[go: up one dir, main page]

JP4507267B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP4507267B2
JP4507267B2 JP20232499A JP20232499A JP4507267B2 JP 4507267 B2 JP4507267 B2 JP 4507267B2 JP 20232499 A JP20232499 A JP 20232499A JP 20232499 A JP20232499 A JP 20232499A JP 4507267 B2 JP4507267 B2 JP 4507267B2
Authority
JP
Japan
Prior art keywords
water
iron
fluorine
selenium
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20232499A
Other languages
Japanese (ja)
Other versions
JP2001025777A (en
Inventor
良弘 恵藤
武 佐藤
裕之 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20232499A priority Critical patent/JP4507267B2/en
Publication of JP2001025777A publication Critical patent/JP2001025777A/en
Application granted granted Critical
Publication of JP4507267B2 publication Critical patent/JP4507267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水処理方法に関する。さらに詳しくは、本発明は、石炭火力発電所の排煙脱硫排水などのセレンとフッ素と懸濁物質を含有する排水を膜分離により処理して、膜フラックスの低下が少なく、かつセレンとフッ素を効率的に除去し得る水処理方法に関する。
【0002】
【従来の技術】
石炭火力発電所などにおいて発生する排煙脱硫排水は、懸濁物質のほかに、セレン、フッ素などの有害物質を含有するので、水処理によってこれらの物質を除去する必要がある。排水中のセレンは、通常コロイド状のセレン、4価の亜セレン酸イオン(SeO3 2-)又は6価のセレン酸イオン(SeO4 2-)として存在することが多い。これらの中で、6価のセレン酸イオンの除去が特に困難であるために、さまざまな水処理方法が提案されている。
例えば、特開平9−187778号公報には、排煙脱硫装置から排出されるセレン、フッ素などの有害物質を含む排水を効率的に処理する方法として、排煙脱硫排水のpHを5以下に調整して鉄と接触させたのち、凝集処理及び固液分離を行う排煙脱硫排水の処理方法が提案されている。しかし、この方法では、フッ素の除去に要する凝集剤の量が多く、また、固液分離方法として膜分離を用いると、凝集処理において被処理水がアルカリ性とされているので、膜に水酸化マグネシウムなどのスケールが付着してフラックスが低下するという問題がある。また、特開平11−28475号公報には、処理水中のセレン濃度を排水基準である0.1mg/Lまで効率よく除去することができる処理方法として、セレン含有水を酸性条件下で鉄と接触させて処理する工程と、この処理水のpHを略中性に調整したのち過酸化物と接触させる工程と、高分子凝集剤で凝集後膜分離する工程とを有するセレン含有水の処理方法が提案されている。しかし、この方法によっては排水中のフッ素を十分に除去することができないので、排水がフッ素を含有する場合には、後段にフッ素吸着塔を設置する必要がある。さらに、多量の懸濁物質を含むセレン含有排水をそのまま鉄金属粒子層に通水して排水中のセレンを還元処理すると、鉄金属粒子の還元性能が低下することが明らかとなった。
このために、セレン、フッ素などの有害物質及び懸濁物質を含む排水から、これらの物質を効率的に除去することができ、しかも分離膜のフラックスの低下が少ない水処理方法が求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、石炭火力発電所の排煙脱硫排水などのセレンとフッ素と懸濁物質を含有する排水を膜分離により処理して、膜フラックスの低下が少なく、かつセレンとフッ素を効率的に除去し得る水処理方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、セレンとフッ素を含む水を凝集固液分離して、フッ素の大部分を除去したのち、酸性条件で鉄と接触させて鉄(II)イオンを溶出させ、酸化剤と反応させて水酸化第二鉄を析出させ、無機凝集剤を添加したのち膜分離することにより、膜フラックスの低下が少なく、セレンとフッ素を効率的に除去し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)セレン及びフッ素を含有する水を、(A)凝集剤を添加して凝集固液分離して、懸濁物質濃度を300mg/L以下の分離後の水を得て、(B)該分離後の水を酸性条件で鉄と接触させて鉄(II)イオンを溶出させたのち、(C)酸化剤と反応させることにより水酸化第二鉄を析出させ、さらに(D)無機凝集剤を添加して、(E)膜分離することを特徴とする水処理方法、
(2)酸化剤が空気である第(1)項記載の水処理方法、及び、
(3)(D)無機凝集剤がポリ塩化アルミニウムである第(1)項又は第(2)項記載の水処理方法、
を提供するものである。
さらに、本発明の好ましい態様として、
)セレン及びフッ素を含有する水が、さらに懸濁物質を含む水である第(1)項記載の水処理方法、
)セレン、フッ素及び懸濁物質を含む水が、石炭火力発電所の排煙脱硫排水である第()項記載の水処理方法、
)(B)鉄との接触を、鉄金属充填層に通水することにより行う第(1)項記載の水処理方法、
)(C)酸化剤との反応をpH6〜9で行う第(1)項記載の水処理方法、及び、
)(D)無機凝集剤を添加して、pH6〜8で凝集反応を行う第(1)項記載の水処理方法、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明の水処理方法は、セレン及びフッ素を含有する水を、(A)凝集剤を添加して凝集固液分離し、(B)酸性条件で鉄と接触させて鉄(II)イオンを溶出させたのち、(C)酸化剤と反応させることにより水酸化第二鉄を析出させ、さらに(D)無機凝集剤を添加して、(E)膜分離するものである。本発明方法は、石炭火力発電所の排煙脱硫排水の処理に好適に適用することができる。
本発明方法においては、セレン及びフッ素を含む水に、(A)凝集剤を添加して凝集固液分離する。使用する凝集剤に特に制限はなく、例えば、硫酸バンド、ポリ塩化アルミニウム、硫酸第一鉄、塩化第二鉄、消石灰、水酸化マグネシウムなどの無機凝集剤、アルギン酸ナトリウム、カルボキシメチルセルロース、ポリアクリルアミドの部分加水分解物の塩などのアニオン性高分子凝集剤、ポリエチレンイミン、ポリチオ尿素、第四級アンモニウム塩などのカチオン性高分子凝集剤、ポリアクリルアミドなどのノニオン性高分子凝集剤などを挙げることができる。特に、フッ素の除去性能の高い無機凝集剤が好ましい。これらの凝集剤は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。セレン及びフッ素を含む水に凝集剤を添加することにより、懸濁物質の大部分が凝集してフロックを形成するとともに、水中のフッ素がフロックに吸着されて除去される。凝集したフロックの分離除去方法に特に制限はなく、例えば、沈殿、浮上、遠心分離、サイクロンなどを挙げることができる。
本発明方法においては、(D)無機凝集剤を添加する後工程を有するので、最初の(A)凝集固液分離においては、フッ素と懸濁物質の一部が残存しても支障は生じない。したがって、凝集したフロックを高度に除去する必要はなく、簡易な設備を用いることができる。最初に懸濁物質を除去しておくことにより、(B)酸性条件に調整する際に、懸濁物質の溶解に消費される酸の量が減少し、経済的に水処理を行うことができる。凝集固液分離後の水中の懸濁物質濃度は、300mg/L以下であることが好ましく、100mg/L以下であることがより好ましい。凝集固液分離後の水中の懸濁物質濃度が300mg/Lを超えると、(B)酸性条件での鉄との接触において、鉄の溶出が阻害されて鉄(II)イオンの溶出量が不足し、膜分離の透過水中のセレンとフッ素の濃度が十分に低下しないおそれがある。
【0006】
本発明方法においては、凝集固液分離により、好ましくは懸濁物質濃度を300mg/L以下とした水を、(B)酸性条件で鉄と接触させて鉄(II)イオンを溶出させる。水を酸性条件とする方法に特に制限はないが、塩酸、硫酸などの添加により、pH5以下に調整することが好ましく、pH2〜3に調整することがより好ましい。接触させる鉄に特に制限はなく、例えば、純鉄、粗鋼、合金鋼、その他の鉄合金などを挙げることができる。鉄は、鉄粒子、鉄網線などの表面積の大きい形状であることが好ましい。酸性条件に調整した水を鉄と接触させる方法に特に制限はなく、鉄金属粒子流動層に通水してもよいが、鉄金属充填層に通水することにより鉄と接触させることが好ましい。酸性条件に調整した水を鉄と接触させることにより、次式にしたがって鉄(II)イオンが溶出する。
Fe + 2H+ → Fe2+ + H2
このとき水素ガスが発生するので、鉄金属充填層に通水する場合は、上向流とすることが好ましい。水中の6価のセレンは、水中に溶出した鉄(II)イオンと次式にしたがって反応し、還元される。
SeO4 2- + 6Fe2+ + 8H+ → Se0 + 6Fe3+ + 4H2
なお、セレンは微量であるため、鉄(II)イオンの大部分は鉄(III)イオンとならず残留する。
鉄(II)イオンが溶出し、6価のセレンが還元された水は、次いで(C)酸化剤と反応させる。使用する酸化剤に特に制限はなく、例えば、空気中の酸素ガス、過酸化水素などを挙げることができる。空気中の酸素ガスを酸化剤として利用する場合、水中の水酸化第一鉄は、次式にしたがって水酸化第二鉄を主体とする、中性条件でも溶解度の低い鉄化合物となる。被処理水がマンガンを含有する場合には、マンガンも不溶化される。
4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3
本反応はアルカリ性で促進されるので、鉄と接触させた後の水に必要に応じ、アルカリ剤を添加してpH6〜9、好ましくはpH7〜8.5に調整したのち酸化剤と反応させる。使用するアルカリ剤に特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウム、消石灰、炭酸ナトリウム、炭酸カリウムなどを挙げることができる。
【0007】
本発明方法においては、酸化剤との反応により水酸化第二鉄を析出させた水に、さらに(D)無機凝集剤を添加する。使用する無機凝集剤に特に制限はなく、例えば、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、消石灰、水酸化マグネシウムなどを挙げることができる。これらの中で、塩化アルミニウム、ポリ塩化アルミニウム及び硫酸アルミニウムを好適に使用することができる。無機凝集剤の種類、量、(C)工程処理水質に応じ、アルカリ剤や、塩化カルシウムや、塩酸、硫酸などの酸剤を併用して、pH6〜8とすることが好ましく、pH6〜7とすることがより好ましい。本工程に用いる無機凝集剤は、最初の(A)凝集固液分離に用いた凝集剤と、同一であっても異なっていてもよい。無機凝集剤を添加することにより、水酸化第二鉄は、中性条件のまま凝集してフロックを形成するとともに、還元されたセレン及び水中に残存するフッ素がフロックに吸着されて除去される。本発明方法においては、セレン、フッ素及びその他の懸濁物質を含有する水に、最初に(A)凝集剤を添加して凝集固液分離し、水酸化第二鉄を析出させたのちに、さらに(D)無機凝集剤添加することにより、凝集剤の全使用量を低減することができる。
無機凝集剤を添加した水は、最後に(E)膜分離することにより、セレンとフッ素の濃度の十分に低い透過水を得ることができる。使用する分離膜に特に制限はなく、例えば、ポリアミド、酢酸セルロースなどの精密ろ過膜などを挙げることができる。本発明方法においては、膜分離に供する水のpHを6〜8とすることができるので、ろ過膜は耐アルカリ性である必要がなく、広い範囲のろ過膜から使用するろ過膜を選択することができる。また、中性条件で通水できるために、水酸化マグネシウムの沈着による膜フラックスの低下が起こりにくい。また、(C)、(D)、(E)の工程を一貫してpH6〜9で行うことができるため、pH調整剤の使用量を低減することができる。
【0008】
図1は、本発明の水処理方法の実施の一態様の工程系統図である。セレン、フッ素及びその他の懸濁物質を含有する排煙脱硫排水を凝集槽1に送り込み、凝集剤とアルカリを添加する。懸濁物質が凝集した水を沈殿槽2へ送り、固液分離する。沈殿槽の上澄水は、酸を添加して酸性条件としたのち、鉄金属充填層3へ送り、鉄と接触させる。溶出した鉄(II)イオンが含まれる水は、酸化槽4へ送り、必要に応じてアルカリを添加してpH6〜9、好ましくはpH7〜8.5に調整し、酸化剤として空気を送り込んで曝気し、鉄(II)イオンを水酸化第二鉄に変換して析出させる。曝気の代わりに、過酸化水素などの酸化剤を添加することもできる。水酸化第二鉄が析出した水は、凝集槽5に送り、無機凝集剤を添加して、pH6〜8、好ましくはpH6〜7において水酸化第二鉄の凝集フロックを形成させるとともに、還元されたセレンと水中に残存するフッ素をフロックに吸着させる。水酸化第二鉄の凝集フロックが形成された水は、膜分離装置6に送って膜分離し、透過水を処理水として得る。
従来の方法では、石炭火力発電所の排煙脱硫排水などの高濃度の懸濁物質を含む排水は、鉄金属充填層の詰まりを生じて通水が困難となるのみならず、酸性条件とすることにより溶解した懸濁物質が、鉄金属充填層への通水によりpH5〜6となると鉄表面に再析出して還元反応を阻害する。本発明方法によれば、セレン、フッ素及びその他の懸濁物質を含む水に、最初に(A)凝集剤を添加して凝集固液分離するので、鉄金属充填層の詰まりや、鉄金属の表面汚れを生ずるおそれがない。また、従来の方法では、溶出した鉄(II)イオンは、水のpHを9以上に調整することにより水酸化第一鉄として沈殿させ、セレンとともに除去していた。しかし、排煙脱硫排水の処理で主流となっている膜分離装置では、pH9以上では同時に析出する水酸化マグネシウムが膜フラックスを低下させるために、通液が困難となる。本発明方法によれば、酸化剤と反応させ、鉄(II)イオンを酸化して水酸化第二鉄として析出させ、pH6〜8というほぼ中性条件で膜分離することにより、膜フラックスの低下を防ぐことができる。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
図1に示す工程により、排煙脱硫排水の処理を行った。
懸濁物質710mg/L、セレン(VI)0.5mg/L及びフッ素200mg/Lを含む石炭火力発電所の排煙脱硫排水に、ポリ塩化アルミニウム6,400mg/Lと水酸化ナトリウムを添加してpH6.0〜6.5とし凝集沈殿処理した。凝集沈殿処理後の上澄水の水質は、懸濁物質20mg/L、セレン0.5mg/L及びフッ素30mg/Lであった。
この上澄水に、塩酸を塩化水素として650mg/L添加し、酸性に調整したのち、平均粒径が0.3mmで、90重量%以上が粒径0.18〜0.5mmである球状鉄金属粒子1.6リットルを充填した鉄金属充填層に、45L/hr(LV40m/hr)で上向流で通水した。鉄金属充填層流出水には、鉄420mg/Lが溶出していた。
鉄金属充填層流出水を酸化槽へ導き、水酸化ナトリウムを添加してpH7.6〜8.0に調整するとともに、空気量900L/hr、滞留時間3.5hrで曝気処理した。
曝気処理後の水に、ポリ塩化アルミニウム1,200mg/Lを添加したところ、pH6〜7であった。これを孔径0.2μm、膜面積0.036m2の精密ろ過膜を内装した膜分離装置に、実フラックス10m/dの運転条件で通水した。膜分離装置透過水の水質は、セレン0.03mg/L、フッ素8.0mg/Lであった。10日間運転を続けたところ、この間の基準フラックスの低下速度は0.2〜0.4m/d/dであった。
比較例1
図2に示す工程により、排煙脱硫排水の処理を行った。
実施例1と同じ排煙脱硫排水に、塩酸を塩化水素として650mg/L添加して酸性に調整したのち、実施例1と同じ鉄金属充填層3に、45L/hr(LV40m/hr)で上向流で通水した。鉄金属充填層流出水には、鉄180mg/Lが溶出していた。
鉄金属充填層流出水を酸化槽4へ導き、水酸化ナトリウムを添加してpH7.6〜8.0に調整するとともに、空気量900L/hr、滞留時間3.5hrで曝気処理した。
曝気処理後の水を凝集槽5に導き、ポリ塩化アルミニウム12,600mg/Lを添加し、水酸化ナトリウムを加えてpH6〜7に調整したのち、実施例1と同じ膜分離装置6に、実フラックス10m/dの運転条件で通水した。膜分離装置透過水の水質は、セレン0.32mg/L、フッ素8.4mg/Lであった。10日間運転を続けたところ、この間の基準フラックスの低下速度は0.2〜0.4m/d/dであった。
比較例2
ポリ塩化アルミニウムの添加量を7,600mg/Lとした以外は、比較例1と同じ操作を行った。
膜分離装置透過水の水質は、セレン0.33mg/L、フッ素22mg/Lであった。10日間運転を続けたところ、この間の基準フラックスの低下速度は0.2〜0.4m/d/dであった。
比較例3
図3に示す工程により、排煙脱硫排水の処理を行った。
実施例1と同じ排煙脱硫排水に、ポリ塩化アルミニウム7,600mg/Lを添加し、水酸化ナトリウムによりpH6.0〜6.5に調整して凝集沈殿処理した。凝集沈殿処理後の上澄水の水質は、懸濁物質22mg/L、セレン0.5mg/L及びフッ素23mg/Lであった。
この上澄水に、塩酸を塩化水素として650mg/L添加し、酸性に調整したのち、実施例1と同じ鉄金属充填層3に、45L/hr(LV40m/hr)で上向流で通水した。鉄金属充填層流出水には、鉄420mg/Lが溶出していた。
鉄金属充填層流出水をpH調整槽7に導き、水酸化ナトリウムを添加してpH9.5に調整し、実施例1と同じ膜分離装置6に、実フラックス10m/dの運転条件で通水した。膜分離装置透過水の水質は、セレン0.03mg/L、フッ素16mg/Lであった。3日間運転を続けたところ、この間の基準フラックスの低下速度は1.0〜2.0m/d/dであった。
実施例1及び比較例1〜3の結果を、第1表に示す。
【0010】
【表1】

Figure 0004507267
【0011】
第1表に見られるように、最初に(A)ポリ塩化アルミニウムを添加して凝集固液分離し、(B)酸性条件で鉄充填層に通水して鉄(II)イオンを溶出させたのち、(C)pH7.6〜8.0に調整して曝気処理して水酸化第二鉄を析出させ、さらに(D)ポリ塩化アルミニウムを添加し、pH6〜7として(E)精密ろ過膜を用いて膜分離した実施例1においては、セレンとフッ素が低濃度まで除去され、基準フラックスの低下速度も小さく、安定して効率的にセレン、フッ素及びその他の懸濁物質を含有する排水を処理し得ることが分かる。
これに対して、最初の(A)凝集固液分離処理を行わない比較例1では、鉄(II)イオンの溶出量が少なく、ポリ塩化アルミニウムの全使用量を増しても、セレンを十分に低濃度にすることができない。また、ポリ塩化アルミニウムの全使用量を実施例1と同量まで減じた比較例2においては、処理水中のフッ素濃度も上昇する。また、溶出した鉄(II)イオンを、水をpH9.5に調整することにより、水酸化第一鉄として析出させた比較例3では、基準フラックスの低下が速く、安定して処理を継続することができない。
【0012】
【発明の効果】
本発明の水処理方法によれば、最初に凝集剤を添加して凝集固液分離することにより、鉄と接触させる工程における還元性能の低下を防止することができ、鉄と接触させ、さらに酸化剤と反応させたのち、無機凝集剤を用いることにより、少量の凝集剤でフッ素除去を確実に行うとともに、中性条件で膜分離することができ、膜フラックスの低下が小さくなり、良好な膜分離を行うことができる。また、酸化剤との反応、凝集、膜分離を一貫してpH6〜9で行うことができるため、pH調整剤の使用量も低減される。
【図面の簡単な説明】
【図1】図1は、本発明の水処理方法の実施の一態様の工程系統図である。
【図2】図2は、比較例1及び比較例2において用いた工程系統図である。
【図3】図3は、比較例3において用いた工程系統図である。
【符号の説明】
1 凝集槽
2 沈殿槽
3 鉄金属充填層
4 酸化槽
5 凝集槽
6 膜分離装置
7 pH調整槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment method. More specifically, the present invention treats wastewater containing selenium, fluorine, and suspended solids, such as flue gas desulfurization effluent from coal-fired power plants, by membrane separation so that there is little decrease in membrane flux and selenium and fluorine are treated. The present invention relates to a water treatment method that can be efficiently removed.
[0002]
[Prior art]
Flue gas desulfurization effluent generated in coal-fired power plants and the like contains harmful substances such as selenium and fluorine in addition to suspended substances. Therefore, it is necessary to remove these substances by water treatment. The selenium in the waste water usually exists as colloidal selenium, tetravalent selenite ion (SeO 3 2− ) or hexavalent selenate ion (SeO 4 2− ). Among these, since removal of hexavalent selenate ions is particularly difficult, various water treatment methods have been proposed.
For example, in JP-A-9-187778, as a method for efficiently treating wastewater containing toxic substances such as selenium and fluorine discharged from a flue gas desulfurization apparatus, the pH of the flue gas desulfurization waste water is adjusted to 5 or less. Then, after making it contact with iron, the processing method of the flue gas desulfurization waste water which performs a coagulation process and solid-liquid separation is proposed. However, in this method, the amount of flocculant required to remove fluorine is large, and when membrane separation is used as the solid-liquid separation method, the water to be treated is made alkaline in the aggregation treatment. There is a problem that the scale is attached and the flux is lowered. Japanese Patent Application Laid-Open No. 11-28475 discloses a treatment method capable of efficiently removing the selenium concentration in the treated water down to 0.1 mg / L, which is a wastewater standard, and contacting the selenium-containing water with iron under acidic conditions. A method for treating selenium-containing water, comprising: a step of treating the selenium water, adjusting the pH of the treated water to be substantially neutral and then bringing it into contact with a peroxide; and a step of membrane separation after aggregation with a polymer flocculant. Proposed. However, this method cannot sufficiently remove the fluorine in the wastewater, so that if the wastewater contains fluorine, it is necessary to install a fluorine adsorption tower in the subsequent stage. Furthermore, it has been clarified that when the selenium-containing wastewater containing a large amount of suspended matter is passed through the iron metal particle layer as it is and the selenium in the wastewater is reduced, the reduction performance of the iron metal particles decreases.
For this reason, there has been a demand for a water treatment method that can efficiently remove these substances from waste water containing harmful substances such as selenium and fluorine and suspended substances, and that reduces the decrease in flux of the separation membrane. .
[0003]
[Problems to be solved by the invention]
The present invention treats wastewater containing selenium, fluorine, and suspended solids, such as flue gas desulfurization wastewater from coal-fired power plants, by membrane separation to reduce membrane flux and efficiently remove selenium and fluorine. It was made for the purpose of providing a possible water treatment method.
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above-mentioned problems, the present inventors conducted flocculation solid-liquid separation of water containing selenium and fluorine, and after removing most of the fluorine, contacted with iron under acidic conditions. By eluting iron (II) ions, reacting with an oxidant to precipitate ferric hydroxide, adding an inorganic flocculant, and then separating the membrane, the membrane flux is less reduced and selenium and fluorine are more efficient. Based on this finding, the present invention has been completed.
That is, the present invention
(1) water containing selenium and fluorine, to obtain (A) agglomerated solid-liquid separation by adding a coagulant, water after separation of the suspended matter concentration below 300 mg / L, (B) the After the separated water is brought into contact with iron under acidic conditions to elute iron (II) ions, (C) ferric hydroxide is precipitated by reacting with an oxidizing agent, and (D) inorganic flocculant Water treatment method characterized by adding (E) membrane separation,
(2) The water treatment method according to item (1), wherein the oxidizing agent is air, and
(3) The water treatment method according to item (1) or (2), wherein (D) the inorganic flocculant is polyaluminum chloride,
Is to provide.
Furthermore, as a preferred embodiment of the present invention,
( 4 ) The water treatment method according to item (1), wherein the water containing selenium and fluorine further contains suspended solids.
( 5 ) The water treatment method according to ( 4 ), wherein the water containing selenium, fluorine and suspended solids is flue gas desulfurization effluent from a coal-fired power plant,
( 6 ) (B) The water treatment method according to item (1), wherein the contact with iron is performed by passing water through an iron metal packed bed;
( 7 ) (C) The water treatment method according to item (1), wherein the reaction with the oxidizing agent is performed at pH 6 to 9, and
( 8 ) (D) The water treatment method according to item (1), wherein an inorganic flocculant is added and the aggregation reaction is performed at pH 6 to 8 ,
Can be mentioned.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the water treatment method of the present invention, water containing selenium and fluorine is (A) agglomerated by adding a coagulant, and (B) contacting iron under acidic conditions to elute iron (II) ions. Then, (C) ferric hydroxide is precipitated by reacting with an oxidizing agent, (D) an inorganic flocculant is added, and (E) membrane separation is performed. The method of the present invention can be suitably applied to the treatment of flue gas desulfurization effluent from a coal-fired power plant.
In the method of the present invention, (A) a flocculant is added to water containing selenium and fluorine to perform agglomeration solid-liquid separation. There is no particular limitation on the flocculant used, for example, sulfuric acid band, polyaluminum chloride, ferrous sulfate, ferric chloride, slaked lime, magnesium hydroxide and other inorganic flocculants, sodium alginate, carboxymethylcellulose, polyacrylamide Anionic polymer flocculants such as hydrolyzate salts, cationic polymer flocculants such as polyethyleneimine, polythiourea and quaternary ammonium salts, and nonionic polymer flocculants such as polyacrylamide . In particular, an inorganic flocculant having high fluorine removal performance is preferred. These flocculants can be used individually by 1 type, or can also be used in combination of 2 or more type. By adding a flocculant to water containing selenium and fluorine, most of the suspended substance aggregates to form a floc, and fluorine in the water is adsorbed and removed by the floc. The method for separating and removing the aggregated floc is not particularly limited, and examples thereof include precipitation, levitation, centrifugation, and cyclone.
In the method of the present invention, since (D) a post-process of adding an inorganic flocculant is included, there is no problem even if fluorine and part of the suspended solids remain in the first (A) flocculent solid-liquid separation. . Therefore, it is not necessary to highly remove the aggregated flocs, and simple equipment can be used. By removing suspended substances first, when adjusting to (B) acidic conditions, the amount of acid consumed to dissolve suspended substances is reduced, and water treatment can be carried out economically. . The concentration of the suspended substance in water after the flocculated solid-liquid separation is preferably 300 mg / L or less, and more preferably 100 mg / L or less. When the concentration of suspended solids in water after flocculated solid-liquid separation exceeds 300 mg / L, the elution of iron is inhibited and the elution amount of iron (II) ions is insufficient in contact with iron under acidic conditions (B) However, the concentration of selenium and fluorine in the permeated water for membrane separation may not be sufficiently reduced.
[0006]
In the method of the present invention, water with a suspended solid concentration of preferably 300 mg / L or less is brought into contact with iron under acidic conditions (B) by flocculation solid-liquid separation to elute iron (II) ions. Although there is no restriction | limiting in particular in the method of making water into acidic conditions, It is preferable to adjust to pH 5 or less by addition of hydrochloric acid, a sulfuric acid, etc., and it is more preferable to adjust to pH 2-3. There is no restriction | limiting in particular in the iron made to contact, For example, pure iron, crude steel, alloy steel, other iron alloys etc. can be mentioned. The iron is preferably in a shape having a large surface area such as iron particles and iron wire. There is no restriction | limiting in particular in the method of making the water adjusted to acidic conditions contact with iron, Although water may be passed through an iron metal particle fluidized bed, it is preferable to contact with iron by passing through an iron metal packed bed. When water adjusted to acidic conditions is brought into contact with iron, iron (II) ions are eluted according to the following formula.
Fe + 2H + → Fe 2+ + H 2
Since hydrogen gas is generated at this time, it is preferable that the water flow upward when flowing through the iron metal packed bed. Hexavalent selenium in water reacts with iron (II) ions eluted in water according to the following formula and is reduced.
SeO 4 2- + 6Fe 2+ + 8H + → Se 0 + 6Fe 3+ + 4H 2 O
Since selenium is a trace amount, most of the iron (II) ions remain as iron (III) ions.
The water from which iron (II) ions are eluted and hexavalent selenium is reduced is then reacted with (C) an oxidizing agent. There is no restriction | limiting in particular in the oxidizing agent to be used, For example, the oxygen gas in air, hydrogen peroxide, etc. can be mentioned. When oxygen gas in the air is used as an oxidizing agent, ferrous hydroxide in water becomes an iron compound having a low solubility even under neutral conditions, mainly ferric hydroxide according to the following formula. When the water to be treated contains manganese, manganese is also insolubilized.
4Fe (OH) 2 + O 2 + 2H 2 O → 4Fe (OH) 3
Since this reaction is promoted by alkalinity, an alkali agent is added to water after being brought into contact with iron, if necessary, and adjusted to pH 6 to 9, preferably pH 7 to 8.5, and then reacted with an oxidizing agent. There is no restriction | limiting in particular in the alkali agent to be used, For example, sodium hydroxide, potassium hydroxide, slaked lime, sodium carbonate, potassium carbonate etc. can be mentioned.
[0007]
In the method of the present invention, (D) an inorganic flocculant is further added to water in which ferric hydroxide is precipitated by reaction with an oxidizing agent. There is no restriction | limiting in particular in the inorganic flocculant to be used, For example, aluminum chloride, polyaluminum chloride, aluminum sulfate, slaked lime, magnesium hydroxide etc. can be mentioned. Among these, aluminum chloride, polyaluminum chloride and aluminum sulfate can be preferably used. According to the type and amount of the inorganic flocculant, and (C) process water quality, it is preferable to adjust the pH to 6-8 by using an alkaline agent, an acid agent such as calcium chloride, hydrochloric acid, sulfuric acid, etc. More preferably. The inorganic flocculant used in this step may be the same as or different from the flocculant used for the initial (A) flocculation solid-liquid separation. By adding an inorganic flocculant, ferric hydroxide aggregates to form flocs under neutral conditions, and reduced selenium and fluorine remaining in water are adsorbed and removed by the flocs. In the method of the present invention, (A) a flocculant is first added to water containing selenium, fluorine, and other suspended solids, and after agglomerated solid-liquid separation to precipitate ferric hydroxide, Furthermore, the total amount of the flocculant used can be reduced by adding (D) an inorganic flocculant.
The water to which the inorganic flocculant is added is finally (E) membrane-separated to obtain permeated water having a sufficiently low concentration of selenium and fluorine. There is no restriction | limiting in particular in the separation membrane to be used, For example, microfiltration membranes, such as a polyamide and a cellulose acetate, etc. can be mentioned. In the method of the present invention, the pH of water used for membrane separation can be adjusted to 6-8, so the filtration membrane does not need to be alkali resistant, and a filtration membrane to be used can be selected from a wide range of filtration membranes. it can. Moreover, since water can be passed under neutral conditions, the membrane flux is not easily lowered by the deposition of magnesium hydroxide. Moreover, since the steps (C), (D), and (E) can be performed consistently at pH 6 to 9, the amount of the pH adjuster used can be reduced.
[0008]
FIG. 1 is a process flow diagram of one embodiment of the water treatment method of the present invention. The flue gas desulfurization waste water containing selenium, fluorine and other suspended substances is sent to the coagulation tank 1, and the coagulant and alkali are added. The water in which the suspended substance is agglomerated is sent to the precipitation tank 2 for solid-liquid separation. The supernatant water of the precipitation tank is acidified by adding an acid, and then sent to the iron metal packed bed 3 to be brought into contact with iron. The water containing the eluted iron (II) ions is sent to the oxidation tank 4 and adjusted to pH 6-9, preferably pH 7-8.5 by adding alkali as necessary, and air is sent as an oxidizing agent. By aeration, iron (II) ions are converted into ferric hydroxide and precipitated. Instead of aeration, an oxidizing agent such as hydrogen peroxide can be added. The water in which ferric hydroxide is precipitated is sent to the coagulation tank 5 and an inorganic coagulant is added to form ferric hydroxide coagulation flock at pH 6-8, preferably pH 6-7, and reduced. Selenium and fluorine remaining in water are adsorbed on floc. The water in which the ferric hydroxide coagulation flocs are formed is sent to the membrane separation device 6 for membrane separation to obtain permeated water as treated water.
In conventional methods, wastewater containing high-concentration suspended solids such as flue gas desulfurization wastewater from coal-fired power plants not only causes clogging of the iron metal packed bed and makes it difficult to pass water, but also makes it acidic conditions. When the suspended substance dissolved thereby reaches pH 5-6 by passing water through the iron metal packed bed, it reprecipitates on the iron surface and inhibits the reduction reaction. According to the method of the present invention, since (A) the flocculant is first added to the water containing selenium, fluorine and other suspended solids, the solidified solid-liquid separation is performed. There is no risk of surface contamination. In the conventional method, the eluted iron (II) ions are precipitated as ferrous hydroxide by adjusting the pH of the water to 9 or more and removed together with selenium. However, in a membrane separation apparatus that is mainstream in the treatment of flue gas desulfurization wastewater, magnesium hydroxide that precipitates simultaneously at a pH of 9 or more reduces the membrane flux, making it difficult to pass liquid. According to the method of the present invention, the membrane flux is decreased by reacting with an oxidizing agent, oxidizing iron (II) ions to precipitate as ferric hydroxide, and performing membrane separation under substantially neutral conditions of pH 6-8. Can be prevented.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
The flue gas desulfurization waste water was treated by the process shown in FIG.
To a flue gas desulfurization effluent of a coal-fired power plant containing 710 mg / L of suspended solids, 0.5 mg / L of selenium (VI) and 200 mg / L of fluorine, polyaluminum chloride 6,400 mg / L and sodium hydroxide were added. The pH was adjusted to 6.0 to 6.5 and the coagulation precipitation treatment was performed. The water quality of the supernatant water after the coagulation sedimentation treatment was 20 mg / L of suspended solids, 0.5 mg / L of selenium and 30 mg / L of fluorine.
To this supernatant water, 650 mg / L of hydrochloric acid as hydrogen chloride was added to adjust the acidity, and then the spherical iron metal having an average particle diameter of 0.3 mm and 90% by weight or more having a particle diameter of 0.18 to 0.5 mm. Water was passed in an upward flow at 45 L / hr (LV 40 m / hr) through an iron metal packed bed filled with 1.6 liters of particles. In the iron metal packed bed effluent, 420 mg / L of iron was eluted.
The iron metal packed bed effluent was introduced into an oxidation tank, sodium hydroxide was added to adjust the pH to 7.6 to 8.0, and aeration treatment was performed at an air amount of 900 L / hr and a residence time of 3.5 hr.
When 1,200 mg / L of polyaluminum chloride was added to the water after the aeration treatment, the pH was 6-7. This was passed through a membrane separation apparatus equipped with a microfiltration membrane having a pore diameter of 0.2 μm and a membrane area of 0.036 m 2 under operating conditions of an actual flux of 10 m / d. The water quality of the permeated water of the membrane separator was 0.03 mg / L selenium and 8.0 mg / L fluorine. When the operation was continued for 10 days, the decrease rate of the reference flux during this period was 0.2 to 0.4 m / d / d.
Comparative Example 1
The flue gas desulfurization waste water was treated by the process shown in FIG.
After adding 650 mg / L of hydrochloric acid as hydrogen chloride to the same flue gas desulfurization effluent as in Example 1, it was adjusted to acidity, and the same was added to the same iron metal packed bed 3 as in Example 1 at 45 L / hr (LV 40 m / hr). Water flowed in a countercurrent. In the iron metal packed bed effluent, 180 mg / L of iron was eluted.
The iron metal packed bed effluent was led to the oxidation tank 4, sodium hydroxide was added to adjust the pH to 7.6 to 8.0, and aeration treatment was performed at an air amount of 900 L / hr and a residence time of 3.5 hr.
After the aeration treatment, the water is introduced into the coagulation tank 5, 12,600 mg / L of polyaluminum chloride is added, and sodium hydroxide is added to adjust the pH to 6-7. Water was passed under operating conditions with a flux of 10 m / d. The water quality of the permeated water of the membrane separator was 0.32 mg / L selenium and 8.4 mg / L fluorine. When the operation was continued for 10 days, the decrease rate of the reference flux during this period was 0.2 to 0.4 m / d / d.
Comparative Example 2
The same operation as in Comparative Example 1 was performed except that the amount of polyaluminum chloride added was 7,600 mg / L.
The water quality of the permeated water of the membrane separator was 0.33 mg / L selenium and 22 mg / L fluorine. When the operation was continued for 10 days, the decrease rate of the reference flux during this period was 0.2 to 0.4 m / d / d.
Comparative Example 3
The exhaust gas desulfurization waste water was treated by the process shown in FIG.
To the same flue gas desulfurization effluent as in Example 1, 7,600 mg / L of polyaluminum chloride was added, adjusted to pH 6.0 to 6.5 with sodium hydroxide, and coagulated and precipitated. The quality of the supernatant water after the coagulation sedimentation treatment was 22 mg / L of suspended solids, 0.5 mg / L of selenium and 23 mg / L of fluorine.
To this supernatant water, 650 mg / L of hydrochloric acid as hydrogen chloride was added to adjust the acidity, and then water was passed upwardly at 45 L / hr (LV 40 m / hr) through the same iron metal packed bed 3 as in Example 1. . In the iron metal packed bed effluent, 420 mg / L of iron was eluted.
The iron metal packed bed effluent is led to the pH adjusting tank 7, adjusted to pH 9.5 by adding sodium hydroxide, and passed through the same membrane separator 6 as in Example 1 under the operating condition of an actual flux of 10 m / d. did. The water quality of the permeated water of the membrane separator was 0.03 mg / L selenium and 16 mg / L fluorine. When the operation was continued for 3 days, the decrease rate of the reference flux during this period was 1.0 to 2.0 m / d / d.
The results of Example 1 and Comparative Examples 1 to 3 are shown in Table 1.
[0010]
[Table 1]
Figure 0004507267
[0011]
As can be seen in Table 1, first (A) polyaluminum chloride was added to separate the agglomerated solid and liquid, and (B) water was passed through the iron packed bed under acidic conditions to elute iron (II) ions. Then, (C) pH 7.6 to 8.0 is adjusted and aerated to precipitate ferric hydroxide, and (D) polyaluminum chloride is added to adjust pH 6 to 7 (E) microfiltration membrane In Example 1 separated by membrane using selenium, selenium and fluorine are removed to a low concentration, the rate of decrease in the reference flux is small, and wastewater containing selenium, fluorine and other suspended substances is stably and efficiently contained. It can be seen that it can be processed.
In contrast, in Comparative Example 1 in which the first (A) aggregation solid-liquid separation treatment is not performed, the amount of iron (II) ions eluted is small, and even when the total amount of polyaluminum chloride is increased, selenium is sufficiently obtained. The concentration cannot be reduced. Moreover, in the comparative example 2 which reduced the total usage-amount of polyaluminum chloride to the same amount as Example 1, the fluorine concentration in treated water also rises. Further, in Comparative Example 3 in which the eluted iron (II) ions were precipitated as ferrous hydroxide by adjusting water to pH 9.5, the reference flux decreased rapidly and the treatment was continued stably. I can't.
[0012]
【The invention's effect】
According to the water treatment method of the present invention, by first adding a flocculant and performing agglomeration solid-liquid separation, it is possible to prevent reduction in reduction performance in the step of contacting with iron. After reacting with the agent, by using an inorganic flocculant, fluorine removal can be reliably performed with a small amount of flocculant, and membrane separation can be performed under neutral conditions. Separation can be performed. In addition, since the reaction with the oxidizing agent, aggregation, and membrane separation can be performed consistently at pH 6 to 9, the amount of the pH adjusting agent used is reduced.
[Brief description of the drawings]
FIG. 1 is a process flow diagram of one embodiment of a water treatment method of the present invention.
FIG. 2 is a process flow diagram used in Comparative Example 1 and Comparative Example 2;
FIG. 3 is a process flow diagram used in Comparative Example 3;
[Explanation of symbols]
1 Coagulation tank 2 Precipitation tank 3 Iron metal packed bed 4 Oxidation tank 5 Coagulation tank 6 Membrane separation device 7 pH adjustment tank

Claims (3)

セレン及びフッ素を含有する水を、(A)凝集剤を添加して凝集固液分離して、懸濁物質濃度を300mg/L以下の分離後の水を得て、(B)該分離後の水を酸性条件で鉄と接触させて鉄(II)イオンを溶出させたのち、(C)酸化剤と反応させることにより水酸化第二鉄を析出させ、さらに(D)無機凝集剤を添加して、(E)膜分離することを特徴とする水処理方法。The water containing selenium and fluorine is separated into (A) a coagulant and agglomerated solid-liquid separation to obtain separated water having a suspended substance concentration of 300 mg / L or less , and (B) the separated water . After elution of iron (II) ions by contacting water with iron under acidic conditions, ferric hydroxide is precipitated by reacting with (C) oxidizing agent, and (D) inorganic flocculant is added. (E) A water treatment method characterized by membrane separation. 酸化剤が空気である請求項1記載の水処理方法。The water treatment method according to claim 1, wherein the oxidizing agent is air. (D)無機凝集剤がポリ塩化アルミニウムである請求項1又は2記載の水処理方法。(D) The water treatment method according to claim 1 or 2, wherein the inorganic flocculant is polyaluminum chloride.
JP20232499A 1999-07-15 1999-07-15 Water treatment method Expired - Fee Related JP4507267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20232499A JP4507267B2 (en) 1999-07-15 1999-07-15 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20232499A JP4507267B2 (en) 1999-07-15 1999-07-15 Water treatment method

Publications (2)

Publication Number Publication Date
JP2001025777A JP2001025777A (en) 2001-01-30
JP4507267B2 true JP4507267B2 (en) 2010-07-21

Family

ID=16455675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20232499A Expired - Fee Related JP4507267B2 (en) 1999-07-15 1999-07-15 Water treatment method

Country Status (1)

Country Link
JP (1) JP4507267B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4827541B2 (en) * 2005-01-31 2011-11-30 株式会社 イージーエス Immobilizing agent for harmful components and immobilizing method
JP5261950B2 (en) * 2006-07-04 2013-08-14 栗田工業株式会社 Method and apparatus for treating selenium-containing wastewater
JP5106463B2 (en) * 2009-03-30 2012-12-26 太平洋セメント株式会社 Method and apparatus for processing solution containing selenium and fluorine
JP5170461B2 (en) * 2009-08-31 2013-03-27 三菱マテリアル株式会社 Treatment of selenium-containing wastewater
JP5579414B2 (en) * 2009-09-30 2014-08-27 千代田化工建設株式会社 Treatment method for wastewater containing reducing selenium
KR101957548B1 (en) * 2012-11-30 2019-03-12 오르가노 코포레이션 System for treating coal gasification wastewater, and method for treating coal gasification wastewater
CN106219816B (en) * 2016-08-25 2019-04-23 万华化学集团股份有限公司 A kind of treatment method of reverse osmosis concentrated water

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155685A (en) * 1981-04-06 1981-12-01 Dowa Mining Co Ltd Removal of fluorine ion from waste water
JPH0947790A (en) * 1995-08-04 1997-02-18 Chiyoda Corp Treatment of flue gas desulfurization wastewater
JPH09155368A (en) * 1995-12-06 1997-06-17 Kurita Water Ind Ltd Treatment of flue gas desulfurization wastewater
JPH09187778A (en) * 1995-10-31 1997-07-22 Kurita Water Ind Ltd Treatment of flue gas desulfurization wastewater
JPH09192675A (en) * 1996-01-25 1997-07-29 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPH09290299A (en) * 1996-04-26 1997-11-11 Electric Power Dev Co Ltd Thermal power plant wastewater treatment method
JPH1034168A (en) * 1996-07-26 1998-02-10 Kurita Water Ind Ltd Treatment method for selenium-containing water
JPH10218343A (en) * 1997-02-05 1998-08-18 Shinko Electric Co Ltd Part aligning conveying device
JPH10263557A (en) * 1997-03-25 1998-10-06 Nikko Kinzoku Kk Treatment of selenium-containing waste water
JPH1128475A (en) * 1997-07-09 1999-02-02 Kurita Water Ind Ltd Treatment method for selenium-containing water
JPH11169687A (en) * 1997-12-09 1999-06-29 Kurita Water Ind Ltd Cleaning method for membrane separation equipment
JPH11169869A (en) * 1997-12-10 1999-06-29 Kurita Water Ind Ltd Treatment method for wastewater containing selenium
JP2000167571A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Treatment method for selenium-containing water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830558B1 (en) * 1970-01-19 1973-09-21

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155685A (en) * 1981-04-06 1981-12-01 Dowa Mining Co Ltd Removal of fluorine ion from waste water
JPH0947790A (en) * 1995-08-04 1997-02-18 Chiyoda Corp Treatment of flue gas desulfurization wastewater
JPH09187778A (en) * 1995-10-31 1997-07-22 Kurita Water Ind Ltd Treatment of flue gas desulfurization wastewater
JPH09155368A (en) * 1995-12-06 1997-06-17 Kurita Water Ind Ltd Treatment of flue gas desulfurization wastewater
JPH09192675A (en) * 1996-01-25 1997-07-29 Mitsubishi Heavy Ind Ltd Treatment of waste water
JPH09290299A (en) * 1996-04-26 1997-11-11 Electric Power Dev Co Ltd Thermal power plant wastewater treatment method
JPH1034168A (en) * 1996-07-26 1998-02-10 Kurita Water Ind Ltd Treatment method for selenium-containing water
JPH10218343A (en) * 1997-02-05 1998-08-18 Shinko Electric Co Ltd Part aligning conveying device
JPH10263557A (en) * 1997-03-25 1998-10-06 Nikko Kinzoku Kk Treatment of selenium-containing waste water
JPH1128475A (en) * 1997-07-09 1999-02-02 Kurita Water Ind Ltd Treatment method for selenium-containing water
JPH11169687A (en) * 1997-12-09 1999-06-29 Kurita Water Ind Ltd Cleaning method for membrane separation equipment
JPH11169869A (en) * 1997-12-10 1999-06-29 Kurita Water Ind Ltd Treatment method for wastewater containing selenium
JP2000167571A (en) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd Treatment method for selenium-containing water

Also Published As

Publication number Publication date
JP2001025777A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP2912226B2 (en) Wastewater treatment method
JP3739480B2 (en) Treatment method of flue gas desulfurization waste water
JP5417927B2 (en) Coal gasification wastewater treatment method
TWI418521B (en) Treatment method and treatment device of selenium - containing wastewater
JP4507267B2 (en) Water treatment method
JP3811522B2 (en) Thermal power plant wastewater treatment method
JP2004148289A (en) Fluorine or phosphorus-containing water treatment equipment
JP4103031B2 (en) Fluorine-containing water treatment method
JP4231934B2 (en) How to remove selenium in wastewater
JP6213044B2 (en) Method and apparatus for treating selenium-containing water
JP2005125153A (en) Method and apparatus for treating fluorine-containing wastewater
JP3262015B2 (en) Water treatment method
JP2000167571A (en) Treatment method for selenium-containing water
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JP4214319B2 (en) Method for treating selenium-containing water
JP4382167B2 (en) Thermal power plant wastewater treatment method
JP2001286875A (en) Method for treating arsenic-containing waste water
JPH0975954A (en) Method of removing seleno sulfate ion in selenium-containing waste solution
JP4591641B2 (en) Method for coagulating and precipitating iron hydroxide in wastewater containing concentrated inorganic components
JPH09155368A (en) Treatment of flue gas desulfurization wastewater
JP4524796B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4068005B2 (en) Method and apparatus for removing phosphorus in water
JP4576731B2 (en) Method for treating selenium and boron-containing water
JPH09314182A (en) Treatment method for wastewater containing selenium
JPH08309369A (en) Selenium-containing water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees