[go: up one dir, main page]

JP4508846B2 - Water supply and drain water treatment facility and method for suppressing scale adhesion - Google Patents

Water supply and drain water treatment facility and method for suppressing scale adhesion Download PDF

Info

Publication number
JP4508846B2
JP4508846B2 JP2004340943A JP2004340943A JP4508846B2 JP 4508846 B2 JP4508846 B2 JP 4508846B2 JP 2004340943 A JP2004340943 A JP 2004340943A JP 2004340943 A JP2004340943 A JP 2004340943A JP 4508846 B2 JP4508846 B2 JP 4508846B2
Authority
JP
Japan
Prior art keywords
drain
water
condenser
drain water
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004340943A
Other languages
Japanese (ja)
Other versions
JP2006150171A (en
Inventor
二郎 村山
泰彦 莊田
勝彦 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004340943A priority Critical patent/JP4508846B2/en
Publication of JP2006150171A publication Critical patent/JP2006150171A/en
Application granted granted Critical
Publication of JP4508846B2 publication Critical patent/JP4508846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、発電用の蒸気タービンの排蒸気から水分を回収し発電蒸気として再利用するための給水及びドレン水処理設備、および給水及びドレン水処理設備のスケール付着抑制方法に関するものである。   The present invention relates to a water supply and drain water treatment facility for recovering moisture from exhaust steam of a steam turbine for power generation and reusing it as power generation steam, and a method for suppressing scale adhesion in the water supply and drain water treatment facility.

周知のように、火力発電所や原子力発電所などの発電施設では、火力や原子力などのエネルギー源を用いて発生させた高温で高圧な蒸気をタービンに吹き当ててタービンを回転駆動させて機械的エネルギーに変換し、このタービンの機械的エネルギーを電気エネルギーに変換して電力を得ている。発電用のタービンを回転駆動した後の排蒸気は、そのまま捨てられてしまうのではなく、復水器にて冷却されて水に凝縮され、その水を再び発電用の蒸気を得るための貯水として回収している。   As is well known, in a power generation facility such as a thermal power plant or a nuclear power plant, a high-temperature and high-pressure steam generated using an energy source such as thermal power or nuclear power is blown to the turbine to drive the turbine mechanically. Electric power is obtained by converting the mechanical energy of the turbine into electric energy. The exhaust steam after rotating the turbine for power generation is not thrown away as it is, but is cooled by a condenser and condensed into water, and the water is stored as water to obtain steam for power generation again. Collected.

前記系統水循環ラインを構成している配管設備を、本明細書では、給水及びドレン水処理設備と記す。この給水及びドレン水処理設備は、基本的構成として、発電用蒸気タービンの排蒸気から水分を分離回収する湿分分離器および湿分分離器ドレンと、前記湿分分離器ドレン水と復水器からの給水とを複数の低圧ヒータを通る低圧ヒータドレンと、前記復水器と低圧ヒータとの間に設けられている混床式イオン交換樹脂濾過器とを少なくとも具備している。なお、給水及びドレン水処理設備では、前記低圧ヒータの下流に脱気器を設け、この脱気器により前記湿分分離器ドレンからのドレン水と給水から溶存ガスを除去する構成を取る場合がある。また、発電設備では、給水及びドレン水処理設備において復水からの給水は、連続して給水系配管設備に流され、低圧給水加熱器および高圧給水加熱器を経て高温にされ、最後に蒸気発生器によって蒸気にされ、タービン駆動に供されることになる。その後、タービンを駆動した排蒸気は、前述のようにドレン水処理設備によって再び水分を回収され、再利用されることになる。このように発電設備では、タービンを駆動する水分を給水系配管設備とドレン水処理設備とによって循環させつつ再利用している。   In this specification, the piping equipment constituting the system water circulation line is referred to as water supply and drain water treatment equipment. This water supply and drain water treatment facility is basically composed of a moisture separator and moisture separator drain for separating and recovering moisture from the exhaust steam of the power generation steam turbine, and the moisture separator drain water and condenser. At least a low-pressure heater drain that passes through a plurality of low-pressure heaters, and a mixed-bed type ion exchange resin filter provided between the condenser and the low-pressure heater. In addition, in the feed water and drain water treatment facility, there is a case where a deaerator is provided downstream of the low-pressure heater, and the degasser removes dissolved gas from the drain water and the feed water from the moisture separator drain. is there. In addition, in the power generation equipment, the feed water from the condensate in the feed water and drain water treatment equipment is continuously flowed to the feed water system piping equipment, is heated to a high temperature through the low pressure feed water heater and the high pressure feed water heater, and finally steam is generated. It is made into steam by the vessel and used for driving the turbine. Thereafter, the exhaust steam that has driven the turbine is recovered and reused by the drain water treatment facility as described above. Thus, in the power generation equipment, the water that drives the turbine is reused while being circulated by the water supply system piping equipment and the drain water treatment equipment.

前記ドレン水処理設備および給水系配管設備では、そのほとんどの機器および配管は、炭素鋼を材質として製造されている。そのため復水、給水の水循環系の機器や配管から炭素鋼の腐食に伴い酸化鉄などの不純物が発生し、循環水に混入し、ポンプを始めとする各種機器にスケールとして付着して、伝熱損失や水循環エネルギー損失などの発電設備における運転エネルギーの損失を生じている。   In the drain water treatment facility and the water supply system piping facility, most of the equipment and piping are manufactured using carbon steel as a material. For this reason, impurities such as iron oxide are generated from the equipment and piping of the condensate and feed water system due to the corrosion of the carbon steel, mixed into the circulating water, and adhered to various equipment such as pumps as heat transfer. Loss of operating energy in power generation facilities such as loss and water circulation energy loss.

このような発電設備における水循環系におけるスケール発生の抑制方法として、従来、復水系にアンモニア(pH調整剤)を注入するとともに、給水系にヒドラジン(脱酸剤)を注入して酸化鉄の発生を防止する構成(特許文献1)や、配管にフィルターを設け、これによって酸化鉄粒子を除去する構成(特許文献2)や、配管に徐鉄装置を取り付けて酸化鉄粒子を除去する構成(特許文献3)や、ポンプインペラ(羽根車)表面にクロムメッキを施してポンプへのスケール付着を防止する構成(特許文献4)等が開示されている。   As a method of suppressing the scale generation in the water circulation system in such a power generation facility, conventionally, ammonia (pH adjuster) is injected into the condensate system, and hydrazine (deoxidizer) is injected into the water supply system to generate iron oxide. Configuration to prevent (Patent Document 1), configuration to remove the iron oxide particles by providing a filter in the piping (Patent Document 2), and configuration to remove the iron oxide particles by attaching a gradual iron device to the piping (Patent Document) 3) and a structure (Patent Document 4) that prevents the scale from adhering to the pump by plating the surface of the pump impeller (impeller) with chrome.

特開平11−132673号公報JP-A-11-132673 特開2001−17968号公報Japanese Patent Laid-Open No. 2001-17968 特開平8−42307号公報JP-A-8-42307 特開平8−100789号公報Japanese Patent Laid-Open No. 8-100789

しかしながら、前記アンモニアおよびヒドラジンを循環水に注入する構成では、ポンプへのスケール付着を抑制するには効果的に不十分である。また、配管にフィルターを設けて酸化鉄粒子を除去する構成では、析出した鉄分は除去できても析出前の鉄イオンは除去できないので、効果的に不十分である。また、徐鉄装置によって酸化鉄粒子を除去する構成では、前記フィルターによる除去構成と同様に、鉄イオンの除去ができないため、効果的に不十分である。さらに、ポンプインペラにクロルメッキを施す構成では、効果が不十分であるばかりでなく、ポンプ以外へのスケール付着を防ぐことができない。   However, the configuration in which the ammonia and hydrazine are injected into the circulating water is not effective enough to prevent the scale from adhering to the pump. Moreover, in the structure which removes iron oxide particles by providing a filter in the pipe, even if the precipitated iron content can be removed, the iron ions before precipitation cannot be removed, which is insufficient effectively. Further, in the configuration in which the iron oxide particles are removed by the gradual iron device, the iron ions cannot be removed, as in the configuration by the filter, and thus the effect is insufficient. Furthermore, the structure in which the chrome plating is applied to the pump impeller is not only ineffective, but also cannot prevent the scale from adhering to parts other than the pump.

本発明は、上記従来の事情に鑑みてなされたものであって、発電設備の給水及びドレン水処理設備におけるスケール付着を確実に防止し、延いては給水系を含めた全循環水系におけるスケール付着を防止することによって、発電設備におけるエネルギー損失を抑制しうることを課題とする。   The present invention has been made in view of the above-described conventional circumstances, and reliably prevents scale adhesion in the water supply and drain water treatment equipment of the power generation equipment, and thus scale adhesion in the entire circulating water system including the water supply system. It is an object to be able to suppress energy loss in power generation facilities by preventing the above.

上述した課題を解決するために、本発明の[請求項1]にかかる給水及びドレン水処理設備は、発電用蒸気タービンの排蒸気から水分を分離回収する湿分分離器および湿分分離器ドレンと、復水器から下流の複数の低圧ヒータを通る低圧ヒータドレンと、復水器と低圧ヒータとの間に設けられている混床式イオン交換樹脂設備とを少なくとも具備してなるドレン水処理設備であって、前記ドレン水及び復水器から供給される給水中の鉄イオンを低減する鉄イオン低減手段を具備してなり、前記鉄イオン低減手段が、前記湿分分離器ドレン水の一部を直接に前記復水器に送り込むバイパスドレンであることを特徴とする。 In order to solve the above-described problems, a water supply and drain water treatment facility according to [Claim 1] of the present invention includes a moisture separator and a moisture separator drain for separating and recovering moisture from exhaust steam of a power generation steam turbine. A drain water treatment facility comprising at least a low pressure heater drain passing through a plurality of low pressure heaters downstream from the condenser, and a mixed bed ion exchange resin facility provided between the condenser and the low pressure heater And comprising iron ion reducing means for reducing iron ions in the feed water supplied from the drain water and condenser , wherein the iron ion reducing means is a part of the moisture separator drain water. characterized in that it is a bypass drain feeding the condenser directly to the.

本発明の[請求項]の給水及びドレン水処理設備は、前記[請求項1]において、前記鉄イオン低減手段が、前記低圧ヒータドレン水の一部を直接に前記復水器に送り込むバイパスドレンであることを特徴とする。 Water and drain water treatment facility in the claim 2 of the present invention, Oite the [claim 1], is the iron ion reducing means, fed to the condenser a portion of the low pressure heater drain water directly It is a bypass drain.

本発明の[請求項]は、給水及びドレン水処理設備におけるスケール付着抑制方法に関するもので、このスケール付着抑制方法は、発電用蒸気タービンの排蒸気から水分を分離回収する湿分分離器および湿分分離器ドレンと、復水器から下流の複数の低圧ヒータを通る低圧ヒータドレンと、復水器と低圧ヒータとの間に設けられている混床式イオン交換樹脂設備とを少なくとも具備してなるドレン水処理設備におけるスケール付着抑制方法であって、前記ドレン水及び給水中の鉄イオンを低減化することによって前記スケール付着を抑制する際、前記鉄イオン低減を、前記湿分分離器ドレン水の一部を直接に前記復水器に送り込み、酸素に富む復水器水に接触させてドレン水中の鉄イオンを固体酸化物として形成させることにより実現することを特徴とする。 [Claim 3 ] of the present invention relates to a method for suppressing scale adhesion in water supply and drain water treatment equipment, and the method for suppressing scale adhesion includes a moisture separator that separates and recovers moisture from exhaust steam of a power generation steam turbine, and At least a moisture separator drain, a low-pressure heater drain passing through a plurality of low-pressure heaters downstream from the condenser, and a mixed-bed ion exchange resin facility provided between the condenser and the low-pressure heater A method for suppressing scale adhesion in a drain water treatment facility , wherein when the scale adhesion is suppressed by reducing iron ions in the drain water and feed water, the moisture separator drain water is reduced. This is realized by directly feeding a part of the water into the condenser and bringing it into contact with oxygen-rich condenser water to form iron ions in the drain water as a solid oxide. It is characterized by that.

本発明の[請求項]のスケール付着抑制方法は、前記[請求項3]において、前記鉄イオン低減を、前記低圧ヒータドレン水の一部を直接に前記復水器に送り込み、酸素に富む復水器水に接触させてドレン水中の鉄イオンを固体酸化物として形成させることにより実現することを特徴とする。 Scale method for suppressing adhesion [Claim 4] of the present invention, Oite the [claim 3], the iron ion reduced, a portion of the low pressure heater drain water directly fed into the condenser, the oxygen It is realized by forming iron ions in drain water as solid oxide by contacting with rich condenser water.

なお、前記構成において、脱気滞留槽としては、「5分以上、さらに好ましくは10分以上の滞留時間を有する従来の脱気滞留槽」より容量が大きいことが好ましい。滞留時間が増加することにより、鉄イオンのFe34への反応が進み、鉄イオン濃度が減少するので、スケールが付着しにくくなるからである。 In addition, in the said structure, as a deaeration residence tank, it is preferable that a capacity | capacitance is larger than "the conventional deaeration residence tank which has a residence time of 5 minutes or more, More preferably, 10 minutes or more." This is because when the residence time increases, the reaction of iron ions to Fe 3 O 4 proceeds and the iron ion concentration decreases, so that the scale is difficult to adhere.

本発明にかかる給水及びドレン水処理設備および該設備におけるスケール付着抑制方法は、給水及びドレン水中の鉄イオンを低減させることができるので、スケールの主成分である酸化鉄の構成要素を低減することになり、効果的にスケール付着を抑制することができる。   Since the water supply and drain water treatment facility according to the present invention and the scale adhesion suppression method in the facility can reduce iron ions in the water supply and drain water, the constituent elements of iron oxide, which is the main component of the scale, are reduced. Thus, scale adhesion can be effectively suppressed.

以下に、本発明にかかる給水及びドレン水処理設備および該設備におけるスケール付着抑制方法の実施例を図1に基づいて詳細に説明する。なお、以下に示す実施例は本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。   Below, the Example of the water supply and drain water treatment equipment concerning this invention and the scale adhesion suppression method in this equipment is described in detail based on FIG. In addition, the Example shown below is only the illustration for demonstrating this invention suitably, and does not limit this invention at all.

図1は、本発明にかかるドレン水処理設備の概略構成図である。このドレン水処理設備は、他の発電設備のドレン水処理設備と同様に、基本的構成として、発電用蒸気タービンの排蒸気から水分を分離回収する湿分分離器1と湿分分離器ドレン2と、前記湿分分離器ドレン2からのドレン水と、復水器5からの給水とを複数の低圧ヒータ4a〜4dを通る低圧ヒータドレン6と、前記復水器5と低圧ヒータ4dとの間に設けられている混床式イオン交換樹脂設備7とを少なくとも具備している。   FIG. 1 is a schematic configuration diagram of a drain water treatment facility according to the present invention. As with the drain water treatment facilities of other power generation facilities, this drain water treatment facility has a moisture separator 1 and a moisture separator drain 2 that separate and recover moisture from the exhaust steam of the power generation steam turbine as a basic configuration. A low-pressure heater drain 6 that passes drain water from the moisture separator drain 2 and feed water from the condenser 5 through a plurality of low-pressure heaters 4a to 4d, and between the condenser 5 and the low-pressure heater 4d. And at least a mixed bed type ion exchange resin facility 7.

本発明のドレン水処理設備の特徴は、鉄イオン低減手段を有する点にある。この鉄イオン低減手段として、本実施例1では、前記湿分分離器ドレン2、前記低圧ヒータドレン6のいずれか一方もしくは両方に鉄溶出抑制薬剤注入装置8a、8bを取り付けた構成にある。この鉄溶出抑制薬剤としては、ヒドラジン、アンモニア、ETAを挙げることができる。アンモニアとETAは、pHを上昇させるので、ドレン系統の配管(鉄)の溶出により発生する鉄イオン濃度を下げる働きがある。一方、ヒドラジンは、それが持つ防食効果により鉄の溶解を低下させる。これらの薬剤の注入によって、スケール付着量を、主給水ポンプでは約1/4に、低圧ヒータードレンポンプでは約1/10に低減できる。   The drain water treatment facility of the present invention is characterized by having iron ion reduction means. As this iron ion reducing means, in the first embodiment, iron elution suppression chemical injection devices 8a and 8b are attached to one or both of the moisture separator drain 2 and the low pressure heater drain 6. Examples of the iron elution inhibitor include hydrazine, ammonia, and ETA. Ammonia and ETA increase the pH, and thus have a function of reducing the iron ion concentration generated by elution of the drain system pipe (iron). On the other hand, hydrazine reduces iron dissolution due to its anticorrosive effect. By injecting these chemicals, the amount of scale adhesion can be reduced to about 1/4 for the main feed pump and about 1/10 for the low-pressure heater drain pump.

本実施例2では、鉄イオン低減手段として、まず、前記低圧ヒータ4aの下上流に脱気対流槽9を設け、さらにこの脱気滞留槽9に鉄溶出抑制薬剤注入装置8cを取り付ける。   In the second embodiment, as a means for reducing iron ions, first, a deaeration convection tank 9 is provided on the lower upstream side of the low-pressure heater 4a, and an iron elution suppression chemical injection device 8c is attached to the deaeration residence tank 9.

鉄イオンは150℃以上になると分単位で反応して鉄錆に変化し付着性が減少する。脱気滞留槽9は150℃以上に加熱可能になっており、例えば、180℃に維持されるようになっている。この温度制御によって、給水及びドレン水中の鉄イオンは固体状の酸化鉄に変化する。現在、加圧水型原子力発電所では、多くのプラントでこの滞留槽と同等の脱気器を設置しているが、本発明では、加圧水型原子力発電所に限らず、いかなる発電設備においても、この脱気滞留槽9を必須構成として具備する。この脱気滞留槽9は、その目的からして、従来使用の脱気器より容量を大きくすることが望ましい。この脱気滞留槽9を設けた場合、主給水ポンプ、湿分分離器ドレンポンプ等の150℃以上で運転するポンプに対して有効である。主給水ポンプにおいては、150℃、約5分間の滞留時間を有する脱気滞留槽9を設けることにより、スケール付着量を約1/10に低減できる。この脱気滞留槽9に対して前記実施例1において用いたと同様の鉄溶出抑制薬剤注入装置8cを設けることにより、槽内壁からの鉄の溶出を抑制できるため、さらにドレン水中の鉄イオン量を低減できる。   When the iron ion reaches 150 ° C. or more, it reacts in units of minutes to change to iron rust and the adhesion is reduced. The deaeration residence tank 9 can be heated to 150 ° C. or higher, and is maintained at 180 ° C., for example. By this temperature control, iron ions in the feed water and drain water are changed to solid iron oxide. At present, pressurized water nuclear power plants have a deaerator equivalent to this retention tank in many plants. However, in the present invention, this degassing is not limited to pressurized water nuclear power plants. The gas retention tank 9 is provided as an essential component. For this purpose, it is desirable that the deaeration staying tank 9 has a larger capacity than that of a conventionally used deaerator. The provision of this degassing residence tank 9 is effective for pumps operating at 150 ° C. or higher, such as a main feed water pump and a moisture separator drain pump. In the main feed water pump, by providing the deaeration residence tank 9 having a residence time of about 5 minutes at 150 ° C., the amount of scale adhesion can be reduced to about 1/10. By providing the same iron elution suppression chemical injection device 8c as used in Example 1 for the deaeration staying tank 9, elution of iron from the inner wall of the tank can be suppressed, and the amount of iron ions in the drain water is further reduced. Can be reduced.

本実施例3では、鉄イオン低減手段として、前記湿分分離器ドレン2のドレンポンプ(不図示)下流のドレン水の一部を直接に前記復水器5に送り込むバイパスドレン2aを設ける。   In the third embodiment, as a means for reducing iron ions, a bypass drain 2a for directly feeding a part of drain water downstream of a drain pump (not shown) of the moisture separator drain 2 to the condenser 5 is provided.

復水器5の水質中にはppbレベルの溶存酸素が存在しており、このバイパスドレン2aの設置により、この溶存酸素と鉄イオンを反応させることによって鉄イオン濃度を減少させる。この作用では、主給水ポンプに対して有効である。主給水ポンプにおいては、ドレン水の復水器5への注入によって、スケール付着量を約1/3に低減できる。   The water quality of the condenser 5 contains dissolved oxygen at the ppb level, and the installation of the bypass drain 2a reduces the iron ion concentration by reacting the dissolved oxygen with iron ions. This action is effective for the main feed pump. In the main feed pump, the amount of scale adhesion can be reduced to about 1/3 by injecting drain water into the condenser 5.

本実施例4では、鉄イオン低減手段として、前記低圧ヒータドレン6のドレンポンプ10下流のドレン水の一部を直接に前記復水器5に送り込むバイパスドレン6aを設ける。   In the fourth embodiment, as a means for reducing iron ions, a bypass drain 6a for directly feeding a part of drain water downstream of the drain pump 10 of the low-pressure heater drain 6 to the condenser 5 is provided.

復水器5の水質中にはppbレベルの溶存酸素が存在しており、このバイパスドレン6aの設置により、この溶存酸素と鉄イオンを反応させることによって鉄イオン濃度を減少させる。この作用では、主給水ポンプに対して有効である。主給水ポンプにおいては、ドレン水の復水器5への注入によって、スケール付着量を約1/3に低減できる。   The water quality of the condenser 5 contains dissolved oxygen at a ppb level, and the installation of the bypass drain 6a reduces the iron ion concentration by reacting the dissolved oxygen with iron ions. This action is effective for the main feed pump. In the main feed pump, the amount of scale adhesion can be reduced to about 1/3 by injecting drain water into the condenser 5.

本実施例5では、鉄イオン低減手段として、前記復水器5と低圧ヒータ4dとの間に設けられている混床式イオン交換樹脂設備7に前記給水の全量を送る配管構造とする。   In the fifth embodiment, as a means for reducing iron ions, a pipe structure for sending the entire amount of the water supply to the mixed bed type ion exchange resin equipment 7 provided between the condenser 5 and the low-pressure heater 4d is adopted.

この混床式イオン交換樹脂設備について説明すると、次のようである。周知のように、イオン交換樹脂は本来復水中の不純性イオンを除去する効果を有するが、フィルターとは異なり鉄イオンを除去する効果がある。したがって、給水を混床式イオン交換樹脂設備7に全量通水することによって、ドレン水中の鉄イオン量を大幅に低減することができる。かかる手段により、主給水ポンプにおいては、スケール付着量を約1/2に低減できる。   The mixed bed ion exchange resin facility will be described as follows. As is well known, an ion exchange resin originally has an effect of removing impurity ions in condensate, but unlike a filter, it has an effect of removing iron ions. Therefore, the total amount of iron ions in the drain water can be greatly reduced by passing the entire amount of the feed water through the mixed bed type ion exchange resin facility 7. By such means, the amount of scale adhesion can be reduced to about ½ in the main feed pump.

本実施例6では、鉄イオン低減手段として、前記湿分分離器ドレン2を構成する配管および/または前記低圧ヒータドレン6を構成する配管の少なくとも一部を鉄含量低減鋼製配管とする。鉄含量低減鋼とは、具体的には、ステンレスまたは低合金鋼を意味する。   In the sixth embodiment, as iron ion reducing means, at least a part of the pipe constituting the moisture separator drain 2 and / or the pipe constituting the low-pressure heater drain 6 is a steel pipe with reduced iron content. Specifically, steel with reduced iron content means stainless steel or low alloy steel.

鉄発生源である湿分離器ドレン2、低圧ヒータードレン6の系統材料を炭素鋼からステンレスまたは低合金鋼に変更すれば、ステンレス及び低合金鋼は炭素鋼よりも耐食性が良いので、鉄イオンの発生を防止できる。例えば、全配管をステンレスもしくは低合金鋼製の配管に置換すれば、主給水ポンプにおいては、スケール付着量を約1/10に低減できる。   If the material of the wet separator drain 2 and the low-pressure heater drain 6 that are iron sources is changed from carbon steel to stainless steel or low alloy steel, the stainless steel and low alloy steel have better corrosion resistance than carbon steel. Occurrence can be prevented. For example, if all the pipes are replaced with pipes made of stainless steel or low alloy steel, the amount of scale adhesion can be reduced to about 1/10 in the main feed pump.

前記各実施例の鉄イオン低減手段を単独に用いてもよいが、組み合わせて使用することにより、相乗効果によって、ドレン水中の鉄イオンを大幅に低減することが可能となる。例えば、薬剤注入によりpH値を上昇させることによって、スケール付着の主要因である鉄イオンの反応速度を上げ、脱気滞留槽9で鉄イオンをFe34に変えることによって、鉄イオン濃度を減少させる。かかる構成における鉄イオンからFe34への反応式を下記に示す。
3Fe2+ + 6OH- → Fe34 + H2O + H2
したがって、pH値を上げる(OH-の濃度を上昇させる)と、上式は右辺に移行しようとするため、Fe34の生成速度は速くなる。
The iron ion reducing means of each of the above embodiments may be used alone, but by using them in combination, iron ions in the drain water can be greatly reduced by a synergistic effect. For example, by increasing the pH value by injecting chemicals, the reaction rate of iron ions, which is the main factor of scale adhesion, is increased, and by changing the iron ions to Fe 3 O 4 in the degassing residence tank 9, the iron ion concentration is reduced. Decrease. The reaction formula from iron ions to Fe 3 O 4 in such a configuration is shown below.
3Fe 2+ + 6OH → Fe 3 O 4 + H 2 O + H 2
Therefore, when the pH value is increased (the OH concentration is increased), the above equation tends to shift to the right side, and thus the production rate of Fe 3 O 4 increases.

また、前記給水ポンプの下流に鉄イオン監視モニター11を設け、このモニター11の測定データに基づき前記鉄溶出抑制薬剤注入装置8a,8b,8cにおける薬剤注入量が制御することが望ましい。この構成によれば、鉄イオン濃度減少の確認が出来るようになるとともに、その濃度を監視できるようになり、鉄イオン濃度が上昇した場合に薬剤の注入量を上昇させ、鉄イオン発生量を下げることが可能になる。   Further, it is desirable that an iron ion monitoring monitor 11 is provided downstream of the feed water pump, and the drug injection amount in the iron elution suppression drug injection devices 8a, 8b, 8c is controlled based on the measurement data of the monitor 11. According to this configuration, it becomes possible to confirm the decrease in the iron ion concentration and to monitor the concentration. When the iron ion concentration increases, the injection amount of the drug is increased and the iron ion generation amount is decreased. It becomes possible.

以上のように、本発明にかかるドレン水処理設備およびスケール付着抑制方法称)は、発電設備の水循環系のスケール発生を効果的に抑制するに有用であり、発電設備の運転の省エネルギー化に大きく貢献することができる。   As described above, the drain water treatment facility and the scale adhesion suppression method according to the present invention are useful for effectively suppressing the generation of scale in the water circulation system of the power generation facility, and greatly contribute to energy saving in the operation of the power generation facility. Can contribute.

本発明に係るドレン水処理設備の概略構成図である。It is a schematic block diagram of the drain water treatment facility which concerns on this invention.

符号の説明Explanation of symbols

1 湿分分離器
2 湿分分離器ドレン
2a 湿分分離器ドレンのバイパス
3 給水ポンプ
4a,4b,4c,4d 低圧ポンプ
5 復水器
6 低圧ヒータドレン
6a 低圧ヒータドレンのバイパス
7 混床式イオン交換樹脂設備
8a,8b,8c 鉄溶出抑制薬剤注入装置
9 脱気滞留槽
10 低圧ヒータドレンポンプ
11 監視モニタ
DESCRIPTION OF SYMBOLS 1 Moisture separator 2 Moisture separator drain 2a Moisture separator drain bypass 3 Feed water pump 4a, 4b, 4c, 4d Low pressure pump 5 Condenser 6 Low pressure heater drain 6a Low pressure heater drain bypass 7 Mixed bed type ion exchange resin Equipment 8a, 8b, 8c Iron elution suppression chemical injection device 9 Deaeration residence tank 10 Low-pressure heater drain pump 11 Monitoring monitor

Claims (4)

発電用蒸気タービンの排蒸気から水分を分離回収する湿分分離器および湿分分離器ドレンと、復水器から下流の複数の低圧ヒータを通る低圧ヒータドレンと、復水器と低圧ヒータとの間に設けられている混床式イオン交換樹脂設備とを少なくとも具備してなるドレン水処理設備であって、
前記ドレン水及び復水器から供給される給水中の鉄イオンを低減する鉄イオン低減手段を具備してなり、
前記鉄イオン低減手段が、前記湿分分離器ドレン水の一部を直接に前記復水器に送り込むバイパスドレンであることを特徴とする給水及びドレン水処理設備。
Moisture separator and moisture separator drain that separates and recovers water from the steam generated from the steam turbine for power generation, low-pressure heater drain that passes through multiple low-pressure heaters downstream from the condenser, and between the condenser and the low-pressure heater A drain water treatment facility comprising at least a mixed bed type ion exchange resin facility provided in
Comprising iron ion reduction means for reducing iron ions in the water supplied from the drain water and condenser ,
The water supply and drain water treatment facility, wherein the iron ion reducing means is a bypass drain that directly sends a part of the moisture separator drain water to the condenser .
前記鉄イオン低減手段が、前記低圧ヒータドレン水の一部を直接に前記復水器に送り込むバイパスドレンであることを特徴とする請求項1に記載の給水及びドレン水処理設備。 2. The water supply and drain water treatment facility according to claim 1 , wherein the iron ion reduction means is a bypass drain that directly sends a part of the low-pressure heater drain water to the condenser. 発電用蒸気タービンの排蒸気から水分を分離回収する湿分分離器および湿分分離器ドレンと、復水器から下流の複数の低圧ヒータを通る低圧ヒータドレンと、復水器と低圧ヒータとの間に設けられている混床式イオン交換樹脂設備とを少なくとも具備してなるドレン水処理設備におけるスケール付着抑制方法であって、
前記ドレン水及び給水中の鉄イオンを低減化することによって前記スケール付着を抑制する際、
前記鉄イオン低減を、前記湿分分離器ドレン水の一部を直接に前記復水器に送り込み、酸素に富む復水器水に接触させてドレン水中の鉄イオンを固体酸化物として形成させることにより実現することを特徴とするスケール付着抑制方法。
Moisture separator and moisture separator drain that separates and recovers water from the steam generated from the steam turbine for power generation, low-pressure heater drain that passes through multiple low-pressure heaters downstream from the condenser, and between the condenser and the low-pressure heater A scale bed suppression method in a drain water treatment facility comprising at least a mixed bed type ion exchange resin facility provided in
When suppressing the scale adhesion by reducing the iron ions in the drain water and feed water ,
The iron ion reduction is accomplished by feeding a portion of the moisture separator drain water directly into the condenser and contacting the oxygen rich condenser water to form iron ions in the drain water as a solid oxide. A method for suppressing scale adhesion, which is realized by :
前記鉄イオン低減を、前記低圧ヒータドレン水の一部を直接に前記復水器に送り込み、酸素に富む復水器水に接触させてドレン水中の鉄イオンを固体酸化物として形成させることにより実現することを特徴とする請求項3に記載のスケール付着抑制方法。 The iron ion reduction is realized by feeding a part of the low-pressure heater drain water directly to the condenser and bringing it into contact with oxygen-rich condenser water to form iron ions in the drain water as a solid oxide. The method for suppressing scale adhesion according to claim 3 .
JP2004340943A 2004-11-25 2004-11-25 Water supply and drain water treatment facility and method for suppressing scale adhesion Expired - Fee Related JP4508846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340943A JP4508846B2 (en) 2004-11-25 2004-11-25 Water supply and drain water treatment facility and method for suppressing scale adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340943A JP4508846B2 (en) 2004-11-25 2004-11-25 Water supply and drain water treatment facility and method for suppressing scale adhesion

Publications (2)

Publication Number Publication Date
JP2006150171A JP2006150171A (en) 2006-06-15
JP4508846B2 true JP4508846B2 (en) 2010-07-21

Family

ID=36629085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340943A Expired - Fee Related JP4508846B2 (en) 2004-11-25 2004-11-25 Water supply and drain water treatment facility and method for suppressing scale adhesion

Country Status (1)

Country Link
JP (1) JP4508846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302577B2 (en) * 2008-06-17 2013-10-02 三菱重工業株式会社 Method for removing iron oxide from circulating pump in secondary system of pressurized water nuclear plant and secondary system of pressurized water nuclear plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209710A (en) * 1996-02-06 1997-08-12 Toshiba Corp Corrosion suppressing device for thermal power generating equipment
JPH11132673A (en) * 1997-10-30 1999-05-21 Toshiba Corp Water-treatment method and facility
JP2001017968A (en) * 1999-07-09 2001-01-23 Japan Organo Co Ltd Equipment and process for treating high temperature water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209710A (en) * 1996-02-06 1997-08-12 Toshiba Corp Corrosion suppressing device for thermal power generating equipment
JPH11132673A (en) * 1997-10-30 1999-05-21 Toshiba Corp Water-treatment method and facility
JP2001017968A (en) * 1999-07-09 2001-01-23 Japan Organo Co Ltd Equipment and process for treating high temperature water

Also Published As

Publication number Publication date
JP2006150171A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
KR20110115614A (en) Water quality management method and system of power plant
US9962664B2 (en) Method for recovering process wastewater from a steam power plant
JP4508846B2 (en) Water supply and drain water treatment facility and method for suppressing scale adhesion
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
JP2006334470A (en) Water treatment system
JP2015212585A (en) Boiler having water-supplying and degasifying device
JP2008121941A (en) Method of operating steam boiler device
JP6001328B2 (en) Sulfuric acid acidic liquid concentration apparatus, sulfuric acid acidic liquid concentration method, and crude nickel sulfate recovery method
US10618032B2 (en) Low temperature wet air oxidation
JP2016078014A (en) Treatment method and treatment device for ammonia-containing waste water
JP2013245833A (en) Power generating plant
JP6021739B2 (en) Boiler water supply system
JP2019098206A (en) Ammonia concentration method and device
JP2010094650A (en) Method for removing adhesive material in denitrification apparatus
JP7053929B1 (en) Water supply device and water supply method
JP2010266131A (en) Steam generator scale adhesion suppressing method
JP4931107B2 (en) Electrodeionization device and secondary line water treatment device for pressurized water nuclear power plant using the same
JP4082258B2 (en) Boiler system
JP5330730B2 (en) Plant piping equipment
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler
KR20160047548A (en) Method for the recovery of process wastewaters of a fossil-fueled steam power plant and fossil-fueled steam power plant
JP4673751B2 (en) Operation method of condensate demineralizer for pressurized water nuclear power plant
JPS61188865A (en) High temperature filtering device for cooling water of fuel cell
JP2016180187A (en) Concentrating apparatus of sulfuric acid acidic solution, concentrating method of sulfuric acid acidic solution, and recovery method of crude nickel sulfate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4508846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees