JP4514433B2 - Antibacterial inorganic oxide fine particles and method for producing the same - Google Patents
Antibacterial inorganic oxide fine particles and method for producing the same Download PDFInfo
- Publication number
- JP4514433B2 JP4514433B2 JP2003366820A JP2003366820A JP4514433B2 JP 4514433 B2 JP4514433 B2 JP 4514433B2 JP 2003366820 A JP2003366820 A JP 2003366820A JP 2003366820 A JP2003366820 A JP 2003366820A JP 4514433 B2 JP4514433 B2 JP 4514433B2
- Authority
- JP
- Japan
- Prior art keywords
- antibacterial
- fine particles
- inorganic oxide
- oxide fine
- metal component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、抗菌性無機酸化物微粒子およびその製造方法に関し、さらに詳しくは、樹脂、塗料、繊維などへの抗菌性付与に使用して、分散性が良く、少ない使用量で優れた抗菌性を発揮する抗菌性無機酸化物微粒子およびその製造方法に関する。 The present invention relates to an antibacterial inorganic oxide fine particle and a method for producing the same, and more specifically, it is used for imparting antibacterial properties to resins, paints, fibers and the like, has good dispersibility, and has excellent antibacterial properties with a small amount of use. The present invention relates to antibacterial inorganic oxide fine particles to be exhibited and a method for producing the same.
従来、樹脂、塗料、繊維などへ抗菌性を付与するために抗菌性無機酸化物微粒子を樹脂などの中に練り込む方法などが行われており、該樹脂などの抗菌性を高め、色彩や透明度などの樹脂の特性に影響を及ばさない抗菌性無機酸化物微粒子が種々提案されている。 Conventionally, in order to impart antibacterial properties to resins, paints, fibers, etc., methods such as kneading antibacterial inorganic oxide fine particles into resins, etc. have been carried out, improving the antibacterial properties of the resins, etc., color and transparency Various antibacterial inorganic oxide fine particles that do not affect the properties of the resin have been proposed.
この様な抗菌性無機酸化物微粒子としては、例えば、特許文献1には、抗菌性金属成分を含有する無機酸化物微粒子を球状粒子の表層部に高含有率で含有する無機酸化物球状粒子が開示されている。 As such antibacterial inorganic oxide fine particles, for example, Patent Document 1 discloses inorganic oxide spherical particles containing inorganic oxide fine particles containing an antibacterial metal component at a high content in the surface layer portion of the spherical particles. It is disclosed.
また、特許文献2には、シリカを主体とする平均粒径が0.005〜0.2μmのセラミック粒子の表面に、抗菌性金属成分を主体とし、かつ、その抗菌性金属成分の少なくとも一部が金属状態にて存在する金属系抗菌組成物を保持させたことを特徴とする金属−セラミック複合抗菌剤が記載されている。 Patent Document 2 discloses that the surface of ceramic particles mainly composed of silica and having an average particle diameter of 0.005 to 0.2 μm is mainly composed of an antibacterial metal component and at least a part of the antibacterial metal component. Describes a metal-ceramic composite antibacterial agent characterized by retaining a metal-based antibacterial composition present in a metallic state.
さらに、特許文献3には、平均粒径0.01〜0.5μmのセラミック粒子もしくは卑金属粒子の表面に、そのセラミック粒子もしくは卑金属粒子の重量に対して0.1〜60重量%の量に相当する平均粒径0.0001〜0.1μmの抗菌性金属粒子が分散付着してなる微粉末状の金属性抗菌剤が記載されている。 Further, Patent Document 3 corresponds to an amount of 0.1 to 60% by weight based on the weight of the ceramic particles or base metal particles on the surface of ceramic particles or base metal particles having an average particle diameter of 0.01 to 0.5 μm. A fine powdery metallic antibacterial agent formed by dispersing and adhering antibacterial metal particles having an average particle diameter of 0.0001 to 0.1 μm is described.
しかし、従来の抗菌性無機酸化物微粒子は、微粒子の細孔内部にも抗菌性金属成分が存在するために、有効に利用されない抗菌性金属成分が存在するので抗菌性金属成分の含有量を多くしないと所望の抗菌効果が得られないという問題があった。また、化学メッキ法などにより抗菌性金属を担持するためにはメッキ装置が必要となり、製造コストが高くなるという問題があった。さらに、抗菌性金属成分が銀である場合には、抗菌性金属成分の含有量を多くすると変色するという問題があった。 However, the conventional antibacterial inorganic oxide fine particles contain an antibacterial metal component that is not used effectively because the antibacterial metal component is also present inside the pores of the fine particle, so the content of the antibacterial metal component is large. Otherwise, there was a problem that the desired antibacterial effect could not be obtained. In addition, in order to carry an antibacterial metal by a chemical plating method or the like, a plating apparatus is required, and there is a problem that the manufacturing cost is increased. Further, when the antibacterial metal component is silver, there is a problem that the color changes when the content of the antibacterial metal component is increased.
本願発明の目的は、前述の問題点を解決して、抗菌性金属成分を有効に利用することで、安価に製造でき、少量の抗菌性金属成分で所望の抗菌効果が発揮できる抗菌性無機酸化物微粒子を提供することにある。また、他の目的は、抗菌性金属成分が銀である場合でも変色することのない抗菌性無機酸化物微粒子を提供することにある。 The object of the present invention is to solve the above-mentioned problems and to effectively use the antibacterial metal component, so that it can be manufactured at low cost, and the desired antibacterial effect can be exhibited with a small amount of the antibacterial metal component. It is to provide fine particles. Another object is to provide antibacterial inorganic oxide fine particles which do not change color even when the antibacterial metal component is silver.
本発明者は、樹脂などの中に練り込む際に分散性が良く、変色が無く耐候性に優れ、少量の使用量で優れた抗菌性を発揮する抗菌性無機酸化物微粒子について鋭意研究し本発明を完成するに至った。
即ち、本発明の第1は、無機酸化物微粒子の表面に抗菌性金属成分を含有する無機化合物層が被覆されてなる抗菌性無機酸化物微粒子に関する。
本発明の第2は、前記抗菌性金属成分を含有する無機化合物層がシリカ−アルミナ層である請求項1記載の抗菌性無機酸化物微粒子に関する。
本発明の第3は、前記無機酸化物微粒子が酸化チタン、シリカまたはアルミナである請求項1、2記載の抗菌性無機酸化物微粒子に関する。
本発明の第4は、前記無機酸化物微粒子は平均粒径が0.01〜10μm範囲の微粒子である請求項1〜3記載の抗菌性無機酸化物微粒子に関する。
本発明の第5は、前記抗菌性金属成分を含有する無機化合物層が前記無機酸化物微粒子100重量部に対して、酸化物として0.1〜100重量部である請求項1〜4記載の抗菌性無機酸化物微粒子に関する。
The present inventor has earnestly researched antibacterial inorganic oxide fine particles that have good dispersibility when kneaded into resins, etc., no discoloration, excellent weather resistance, and excellent antibacterial properties even in a small amount of use. The invention has been completed.
That is, the first of the present invention relates to antibacterial inorganic oxide fine particles obtained by coating the surface of inorganic oxide fine particles with an inorganic compound layer containing an antibacterial metal component.
The second aspect of the present invention relates to the antibacterial inorganic oxide fine particles according to claim 1, wherein the inorganic compound layer containing the antibacterial metal component is a silica-alumina layer.
A third aspect of the present invention relates to the antibacterial inorganic oxide fine particles according to claim 1, wherein the inorganic oxide fine particles are titanium oxide, silica or alumina.
The fourth aspect of the present invention relates to the antibacterial inorganic oxide fine particles according to claims 1 to 3, wherein the inorganic oxide fine particles are fine particles having an average particle diameter in the range of 0.01 to 10 μm.
The fifth aspect of the present invention is that the inorganic compound layer containing the antibacterial metal component is 0.1 to 100 parts by weight as an oxide with respect to 100 parts by weight of the inorganic oxide fine particles. It relates to antibacterial inorganic oxide fine particles.
本発明の第6は、無機酸化物微粒子を水に懸濁し、これにアルカリを加えて該懸濁液のpHを10〜11の範囲に調整した後、該懸濁液にアルミン酸ソーダ水溶液と水硝子水溶液を同時に撹拌しながら添加して無機酸化物微粒子の表面にシリカ−アルミナ水和物を沈着させ、次いで、脱アルカリ処理した後、抗菌性金属成分を担持することを特徴とする請求項2〜5記載の抗菌性無機酸化物微粒子の製造方法に関する。
本発明の第7は、前記請求項6に於いて、抗菌性金属成分を担持した後、更に水硝子、ケイ酸またはシランカップリング剤から選ばれた少なくとも1種で処理することを特徴とする請求項6記載の抗菌性無機酸化物微粒子の製造方法に関する。
In the sixth aspect of the present invention, the inorganic oxide fine particles are suspended in water, and alkali is added thereto to adjust the pH of the suspension to a range of 10 to 11, and then the aqueous solution of sodium aluminate is added to the suspension. A water glass aqueous solution is added while stirring simultaneously to deposit silica-alumina hydrate on the surface of the inorganic oxide fine particles, and after carrying out dealkalization treatment, the antibacterial metal component is supported. It relates to a method for producing antibacterial inorganic oxide fine particles according to 2-5.
A seventh aspect of the present invention is the method according to the sixth aspect, characterized in that after the antibacterial metal component is supported, it is further treated with at least one selected from water glass, silicic acid and a silane coupling agent. The method for producing antibacterial inorganic oxide fine particles according to claim 6.
本発明の抗菌性無機酸化物微粒子は、抗菌性金属成分の含有量が少なくて抗菌活性が高いという特徴を有する。また、抗菌性金属成分が銀である場合において、該抗菌性無機酸化物微粒子を樹脂中に練り込んで使用する際に、該抗菌性無機酸化物微粒子が高抗菌活性を有するためその使用量が少なく、また、銀成分の使用量が少ないために銀による変色が抑制されるなどの優れた効果を有する。 The antibacterial inorganic oxide fine particles of the present invention are characterized by low antibacterial metal component content and high antibacterial activity. Further, when the antibacterial metal component is silver, when the antibacterial inorganic oxide fine particles are kneaded into a resin and used, the antibacterial inorganic oxide fine particles have a high antibacterial activity, so that the amount used is The amount of the silver component used is small, and an excellent effect such as suppression of discoloration due to silver is obtained.
さらに、本発明の抗菌性無機酸化物微粒子は、該微粒子の表面に水ガラス、ケイ酸またはシランカップリング剤から選ばれた少なくとも1種で処理することにより、抗菌活性が低下することがなく変色が抑制される。 Furthermore, the antibacterial inorganic oxide fine particles of the present invention can be discolored without any decrease in antibacterial activity by treating the surface of the fine particles with at least one selected from water glass, silicic acid or a silane coupling agent. Is suppressed.
本発明において無機酸化物微粒子としては各種の無機酸化物が使用可能であり、例えば、TiO2、ZrO2、SiO2、Al2O3、Fe2O3、Sb2O3、WO3、CeO2などの単一の無機酸化物や、SiO2・Al2O3、SiO2・TiO2、SiO2・ZrO2、Al2O3・TiO2、Al2O3・CeO2、TiO2・CeO2、TiO2・ZrO2、SiO2・TiO2・ZrO2、SiO2・TiO2・CeO2などの複合酸化物を挙げることができる。特に、TiO2、SiO2、およびAl2O3は好適に使用される。 In the present invention, various inorganic oxides can be used as the inorganic oxide fine particles. For example, TiO 2 , ZrO 2 , SiO 2 , Al 2 O 3 , Fe 2 O 3 , Sb 2 O 3 , WO 3 , CeO. 2 or a single inorganic oxide such as SiO 2 · Al 2 O 3 , SiO 2 · TiO 2 , SiO 2 · ZrO 2 , Al 2 O 3 · TiO 2 , Al 2 O 3 · CeO 2 , TiO 2 · Examples thereof include composite oxides such as CeO 2 , TiO 2 .ZrO 2 , SiO 2 .TiO 2 .ZrO 2 , and SiO 2 .TiO 2 .CeO 2 . Particularly, TiO 2, SiO 2, and Al 2 O 3 is preferably used.
前述の無機酸化物微粒子は、平均粒子径が0.01〜10μm範囲の微粒子であることが好ましい。無機酸化物微粒子の平均粒子径が0.01μmより小さい場合には、該無機酸化物微粒子の表面に被覆される抗菌性金属成分を含有する無機酸化物層の形成が出来ないことがあり、また、平均粒子径が10μmより大きい場合には、得られた抗菌性無機酸化物微粒子を樹脂中に練り込んだ際に分散性が悪くなることがある。該無機酸化物微粒子の平均粒子径は、更に好ましくは0.1〜1μmの範囲にあることが望ましい。なお、該無機酸化物微粒子の平均粒子径は、微粒子の大きさにより、平均粒子径が0.05μm以下の場合には電子顕微鏡による方法で、また、0.05μm以上の場合には遠心沈降法で測定される。 The aforementioned inorganic oxide fine particles are preferably fine particles having an average particle diameter in the range of 0.01 to 10 μm. When the average particle size of the inorganic oxide fine particles is smaller than 0.01 μm, it may not be possible to form an inorganic oxide layer containing an antibacterial metal component coated on the surface of the inorganic oxide fine particles. When the average particle diameter is larger than 10 μm, the dispersibility may be deteriorated when the obtained antibacterial inorganic oxide fine particles are kneaded into the resin. The average particle diameter of the inorganic oxide fine particles is more preferably in the range of 0.1 to 1 μm. The average particle size of the inorganic oxide fine particles depends on the size of the fine particles. When the average particle size is 0.05 μm or less, an electron microscope method is used. When the average particle size is 0.05 μm or more, the centrifugal sedimentation method is used. Measured in
前述の無機酸化物微粒子の表面を被覆する抗菌性金属成分を含有する無機化合物層を形成する無機化合物としては、負の電荷を有する無機化合物が用いられる。該無機化合物としては、例えば、シリカ−アルミナ、チタニア−シリカなどが例示される。特にシリカ−アルミナは好ましい。
前記シリカ−アルミナは、更に好ましくは、SiO2/Al2O3の重量比が1/1〜5/1の範囲にあることが望ましい。該SiO2/Al2O3重量比が1/1より小さい場合には、抗菌性金属成分の含有量が少なくなることがあり、また、該SiO2/Al2O3重量比が5/1より大きい場合にも菌性金属成分の含有量が少なくなることがある。
As the inorganic compound forming the inorganic compound layer containing the antibacterial metal component that covers the surface of the inorganic oxide fine particles, an inorganic compound having a negative charge is used. Examples of the inorganic compound include silica-alumina and titania-silica. Silica-alumina is particularly preferable.
More preferably, the silica-alumina has a weight ratio of SiO 2 / Al 2 O 3 in the range of 1/1 to 5/1. When the SiO 2 / Al 2 O 3 weight ratio is smaller than 1/1, the content of the antibacterial metal component may be reduced, and the SiO 2 / Al 2 O 3 weight ratio is 5/1. Even if it is larger, the content of the fungal metal component may be reduced.
前記抗菌性金属成分を含有する無機化合物層の量は、前記無機酸化物微粒子100重量部に対して酸化物として0.1〜100重量部の範囲であることが好ましい。該無機化合物層の量が0.1重量部より少ない場合には、抗菌性無機酸化物微粒子における抗菌性金属成分の量が少なくなるため抗菌活性が低くなることがあり、また、100重量部より多くしても抗菌活性は変わらないので、経済的でない。該無機化合物層の量は、更に好ましくは前記無機酸化物微粒子100重量部に対して酸化物として1〜30重量部の範囲であることが望ましい。 The amount of the inorganic compound layer containing the antibacterial metal component is preferably in the range of 0.1 to 100 parts by weight as an oxide with respect to 100 parts by weight of the inorganic oxide fine particles. When the amount of the inorganic compound layer is less than 0.1 parts by weight, the amount of the antibacterial metal component in the antibacterial inorganic oxide fine particles is decreased, so that the antibacterial activity may be lowered. Even if it increases, antibacterial activity does not change, so it is not economical. The amount of the inorganic compound layer is more preferably in the range of 1 to 30 parts by weight as an oxide with respect to 100 parts by weight of the inorganic oxide fine particles.
本発明において抗菌性金属成分としては、通常、無機抗菌剤として使用される抗菌性金属成分が使用可能であり、具体的には、銀、銅、亜鉛、鉛、錫、ビスマス、カドミウム、クロム、水銀、ニッケル、コバルトなどが例示される。特に、銀、銅、亜鉛から選択される1種以上の金属成分は、抗菌性の他に防臭・防黴・防藻性作用をも有し、変色および人体に対する安全性などの観点からも好ましい。該抗菌性金属成分の量は、抗菌性無機酸化物微粒子全量を基準として酸化物換算で0.001重量%以上含有することが望ましい。該金属成分の含有量が0.001重量%に満たない場合は抗菌性作用が十分に発現しないことがある。該金属成分量は、好ましくは0.001〜10重量%、特に0.05〜5重量%の範囲であることが望ましい。 As the antibacterial metal component in the present invention, an antibacterial metal component usually used as an inorganic antibacterial agent can be used. Specifically, silver, copper, zinc, lead, tin, bismuth, cadmium, chromium, Examples include mercury, nickel, cobalt and the like. In particular, at least one metal component selected from silver, copper, and zinc also has anti-odor, anti-bacterial, and anti-algal properties in addition to antibacterial properties, and is preferable from the viewpoint of discoloration and safety to the human body. . The amount of the antibacterial metal component is desirably 0.001% by weight or more in terms of oxide based on the total amount of the antibacterial inorganic oxide fine particles. When the content of the metal component is less than 0.001% by weight, the antibacterial action may not be sufficiently exhibited. The amount of the metal component is preferably in the range of 0.001 to 10% by weight, particularly 0.05 to 5% by weight.
次に、抗菌性無機酸化物微粒子の製造方法について述べる。
本発明方法では、まず、前述のTiO2、SiO2、Al2O3などの無機酸化物微粒子を水に懸濁する。懸濁液の酸化物濃度は特に制限されるものではないが、1〜20重量%の範囲が望ましい。次に、該懸濁液に苛性ソーダなどのアルカリ水溶液を加えて、懸濁液のpHを10〜11の範囲に調整する。懸濁液のpHを10〜11の範囲に調整することにより、無機酸化物微粒子の表面の一部が蕩けて反応し易くなる。pH調整した懸濁液を60〜98℃の温度に加熱することが好ましい。
Next, a method for producing antibacterial inorganic oxide fine particles will be described.
In the method of the present invention, first, fine inorganic oxide particles such as TiO 2 , SiO 2 , and Al 2 O 3 are suspended in water. The oxide concentration of the suspension is not particularly limited, but is preferably in the range of 1 to 20% by weight. Next, an alkaline aqueous solution such as caustic soda is added to the suspension to adjust the pH of the suspension to a range of 10-11. By adjusting the pH of the suspension to be in the range of 10 to 11, a part of the surface of the inorganic oxide fine particles can be burned and easily reacted. It is preferable to heat the pH-adjusted suspension to a temperature of 60 to 98 ° C.
次いで、該懸濁液に所定量のアルミン酸ソーダ水溶液と所定量の水硝子水溶液を同時に撹拌しながら添加して60〜98℃の温度で0.5〜5時間加熱熟成して無機酸化物微粒子の表面にシリカ−アルミナ水和物を沈着させる。その後、陽イオン交換樹脂などを使用して脱アルカリ処理を行ってアルカリを除去する。
前記無機酸化物微粒子の表面にシリカ−アルミナ水和物を沈着させた微粒子に抗菌性金属成分を担持せしめる方法としては、特開平6−80527号に記載の方法など、通常の方法が採用可能である。
Next, a predetermined amount of sodium aluminate aqueous solution and a predetermined amount of water glass aqueous solution are simultaneously added to the suspension while stirring, and heated and aged at a temperature of 60 to 98 ° C. for 0.5 to 5 hours to form inorganic oxide fine particles. Silica-alumina hydrate is deposited on the surface. Thereafter, the alkali is removed by performing a dealkalization treatment using a cation exchange resin or the like.
As a method for supporting the antibacterial metal component on the fine particles obtained by depositing silica-alumina hydrate on the surface of the inorganic oxide fine particles, usual methods such as the method described in JP-A-6-80527 can be adopted. is there.
本発明方法では、好ましくは、前述の抗菌性金属成分を担持した後、更に水ガラス、ケイ酸またはシランカップリング剤から選ばれた少なくとも1種で処理することが望ましい。該処理は、前述の抗菌性金属成分を担持した抗菌性無機酸化物微粒子の水懸濁液にアンモニア水と水ガラス、ケイ酸またはシランカップリング剤から選ばれた少なくとも1種を添加した後、60〜98℃の温度で0.5〜5時間加熱熟成し、その後、洗浄、濃縮して、本発明の抗菌性無機酸化物微粒子が懸濁した水懸濁液を得る。また、所望により該水懸濁液を噴霧乾燥、焼成して、本発明の抗菌性無機酸化物微粒子から構成される粒子状物とすることも出来る。水ガラス、ケイ酸またはシランカップリング剤から選ばれた少なくとも1種の添加量は、抗菌性無機酸化物微粒子基準で0.001〜5重量%の範囲であることが望ましい。なお、シランカップリング剤としては、メチルトリメトキシシラン、ビニルトリメトキシシラン等、周知のものが使用可能である。
上記水ガラス、ケイ酸またはシランカップリング剤で処理した抗菌性無機酸化物微粒子は、抗菌性が抑制されることがなく、一層優れた変色抑制効果を示す。
In the method of the present invention, preferably, after the above-described antibacterial metal component is supported, it is further treated with at least one selected from water glass, silicic acid or a silane coupling agent. The treatment is carried out after adding at least one selected from ammonia water and water glass, silicic acid or a silane coupling agent to the aqueous suspension of the antibacterial inorganic oxide fine particles carrying the antibacterial metal component. Heat aging at a temperature of 60 to 98 ° C. for 0.5 to 5 hours, followed by washing and concentration to obtain an aqueous suspension in which the antibacterial inorganic oxide fine particles of the present invention are suspended. If desired, the aqueous suspension can be spray-dried and fired to form a particulate material composed of the antibacterial inorganic oxide fine particles of the present invention. The addition amount of at least one selected from water glass, silicic acid or a silane coupling agent is preferably in the range of 0.001 to 5% by weight based on the antibacterial inorganic oxide fine particles. In addition, as a silane coupling agent, well-known things, such as methyltrimethoxysilane and vinyltrimethoxysilane, can be used.
The antibacterial inorganic oxide fine particles treated with the water glass, silicic acid or silane coupling agent do not suppress the antibacterial property and show a more excellent discoloration suppressing effect.
酸化チタン粉末(富士チタン工業(株)製:TA300、平均粒子径0.3μm)77.6gに水7682.4gを入れて懸濁液を調製し,これに3wt%水酸化ナトリウム水溶液を加えてpHを10.5に調整した後、加温して95℃で30分熟成した。一方、24wt%水硝子7.5gに水1192.5gを加えて希釈水硝子水溶液と、38wt%アルミン酸ソーダ水溶液2.7gに水119.7gを加えて希釈アルミン酸ソーダ水溶液を調製した。
次いで、95℃に加温した酸化チタン懸濁液に、希釈水硝子水溶液と希釈アルミン酸ソーダ水溶液をそれぞれ6.7g/分の添加速度で95℃の温度を保持しながら添加した。添加終了後、更に95℃で1時間熟成した後、50℃まで冷却し、次いで陽イオン交換樹脂を懸濁液のpHが4.5になるまで添加した後、陽イオン交換樹脂を分離して脱アルカリ処理した懸濁液を得た。
A suspension was prepared by adding 7682.4 g of water to 77.6 g of titanium oxide powder (Fuji Titanium Industry Co., Ltd .: TA300, average particle size 0.3 μm), and a 3 wt% sodium hydroxide aqueous solution was added thereto. After adjusting the pH to 10.5, the mixture was heated and aged at 95 ° C. for 30 minutes. On the other hand, 1192.5 g of water was added to 7.5 g of 24 wt% water glass to prepare a diluted water glass aqueous solution, and 119.7 g of water was added to 2.7 g of 38 wt% sodium aluminate aqueous solution to prepare a diluted sodium aluminate aqueous solution.
Next, a dilute water glass aqueous solution and a dilute sodium aluminate aqueous solution were added to the titanium oxide suspension heated to 95 ° C. at an addition rate of 6.7 g / min while maintaining the temperature at 95 ° C. After completion of the addition, the mixture was further aged at 95 ° C. for 1 hour, cooled to 50 ° C., and then the cation exchange resin was added until the pH of the suspension became 4.5, and then the cation exchange resin was separated. A dealkalized suspension was obtained.
一方、硝酸銀0.18gに水300gを加えて溶解して硝酸銀水溶液を調製した。次いで、脱アルカリ処理した懸濁液に、硝酸銀水溶液を1時間かけて添加した後、加温して温度を95℃にして4時間熟成して抗菌性無機酸化物微粒子が懸濁した水懸濁液(A)を得た。
次いで、水懸濁液(A)を130℃で乾燥して水分を飛ばした後、500℃で2時間焼成して抗菌性無機酸化物微粒子から構成される粒子状物(抗菌剤(A))を得た。なお、抗菌剤(A)の銀含有量は0.30wt%であった。抗菌剤(A)の組成を、次述する抗菌剤の組成と共に表1に示す
On the other hand, 300 g of water was added to 0.18 g of silver nitrate and dissolved to prepare an aqueous silver nitrate solution. Next, after adding an aqueous silver nitrate solution to the dealkalized suspension over 1 hour, the suspension is heated to a temperature of 95 ° C. and aged for 4 hours to suspend the antibacterial inorganic oxide fine particles. A liquid (A) was obtained.
Next, the water suspension (A) is dried at 130 ° C. to remove moisture, and then fired at 500 ° C. for 2 hours to form a particulate material composed of antibacterial inorganic oxide fine particles (antibacterial agent (A)). Got. In addition, the silver content of the antibacterial agent (A) was 0.30 wt%. The composition of the antibacterial agent (A) is shown in Table 1 together with the composition of the antibacterial agent described below.
実施例1において、実施例1と同様にして調製した水懸濁液(A)を冷却した後、15wt%アンモニア水溶液にて水懸濁液(A)のpHを10.5に調整した。次いで、該水懸濁液を加温して95℃にし、15wt%アンモニア水溶液でpHを10.5に保持しながら、0.5wt%ケイ酸液600gを10g/分の速度で添加した。添加終了後、更に95℃で1時間熟成してケイ酸処理した抗菌性無機酸化物微粒子が懸濁した水懸濁液(B)を得た。水懸濁液(B)を130℃で乾燥して水分を飛ばした後、500℃で2時間焼成して抗菌性無機酸化物微粒子から構成される粒子状物(抗菌剤(B))を得た。なお、抗菌剤(B)の銀含有量は0.29wt%であった。 In Example 1, the aqueous suspension (A) prepared in the same manner as in Example 1 was cooled, and then the pH of the aqueous suspension (A) was adjusted to 10.5 with a 15 wt% aqueous ammonia solution. Next, the aqueous suspension was heated to 95 ° C., and 600 g of 0.5 wt% silicic acid solution was added at a rate of 10 g / min while maintaining the pH at 10.5 with a 15 wt% aqueous ammonia solution. After the addition, an aqueous suspension (B) in which antibacterial inorganic oxide fine particles treated with silicic acid by aging at 95 ° C. for 1 hour were suspended was obtained. The water suspension (B) is dried at 130 ° C. to remove moisture, and then fired at 500 ° C. for 2 hours to obtain particulate matter (antibacterial agent (B)) composed of antibacterial inorganic oxide fine particles. It was. In addition, the silver content of the antibacterial agent (B) was 0.29 wt%.
実施例1において、実施例1と同様にして調製した水懸濁液(A)に、0.5wt%のシランカップリング剤(信越化学(株)製、KBM−403)水溶液600gを10g/分の速度で添加した。添加終了後、更に95℃で1時間熟成してシランカップリング剤処理した抗菌性無機酸化物微粒子が懸濁した水懸濁液(C)を得た。水懸濁液(C)を130℃で乾燥して水分を飛ばした後、500℃で2時間焼成して抗菌性無機酸化物微粒子から構成される粒子状物(抗菌剤(C))を得た。なお、抗菌剤(C)の銀含有量は0.29wt%であった。 In Example 1, 600 g of a 0.5 wt% aqueous solution of silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) was added at 10 g / min to the aqueous suspension (A) prepared in the same manner as in Example 1. Was added at a rate of After completion of the addition, the mixture was further aged at 95 ° C. for 1 hour to obtain an aqueous suspension (C) in which the antibacterial inorganic oxide fine particles treated with the silane coupling agent were suspended. The water suspension (C) is dried at 130 ° C. to remove moisture, and then fired at 500 ° C. for 2 hours to obtain particulate matter (antibacterial agent (C)) composed of antibacterial inorganic oxide fine particles. It was. In addition, the silver content of the antibacterial agent (C) was 0.29 wt%.
酸化チタン粉末(富士チタン工業(株)製:TA300、平均粒子径0.3μm)77.6gに水7682.4gを入れて懸濁液を調製し、これに5wt%硝酸を加えて、懸濁液のpHを5.0に調整した。一方、硝酸銀0.35gに水100gを加え溶解して硝酸銀水溶液を調製した。次いで、pHを5.0に調整した前記懸濁液に前記硝酸銀水溶液を添加し、その後、加温して温度を95℃にして4時間熟成した。次いで、130℃で乾燥して水分を飛ばした後、500℃で2時間焼成して抗菌剤(D)を得た。なお、抗菌剤(D)の銀含有量は0.30wt%であった。 A suspension is prepared by adding 7682.4 g of water to 77.6 g of titanium oxide powder (manufactured by Fuji Titanium Industry Co., Ltd .: TA300, average particle size 0.3 μm), and 5 wt% nitric acid is added to the suspension. The pH of the liquid was adjusted to 5.0. On the other hand, 100 g of water was added to 0.35 g of silver nitrate and dissolved to prepare an aqueous silver nitrate solution. Next, the silver nitrate aqueous solution was added to the suspension whose pH was adjusted to 5.0, and then heated to a temperature of 95 ° C. for aging for 4 hours. Next, after drying at 130 ° C. to remove moisture, baking was performed at 500 ° C. for 2 hours to obtain an antibacterial agent (D). In addition, the silver content of the antibacterial agent (D) was 0.30 wt%.
酸化チタン(富士チタン工業(株)製,TA300、平均粒子径0.3μm)77.6gに水7682.4gを入れ懸濁液を調製し、これに5wt%硝酸を加えて、懸濁液のpHを5.0に調整した。一方、硝酸銀3.5gに水1000gを加え溶解して硝酸銀水溶液を調製した。次いで、pHを5.0に調整した前記懸濁液に前記硝酸銀水溶液を添加し、その後、加温して温度を95℃にして4時間熟成した。次いで、130℃で乾燥して水分を飛ばした後、500℃で2時間焼成して抗菌剤(E)を得た。なお、抗菌剤(E)の銀含有量は3.01wt%であった。 A suspension was prepared by adding 7682.4 g of water to 77.6 g of titanium oxide (Fuji Titanium Industry Co., Ltd., TA300, average particle size 0.3 μm), and 5 wt% nitric acid was added thereto. The pH was adjusted to 5.0. On the other hand, 1000 g of water was added to 3.5 g of silver nitrate and dissolved to prepare an aqueous silver nitrate solution. Next, the silver nitrate aqueous solution was added to the suspension whose pH was adjusted to 5.0, and then heated to a temperature of 95 ° C. for aging for 4 hours. Subsequently, after drying at 130 degreeC and water | moisture content, it baked at 500 degreeC for 2 hours, and obtained the antibacterial agent (E). In addition, the silver content of the antibacterial agent (E) was 3.01 wt%.
[表1] 抗菌剤の組成
実施例1 実施例2 実施例3 比較例1 比較例2
[抗菌剤] A B C D E
[TiO2粉末の粒径](μm) 0.3 0.3 0.3 0.3 0.3
[SiO2-Al2O3の割合](*1) 5 5 5 なし なし
[SiO2/Al2O3](重量比) 75/25 75/25 75/25 − −
[銀担持量](wt%) 0.30 0.29 0.29 0.30 3.01
[表面処理剤の種類] なし ケイ酸 SC(*2) なし なし
[同上使用量](wt%) − 1.0 1.0 − −
(*1) 割合:SiO2-Al2O3重量部/ TiO2 100重量部
(*2) SC:シランカップリング剤
[Table 1] Composition of antibacterial agent
Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2
[Antibacterial agent] ABCDE
[Particle size of TiO 2 powder] (μm) 0.3 0.3 0.3 0.3 0.3
[Ratio of SiO 2 -Al 2 O 3 ] (* 1) 5 5 5 None None
[SiO 2 / Al 2 O 3 ] (weight ratio) 75/25 75/25 75/25 − −
[Amount of silver supported] (wt%) 0.30 0.29 0.29 0.30 3.01
[Type of surface treatment agent] None Silicic acid SC (* 2) None None
[Amount used] (wt%) − 1.0 1.0 − −
(* 1) Ratio: SiO 2 -Al 2 O 3 parts by weight / TiO 2 100 parts by weight
(* 2) SC: Silane coupling agent
実施例1,2,3及び比較例1,2で得られた抗菌剤(A)〜(E)について、抗菌性の評価試験1を行った。
試験菌には、大腸菌(Escherichia coli IFO 3972)と、黄色ぶどう球菌(Staphylococcus aureuse IFO 12732)とを用い、50mLのリン酸緩衝液に試験菌を懸濁させ、実施例や比較例で得られた抗菌剤を0.1g添加して、室温で1時間、330rpmで攪拌した後、生菌数を測定した。空試験の1時間後の生菌数(A)と、抗菌剤添加試験の1時間後の生菌数(B)とを測定し、増減値差(Log.A−Log.B)により評価を行った。評価結果を表2に示す。なお、前記リン酸緩衝液とは、リン酸2水素カリウム34gを1000mLの精製水に溶解し、水酸化ナトリウムでpHを7.2に調整した後、0.85%塩化ナトリウム溶液で800倍に希釈したものである。
The antibacterial evaluation test 1 was performed on the antibacterial agents (A) to (E) obtained in Examples 1, 2, and 3 and Comparative Examples 1 and 2.
As test bacteria, Escherichia coli IFO 3972 and Staphylococcus aureuse IFO 12732 were used, and the test bacteria were suspended in 50 mL of phosphate buffer and obtained in Examples and Comparative Examples. After adding 0.1 g of an antibacterial agent and stirring at 330 rpm for 1 hour at room temperature, the viable cell count was measured. The number of viable bacteria (A) after 1 hour of the blank test and the number of viable bacteria (B) after 1 hour of the antibacterial agent addition test are measured, and the evaluation is made by the difference in increase / decrease value (Log.A-Log.B). went. The evaluation results are shown in Table 2. The phosphate buffer solution is obtained by dissolving 34 g of potassium dihydrogen phosphate in 1000 mL of purified water, adjusting the pH to 7.2 with sodium hydroxide, and then adding 800 times with 0.85% sodium chloride solution. Diluted.
[表2] 抗菌性の評価試験1
増 減 値 差
大腸菌 黄色ぶどう球菌
実施例1(抗菌剤A) >5.0 >5.0
実施例2(抗菌剤B) >5.0 >5.0
実施例3(抗菌剤C) >5.0 >5.0
比較例1(抗菌剤D) 0.1 0.5
比較例2(抗菌剤E) 3.0 3.5
[Table 2] Antibacterial evaluation test 1
Increase / Decrease Value Difference
E. coli Staphylococcus aureus Example 1 (antibacterial agent A)>5.0> 5.0
Example 2 (antibacterial agent B)>5.0> 5.0
Example 3 (antibacterial agent C)>5.0> 5.0
Comparative Example 1 (antibacterial agent D) 0.1 0.5
Comparative Example 2 (antibacterial agent E) 3.0 3.5
また、抗菌剤(A)〜(E)をPE樹脂にそれぞれ1重量%含有させ、射出成型機により成型して樹脂試験片を作成し、これらの各樹脂試験片について、抗菌性の評価試験2を行った。
即ち、抗菌性試験(フイルム密着法)“樹脂等の抗菌試験方法、銀等無機抗菌剤を添加した樹脂等の抗菌試験方法”のうち、フイルム密着法に従い、検体試料(50x50mm)、培地(1/500倍栄養)を準備し、試験菌に大腸菌(Escherichia coli IFO 3972)と黄色ぶどう球菌(Staphylococcus aureuse IFO 12732)とを用いた。試験は検体試料上に菌懸濁液、0.4mLを接種し、その上に被覆フイルムを被せて蓋をした後、35±1℃、相対湿度90%以上で24時間放置後、生菌数を測定した。
無加工品の24時間後の生菌数(A)と、加工品の24時間後の生菌数(B)とを測定し、増減値差(Log.A−Log.B)により評価を行った。評価結果を表3に示す。なお、前記1/500倍栄養とは、肉エキス10mg/L+ペプトン20mg/L+塩化ナトリウム10mg/Lを含む培地をいう。
Further, each antibacterial agent (A) to (E) is contained in PE resin in an amount of 1% by weight and molded with an injection molding machine to prepare a resin test piece. Went.
That is, among the antibacterial test (film adhesion method) “antibacterial test method for resin, etc., antibacterial test method for resin added with an inorganic antibacterial agent such as silver”, the sample sample (50 × 50 mm), medium (1 / 500-fold nutrition) was prepared, and Escherichia coli IFO 3972 and Staphylococcus aureuse IFO 12732 were used as test bacteria. In the test, inoculate 0.4 mL of the bacterial suspension on the specimen sample, cover it with a coating film, cover it, leave it at 35 ± 1 ° C and relative humidity of 90% or more for 24 hours, and then count the number of viable bacteria. Was measured.
The number of viable bacteria (A) after 24 hours of the unprocessed product and the number of viable bacteria (B) after 24 hours of the processed product are measured, and evaluation is performed based on the difference between the increase and decrease values (Log.A-Log.B). It was. The evaluation results are shown in Table 3. The 1 / 500-fold nutrition means a medium containing 10 mg / L of meat extract + 20 mg / L of peptone + 10 mg / L of sodium chloride.
[表3] 抗菌性の評価試験2
増 減 値 差
大腸菌 黄色ぶどう球菌
実施例1(抗菌剤A) >5.0 >5.0
実施例2(抗菌剤B) >5.0 >5.0
実施例3(抗菌剤C) >5.0 >5.0
比較例1(抗菌剤D) 0.0 0.3
比較例2(抗菌剤E) 1.5 2.0
[Table 3] Antibacterial evaluation test 2
Increase / Decrease Value Difference
E. coli Staphylococcus aureus Example 1 (antibacterial agent A)>5.0> 5.0
Example 2 (antibacterial agent B)>5.0> 5.0
Example 3 (antibacterial agent C)>5.0> 5.0
Comparative Example 1 (antibacterial agent D) 0.0 0.3
Comparative Example 2 (antibacterial agent E) 1.5 2.0
次に、抗菌剤(A)〜(E)をPE樹脂にそれぞれ1重量%含有させ、射出成型機により成型して樹脂試験片を作成し、これらの各樹脂試験片について変色評価試験を行った。変色評価試験はサンシャインウェザーメーターにより、50時間照射した試験片について変色程度を目視観察した。評価結果を表4に示す。 Next, each antibacterial agent (A) to (E) was contained in PE resin in an amount of 1% by weight, molded by an injection molding machine to prepare a resin test piece, and a discoloration evaluation test was performed on each of these resin test pieces. . In the discoloration evaluation test, the degree of discoloration was visually observed on a test piece irradiated for 50 hours with a sunshine weather meter. The evaluation results are shown in Table 4.
[表4] 変色評価試験
実施例1(抗菌剤A) 変色なし
実施例2(抗菌剤B) 変色なし
実施例3(抗菌剤C) 変色なし
比較例1(抗菌剤D) 変色あり
比較例2(抗菌剤E) 著しい変色あり
[Table 4] Discoloration evaluation test example 1 (antibacterial agent A) No discoloration example 2 (antibacterial agent B) No discoloration example 3 (antibacterial agent C) No discoloration Comparative example 1 (antibacterial agent D) Comparative example 2 with discoloration (Antimicrobial agent E) Significant discoloration
本発明の抗菌性無機酸化物微粒子は、従来の抗菌剤が使用される分野に使用が可能であり、例えば、次に示すような種々の用途に適用することができる。
(1)繊維への適用
各種の繊維に対して抗菌性の他にも防臭・防黴・防藻性を付与することができ、繊維としては、天然繊維(綿、羊毛、絹、麻、パルプなど)、半合成繊維(レーヨン、キュプラ、アセテートなど)、合成繊維(ポリエステル、ポリウレタン、ポリビニルアセタール、ポリアミド、ポリアミド、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリルニトリル、ポリフッ素など)、または、無機繊維(ガラス、セラミックスなど)を挙げることができる。これらの繊維に抗菌・防臭・防黴・防藻性を付与するには、繊維と本発明の抗菌性無機酸化物微粒子を接触させた後、水洗、乾燥する方法、あるいは、繊維に本発明の抗菌性無機酸化物微粒子をスプレーする方法など、公知の方法を採用する。
The antibacterial inorganic oxide fine particles of the present invention can be used in fields where conventional antibacterial agents are used, and can be applied to various applications as shown below, for example.
(1) Application to fibers In addition to antibacterial properties, various fibers can be given anti-odor, fouling, and algal resistance, and natural fibers (cotton, wool, silk, hemp, pulp) ), Semi-synthetic fibers (rayon, cupra, acetate, etc.), synthetic fibers (polyester, polyurethane, polyvinyl acetal, polyamide, polyamide, polyolefin, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polyfluorine, etc.), or Inorganic fibers (glass, ceramics, etc.) can be mentioned. In order to impart antibacterial, deodorant, antifungal and antialgal properties to these fibers, the fibers are brought into contact with the antibacterial inorganic oxide fine particles of the present invention, then washed with water and dried, or the fibers of the present invention A known method such as a method of spraying antibacterial inorganic oxide fine particles is employed.
抗菌・防臭・防黴・防藻性付与の対象となる繊維としては、原料繊維、中間繊維製品、および最終繊維製品のいずれもが対象となる。最終繊維製品としては、例えば、一般衣料品(ブラウス、スカート、ワイシャツ、ズボン、ドレス、セーター、カーディガン、エプロン、ユニホーム、パンツ、ストッキング、ソックス、パンティストッキング、ブラジャー、ガードル、和装品、足袋、芯地、帯芯地 など)、身回品(ハンカチ、スカーフ、帽子、手袋、時計バンド、カバン、手提げ袋、靴、履物、靴敷物など)、インテリア用品(カーテン、ブラインド、カーペット、マット、テーブルクロス、トイレタリー用品、カーシートカバーなど)、日用雑貨品(タオル、ふきん、モップ類、テント、寝袋、ぬいぐるみ、フィルター、ブラシなど)、寝具類(毛布、敷布、タオルケット、寝装カバー、布団側地、中綿など)、病院内で使用される製品(看護婦などが着用する白衣、手術用着衣、マスク、オムツ、オムツカバーなど)などが挙げられる。 As the fiber to which antibacterial, deodorant, antibacterial and algae-proofing properties are imparted, any of raw material fibers, intermediate fiber products and final fiber products is targeted. Final textile products include, for example, general clothing (blouses, skirts, shirts, trousers, dresses, sweaters, cardigans, aprons, uniforms, pants, stockings, socks, pantyhose, bras, girdles, Japanese clothing, tabi, interlining , Belt interlining, etc.), personal items (handkerchiefs, scarves, hats, gloves, watch bands, bags, handbags, shoes, footwear, shoe rugs, etc.), interior goods (curtains, blinds, carpets, mats, tablecloths, toiletries) , Car seat covers, etc.), daily miscellaneous goods (towels, towels, mops, tents, sleeping bags, stuffed animals, filters, brushes, etc.), bedding (blankets, mattresses, towels, bedding covers, futon linings, padding, etc.) ), Products used in hospitals (white robes worn by nurses, Surgery for clothing, masks, diapers, such as a diaper cover), and the like.
(2)樹脂、ゴムへの適用
本発明の抗菌性無機酸化物微粒子は、熱可塑性樹脂や熱硬化性樹脂、ゴムに抗菌性の他にも防臭・防黴・防藻性を付与することができる。
樹脂の種類としては、例えば、フェノール系樹脂、ユリア系樹脂、メラミン系樹脂、アルキッド系樹脂、ジアリルフタレート系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、ケイ素系樹脂等の熱硬化性樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、フッ素系樹脂、ポリフッ化ビニル系樹脂、ポリフッ化ビニリデン系樹脂、ポリ酢酸ビニル系樹脂、ポリビニルアルコール系樹脂、ポリビニルホルマール系樹脂、飽和ポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂,ABS系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、塩化ポリエーテル系樹脂、ポリカーボネート系樹脂、ポリアリレート系樹脂、エチルセルロース、酢酸セルロース、硝酸セルロース等の樹脂が挙げられる。また、ゴムの種類としては天然ゴム、イソプレン系ゴム、アクリロニトリル系ゴム、アクリル系ゴム、ブタジエン系ゴム、ブチル系ゴム、スチレン系ゴム、クロロプレン系ゴム、クロルヒドリン系ゴム、ポリオレフィン系ゴム、ウレタン系ゴム、多硫化ゴム、シリコーン系ゴム、フッ素系ゴム、フロロシリコーン系ゴム等のエラストマーやゴムが挙げられる。
(2) Application to resins and rubbers The antibacterial inorganic oxide fine particles of the present invention can impart deodorant / antifungal / algaeproof properties to thermoplastic resins, thermosetting resins and rubbers in addition to antibacterial properties. it can.
Examples of the resin include phenolic resins, urea resins, melamine resins, alkyd resins, diallyl phthalate resins, epoxy resins, polyurethane resins, silicon resins, and other thermosetting resins, polyvinyl chloride. Resin, polyvinylidene chloride resin, fluorine resin, polyvinyl fluoride resin, polyvinylidene fluoride resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl formal resin, saturated polyester resin, polyethylene resin, Polypropylene resin, polystyrene resin, ABS resin, acrylic resin, polyamide resin, polyacetal resin, chlorinated polyether resin, polycarbonate resin, polyarylate resin, ethyl cellulose, cellulose acetate, cellulose nitrate, etc. Raising It is. The types of rubber include natural rubber, isoprene rubber, acrylonitrile rubber, acrylic rubber, butadiene rubber, butyl rubber, styrene rubber, chloroprene rubber, chlorohydrin rubber, polyolefin rubber, urethane rubber, Examples include elastomers and rubbers such as polysulfide rubber, silicone rubber, fluorine rubber, and fluorosilicone rubber.
これらの樹脂またはゴムに抗菌・防臭・防黴・防藻性を付与するには、これらの原料に本発明の抗菌性無機酸化物微粒子を添加して抗菌・防黴・防藻性樹脂あるいは抗菌・防黴・防藻性ゴムを得る方法、マスターバッチ用樹脂に抗菌性無機酸化物微粒子を添加する方法、樹脂成形品と加温下に抗菌性無機酸化物微粒子を接触させる方法、あるいは、樹脂成形品に抗菌性無機酸化物微粒子を塗布する方法など、公知の方法により行うことができる。 In order to impart antibacterial / deodorant / antifungal / antialgal properties to these resins or rubbers, the antibacterial / antifungal / antialgal resin or antibacterial resin is added by adding the antibacterial inorganic oxide fine particles of the present invention to these raw materials.・ Method of obtaining antifungal / algae-proof rubber, method of adding antibacterial inorganic oxide fine particles to resin for masterbatch, method of bringing antibacterial inorganic oxide fine particles into contact with resin molded product under heating, or resin It can be performed by a known method such as a method of applying antibacterial inorganic oxide fine particles to a molded product.
樹脂成形品としては、板、ロッド、パイプ、チューブ、フィルム、シート、容器、発砲体、その他各種の成型品または複合成型品が挙げられる。樹脂成形品の具体例としては、室内装備品(床材、壁材、便座、浴槽、洗面台、流し台、テーブル等)、美術品の保護ケース、台所用品(茶碗、弁当箱、トレー、水筒等の樹脂製食器類、まな板、飲料容器、冷蔵庫内容器等)、身回品(櫛、髭剃り道具、ブラシ、イヤホーン、眼鏡のフレーム等)、育児用品(玩具等)、日用雑貨品(ごみ箱、塵取り器、一般容器等)、包材(ごみ袋、包装用フィルム等)、自動車内装品(ハンドル、シート等)、不特定多数の人が手に触れるもの(乗物の吊り革やその把持部、待合室の椅子やベンチ、手摺り、各種押しボタン、電話受話器、パチンコ台等)、医療関係用品(病院内食器類、注射器、聴診器、手術用手袋、点滴瓶、カテーテル、医療機器樹脂部品等)、文房具楽器類(ボールペン、鉛筆等)、電気・電化製品(冷蔵庫、皿洗浄機、洗濯機、掃除機、ファン、エアコン、テレビ、電子計算機、パソコン等)などが挙げられる。 Examples of the resin molded product include plates, rods, pipes, tubes, films, sheets, containers, foams, and other various molded products or composite molded products. Specific examples of resin molded products include indoor equipment (floor materials, wall materials, toilet seats, bathtubs, washstands, sinks, tables, etc.), protective cases for artworks, kitchenware (tea bowls, lunch boxes, trays, water bottles, etc.) Plastic tableware, cutting boards, beverage containers, refrigerator containers, etc.), personal items (combs, shaving tools, brushes, earphones, glasses frames, etc.), childcare items (toys, etc.), daily goods (trash cans) , Dust collectors, general containers, etc.), packaging materials (garbage bags, packaging films, etc.), automobile interior parts (handles, seats, etc.), items that can be touched by an unspecified number of people (vehicle suspension leather and its grips) , Waiting room chairs and benches, handrails, various push buttons, telephone handsets, pachinko machines, etc., medical supplies (hospital dishes, syringes, stethoscopes, surgical gloves, infusion bottles, catheters, medical equipment resin parts, etc. ), Stationery instruments (ballpoint pens, pencils, etc.) Electrical and electrical appliances (refrigerator, dish washer, washing machine, vacuum cleaner, fan, air conditioning, TV, computer, personal computer or the like), and the like.
(3)その他の分野への適用
本発明の抗菌性無機酸化物微粒子は、浄水器、プールの水などの水処理剤、漁網、架橋などのセマント建造物、鉄骨建材、家屋の建築材料、建具材(壁紙、襖、障子、畳等)、セラミックス類(タイル、陶器、磁器等)、革類製品(鞄、靴、毛皮、サイフ、定期入れ等)、木製品(机、戸棚、タンス、床板、天井板、内装材等)、紙製品(ティッシュペーパー、ダンボール紙、紙コップ、紙皿等)、ガラス製品(花瓶、水槽等)、金属製品(サッシ、ケトル、カーエアコン等)、化粧品材料、猫砂などに抗菌・防臭・防黴・防藻性を付与することができる。
(3) Application to other fields The antibacterial inorganic oxide fine particles of the present invention include water purifiers, water treatment agents such as pool water, fishing nets, semant structures such as bridges, steel building materials, building materials for buildings, and joinery. Materials (wallpaper, bags, shoji, tatami, etc.), ceramics (tiles, pottery, porcelain, etc.), leather products (bags, shoes, fur, wallets, regular holders, etc.), wooden products (desks, cupboards, chests, floor boards, Ceiling boards, interior materials, etc.), paper products (tissue paper, cardboard paper, paper cups, paper plates, etc.), glass products (vases, water tanks, etc.), metal products (sashes, kettles, car air conditioners, etc.), cosmetic materials, cats Antibacterial, deodorant, antifungal and antialgal properties can be imparted to sand and the like.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003366820A JP4514433B2 (en) | 2003-10-28 | 2003-10-28 | Antibacterial inorganic oxide fine particles and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003366820A JP4514433B2 (en) | 2003-10-28 | 2003-10-28 | Antibacterial inorganic oxide fine particles and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005132724A JP2005132724A (en) | 2005-05-26 |
JP4514433B2 true JP4514433B2 (en) | 2010-07-28 |
Family
ID=34644997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003366820A Expired - Lifetime JP4514433B2 (en) | 2003-10-28 | 2003-10-28 | Antibacterial inorganic oxide fine particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4514433B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101134112B (en) * | 2006-08-28 | 2012-09-05 | 厦门量子星科技有限公司 | Silver-carrying active aluminum oxide antimicrobials and method for preparing the same |
JP5455501B2 (en) * | 2009-08-07 | 2014-03-26 | 日揮触媒化成株式会社 | Dispersion of core-shell composite oxide fine particles, method for producing the dispersion, coating composition containing the core-shell composite oxide fine particles, curable coating, and substrate with curable coating |
JP5557662B2 (en) | 2010-09-10 | 2014-07-23 | 日揮触媒化成株式会社 | Dispersion of core-shell type inorganic oxide fine particles, process for producing the same, and coating composition containing the dispersion |
GB201217159D0 (en) * | 2012-09-26 | 2012-11-07 | Titan Furniture Uk Ltd | Furniture |
CN103594197B (en) * | 2013-11-22 | 2016-01-20 | 东莞市瀛通电线有限公司 | A kind of preparation method of ultraviolet induction earphone cord and goods |
CN104008820B (en) * | 2014-06-05 | 2016-09-14 | 东莞市瀛通电线有限公司 | A kind of silk-screen ultraviolet sensing preparation method of variable color earphone cord, goods and application |
CN106280174A (en) * | 2016-08-30 | 2017-01-04 | 胡何辉 | A kind of syringe jacket high intensity anti-biotic material and preparation method thereof |
JP6876908B2 (en) * | 2016-12-12 | 2021-05-26 | 富士フイルムビジネスイノベーション株式会社 | Titanium oxide particles and their production method, photocatalyst forming composition, photocatalyst, and structure |
KR102112860B1 (en) * | 2018-09-17 | 2020-05-19 | 풍림유화공업(주) | Inorganic deordorant agent manufacturing method for down and inorganic deordorant agent by using the same |
CN115491130A (en) * | 2022-10-08 | 2022-12-20 | 中建海龙科技有限公司 | A kind of antibacterial artificial stone polishing liquid and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU3441293A (en) * | 1991-08-09 | 1994-08-15 | E.I. Du Pont De Nemours And Company | Antimicrobial compositions, process for preparing the same and use |
JP3311966B2 (en) * | 1996-07-15 | 2002-08-05 | 石原産業株式会社 | Antibacterial antifungal powder and method for producing the same |
-
2003
- 2003-10-28 JP JP2003366820A patent/JP4514433B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005132724A (en) | 2005-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5730995A (en) | Antibacterial substance | |
TWI325853B (en) | Glassy antibacterial agent and antibacterial product | |
US9089138B2 (en) | Organosilane-nonionic water stable quaternary ammonium compositions and methods | |
JP4514433B2 (en) | Antibacterial inorganic oxide fine particles and method for producing the same | |
JP6409135B2 (en) | Antimicrobial coating and method for forming it | |
DE112008002943T5 (en) | Modified mineral-based fillers | |
KR101732276B1 (en) | Whole cloth radiating far-infrared ray and manufacturing process thereof | |
WO2012037615A1 (en) | An improved antimicrobial agent and method of maintaining microbial control | |
JP3746327B2 (en) | Deodorant precursor material and method for producing the same | |
TW200814930A (en) | Silver-containing inorganic disinfectant | |
JP2002053416A (en) | Functional material | |
KR200415108Y1 (en) | Silver Nano Adsorbed Antibacterial Cleaning Mop | |
JP3971059B2 (en) | Glass antibacterial agent | |
JP2002338481A (en) | Silver-based antimicrobial agent | |
JP5132163B2 (en) | Wet wiper | |
KR100349065B1 (en) | Antibacterial Substance | |
US20140356627A1 (en) | Brookite-form titanium oxide powder and method for producing thereof | |
JP4037038B2 (en) | Glass antibacterial agent | |
JP6392430B2 (en) | Antiviral agent | |
JP3991079B2 (en) | Antibacterial agent | |
JP2022159227A (en) | Processing agent, treatment agent, processed article, and manufacturing method of processed article | |
JP3476896B2 (en) | Antibacterial resin molded product and method for producing the same | |
JP3963671B2 (en) | Antibacterial composition excellent in durability | |
JP2001114610A (en) | Antimicrobial fatty acid compound and method for producing the same | |
JP3558460B2 (en) | Antibacterial agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100511 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100511 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4514433 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130521 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140521 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |