. To indicate that the states do not match Without going through the CPU circuit Outputs a cut-off signal to cut off the energization of the valve drive power supply circuit In addition, when an abnormal signal is input from the CPU circuit, a shut-off signal for shutting off the energization of the valve drive power supply circuit is output. The circuit includes an OR circuit and failure relief means including a timer circuit that allows the interruption signal to pass only when the OR circuit continues to output the interruption signal for a predetermined time or more.
[0028]
According to the seismic damping hydraulic damper having such a configuration, the failure relief means has an ON / OFF state of the control signal from the control means and an ON / OFF state of the drive current from the valve drive element corresponding to the control signal. If the ON / OFF state of both does not match, the valve drive power supply circuit is cut off. Therefore, if the ON / OFF state of both does not match, the operation of the open / close control valve Since the oil can be moved between the hydraulic chambers via the throttle valve that is activated when the power is cut off, the damper operation is always performed. This can be performed, and a decrease in the damping effect of the damping hydraulic damper due to a failure of the valve drive element can be minimized.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 and FIG. 2 are views which are referred to for explaining an embodiment of a vibration damping hydraulic damper according to the present invention. Components similar to those of the conventional seismic damping hydraulic damper 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0030]
As shown in FIG. 1, a damping hydraulic damper 31 according to an embodiment of the present invention has almost the same configuration as the conventional damping hydraulic damper 11, but the damping control according to the present embodiment. The hydraulic damper 31 has a configuration in which a control circuit 27 (control means) is different from the control circuit 17 of the conventional damping hydraulic damper 11.
[0031]
That is, as shown in FIG. 2, the control circuit 27 of the damping hydraulic damper 31 according to the present embodiment is basically the same as the control circuit 17 of the conventional damping hydraulic damper 11. It is different in the points.
[0032]
That is, an OR circuit 23 is provided in the control circuit 27 of the seismic damping hydraulic damper 31, and three mismatch detection circuits 24, 25, 26, a timer circuit 19 and a CPU circuit 14 are provided on the input side of the OR circuit 23. Is connected. Each of the mismatch detection circuits 24, 25, and 26 is turned on / off from each of the control signals S1, S2, and S3 from the CPU circuit 14, and from each of the solenoid driving elements SSR1, SSR2, and SSR3 corresponding to those signals. This is for detecting whether or not the ON / OFF states of the drive currents D1, D2 and D3 are inconsistent.
[0033]
For this reason, the input side of the mismatch detection circuit 24 is connected to the output side of the solenoid drive element SSR1 via the DC / AC converter IN1, and is also connected to the output side of the control signal S1 of the CPU circuit 14. Further, the input side of the mismatch detection circuit 25 is connected to the output side of the solenoid drive element SSR2 via the DC / AC converter IN2, and is also connected to the output side of the control signal S2 of the CPU circuit 14. Further, the input side of the mismatch detection circuit 26 is connected to the output side of the solenoid drive element SSR3 via the DC / AC converter IN3, and is also connected to the output side of the control signal S3 of the CPU circuit 14.
[0034]
A timer circuit 29 is connected to the output side of the OR circuit 23, and a relay switch CR is connected to the output side of the timer circuit 29, and is also connected to the CPU circuit 14. The DC / AC converters IN1, IN2, IN3, the mismatch detection circuits 24, 25, 26, the OR circuit 23, the timer circuit 29, and the relay switch CR constitute a failure relief means as a whole.
[0035]
The operation of the control circuit 27 having such a configuration will be described below.
In FIG. 2, the pressure p of the hydraulic chambers 4A, 4B 1 , P 2 Signals S (p) from pressure gauges 8 and 9 (sensors) that have detected (functional state) 1 ), S (p 2 ), And the signal S (Δd) from the displacement meter 10 (sensor) that detects the relative displacement Δd (functional state) between the hydraulic cylinder 2 and the piston 3 is first converted into A / D by the control circuit 27. The signal is input to the circuit 12, where it is converted from an analog signal to a digital signal and then input to the CPU circuit 14.
[0036]
The CPU circuit 14 performs an operation according to a preset control procedure based on signals from the pressure gauges 8 and 9 and the displacement gauge 10 to open the first on / off control valve of the on / off control valve V1. The control signal S1 is output toward the solenoid SOL1 of the first opening / closing control valve, or the control signal S2 in the ON state for opening the second opening / closing control valve of the opening / closing control valve V1 is output as the second opening / closing control signal S2. Or output toward the solenoid SOL2 of the control valve.
[0037]
Further, when there is no abnormality or power failure, the CPU circuit 14 outputs the control signal S3 in the ON state for closing the operation throttle valve V3 at the time of disconnection to the solenoid SOL3 of the operation throttle valve V3 at the time of disconnection. .
[0038]
The control signals S1 and S2 are input to solenoid drive elements SSR1 and SSR2 (valve drive elements) via a timer circuit 19 to be described later, and the control signal S3 is input to a solenoid drive element SSR3 (valve drive) without passing through the timer circuit 19. Device).
[0039]
Power is applied to the solenoid drive elements SSR1, SSR2, and SSR3 through a solenoid drive power supply circuit SBL (valve drive power supply circuit). For this reason, the solenoid drive elements SSR1, SSR2, and SSR3 cause the drive currents D1, D2, and D3 to flow toward or off from the solenoids SOL1, SOL2, and SOL3 depending on the presence or absence of the control signals S1, S2, and S3 from the CPU circuit 14. To do.
[0040]
Control signals S1 and S2 from the CPU circuit 14 are input to the mismatch detection circuits 24 and 25 in addition to the timer circuit 19, respectively. Further, the control signal S3 from the CPU circuit 14 is input to the mismatch detection circuit 26 in addition to being input to the switching drive element SSR3.
[0041]
The drive current D1 from the solenoid drive element SSR1 is input to the mismatch detection circuit 24 via the DC / AC converter IN1 in addition to being input to the solenoid SOL1. The drive current D2 from the solenoid drive element SSR2 is input to the mismatch detection circuit 25 via the DC / AC converter IN2 in addition to being input to the solenoid SOL2. Further, the drive current D3 from the solenoid drive element SSR3 is input to the mismatch detection circuit 26 via the DC / AC converter IN3 in addition to being input to the solenoid SOL3 of the operating throttle valve V3 when the power is cut off.
[0042]
Output signals from the mismatch detection circuits 24, 25 and 26 are input to the OR circuit 23, and output signals from the timer circuit 19 and the CPU circuit 14 are also input to the OR circuit 23.
[0043]
The OR circuit 23 does not output a command to cut off the energization of the solenoid drive power supply circuit SBL to the relay switch CR when the signal input to the OR circuit 23 satisfies all of the following conditions.
(A) When the input signal from the mismatch detection circuit 24 is a signal indicating that the ON / OFF state of the control signal S1 and the drive current D1 match.
(B) When the input signal from the mismatch detection circuit 25 is a signal indicating that the ON / OFF state of the control signal S2 and the drive current D2 match.
(C) When the input signal from the mismatch detection circuit 26 is a signal indicating that the ON / OFF state of the control signal S3 and the drive current D3 match.
(D) When the input signal from the timer circuit 19 is a signal indicating that the operations of the pressure gauges 8 and 9, the displacement gauge 10, the A / D conversion circuit 12 and the CPU circuit 14 and their connection states are normal. .
(E) When the input signal from the CPU circuit 14 is a signal indicating that the operation from the CPU circuit 14 itself is normal.
[0044]
However, the OR circuit 23 outputs a command for cutting off the energization of the solenoid drive power supply circuit SBL to the relay switch CR when at least one of the following conditions is satisfied.
(A) When the input signal from the mismatch detection circuit 24 is a signal indicating that the ON / OFF states of the control signal S1 and the drive current D1 do not match.
(B) When the input signal from the mismatch detection circuit 25 is a signal indicating that the ON / OFF states of the control signal S2 and the drive current D2 do not match.
(C) When the input signal from the mismatch detection circuit 26 is a signal indicating that the ON / OFF states of the control signal S3 and the drive current D3 do not match.
(D) The input signal from the timer circuit 19 indicates that any of the operations of the pressure gauges 8 and 9, the displacement gauge 10, the A / D conversion circuit 12, the CPU circuit 14, and their connection state is abnormal. When the signal.
(E) When the input signal from the CPU circuit 14 is a signal indicating that the operation from the CPU circuit 14 itself is abnormal.
[0045]
Even when at least one of the above conditions (a) to (e) is immediately met, the timer circuit 29 monitors whether or not the state to which at least one of the above conditions is met is maintained for a certain period of time, and within a certain period of time. When a state corresponding to at least one of the above conditions changes to a state not corresponding to any of the above conditions, a command signal for cutting off energization of the solenoid drive power supply circuit SBL is not input to the relay switch CR.
[0046]
However, if at least one of the above conditions (A) to (E) is maintained even after a predetermined time has elapsed, a command signal for causing the relay switch CR to cut off the energization of the solenoid drive power circuit SBL. Is input to execute the blocking.
[0047]
This is because the drive currents D1, D2, and D3 are converted into voltages by the DC / AC converters IN1, IN2, and IN3 in comparison with the speed at which the control signals S1, S2, and S3 are input, particularly in the mismatch detection circuits 24, 25, and 26. Since the input speed after processing is delayed, both signals are input to the mismatch detection circuit and wait until they settle down so that the OR circuit 23 can make an accurate determination.
[0048]
When a command signal for shutting off the energization of the solenoid drive power supply circuit SBL is input from the timer circuit 29 to the relay switch CR, a signal indicating that the energization of the solenoid drive power supply circuit SBL is cut off is also input to the CPU circuit 14. .
[0049]
As a result, the CPU circuit 14 displays a display indicating that the energization of the solenoid drive power supply circuit SBL is interrupted on a display device (not shown), or the energization of the solenoid drive power supply circuit SBL is interrupted. It can be recorded together with the date and time in a non-storage device to be useful for later maintenance, and output of control signals S1, S2, S3 is stopped.
[0050]
The timer circuit 19 is configured to adjust the pressure p of the hydraulic chambers 4A and 4B. 1 , P 2 Monitoring that each signal is inverted from the ON state to the OFF state within a predetermined time after the control signals S1 and S2 from the CPU circuit 14 are input based on the input of the signals from the pressure gauges 8 and 9 that have detected To do.
[0051]
If the above inversion does not occur within the predetermined time, the pressure gauges 8, 9, the A / D conversion circuit 12 and the CPU circuit 14 are abnormal, the connection between the pressure gauges 8, 9 and the A / D conversion circuit 12, or It is conceivable that there is an abnormality such as a disconnection in the connection portion of the A / D conversion circuit 12 and the CPU circuit 14 or the like.
[0052]
By outputting a signal from the timer circuit 29 to the relay switch CR to cut off the energization of the solenoid drive power supply circuit SBL, the drive currents D1, D2, and D3 are turned off. Then, the two open / close control valves of the open / close control valve V1 remain closed to prevent the flow of oil between the hydraulic chambers 4A and 4B. Switching from the state to the open state allows oil to flow between the hydraulic chambers 4A and 4B through a throttle valve having a predetermined fixed opening.
[0053]
For this reason, even if the solenoid drive elements SSR1, SSR2, SSR3 are broken or abnormal as described above, a damper action can always be performed by opening the throttle valve V3 when the power is cut off. It is possible to prevent 31 from being unable to operate at all during an earthquake or the like.
[0054]
Therefore, according to the seismic damping hydraulic damper 31 having such a configuration, the OR circuit 23 and the timer circuit 29 of the failure relief means are connected to the ON / OFF states of the control signals S1, S2, and S3 from the CPU circuit 14 and the control. When the ON / OFF states of the drive currents D1, D2, D3 from the solenoid drive elements SSR1, SSR2, SSR3 corresponding to the signals S1, S2, S3 are compared and the ON / OFF states of the two do not match, the solenoid drive Since the power supply circuit SBL is cut off, if the ON / OFF states of the two do not coincide, the operation of the open / close control valve V1 is actively stopped and the operation throttle valve V3 is actively activated. Since the oil between the hydraulic chambers 4A and 4B can be moved via the throttle valve V3 when the power is cut off, the hydraulic damper 31 for vibration control is Not been able to perform the damping action, the decrease in the vibration control effect of the vibration control hydraulic damper 31 due to the failure of the solenoid driving device SSR1, SSR2, SSR3 can be minimized.
[0055]
In the above-described embodiment of the present invention, the case where the opening / closing control valve V1 of the damping hydraulic damper 31 has two opening / closing control valves has been described. However, the opening / closing control valve V1 includes only one opening / closing control valve. The present invention can also be applied to the case of a seismic control hydraulic damper.
[0056]
In addition, the damping hydraulic damper 31 according to the above embodiment can be provided not only in a building where a person such as a building or a residence lives, but also in a structure such as a steel tower or a lighthouse where a person does not live. Can do.
[0057]
In addition, the damping hydraulic damper 31 according to the above embodiment is not shown in the accumulator in FIG. 1, but the hydraulic pressure of the damping hydraulic damper 31 is the same as that of a general damping hydraulic damper. Needless to say, an accumulator is also provided in the flow path 5 of the chambers 4A and 4B.
[0058]
Moreover, the hydraulic damper 31 for vibration control according to the above embodiment has an open / close control valve that opens an oil passage between a pair of hydraulic chambers in a hydraulic cylinder when the input signal is ON and closes when the input signal is OFF. Although used, an open / close control valve that opens when the input signal is OFF and closes when the input signal is ON may be used.
[0059]
Although the embodiments of the present invention have been specifically described above, the present invention is not limited to the above-described embodiments, and various other modifications can be made based on the technical idea of the present invention. It is possible.
[0060]
【The invention's effect】
As described above, according to the present invention, the failure relief means compares the ON / OFF state of the control signal from the control means with the ON / OFF state of the drive current from the valve drive element corresponding to this control signal. When the ON / OFF state of both does not match, the valve drive power supply circuit is cut off. Therefore, when the ON / OFF state of both does not match, the operation of the open / close control valve is positively performed. Since the oil can be moved between the hydraulic chambers through the throttle valve that is activated when the power is cut off, and the throttle valve that operates when the power is cut off, the damper action must be performed. Therefore, it is possible to minimize the deterioration of the damping effect of the damping hydraulic damper due to the failure of the valve drive element.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing a damping hydraulic damper 31 according to an embodiment of the present invention.
2 is a block circuit diagram showing a configuration of a control circuit 27 of the seismic damping hydraulic damper 31 of FIG. 1; FIG.
FIG. 3 is a schematic block diagram showing a conventional seismic damping hydraulic damper 1;
FIG. 4 is a schematic block diagram showing another conventional seismic damping hydraulic damper 11;
5 is a block circuit diagram showing a configuration of a control circuit 17 of the vibration control damper 11 shown in FIG.
[Explanation of symbols]
1 Hydraulic damper for vibration control
2 Hydraulic cylinder
3 Piston
4A, 4B Hydraulic room
5 Channel
6 Open / close control valve
7 Control circuit
8,9 Pressure gauge
10 Displacement meter
11 Hydraulic damper for vibration control
12 A / D conversion circuit
14 CPU circuit
17 Control circuit
19 Timer circuit
23 OR circuit
24, 25, 26 Mismatch detection circuit
27 Control circuit
29 Timer circuit
31 Hydraulic damper for vibration control
CR relay switch
D1, D2, D3 Drive current
IN1, IN2, IN3, IN4 DC / AC converter
S1, S2, S3 control signal
SBL Solenoid drive power supply circuit
Sol1, Sol2, Sol3 Solenoid
SSR1, SSR2, SSR3 Solenoid drive element
V1 open / close control valve
V2 relief valve
V3 Throttle valve operating when power is cut
p 1 , P 2 pressure
△ d Relative displacement

Claims (3)

油圧シリンダ内のピストンの両側の一対の油圧室の各々の圧力を検出する圧力計と、油圧シリンダとピストンとの間の相対変位を検出する変位計とを有し、制震用油圧ダンパの機能状態を検出するセンサと、
油圧シリンダ内のピストンの両側の一対の油圧室間の油路を入力信号がON及びOFFの一方のときに開き入力信号がON及びOFFの他方のときに閉じる開閉制御弁と、
前記油圧室間の油路を入力信号がONのときに閉じ入力信号がOFFのときに開く断電時作動絞り弁と、
前記センサから入力した検出信号に基づいて前記開閉制御弁及び前記断電時作動絞り弁の動作を制御する制御手段とを備え、
前記制御手段が、
前記センサから入力した検出信号に基づいて前記開閉制御弁及び前記断電時作動絞り弁を制御するための制御信号を出力すると共に、自らの異常を検出した場合に異常信号を出力するCPU回路と、
前記開閉制御弁及び前記断電時作動絞り弁と前記CPU回路との間に配置されCPU回路から入力した制御信号に基づいて開閉制御弁及び断電時作動絞り弁に駆動電流を出力する弁駆動素子と、
前記弁駆動素子を動作させる電源を入力させる弁駆動電源回路と、
前記制御信号及びこれに対応する前記駆動電流が入力され、両者のON/OFF状態を比較する不一致検出回路と、前記不一致検出回路から出力された信号が前記制御信号と前記駆動電流のON/OFF状態が一致しないことを示す場合に前記CPU回路を介さずに前記弁駆動電源回路の通電を遮断する遮断信号を出力すると共に、前記CPU回路から異常信号を入力した場合に前記弁駆動電源回路の通電を遮断する遮断信号を出力するOR回路と、前記OR回路が遮断信号を一定時間以上出力し続けた場合にのみ当該遮断信号を通過させるタイマー回路とを備える故障救済手段とを有する
ことを特徴とする制震用油圧ダンパ。
Function of a hydraulic damper for vibration control , having a pressure gauge for detecting the pressure of each of a pair of hydraulic chambers on both sides of the piston in the hydraulic cylinder, and a displacement gauge for detecting a relative displacement between the hydraulic cylinder and the piston A sensor for detecting the state;
An oil passage between the pair of hydraulic chambers of both sides of the piston in the hydraulic cylinder, opens when the input signal is one of the ON and OFF, and a closing control valve input signal is closed when the other ON and OFF,
An oil passage between the hydraulic chamber, closed when the input signal is ON, and deenergized when actuated throttle valve input signal opens when OFF, the
Control means for controlling the operation of the open / close control valve and the power-off operating throttle valve based on a detection signal input from the sensor;
The control means is
A CPU circuit that outputs a control signal for controlling the open / close control valve and the power-off operating throttle valve based on a detection signal input from the sensor, and that outputs an abnormal signal when detecting its own abnormality ; ,
A valve that is arranged between the CPU circuit and the open / close control valve and the power-off operating throttle valve, and outputs a drive current to the open / close control valve and the power-off operating throttle valve based on a control signal input from the CPU circuit A drive element;
A valve drive power supply circuit for inputting a power supply for operating the valve drive element;
The control signal and the drive current corresponding to the control signal are input, and a mismatch detection circuit that compares the ON / OFF states of the control signal and the signal output from the mismatch detection circuit are ON / OFF of the control signal and the drive current. When the state does not match, a shutoff signal for shutting off the energization of the valve drive power supply circuit is output without going through the CPU circuit, and when an abnormal signal is inputted from the CPU circuit, the valve drive power supply circuit A failure relief means comprising: an OR circuit that outputs a cut-off signal that cuts off energization; and a timer circuit that passes the cut-off signal only when the OR circuit continues to output the cut-off signal for a predetermined time or more. Hydraulic damper for vibration control.
前記制御手段に制御されて、前記弁駆動電源回路を遮断したことを表示する表示手段を有することを特徴とする請求項1記載の制震用油圧ダンパ。  2. The damping hydraulic damper according to claim 1, further comprising display means for displaying that the valve drive power supply circuit is shut off under the control of the control means. 前記制御手段に制御されて、前記弁駆動電源回路を遮断したことを日時と共に記憶する記憶手段を有することを特徴とする請求項1記載の制震用油圧ダンパ。  The seismic damping hydraulic damper according to claim 1, further comprising storage means for storing, together with date and time, that the valve drive power supply circuit is shut off under the control of the control means.
JP2000323769A 2000-10-24 2000-10-24 Hydraulic damper for vibration control Expired - Fee Related JP4526679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000323769A JP4526679B2 (en) 2000-10-24 2000-10-24 Hydraulic damper for vibration control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000323769A JP4526679B2 (en) 2000-10-24 2000-10-24 Hydraulic damper for vibration control

Publications (2)

Publication Number Publication Date
JP2002130368A JP2002130368A (en) 2002-05-09
JP4526679B2 true JP4526679B2 (en) 2010-08-18

Family

ID=18801399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000323769A Expired - Fee Related JP4526679B2 (en) 2000-10-24 2000-10-24 Hydraulic damper for vibration control

Country Status (1)

Country Link
JP (1) JP4526679B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815688B2 (en) * 2016-04-04 2021-01-20 株式会社免制震ディバイス Vibration suppression device for structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140113A (en) * 1983-01-31 1984-08-11 Atsugi Motor Parts Co Ltd Troublesome-operation prventing circuit for variable damping force type hydraulic shock absorber
JPH05296281A (en) * 1992-04-13 1993-11-09 Kayaba Ind Co Ltd Vibration control device
JPH10259844A (en) * 1997-03-19 1998-09-29 Tokico Ltd Suspension control device
JP2000018304A (en) * 1998-06-30 2000-01-18 Kayaba Ind Co Ltd Oil damper monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140113A (en) * 1983-01-31 1984-08-11 Atsugi Motor Parts Co Ltd Troublesome-operation prventing circuit for variable damping force type hydraulic shock absorber
JPH05296281A (en) * 1992-04-13 1993-11-09 Kayaba Ind Co Ltd Vibration control device
JPH10259844A (en) * 1997-03-19 1998-09-29 Tokico Ltd Suspension control device
JP2000018304A (en) * 1998-06-30 2000-01-18 Kayaba Ind Co Ltd Oil damper monitoring system

Also Published As

Publication number Publication date
JP2002130368A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
US6382226B1 (en) Method for detecting broken valve stem
JPH08501611A (en) Control and adjustment unit for doors driven by electric motors
CN1182448C (en) Electric actuator for fluid control valves
US20130312403A1 (en) Hydraulic system for construction machine having electronic hydraulic pump
JP2016050785A (en) Trouble diagnosing method, and device, for servo valves under hydraulic pressure
JP4526679B2 (en) Hydraulic damper for vibration control
WO2020110652A1 (en) Electromagnetic brake control device and control device
JP2011521158A (en) Control device and control method for rapid closing valve of steam turbine
JP2008169987A (en) Actuator
JP7228862B2 (en) Machine diagnostic system and diagnostic program
JP5193648B2 (en) Control rod drive control device
JP4974225B2 (en) Actuator
JP6282120B2 (en) Automatic valve device inspection system
JP4009156B2 (en) Hydraulic damper
JP4974224B2 (en) Actuator
CN211852214U (en) Fan stationary blade control system
JPH08219119A (en) Equipment operation monitor
RU2080647C1 (en) Method for automatic functional diagnostics of controlled equipment which is checked at regular intervals
JPH08200282A (en) Water supply device
JPH04191403A (en) Turbine control device
JP2008232542A (en) Central supervisory control device in air conditioning control system
JPH109993A (en) Gas blast circuit breaker
JP6388294B2 (en) Automatic valve device inspection system
CN117280119A (en) Control equipment for activating/deactivating hydraulic pumps and systems including such equipment
JPH036323B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4526679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees