[go: up one dir, main page]

JP4506337B2 - Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace - Google Patents

Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace Download PDF

Info

Publication number
JP4506337B2
JP4506337B2 JP2004224745A JP2004224745A JP4506337B2 JP 4506337 B2 JP4506337 B2 JP 4506337B2 JP 2004224745 A JP2004224745 A JP 2004224745A JP 2004224745 A JP2004224745 A JP 2004224745A JP 4506337 B2 JP4506337 B2 JP 4506337B2
Authority
JP
Japan
Prior art keywords
pulverized coal
pipe
burner
blowing
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004224745A
Other languages
Japanese (ja)
Other versions
JP2005060834A (en
Inventor
佑介 柏原
明紀 村尾
道貴 佐藤
亮太 村井
和也 後藤
達郎 有山
候寿 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004224745A priority Critical patent/JP4506337B2/en
Publication of JP2005060834A publication Critical patent/JP2005060834A/en
Application granted granted Critical
Publication of JP4506337B2 publication Critical patent/JP4506337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Blast Furnaces (AREA)

Description

本発明は、高炉等の冶金炉において羽口を通じて炉内に微粉炭を吹き込むための微粉炭吹き込みバーナー及びこれを用いた冶金炉内への微粉炭吹き込み方法に関するものである。   The present invention relates to a pulverized coal injecting burner for injecting pulverized coal into a furnace through a tuyere in a metallurgical furnace such as a blast furnace and a method for injecting pulverized coal into a metallurgical furnace using the same.

高炉操業では、コークスの代替燃料として微粉炭の吹き込みを行うことが一般化しており、最近では銑鉄トン当たり微粉炭比260kgを超える操業を行っている例もある(例えば、非特許文献1参照)。
しかし、将来的なコークス需給、コークス炉の老朽化、炭酸ガス発生量の抑制等の事情からして、今後さらなるコークス使用量の低減化が必要となる可能性があり、この場合、より多量の微粉炭吹き込みを行うことが必要になると考えられる。
「材料とプロセス Vol.11(1998)」p834
In blast furnace operation, it is common to inject pulverized coal as an alternative fuel for coke, and recently there is an example in which an operation exceeding a pulverized coal ratio of 260 kg per ton of pig iron is performed (for example, see Non-Patent Document 1). .
However, there is a possibility that further reduction of coke usage will be required in the future due to circumstances such as the future supply and demand of coke, aging of coke ovens, and suppression of carbon dioxide generation, It is considered necessary to perform pulverized coal injection.
“Materials and Processes Vol.11 (1998)” p834

一般に、微粉炭は羽口に取り付けられたブローパイプを貫通して挿入される微粉炭吹き込みバーナーを通じて、熱風とともに高炉内に吹き込まれるが、微粉炭の吹き込み量の増加に伴い、種々の問題が発生する。
そのうちの一つが未燃チャー発生量に関するものである。すなわち、微粉炭吹き込み量の増加とともに羽口先での酸素過剰率が減少するため、微粉炭の燃焼率が低下し、レースウェイ内で燃焼しきれない未燃チャーの発生量が増加する。
In general, pulverized coal is blown into the blast furnace along with hot air through a pulverized coal blowing burner inserted through a blow pipe attached to the tuyere, but various problems occur as the amount of pulverized coal increases. To do.
One of these concerns unburned char generation. That is, as the amount of pulverized coal injected increases, the excess oxygen ratio at the tuyere decreases, so the combustion rate of pulverized coal decreases and the amount of unburned char that cannot be burned in the raceway increases.

発生した未燃チャーは炉下部でソルーションロス反応により優先的に消費される可能性はあるが、その消費量には限界がある。そのため未燃チャー発生量が炉内限界消費量を超えた場合には、未燃チャーがダストとして炉頂から排出され、コークス置換率の低下や燃料比の増大を招いてしまう。また、発生した未燃チャーが炉心や融着帯根部に蓄積すると、通気性、通液性の悪化による炉況の不安定化や生産性の低下を招いてしまう。   The generated unburned char may be preferentially consumed by the solution loss reaction at the bottom of the furnace, but its consumption is limited. Therefore, when the amount of unburned char generated exceeds the in-furnace limit consumption, unburned char is discharged as dust from the top of the furnace, leading to a reduction in coke replacement rate and an increase in fuel ratio. In addition, if the generated unburned char accumulates in the core or the cohesive zone root, the furnace condition becomes unstable and the productivity decreases due to deterioration of air permeability and liquid permeability.

したがって、安定した微粉炭多量吹き込み操業を実現するためには、未燃チャーの発生量を炉内消費限界量以下に抑えることが不可欠であり、そのためにはレースウェイ内での微粉炭の燃焼率向上が必要となる。
従来、微粉炭の燃焼率を向上させるには、吹き込まれた微粉炭粒子と熱風との混合効率を高めることや、微粉炭粒子と酸素との接触効率を高めることが有効であると考えられており、この観点から種々の技術が提案されている。
Therefore, in order to realize a stable operation of a large quantity of pulverized coal, it is essential to keep the amount of unburned char generated below the consumption limit in the furnace. To that end, the combustion rate of pulverized coal in the raceway is essential. Improvement is needed.
Conventionally, in order to improve the combustion rate of pulverized coal, it is considered effective to increase the mixing efficiency of the injected pulverized coal particles and hot air, or to increase the contact efficiency between the pulverized coal particles and oxygen. From this viewpoint, various techniques have been proposed.

例えば、特許文献1、2には、微粉炭吹き込みランス(バーナー)を同心2重管構造として、内管から微粉炭を、外管から酸素又は酸素富化空気をそれぞれ送給し、微粉炭周囲の酸素濃度を高めることにより微粉炭の燃焼率の向上を図るようにした技術が示されている。また、特許文献3には、微粉炭吹き込みランスを同心3重管構造として、内管と外管から微粉炭と酸素又は酸素富化空気をそれぞれ送給するとともに、最外管から空気を送給することにより微粉炭燃焼率のさらなる向上を図った技術が示されている。
特開平02−213406号公報 特開平06−100912号公報 特開平11−343511号公報
For example, in Patent Documents 1 and 2, the pulverized coal blowing lance (burner) has a concentric double pipe structure, pulverized coal is supplied from the inner pipe, and oxygen or oxygen-enriched air is supplied from the outer pipe, respectively. A technique has been shown in which the combustion rate of pulverized coal is improved by increasing the oxygen concentration. In Patent Document 3, the pulverized coal blowing lance has a concentric triple pipe structure, and pulverized coal and oxygen or oxygen-enriched air are supplied from the inner tube and the outer tube, respectively, and air is supplied from the outermost tube. The technique which aimed at the further improvement of the pulverized coal combustion rate by doing is shown.
Japanese Patent Laid-Open No. 02-213406 Japanese Patent Application Laid-Open No. 06-10092 Japanese Patent Application Laid-Open No. 11-343511

しかしながら、特許文献1の技術のように単なる同心2重管構造のランスを用いただけでは、ランスから送給された微粉炭は、外管から送給される酸素ガス(酸素又は酸素富化空気)と混合する前に周囲の熱風と急速に混合するため、微粉炭周囲の酸素濃度を高めるという効果が大幅に減殺されてしまい、このため微粉炭燃焼率の効果的な向上は望めない。   However, just using a lance having a concentric double pipe structure as in the technology of Patent Document 1, pulverized coal fed from the lance is oxygen gas (oxygen or oxygen-enriched air) fed from the outer pipe. Since it mixes rapidly with the surrounding hot air before mixing with the pulverized coal, the effect of increasing the oxygen concentration around the pulverized coal is greatly diminished, and an effective improvement in the pulverized coal combustion rate cannot be expected.

一方、特許文献2の技術では、ランスの内管先端を外管先端よりも15〜105mm内方に位置させることにより、微粉炭が外管から送給された酸素ガスと混合する前に熱風と急速に混合してしまうという問題はある程度改善され、このため外管から送給された酸素が消費されるまでの初期の燃焼性は向上する。しかし、それ以降の微粉炭の燃焼性については、ランスから吹き出される微粉炭の分散性が低いために、熱風中の酸素を有効に利用することができず、十分な燃焼性が得られない。   On the other hand, in the technique of Patent Document 2, by positioning the tip of the inner tube of the lance 15 to 105 mm inward from the tip of the outer tube, before the pulverized coal is mixed with the oxygen gas fed from the outer tube, The problem of rapid mixing is improved to some extent, so that the initial flammability until the oxygen delivered from the outer tube is consumed is improved. However, with regard to the combustibility of pulverized coal after that, since the dispersibility of the pulverized coal blown out from the lance is low, oxygen in the hot air cannot be used effectively, and sufficient combustibility cannot be obtained. .

また、特許文献3の技術は、内管・外管から送給される微粉炭と酸素ガスが噴流として拡散しながら混合・燃焼する間、最外管から送給される空気によって上記噴流域に酸素濃度の低い熱風が侵入することが防止され、この結果、微粉炭の燃焼性の向上が図られるというものである。しかし、この技術も特許文献2と同様、外管から送給された酸素が消費されるまでの間の初期の燃焼性は向上するものの、微粉炭の分散性が低いため熱風中の酸素を有効に利用できないという問題がある。   In addition, the technology of Patent Document 3 is that the pulverized coal and oxygen gas fed from the inner pipe and the outer pipe are mixed and burned while diffusing as a jet, and the air is fed from the outer pipe to the jet region. Intrusion of hot air having a low oxygen concentration is prevented, and as a result, combustibility of pulverized coal is improved. However, this technique also improves the initial combustibility until the oxygen supplied from the outer pipe is consumed, as in Patent Document 2, but the dispersibility of the pulverized coal is low, so the oxygen in the hot air is effective. There is a problem that it cannot be used.

したがって本発明の目的は、微粉炭と熱風や酸素ガスとの接触効率を向上させ、微粉炭の燃焼率を効果的に高めることができ、これにより多量の微粉炭吹き込みを可能とする冶金炉用微粉炭吹き込みバーナーを提供することにある。
また、本発明の他の目的は、このような微粉炭吹き込みバーナーを用いた冶金炉内への微粉炭吹き込み方法を提供することにある。
Therefore, the object of the present invention is to improve the contact efficiency between pulverized coal and hot air or oxygen gas, and can effectively increase the combustion rate of pulverized coal, thereby enabling the injection of a large amount of pulverized coal. It is to provide a pulverized coal blowing burner.
Another object of the present invention is to provide a method for blowing pulverized coal into a metallurgical furnace using such a pulverized coal blowing burner.

このような課題を解決するための本発明の特徴は、以下のとおりである。
[1] 羽口を通じて冶金炉内に微粉炭を吹き込むための微粉炭吹き込みバーナーにおいて、
バーナー本体を構成する微粉炭吹き込み管の先端側部分が、内径が管端側に向けて漸次縮径した縮径管部と、該縮径管部に連なる管端部であって、内径が管端側に向けて漸次拡径した拡径管部とからなり、前記拡径管部内面の管軸に対する広がり角θが10°未満であることを特徴とする冶金炉用微粉炭吹き込みバーナー。
The features of the present invention for solving such problems are as follows.
[1] In a pulverized coal blowing burner for blowing pulverized coal through a tuyere into a metallurgical furnace,
The tip side portion of the pulverized coal blowing pipe constituting the burner main body is a reduced diameter pipe portion whose inner diameter is gradually reduced toward the pipe end side, and a pipe end portion connected to the reduced diameter pipe portion, the inner diameter of the pipe A pulverized coal-injection burner for a metallurgical furnace, comprising a diameter-expanded pipe portion that gradually increases in diameter toward the end, and having a spread angle θ with respect to the pipe axis of the inner diameter of the diameter-expanded pipe portion being less than 10 °.

[2] 上記[1]のバーナーにおいて、拡径管部内面の管軸に対する広がり角θが5°以上、10°未満であることを特徴とする冶金炉用微粉炭吹き込みバーナー。
[3] 上記[1]又は[2]のバーナーにおいて、縮径管部と拡径管部との間に、内径が一定の等径管部を有することを特徴とする冶金炉用微粉炭吹き込みバーナー。
[4] 上記[1]〜[3]のいずれかのバーナーにおいて、縮径管部のバーナー後端寄り端部の内径Dと縮径管部のバーナー先端寄り端部の内径Dが下記(1)式を満足することを特徴とする冶金炉用微粉炭吹き込みバーナー。
0.6≦D/D≦0.8 … (1)
[2] A pulverized coal-injection burner for metallurgical furnaces characterized in that, in the burner of [1], the spread angle θ of the inner surface of the expanded pipe portion with respect to the tube axis is 5 ° or more and less than 10 °.
[3] In the burner according to [1] or [2], pulverized coal blowing for a metallurgical furnace having an equal-diameter pipe portion having a constant inner diameter between the reduced-diameter pipe portion and the enlarged-tube portion. burner.
[4] In any of the burners of the above [1] to [3], the inner diameter D 2 of the burner tip inboard end of the inner diameter D 1 and the reduced tube of the burner near the rear end edge portion of the reduced tube portion below A pulverized coal-injection burner for metallurgical furnaces characterized by satisfying the formula (1).
0.6 ≦ D 2 / D 1 ≦ 0.8 (1)

[5] 上記[1]〜[4]のいずれかのバーナーにおいて、縮径管部のバーナー後端寄り端部の内径Dと拡径管部先端の内径Dが下記(2)式を満足することを特徴とする冶金炉用微粉炭吹き込みバーナー。
/D≦1.0 … (2)
[6] 上記[1]〜[5]のいずれかのバーナーにおいて、バーナー本体が内管と外管とからなる2重管構造を有し、前記内管が微粉炭吹き込み管を構成するとともに、前記外管が支燃性ガスの吹き込み管を構成することを特徴とする冶金炉用微粉炭吹き込みバーナー。
[7] 上記[1]〜[5]のいずれかのバーナーにおいて、バーナー本体が内管と外管とからなる2重管構造を有し、前記内管が微粉炭吹き込み管を構成するとともに、前記外管が冷却流体用の流路を構成することを特徴とする冶金炉用微粉炭吹き込みバーナー。
[5] In any one of the burners of the above [1] to [4], the inner diameter D 1 and the radially enlarged tube inner diameter D 3 of the tip of the burner near the rear end edge portion of the radially reduced tube section the following formula (2) Satisfactory pulverized coal-injection burner for metallurgical furnaces.
D 1 / D 3 ≦ 1.0 ... (2)
[6] In the burner according to any one of [1] to [5], the burner main body has a double pipe structure including an inner pipe and an outer pipe, and the inner pipe constitutes a pulverized coal blowing pipe, A pulverized coal blowing burner for a metallurgical furnace, wherein the outer tube constitutes a combustion supporting gas blowing tube.
[7] In the burner according to any one of [1] to [5], the burner main body has a double pipe structure including an inner pipe and an outer pipe, and the inner pipe constitutes a pulverized coal blowing pipe, A pulverized coal blowing burner for metallurgical furnace, wherein the outer pipe constitutes a flow path for cooling fluid.

[8] 上記[1]〜[6]のいずれかのバーナーにおいて、微粉炭吹き込み管が、管壁内部に冷却流体用の流路を備えた構造であることを特徴とする冶金炉用微粉炭吹き込みバーナー。
[9] 上記[1]〜[5]のいずれかのバーナーにおいて、バーナー本体が内管と外管と最外管とからなる3重管構造を有し、前記内管が微粉炭吹き込み管を構成し、前記外管が支燃性ガスの吹き込み管を構成し、前記最外管が冷却用流体の流路を構成することを特徴とする冶金炉用微粉炭吹き込みバーナー。
[8] In the burner according to any one of [1] to [6], the pulverized coal blowing tube has a structure having a flow path for cooling fluid inside the tube wall. Blow burner.
[9] In the burner according to any one of [1] to [5], the burner body has a triple tube structure including an inner tube, an outer tube, and an outermost tube, and the inner tube is a pulverized coal blowing tube. A pulverized coal blowing burner for a metallurgical furnace, wherein the outer tube forms a combustion-supporting gas blowing tube, and the outermost tube forms a cooling fluid flow path.

[10]上記[1]〜[9]のいずれかの微粉炭吹き込みバーナーを用いた冶金炉内への微粉炭の吹き込み方法であって、
微粉炭吹き込みバーナーのバーナー本体の先端側部分を冶金炉の羽口又はこれに連設されたブローパイプ内に挿入し、該微粉炭吹き込みバーナーから羽口を通じて冶金炉内に微粉炭を吹き込むことを特徴とする冶金炉内への微粉炭吹き込み方法。
[10] A method for injecting pulverized coal into a metallurgical furnace using the pulverized coal injecting burner according to any one of [1] to [9],
Inserting the tip side of the burner body of the pulverized coal blowing burner into the tuyere of the metallurgical furnace or a blow pipe connected thereto, and blowing the pulverized coal into the metallurgical furnace through the tuyere A pulverized coal injection method into a metallurgical furnace .

本発明の微粉炭吹き込みバーナーによれば、微粉炭吹き込み管内を搬送される微粉炭流(微粉炭+搬送気体)は、縮径管部においてバーナー軸方向に圧縮された後、拡径管部において圧縮状態から急激に開放されることにより、拡径管部の内面に沿うような分散された流束断面の微粉炭流が形成される。そして、この分散された微粉炭流が微粉炭吹き込み管の先端から吹き出されることにより、微粉炭と熱風中の酸素の接触効率が効果的に高められ、微粉炭の燃焼性が向上する。
また、微粉炭吹き込み管の外側の外管からバーナー先端部に酸素ガスを送給した場合には、バーナー先端から分散状態で吹き出される微粉炭流に酸素ガスが確実に衝突して微粉炭と酸素との混合(接触)が効率的になされ、このため酸素が微粉炭の燃焼に有効に利用され、微粉炭の燃焼率が効果的に向上する。しかも、上記酸素が消費された後も、微粉炭流と熱風中の酸素との接触効率が向上し、これによっても微粉炭の燃焼性が向上する。
以上の結果、本発明の微粉炭吹き込みバーナーを用いることにより、微粉炭の燃焼率を従来のバーナーに較べて大きく向上させることができ、高炉への微粉炭吹き込み量を従来に較べて大幅に増量することが可能となる。
According to the pulverized coal blowing burner of the present invention, the pulverized coal flow (pulverized coal + carrier gas) conveyed in the pulverized coal blowing tube is compressed in the burner axial direction in the reduced diameter pipe portion, and then in the expanded diameter pipe portion. By being suddenly released from the compressed state, a pulverized coal flow having a dispersed flux cross section along the inner surface of the expanded pipe portion is formed. The dispersed pulverized coal flow is blown out from the tip of the pulverized coal blowing pipe, so that the contact efficiency between the pulverized coal and the oxygen in the hot air is effectively increased, and the combustibility of the pulverized coal is improved.
In addition, when oxygen gas is fed from the outer pipe outside the pulverized coal blowing pipe to the burner tip, the oxygen gas reliably collides with the pulverized coal flow blown in a dispersed state from the burner tip and Mixing (contacting) with oxygen is efficiently performed, so that oxygen is effectively used for combustion of pulverized coal, and the combustion rate of pulverized coal is effectively improved. Moreover, even after the oxygen is consumed, the contact efficiency between the pulverized coal flow and the oxygen in the hot air is improved, and the combustibility of the pulverized coal is also improved.
As a result of the above, by using the pulverized coal injection burner of the present invention, the combustion rate of pulverized coal can be greatly improved compared to conventional burners, and the amount of pulverized coal injection into the blast furnace is greatly increased compared to the conventional one. It becomes possible to do.

図1及び図2は本発明の微粉炭吹き込みバーナーの一実施形態を示すもので、図1は微粉炭吹き込みバーナーの縦断面図、図2は本発明の微粉炭吹き込みバーナーAが取り付けられた高炉羽口部の縦断面図である。
図1において、1は同心2重管構造のバーナー本体であり、このバーナー本体1は内管である微粉炭吹き込み管2と外管3とからなり、この外管3(微粉炭吹き込み管2と外管3間の流路4)が支燃性ガスの吹き込み管を構成している。支燃性ガスとは酸素又は酸素含有ガスを意味し、通常は酸素又は酸素富化空気が用いられる(以下、便宜上支燃性ガスを「酸素」という)。前記微粉炭吹き込み管2と外管3の先端は開放し、その両管端はバーナー本体長手方向の略同一位置にある。また、外管3の後端には酸素の導入口30が設けられている。
1 and 2 show an embodiment of the pulverized coal blowing burner of the present invention. FIG. 1 is a longitudinal sectional view of the pulverized coal blowing burner. FIG. 2 is a blast furnace to which the pulverized coal blowing burner A of the present invention is attached. It is a longitudinal cross-sectional view of a tuyere part.
In FIG. 1, reference numeral 1 denotes a burner body having a concentric double pipe structure. The burner body 1 is composed of an pulverized coal blowing tube 2 and an outer tube 3 which are inner tubes, and this outer tube 3 (pulverized coal blowing tube 2 and The flow path 4) between the outer tubes 3 constitutes a combustion-supporting gas blowing tube. The combustion-supporting gas means oxygen or an oxygen-containing gas, and usually oxygen or oxygen-enriched air is used (hereinafter, the combustion-supporting gas is referred to as “oxygen” for convenience). The tips of the pulverized coal blowing pipe 2 and the outer pipe 3 are open, and both pipe ends are at substantially the same position in the longitudinal direction of the burner body. An oxygen inlet 30 is provided at the rear end of the outer tube 3.

前記微粉炭吹き込み管2の先端側部分は、内径が管端側に向けて漸次縮径した縮径管部20と、この縮径管部20に連なる管端部であって、内径が管端側に向けて漸次拡径した拡径管部21とから構成されている。したがって、縮径管部20のバーナー後端寄りの端部(=縮径管部20よりもバーナー後端側の等径管部22の端部)の内径Dと、縮径管部20のバーナー先端寄りの端部(=拡径管部21のバーナー後端寄りの端部)の内径Dと、拡径管部21の先端部(=管端)の内径Dは、D>D、D>Dの関係を満足する。 The tip portion of the pulverized coal blowing tube 2 is a reduced diameter pipe portion 20 whose inner diameter is gradually reduced toward the pipe end side, and a pipe end portion connected to the reduced diameter pipe portion 20, and the inner diameter is the pipe end. It is comprised from the enlarged diameter pipe part 21 gradually expanded toward the side. Therefore, the inner diameter D 1 of the end portion near the burner rear end of the reduced diameter tube portion 20 (= the end portion of the equal diameter tube portion 22 closer to the burner rear end side than the reduced diameter tube portion 20), and the reduced diameter tube portion 20 end of the burner tip closer to the inner diameter D 2 of the (= burners near the rear end of the end portion of the radially enlarged tube part 21), the inner diameter D 3 of the tip portion of the radially enlarged tube portion 21 (= the tube end), D 1> The relationship of D 2 , D 3 > D 2 is satisfied.

前記拡径管部21の内面の管軸に対する広がり角θ(拡径管部21の内面の延長面と管軸とがなす角度)は10°未満とする。本発明の微粉炭吹き込みバーナーでは、微粉炭吹き込み管2内を搬送される微粉炭流(微粉炭+搬送気体)が、縮径管部20においてバーナー軸方向に圧縮された後、拡径管部21において圧縮状態から急激に開放されることにより、拡径管部21の内面に沿うような分散された流束断面の微粉炭流が形成され、この分散された微粉炭流がバーナー先端から吹き出されることにより、微粉炭と外管3から送給される酸素、さらには熱風中の酸素との接触効率が高められるものである。しかし、上記拡径管部内面の広がり角θが10°以上あると、バーナー先端からの微粉炭流の分散性が却って低下してしまう。
また、拡径管部21の内面の広がり角θの下限は特に限定しないが、拡径管部21において微粉炭流を急激に開放することによる所望の効果を得るためには、5°以上とすることが好ましい。また、微粉炭流の分散性の面で上記広がり角θの特に好ましい範囲は6°〜9°である。
The spread angle θ of the inner surface of the expanded diameter pipe portion 21 with respect to the tube axis (the angle formed by the extended surface of the inner surface of the expanded diameter tube portion 21 and the tube axis) is less than 10 °. In the pulverized coal blowing burner of the present invention, after the pulverized coal flow (pulverized coal + carrier gas) conveyed in the pulverized coal blowing tube 2 is compressed in the burner axial direction in the reduced diameter pipe portion 20, the expanded diameter pipe portion. 21. A pulverized coal flow having a dispersed flux cross-section along the inner surface of the expanded diameter pipe portion 21 is formed by being suddenly released from the compressed state in 21, and this dispersed pulverized coal flow blows out from the burner tip. As a result, the contact efficiency between the pulverized coal and oxygen fed from the outer pipe 3 and further oxygen in the hot air is increased. However, when the spread angle θ of the inner surface of the expanded diameter pipe portion is 10 ° or more, the dispersibility of the pulverized coal flow from the tip of the burner is deteriorated.
In addition, the lower limit of the spread angle θ of the inner surface of the expanded diameter pipe portion 21 is not particularly limited, but in order to obtain a desired effect by abruptly opening the pulverized coal flow in the expanded diameter pipe portion 21, it is set to 5 ° or more. It is preferable to do. Moreover, the particularly preferable range of the spread angle θ is 6 ° to 9 ° in terms of dispersibility of the pulverized coal flow.

縮径管部20のバーナー後端寄り端部の内径Dと同じくバーナー先端寄り端部の内径Dは、下記(1)式を満足することが好ましい。
0.6≦D/D≦0.8 … (1)
ここで、D/Dが0.8を超えると微粉炭流の分散性が低下する傾向が大きくなり、一方、D/Dが0.6未満では縮径管部20の縮径の度合いが大き過ぎるため、バーナー内での圧損上昇や縮径管部位置での微粉炭の詰まり等の問題が顕在化するおそれがある。
The inner diameter D 2 of the same burner tip inboard end to the inner diameter D 1 of the burner near the rear end edge portion of the reduced tube portion 20 preferably satisfies the following formula (1).
0.6 ≦ D 2 / D 1 ≦ 0.8 (1)
Here, if D 2 / D 1 exceeds 0.8, the tendency of the dispersibility of the pulverized coal flow to decrease increases, whereas if D 2 / D 1 is less than 0.6, the diameter of the reduced diameter pipe portion 20 is reduced. Since the degree of is too large, problems such as an increase in pressure loss in the burner and clogging of pulverized coal at the position of the reduced diameter pipe portion may become apparent.

また、縮径管部20のバーナー後端寄り端部の内径Dと拡径管部先端の内径Dは、下記(2)式を満足することが好ましい。
/D≦1.0 … (2)
ここで、D/Dが1.0を超えるとバーナー先端での微粉炭流の流速が高まるため微粉炭のバーナー先での滞留時間が短くなり、微粉炭の燃焼性が低下する傾向がある。なお、等径管部22〜拡径管部21を通じて外径が一定(等径)である微粉炭吹き込み管2の場合には、拡径管部21の先端の管肉厚が極小となり、Dが微粉炭吹き込み管2の外径と略等しくなる状態が、D/Dの実質的な下限となる。
The inside diameter D 1 and the inner diameter D 3 of the radially enlarged tube tip of the burner near the rear end edge portion of the reduced tube portion 20, it is preferable to satisfy the following expression (2).
D 1 / D 3 ≦ 1.0 ... (2)
Here, if D 1 / D 3 exceeds 1.0, the flow rate of the pulverized coal flow at the tip of the burner increases, so the residence time of the pulverized coal at the burner tip is shortened, and the combustibility of the pulverized coal tends to decrease. is there. In the case of the pulverized coal blowing pipe 2 having a constant outer diameter (equal diameter) through the equal diameter pipe section 22 to the larger diameter pipe section 21, the pipe wall thickness at the tip of the larger diameter pipe section 21 is minimized, and D A state where 3 is substantially equal to the outer diameter of the pulverized coal blowing pipe 2 is a substantial lower limit of D 1 / D 3 .

また、拡径管部21の長さLや縮径管部20の長さLは特に制限はないが、拡径管部21の長さLが微粉炭吹き込み管2の径に対してあまりに短いと、拡径管部21を設けることによる本発明の効果が十分に得られず、一方、長すぎると外管3との構造上の取り合いが問題になるため、縮径管部20のバーナー後端寄り端部の内径Dとの関係で、0.1D≦L≦Dを満足する程度の長さとすることが好ましい。また、縮径管部20の長さLがあまりに短いと縮径管部の絞り角度が急峻になるため微粉炭流に乱れを生じやすく、これが微粉炭流の分散性に悪影響を及ぼすおそれがある。また、縮径管部の損耗も早める結果となる。このため縮径管部20の長さLは、縮径管部20のバーナー後端寄り端部の内径Dとの関係で、0.1D≦Lを満足する程度の長さとすることが好ましい。 There is no particular restriction length L 2 is a length L 1 and reduced tube portion 20 of the enlarged diameter pipe portion 21, the length L 1 of the radially enlarged tube portion 21 with respect to the diameter of the pulverized coal injection pipe 2 If the length is too short, the effect of the present invention due to the provision of the diameter-expanded tube portion 21 cannot be sufficiently obtained. On the other hand, if the length is too long, the structural connection with the outer tube 3 becomes a problem. in relation to the inner diameter D 1 of the burner rear end edge portion, it is preferable that the length that satisfies 0.1D 1 ≦ L 1 ≦ D 1 . Also, easily disturbed in the pulverized coal flow since the too short length L 2 of the reduced tube portion 20 is squeezed angle of the reduced-diameter pipe portion becomes steep, which may adversely affect the dispersibility of the pulverized coal flow is there. In addition, wear of the reduced diameter pipe portion is also accelerated. Therefore, the length L 2 of the reduced diameter pipe portion 20 is set to a length that satisfies 0.1D 1 ≦ L 2 in relation to the inner diameter D 1 of the end portion near the burner rear end of the reduced diameter pipe portion 20. It is preferable.

図2において、5は羽口、6はこの羽口5に接続された熱風送風用のブローパイプであり、図1に示す微粉炭吹き込みバーナーAは、バーナー本体1がブローパイプ6を斜めに貫通し、その先端側部分がブローパイプ6の先端側部分ないし羽口5内に位置するように配置される。
なお、本実施形態の縮径管部20と拡径管部21は、いずれも内面がテーパ面となっているが、これらの内面は必ずしもテーパ面でなくてもよく、例えば、管軸方向で弧状に構成され又は弧状部分を含むようなものであってもよいし、また、テーパ角が異なる複数のテーパ面が管軸方向で組み合わされたようなものであってもよい。
2, 5 is a tuyere, 6 is a blow pipe for blowing hot air connected to the tuyere 5, and the pulverized coal blowing burner A shown in FIG. However, the tip side portion is disposed so as to be located in the tip side portion or tuyere 5 of the blow pipe 6.
In addition, although the inner diameter of the diameter-reduced tube portion 20 and the diameter-expanded tube portion 21 of the present embodiment is both tapered, these inner surfaces are not necessarily tapered, for example, in the tube axis direction. It may be configured in an arc shape or include an arc-shaped portion, or may be a combination of a plurality of tapered surfaces having different taper angles in the tube axis direction.

本実施形態の微粉炭吹き込みバーナーAは、微粉炭吹き込み管2に搬送気体に伴われた微粉炭が導入され、この微粉炭は微粉炭吹き込み管2の先端から羽口5又はブローパイプ6内に吹き込まれ、燃焼しつつ炉内に導入される。また、外管3(流路4)には酸素(燃焼率の面からは、酸素富化空気よりも純酸素が好ましい)が供給され、微粉炭吹き込み管2の先端から吹き出された微粉炭の周囲に酸素が供給される。ここで、微粉炭吹き込み管2内を搬送される微粉炭流(微粉炭+搬送気体)は、縮径管部20においてバーナー軸方向に圧縮された後、拡径管部21において圧縮状態から急激に開放される。これにより拡径管部21の内面に沿うような分散された流束断面の微粉炭流が形成され、この分散された微粉炭流が微粉炭吹き込み管2の先端から吹き出される。したがって、この分散強化された微粉炭流に対して外管3(流路4)の先端から吹き出された酸素が確実に衝突し、微粉炭と酸素との混合(接触)が効率的になされる。このため酸素が微粉炭の燃焼に有効に利用され、微粉炭の燃焼率が効果的に向上する。また、上記酸素が消費された後も、微粉炭流と熱風中の酸素との接触効率が向上し、これによっても微粉炭の燃焼性が向上する。   In the pulverized coal blowing burner A of the present embodiment, pulverized coal accompanying the carrier gas is introduced into the pulverized coal blowing tube 2, and this pulverized coal enters the tuyere 5 or the blow pipe 6 from the tip of the pulverized coal blowing tube 2. It is blown and introduced into the furnace while burning. Further, oxygen (pure oxygen is preferable to oxygen-enriched air from the viewpoint of combustion rate) is supplied to the outer pipe 3 (flow path 4), and the pulverized coal blown out from the tip of the pulverized coal blowing pipe 2 is supplied. Oxygen is supplied to the surroundings. Here, the pulverized coal flow (pulverized coal + carrier gas) transported in the pulverized coal blowing pipe 2 is compressed in the burner axial direction in the diameter-reduced pipe portion 20, and then rapidly increases from the compressed state in the diameter-expanded pipe portion 21. Released. As a result, a pulverized coal flow having a dispersed flux cross section along the inner surface of the enlarged diameter pipe portion 21 is formed, and the dispersed pulverized coal flow is blown out from the tip of the pulverized coal blowing pipe 2. Therefore, oxygen blown out from the tip of the outer tube 3 (flow path 4) reliably collides with the dispersion-strengthened pulverized coal flow, and mixing (contact) of the pulverized coal and oxygen is efficiently performed. . For this reason, oxygen is effectively utilized for combustion of pulverized coal, and the combustion rate of pulverized coal is effectively improved. Further, even after the oxygen is consumed, the contact efficiency between the pulverized coal flow and the oxygen in the hot air is improved, and the combustibility of the pulverized coal is also improved.

微粉炭吹き込み管2の構造を特定するために行った実験の結果を図4〜図7に示す。実験に用いた装置の概略を図3に示す。この実験装置では、微粉炭ホッパーから搬送気体とともに切り出された微粉炭をバーナーに供給し、バーナー先端から吹き出される微粉炭流をビデオカメラで撮影し、その広がり角度を測定した。なお、この実験では微粉炭供給量をすべて200kg/t相当に設定した。   The results of experiments conducted to identify the structure of the pulverized coal blowing pipe 2 are shown in FIGS. An outline of the apparatus used in the experiment is shown in FIG. In this experimental apparatus, the pulverized coal cut out together with the carrier gas from the pulverized coal hopper was supplied to the burner, the pulverized coal flow blown from the tip of the burner was photographed with a video camera, and the spread angle was measured. In this experiment, the pulverized coal supply amount was set to be equivalent to 200 kg / t.

図4は、拡径管部21の内面の広がり角θがバーナー先端における微粉炭流の広がり角度(バーナー先端から吹き出される微粉炭流のバーナー管軸に対する広がり角度)に及ぼす影響を示している。この試験は下記のような条件で行った。なお、バーナー先速度とはバーナー先端における微粉炭流の速度(以下同様)のことである。
バーナー先速度:16.5m/s
/D:0.7
/D:1.0
図4によれば、拡径管部21の内面の広がり角θが7°程度までは、広がり角θが大きいほど微粉炭流の広がり角度も大きくなるが、広がり角θが7°を超えると逆に微粉炭流の広がり角度は小さくなる。これは、広がり角θがある程度大きくなると、微粉炭流が拡径管部内面の広がりに追従できず、拡径管部内面から剥離するためであると考えられる。
FIG. 4 shows the influence of the spread angle θ of the inner surface of the enlarged diameter pipe portion 21 on the spread angle of the pulverized coal flow at the burner tip (spread angle with respect to the burner tube axis of the pulverized coal flow blown from the burner tip). . This test was performed under the following conditions. The burner tip speed is the speed of the pulverized coal flow at the tip of the burner (hereinafter the same).
Burner tip speed: 16.5m / s
D 2 / D 1 : 0.7
D 1 / D 3: 1.0
According to FIG. 4, until the spread angle θ of the inner surface of the expanded pipe portion 21 is about 7 °, the spread angle of the pulverized coal flow increases as the spread angle θ increases, but when the spread angle θ exceeds 7 °, Conversely, the spread angle of the pulverized coal flow becomes smaller. This is considered to be because when the spread angle θ increases to some extent, the pulverized coal flow cannot follow the spread of the inner surface of the enlarged diameter pipe portion and peels from the inner surface of the enlarged diameter pipe portion.

図5は、微粉炭流のバーナー先速度が微粉炭流の広がり角度に及ぼす影響を示している。この試験は下記のような条件で行った。
バーナー先速度:8.2m/s,16.5m/s,24.7m/sの3水準
拡径管部内面の広がり角θ:7°〜10°
/D:0.7
/D:1.0
FIG. 5 shows the effect of the burner tip speed of the pulverized coal flow on the spread angle of the pulverized coal flow. This test was performed under the following conditions.
Burner tip speed: 3 levels of 8.2 m / s, 16.5 m / s, 24.7 m / s Spreading angle θ of the inner surface of the expanded diameter pipe portion: 7 ° to 10 °
D 2 / D 1 : 0.7
D 1 / D 3: 1.0

図5によれば、微粉炭流のバーナー先速度が小さいほうが微粉炭流の広がり角度は大きくなる傾向が見られるが、ここでも拡径管部内面の広がり角θを10°まで大きくすると、微粉炭流の広がり角度が低下する傾向が見られる。
以上の図4、図5の結果から、拡径管部21の内面の広がり角θは10°未満、好ましくは5°以上10°未満、特に好ましくは6°〜9°であることが判った。
According to FIG. 5, the smaller the burner tip speed of the pulverized coal flow, the larger the spread angle of the pulverized coal flow tends to be increased. However, when the spread angle θ of the inner surface of the expanded pipe portion is increased to 10 °, There is a tendency for the spread angle of the coal flow to decrease.
From the results of FIG. 4 and FIG. 5 described above, it has been found that the spread angle θ of the inner surface of the diameter-expanded tube portion 21 is less than 10 °, preferably 5 ° to less than 10 °, and particularly preferably 6 ° to 9 °. .

図6は、縮径管部20の内面の狭まり角α(図6中に示す縮径管部内面のバーナー管軸に対する狭まり角α)が微粉炭流の広がり角度に及ぼす影響を示している。この試験は下記のような条件で行った。
バーナー先速度:8.2m/s,16.5m/sの2水準
拡径管部内面の広がり角θ:7°
/D:0.7
/D:1.0
図6によれば、縮径管部20の内面の狭まり角αが大きくなると、微粉炭流の広がり角度が小さくなる傾向が見られる。したがって、D/Dが同じであれば縮径管部内面の狭まり角αは可能な限り小さい方がよく、また、微粉炭流による縮径管部20の損耗を抑える面からも好ましい。
FIG. 6 shows the effect of the narrowing angle α of the inner surface of the reduced diameter pipe portion 20 (the narrowing angle α of the inner surface of the reduced diameter pipe portion with respect to the burner tube axis) on the spread angle of the pulverized coal flow. This test was performed under the following conditions.
Burner tip speed: 2 levels of 8.2 m / s and 16.5 m / s Spreading angle θ of the inner surface of the expanded pipe portion: 7 °
D 2 / D 1 : 0.7
D 1 / D 3: 1.0
According to FIG. 6, when the narrowing angle α of the inner surface of the reduced diameter pipe portion 20 increases, the spread angle of the pulverized coal flow tends to decrease. Therefore, if D 2 / D 1 is the same, the narrowing angle α of the inner surface of the reduced diameter pipe portion is preferably as small as possible, and is also preferable from the viewpoint of suppressing wear of the reduced diameter pipe portion 20 due to the pulverized coal flow.

図7は、縮径管部20のバーナー先端寄り端部の内径Dと同じくバーナー後端寄りの内径Dとの比D/Dが微粉炭流の広がり角度に及ぼす影響を示している。この試験は下記のような条件で行った。
バーナー先速度:8.2m/s,16.5m/sの2水準
拡径管部内面の広がり角θ:7°
/D:1.0
図7によれば、D/Dが大きくなるにしたがって微粉炭流の広がり角度は小さくなる傾向があり、微粉炭流の広がり角度を確保するという観点からは、D/D≦0.8程度が好ましいことが判る。
FIG. 7 shows the influence of the ratio D 2 / D 1 between the inner diameter D 2 near the burner front end and the inner diameter D 1 near the burner rear end of the reduced diameter pipe portion 20 on the spread angle of the pulverized coal flow. Yes. This test was performed under the following conditions.
Burner tip speed: 2 levels of 8.2 m / s and 16.5 m / s Spreading angle θ of the inner surface of the expanded pipe portion: 7 °
D 1 / D 3: 1.0
According to FIG. 7, the spread angle of the pulverized coal flow tends to decrease as D 2 / D 1 increases. From the viewpoint of ensuring the spread angle of the pulverized coal flow, D 2 / D 1 ≦ 0. It can be seen that about 8 is preferable.

次に、本発明の微粉炭吹き込みバーナーの他の実施形態について説明する。
図8〜図13はそれぞれ本発明の微粉炭吹き込みバーナーの他の実施形態を示すもので、バーナー本体の縦断面を示している。
本発明の微粉炭吹き込みバーナーは、図8に示すように微粉炭吹き込み管2の縮径管部20と拡径管部21との間に内径が一定の等径管部23を有する構造としてもよい。
また、本発明の微粉炭吹き込みバーナーは、微粉炭吹き込み管2の内面が上述した条件を満足すればよく、したがって、図9に示すように、微粉炭吹き込み管2は外面がストレートな形状でなくてもよい。すなわち、この実施形態では微粉炭吹き込み管2の先端側部分の管壁が等厚に構成され、したがって、縮径管部20と拡径管部21の外径は、それぞれの内径に応じて変化している。
Next, other embodiments of the pulverized coal blowing burner of the present invention will be described.
FIGS. 8 to 13 show other embodiments of the pulverized coal blowing burner of the present invention, and show a longitudinal section of the burner body.
The pulverized coal blowing burner of the present invention may have a structure having an equal-diameter pipe portion 23 having a constant inner diameter between the reduced diameter pipe portion 20 and the enlarged diameter pipe portion 21 of the pulverized coal injection pipe 2 as shown in FIG. Good.
Further, the pulverized coal blowing burner of the present invention only needs to satisfy the above-mentioned conditions for the inner surface of the pulverized coal blowing tube 2, and therefore the pulverized coal blowing tube 2 does not have a straight outer surface as shown in FIG. May be. That is, in this embodiment, the tube wall of the tip side portion of the pulverized coal blowing tube 2 is configured to have an equal thickness, and therefore the outer diameters of the reduced diameter pipe portion 20 and the enlarged diameter pipe portion 21 change according to the respective inner diameters. is doing.

図10の実施形態は、バーナー本体の構造は図1と同様の同心2重管構造であるが、外管3a(外管3aと内管2との間の流路4a)を冷却流体の供給管としたものであり、外管3aの後端には冷却流体の導入口30aが設けられている。バーナー先端部は微粉炭の燃焼により生じる熱やレースウェイ内の赤熱コークスからの輻射熱によって溶損しやすいが、上記のような冷却流体用の流路4aを設けた構造(冷却構造)とすることにより、バーナー先端部の溶損を効果的に抑えることができる。
このような実施形態の微粉炭吹き込みバーナーでは、バーナー先端から微粉炭流が分散状態で吹き出されることにより、微粉炭流と熱風中の酸素との接触効率が効果的に高められる。また、微粉炭吹き込み管2と外管3aとの間の流路4aには空気などの冷却流体が供給され、微粉炭吹き込みバーナーの先端部(特に、微粉炭吹き込み管2の先端部)が冷却される。
In the embodiment of FIG. 10, the structure of the burner body is a concentric double tube structure similar to that of FIG. 1, but the cooling fluid is supplied to the outer tube 3a (the flow path 4a between the outer tube 3a and the inner tube 2). A cooling fluid inlet 30a is provided at the rear end of the outer tube 3a. The tip of the burner is easily melted by heat generated by the combustion of pulverized coal or radiant heat from red coke in the raceway. By adopting a structure (cooling structure) provided with the cooling fluid channel 4a as described above, In addition, it is possible to effectively suppress melting of the burner tip.
In the pulverized coal blowing burner of such an embodiment, the contact efficiency between the pulverized coal flow and the oxygen in the hot air is effectively increased by blowing the pulverized coal flow from the burner tip in a dispersed state. A cooling fluid such as air is supplied to the flow path 4a between the pulverized coal blowing pipe 2 and the outer pipe 3a, and the tip of the pulverized coal blowing burner (particularly, the tip of the pulverized coal blowing pipe 2) is cooled. Is done.

図11の実施形態は、バーナー本体を同心3重管構造としたもので、図1の実施形態における外管3の外側にさらに最外管7を設け、この最外管7(最外管7と外管3との間の流路8)を冷却流体の供給管としたものであり、最外管7の後端には冷却流体の導入口70が設けられている。なお、微粉炭吹き込み管2(内管)と酸素吹き込み管である外管3の構成は、図1の実施形態と同様である。
このような実施形態の微粉炭吹き込みバーナーでは、微粉炭吹き込み管2の先端から微粉炭流が分散状態で吹き出されるため、外管3の先端から吹き出された酸素が微粉炭流に確実に衝突して、微粉炭と酸素との混合(接触)が効率的になされる。このため酸素が微粉炭の燃焼に有効に利用され、微粉炭の燃焼率が効果的に向上する。また、上記酸素が消費された後も、微粉炭流と熱風中の酸素との接触効率が向上し、これによっても微粉炭の燃焼性が向上する。また、外管3と最外管7との間の流路8には空気などの冷却流体が供給され、微粉炭吹き込みバーナーの先端部が冷却される。
In the embodiment of FIG. 11, the burner body has a concentric triple tube structure. An outermost tube 7 is further provided outside the outer tube 3 in the embodiment of FIG. 1, and this outermost tube 7 (outermost tube 7 8 is a cooling fluid supply pipe, and a cooling fluid inlet 70 is provided at the rear end of the outermost pipe 7. The configuration of the pulverized coal blowing pipe 2 (inner pipe) and the outer pipe 3 which is an oxygen blowing pipe is the same as that of the embodiment of FIG.
In the pulverized coal blowing burner of such an embodiment, since the pulverized coal flow is blown out in a dispersed state from the tip of the pulverized coal blowing tube 2, the oxygen blown from the tip of the outer tube 3 reliably collides with the pulverized coal flow. Thus, mixing (contact) of pulverized coal and oxygen is efficiently performed. For this reason, oxygen is effectively utilized for combustion of pulverized coal, and the combustion rate of pulverized coal is effectively improved. Moreover, even after the oxygen is consumed, the contact efficiency between the pulverized coal flow and the oxygen in the hot air is improved, and the combustibility of the pulverized coal is also improved. Further, a cooling fluid such as air is supplied to the flow path 8 between the outer tube 3 and the outermost tube 7, and the tip of the pulverized coal blowing burner is cooled.

本発明の微粉炭吹き込みバーナーでは、微粉炭吹き込み管2を管壁内部に冷却流体用の流路を備えた単管構造とすることもできる。図12は、その一実施形態を示すもので、微粉炭吹き込み管2の管壁内部には冷却流体用の流路9が設けられ、この流路9内に供給される冷却水などの冷却流体により微粉炭吹き込み管2が冷却される。前記流路9には管外から冷却流体を供給するための供給部(図示せず)と、流路9を流れた冷却流体を管外に排出するための排出部(図示せず)が設けられる。
また、バーナー本体が内管2と外管3とからなる2重管構造の場合、或いはその外側にさらに最外管7を有する3重管構造の場合には、本発明の効果が得られる限度において、外管3と内管2の長さ(2重管構造の場合)、或いは最外管7と外管3と内管2の長さ(3重管構造の場合)に、それぞれ差をつけてもよい。
In the pulverized coal blowing burner according to the present invention, the pulverized coal blowing tube 2 can also have a single tube structure provided with a flow path for cooling fluid inside the tube wall. FIG. 12 shows one embodiment, and a cooling fluid channel 9 is provided inside the tube wall of the pulverized coal blowing tube 2, and a cooling fluid such as cooling water supplied into the channel 9. As a result, the pulverized coal blowing pipe 2 is cooled. The flow path 9 is provided with a supply part (not shown) for supplying a cooling fluid from outside the pipe and a discharge part (not shown) for discharging the cooling fluid flowing through the flow path 9 to the outside of the pipe. It is done.
Further, when the burner body has a double-pipe structure composed of the inner pipe 2 and the outer pipe 3, or a triple-pipe structure having an outermost pipe 7 on the outer side, the limit for obtaining the effect of the present invention. The difference between the lengths of the outer tube 3 and the inner tube 2 (in the case of a double tube structure) or the lengths of the outermost tube 7, the outer tube 3 and the inner tube 2 (in the case of a triple tube structure), respectively. May be attached.

また、微粉炭吹き込み管2を冷却流体用の流路9を備えた単管構造とする場合において、その先端部のみを冷却流体用の流路を備えない単管構造とすることもできる。図13はその一実施形態を示すもので、微粉炭吹き込み管2は、冷却流体用の流路9を備えた管体部2aと、その先に接続された冷却流体用の流路を備えない管体部2bと、さらにその先に最先端部として接続された冷却流体用の流路を備えない管体部2cとから構成され、この管体部2cが縮径管部20と拡径管部21を有している。なお、この管体部2cの縮径管部20と拡径管部21の好ましい構成(D〜D、L,Lの関係など)は先に述べたとおりであり、また、管体部2cは図8や図9の実施形態に示すような構造とすることもできる。
このように微粉炭吹き込み管2の先端部を冷却流体用の流路を備えない単管構造とするのは、吹き込み管先端幅(径)を小さくすることにより、その下流側(熱風の流れ方向での下流側)に生じる強乱流領域が小さくなって、異物の付着・成長を抑制することができるためである。
また、冷却流体用の流路を備えない微粉炭吹き込み管先端部を、管体部2bと管体部2cとで構成したのは、先端部(管体部2c)が溶損したり、異物が付着した場合に、先端部の交換を容易にするためである。
Further, when the pulverized coal blowing pipe 2 has a single pipe structure provided with the flow path 9 for the cooling fluid, only the tip portion thereof can be formed as a single pipe structure without the flow path for the cooling fluid. FIG. 13 shows an embodiment thereof, and the pulverized coal blowing pipe 2 does not include a tubular body portion 2a having a flow path 9 for cooling fluid and a flow path for cooling fluid connected to the end thereof. The tubular body portion 2b and a tubular body portion 2c which is not provided with a cooling fluid flow path connected as the most advanced portion ahead of the tubular body portion 2b. The tubular body portion 2c is connected to the reduced diameter tubular portion 20 and the expanded diameter tube. Part 21. Note that this preferred configuration of the radially reduced tube 20 and the radially enlarged tube portion 21 of the tube part 2c (D 1 ~D 3, L 1, L 2 of the relationship, etc.) are as previously described, also, the tube The body part 2c can also have a structure as shown in the embodiment of FIGS.
In this way, the tip of the pulverized coal blowing pipe 2 has a single pipe structure that does not include a flow path for the cooling fluid. By reducing the blowing pipe tip width (diameter), the downstream side (the flow direction of hot air) This is because the strong turbulent flow region generated on the downstream side of the substrate is reduced, and adhesion / growth of foreign matter can be suppressed.
The tip of the pulverized coal blowing pipe not provided with the cooling fluid flow path is composed of the pipe part 2b and the pipe part 2c because the tip part (pipe part 2c) is melted or foreign matter is This is for facilitating replacement of the tip when it adheres.

冷却流体用の流路を備えない微粉炭吹き込み管先端部(管体部2b、管体部2c)は直管状であってもよいが、微粉炭をブローパイプの軸方向またはこれに近い方向に噴出させるようにするため、本実施形態のように長手方向で適当な曲率で湾曲させてもよい。この場合、管体部2b又は管体部2cのいずれか一方を湾曲させてもよいし、両方を湾曲させてもよい。本実施形態では、管体部2bが長手方向において適当な曲率で湾曲している。一般に、微粉炭吹き込み管2を備えた微粉炭吹き込みバーナーAは、図2に示されるようにブローパイプを斜めに貫通して配置されるので、微粉炭吹き込み管2が直管状の場合には噴出した微粉炭がブローパイプや羽口の内面に衝突してそれらを損耗させるおそれがある。これに対して微粉炭吹き込み管先端部(本実施形態では管体部2b)を適当な曲率で湾曲させることにより、微粉炭をブローパイプの軸方向またはこれに近い方向に噴出させることができ、ブローパイプや羽口内面の損耗を抑えることができる。   The tip of the pulverized coal blowing pipe (tube portion 2b, tube portion 2c) that does not have a cooling fluid flow path may be straight, but the pulverized coal is placed in the axial direction of the blow pipe or in a direction close thereto. In order to make it eject, you may make it curve with a suitable curvature in a longitudinal direction like this embodiment. In this case, either one of the tube part 2b or the tube part 2c may be curved, or both may be curved. In the present embodiment, the tube portion 2b is curved with an appropriate curvature in the longitudinal direction. In general, the pulverized coal blowing burner A provided with the pulverized coal blowing tube 2 is disposed obliquely through the blow pipe as shown in FIG. There is a possibility that the pulverized coal collides with the inner surface of the blow pipe or tuyere and wears them. On the other hand, by curving the tip portion of the pulverized coal blowing pipe (tube portion 2b in this embodiment) with an appropriate curvature, the pulverized coal can be ejected in the axial direction of the blow pipe or in a direction close thereto, Wear on the inner surface of the blow pipe and tuyere can be suppressed.

図14の実施形態は、縮径管部と拡径管部を有しない単管構造の微粉炭吹き込み管に関するもので、微粉炭吹き込み管2′を冷却流体用の流路9′を備えた管体部2xと、その先に接続された冷却流体用の流路を備えない管体部2yとから構成するとともに、この管体部2yを長手方向において適当な曲率で湾曲させたものであり、このように管体部2yを湾曲させる理由は先に述べたとおりである。   The embodiment of FIG. 14 relates to a pulverized coal blowing pipe having a single-pipe structure that does not have a reduced diameter pipe section and an expanded diameter pipe section. The pulverized coal blowing pipe 2 'is a pipe provided with a flow path 9' for cooling fluid. It is composed of a body part 2x and a tube part 2y not provided with a cooling fluid channel connected to the end of the body part 2x, and the tube part 2y is curved with an appropriate curvature in the longitudinal direction. The reason for bending the tubular portion 2y in this way is as described above.

次に、以上述べたような本発明の微粉炭吹き込みバーナーを用いた冶金炉内への微粉炭の吹き込み方法について説明する。
本発明による微粉炭の吹き込み方法の基本的な形態は、図2に示すように、微粉炭吹き込みバーナーAのバーナー本体の先端側部分を冶金炉の羽口5又はこれに連設されたブローパイプ6内に挿入し、その微粉炭吹き込みバーナーAから羽口5を通じて冶金炉内に微粉炭を吹き込むものである。
一方、微粉炭の分散性をより高める方法としては、図15に示すように、2本の微粉炭吹き込みバーナーA,Aのバーナー本体の先端側部分を、冶金炉の羽口又はこれに連設されたブローパイプ内(この実施形態ではブローパイプ内)に、両バーナー中心軸x,xの延長線が相互に交差せず、且つ両バーナー中心軸x,xがブローパイプ中心軸と交差しないように非対称に挿入し、両微粉炭吹き込みバーナーA,Aから羽口を通じて冶金炉内に微粉炭を吹き込む方法がある。
Next, a method for blowing pulverized coal into the metallurgical furnace using the pulverized coal blowing burner of the present invention as described above will be described.
As shown in FIG. 2, the basic form of the pulverized coal blowing method according to the present invention is such that the tip side portion of the burner body of the pulverized coal blowing burner A is connected to the tuyere 5 of the metallurgical furnace or to this. The pulverized coal is inserted into the metallurgical furnace through the tuyere 5 from the burner A.
On the other hand, as a method for further improving the dispersibility of the pulverized coal, as shown in FIG. 15, the tip side portions of the burner bodies of the two pulverized coal blowing burners A 1 and A 2 are placed on the tuyere of the metallurgical furnace or on this. The extension lines of the burner central axes x 1 and x 2 do not intersect each other in the continuous blow pipe (in this embodiment, the blow pipe), and both the burner central axes x 1 and x 2 are blow pipes. There is a method of inserting the pulverized coal into the metallurgical furnace through the tuyere from both the pulverized coal blowing burners A 1 and A 2 so as not to intersect the central axis.

この方法によれば、2本の微粉炭吹き込みバーナーA,Aを使用すること自体で微粉炭の分散性が高まるだけでなく、上述のように非対称に配置された両微粉炭吹き込みバーナーA,Aからの微粉炭流が互いに干渉し合うために、微粉炭流の分散性がより強化されることになり、微粉炭と導入された酸素、さらには熱風中の酸素との接触効率をより高めることができる。
なお、以上述べた本発明の微粉炭吹き込みバーナーとこれを用いた微粉炭吹き込み方法は、高炉だけでなく、スクラップ溶解炉等をはじめとする各種冶金炉に適用することができる。
According to this method, not only the dispersibility of pulverized coal is increased by using two pulverized coal blowing burners A 1 and A 2 , but also both pulverized coal blowing burners A arranged asymmetrically as described above. Since the pulverized coal flows from 1 and A 2 interfere with each other, the dispersibility of the pulverized coal flow is further enhanced, and the contact efficiency between the pulverized coal and the introduced oxygen, and further the oxygen in the hot air Can be further enhanced.
The pulverized coal blowing burner of the present invention and the pulverized coal blowing method using the same can be applied not only to a blast furnace but also to various metallurgical furnaces including a scrap melting furnace.

[実施例1]
本発明の効果を確認するために、以下のような微粉炭の燃焼試験を実施した。
コークス充填層型の小型燃焼試験炉を用い、図16に示す試験形態で微粉炭の燃焼試験を行い、下記(3)式に示すカーボン収支より算出される燃焼率ηを求め、微粉炭の燃焼率を評価した。
η={(Rac・Ccoke−Rpc・Ccoke)/(Rpcinj・Cpc)}×100 …(3)
但し Rac:燃焼ガス条件から決定される理論コークス消費量(kg/h)
Rpc:微粉炭吹き込み時のコークス投入量(kg/h)
Rpcinj:微粉炭の吹き込み量(kg/h)
Ccoke:コークス中カーボン含有率(mass%)
Cpc:微粉炭中カーボン含有率(mass%)
[Example 1]
In order to confirm the effect of the present invention, the following pulverized coal combustion test was conducted.
Using a small combustion test furnace of coke packed bed type, the combustion test of pulverized coal is performed in the test form shown in FIG. 16, the combustion rate η calculated from the carbon balance shown in the following equation (3) is obtained, and the combustion of pulverized coal Rate was evaluated.
η = {(Rac · Ccoke−Rpc · Ccoke) / (Rpc inj · Cpc )} × 100 (3)
Where Rac: Theoretical coke consumption determined from combustion gas conditions (kg / h)
Rpc: Coke input during pulverized coal injection (kg / h)
Rpc inj : Amount of pulverized coal injection (kg / h)
Ccoke: Carbon content in coke (mass%)
Cpc: Carbon content in pulverized coal (mass%)

燃焼試験炉は実際の高炉の炉下部を模擬するため、羽口及びブローパイプを各1基ずつ備えており、そのブローパイプ内に管壁を貫通して微粉炭吹き込みバーナーを挿入し、微粉炭吹き込みバーナーをブローパイプ管軸に対して斜めに向けて設置した。微粉炭吹き込みバーナーの内管(微粉炭吹き込み管)は微粉炭ホッパーに微粉炭送給管を介して連結されており、微粉炭ホッパー内の微粉炭が搬送気体とともにバーナー内管を通ってブローパイプ内に供給されるようになっている。さらに、バーナーの外管は空気ラインとつながっており、所定量の酸素又は酸素富化空気が供給されるようになっている。   In order to simulate the lower part of an actual blast furnace, the combustion test furnace has one tuyere and one blow pipe, and a pulverized coal blowing burner is inserted into the blow pipe through the tube wall. The blowing burner was installed so as to be inclined with respect to the blow pipe tube axis. The inner pipe of the pulverized coal blowing burner (pulverized coal blowing pipe) is connected to the pulverized coal hopper via the pulverized coal feed pipe, and the pulverized coal in the pulverized coal hopper is blown through the burner inner pipe together with the carrier gas. It is designed to be supplied inside. Further, the outer tube of the burner is connected to an air line so that a predetermined amount of oxygen or oxygen-enriched air is supplied.

燃焼試験炉内に、ブローパイプを通じて1200℃の熱風を送風しつつ、微粉炭吹き込みバーナーからブローパイプ内に微粉炭を吹き込み、微粉炭をブローパイプ内及びコークス充填層内の燃焼空間にて燃焼させた。なお、試験中は燃焼試験炉内にコークスを適宜装入し、コークス充填層レベルを一定に保った。   While blowing hot air at 1200 ° C through the blow pipe into the combustion test furnace, the pulverized coal is blown into the blow pipe from the burner, and the pulverized coal is burned in the combustion space in the blow pipe and the coke packed bed. It was. During the test, coke was appropriately charged in the combustion test furnace, and the coke packed bed level was kept constant.

試験結果を、各試験条件とともに表1及び表2に示す。
表1において、本発明例1、2は、図1に示す2重管構造を有する本発明の微粉炭吹き込みバーナーを用いた例であり、本発明例3は、図11に示す3重管構造を有する本発明の微粉炭吹き込みバーナーを用いた例である。
一方、比較例1は通常の単管構造のバーナーを用いた例、比較例2は微粉炭吹き込み管が縮径管部及び拡径管部を有しない2重管構造の従来型バーナーを用いた例、比較例3は微粉炭吹き込み管が縮径管部及び拡径管部を有する2重管構造であるが、拡径管部内面の広がり角θが本発明範囲を超えたバーナーを用いた例である。
The test results are shown in Table 1 and Table 2 together with each test condition.
In Table 1, Invention Examples 1 and 2 are examples using the pulverized coal blowing burner of the present invention having the double pipe structure shown in FIG. 1, and Invention Example 3 is a triple pipe structure shown in FIG. It is an example using the pulverized coal blowing burner of the present invention having the following.
On the other hand, Comparative Example 1 was an example using an ordinary single tube structure burner, and Comparative Example 2 was a conventional burner having a double tube structure in which the pulverized coal blowing tube did not have a reduced diameter tube portion and an expanded diameter tube portion. In Example and Comparative Example 3, the pulverized coal blowing pipe has a double pipe structure having a reduced diameter pipe part and an enlarged diameter pipe part, but a burner having a spread angle θ on the inner surface of the enlarged diameter pipe part exceeding the range of the present invention was used. It is an example.

表1によれば、本発明例1〜本発明例3は、微粉炭の燃焼率が比較例1に較べて7〜8%、比較例2に較べて4〜5%、比較例3に較べて3〜4%向上している。また、本発明例3は3重管構造のバーナーを用い、最外管から冷却用の空気を供給したため、バーナーの耐溶損性が本発明例1に較べてより改善された。
表2の実施例はD/Dの影響を調べたものであり、いずれも図1に示す2重管構造を有する本発明の微粉炭吹き込みバーナーを用いたものである。本発明例4〜6はいずれも高い微粉炭燃焼率が得られている。
According to Table 1, Examples 1 to 3 of the present invention have a combustion rate of pulverized coal of 7 to 8% compared to Comparative Example 1, 4 to 5% compared to Comparative Example 2, and compared to Comparative Example 3. 3-4%. In addition, the invention example 3 used a burner having a triple pipe structure, and the cooling air was supplied from the outermost pipe. Therefore, the melt resistance of the burner was further improved as compared with the example 1 of the invention.
The examples in Table 2 are for examining the influence of D 1 / D 3 , and all use the pulverized coal blowing burner of the present invention having the double pipe structure shown in FIG. In all of Examples 4 to 6 of the present invention, a high pulverized coal combustion rate is obtained.

Figure 0004506337
Figure 0004506337

Figure 0004506337
Figure 0004506337

[実施例2]
内容積2828m、羽口数32本の高炉において、出銑比2.2t/m/day、微粉炭比180kg/tの条件で、以下のような一連の操業を行った。
従来型バーナーを用いた操業では、各羽口に従来型微粉炭吹き込みバーナーを図15に示すような形態で2本挿入し、これら微粉炭吹き込みバーナーを用いた微粉炭の吹き込みを行った。次いで、ある時期に各羽口の微粉炭吹き込みバーナーを本発明例のものと交換し、操業を続行した。本発明例の微粉炭吹き込みバーナーとしては、図13に示すような形態のものであって、管体部2cの拡径管部内面の広がり角θ:7°、D/D:0.7、D/D:1.0のものを用いた。この微粉炭吹き込みバーナーを図15に示すような形態で各羽口に2本挿入し、これら微粉炭吹き込みバーナーを用いた微粉炭の吹き込みを行った。
[Example 2]
Internal volume 2828M 3, in blast furnace wings talkative 32, Dezukuhi 2.2t / m 3 / day, in terms of the pulverized coal ratio 180 kg / t, was a series of operations as follows.
In operation using a conventional burner, two conventional pulverized coal blowing burners were inserted into each tuyere in the form shown in FIG. 15, and pulverized coal was blown using these pulverized coal blowing burners. Next, at a certain time, the pulverized coal-injection burner at each tuyere was replaced with that of the example of the present invention, and the operation was continued. The pulverized coal blowing burner of the example of the present invention has a form as shown in FIG. 13, and the spread angle θ of the expanded pipe portion of the tube portion 2 c is 7 °, D 2 / D 1 : 0. 7, D 1 / D 3 : 1.0 was used. Two of these pulverized coal blowing burners were inserted into each tuyere in the form shown in FIG. 15, and pulverized coal was blown using these pulverized coal blowing burners.

図17に、上記高炉操業における送風圧力の推移を示す。同図に示すように、本発明例の微粉炭吹き込みバーナーに切り替える前の従来型バーナーを用いた操業時には、送風圧力は約333kPa前後で推移しているが、本発明例の微粉炭吹き込みバーナーへの切り替え後には送風圧力が徐々に低下し、最終的には約323kPa前後で推移する状態になった。これは、本発明例の微粉炭吹き込みバーナーへの切り替えによって、未燃チャーの炉芯への蓄積量が減少し、これに伴い約200kPa前後の炉頂圧力下において炉内圧力損失が約133kPa程度から約123kPaまで低下し、炉内の通気性が改善されたためであると考えられる。また、炉頂ダストの顕微鏡観察により未燃チャーの排出量を測定したところ、本発明例の微粉炭吹き込みバーナーへの切り替え後は、未燃チャーの排出量が低減していた。これは、本発明例の微粉炭吹き込みバーナーへの切り替えにより微粉炭の燃焼率が向上し、未燃チャーの発生量が減少したためであると考えられる。   In FIG. 17, the transition of the ventilation pressure in the said blast furnace operation is shown. As shown in the figure, during operation using the conventional burner before switching to the pulverized coal blowing burner of the example of the present invention, the blowing pressure is about 333 kPa, but to the pulverized coal blowing burner of the example of the present invention. After switching, the blast pressure gradually decreased and finally changed to about 323 kPa. This is because the amount of unburned char accumulated in the furnace core is reduced by switching to the pulverized coal injection burner of the present invention, and the pressure loss in the furnace is about 133 kPa under the top pressure of about 200 kPa. This is considered to be because the air permeability in the furnace was improved. Moreover, when the discharge amount of unburned char was measured by microscopic observation of the furnace top dust, the discharge amount of unburned char was reduced after switching to the pulverized coal blowing burner of the example of the present invention. This is considered to be because the combustion rate of pulverized coal was improved by switching to the pulverized coal blowing burner of the present invention example, and the amount of unburned char was reduced.

本発明の微粉炭吹き込みバーナーとこれを用いた微粉炭吹き込み方法は、高炉、スクラップ溶解炉等をはじめとする各種冶金炉において、羽口から炉内に多量の微粉炭を吹き込む際に用いることができる。   The pulverized coal blowing burner of the present invention and the pulverized coal blowing method using the same can be used when a large amount of pulverized coal is blown into the furnace from the tuyere in various metallurgical furnaces including a blast furnace and a scrap melting furnace. it can.

本発明の微粉炭吹き込みバーナーの一実施形態を示す縦断面図The longitudinal cross-sectional view which shows one Embodiment of the pulverized coal blowing burner of this invention 図1の微粉炭吹き込みバーナーが取り付けられた高炉羽口部の縦断面図Longitudinal section of the blast furnace tuyere with the pulverized coal blowing burner of FIG. 図4〜図7の試験で用いた試験装置を模式的に示す説明図Explanatory drawing which shows typically the test equipment used in the test of Drawing 4-Drawing 7 微粉炭吹き込み管の拡径管部内面の広がり角θが、バーナー先端における微粉炭流の広がり角度に及ぼす影響を示すグラフA graph showing the effect of the spread angle θ of the inner surface of the expanded pipe portion of the pulverized coal blowing pipe on the spread angle of the pulverized coal flow at the tip of the burner バーナー先端部での微粉炭流速が、バーナー先端における微粉炭流の広がり角度に及ぼす影響を示すグラフGraph showing the effect of the pulverized coal flow velocity at the burner tip on the spread angle of the pulverized coal flow at the burner tip 微粉炭吹き込み管の縮径管部内面の狭まり角αが、バーナー先端における微粉炭流の広がり角度に及ぼす影響を示すグラフA graph showing the effect of the narrowing angle α of the inner surface of the reduced diameter pipe portion of the pulverized coal blowing pipe on the spread angle of the pulverized coal flow at the tip of the burner 縮径管部のバーナー先端寄り端部の内径Dと同じくバーナー後端寄り端部の内径Dとの比D/Dがバーナー先端における微粉炭流の広がり角度に及ぼす影響を示すグラフA graph showing the influence of the ratio D 2 / D 1 between the inner diameter D 2 of the end near the burner tip of the reduced diameter pipe portion and the inner diameter D 1 of the end near the burner rear end on the spread angle of the pulverized coal flow at the tip of the burner 本発明の微粉炭吹き込みバーナーの他の実施形態における微粉炭吹き込み管先端部を示す縦断面図The longitudinal cross-sectional view which shows the pulverized coal blowing pipe | tube tip part in other embodiment of the pulverized coal blowing burner of this invention 本発明の微粉炭吹き込みバーナーの他の実施形態における微粉炭吹き込み管先端部を示す縦断面図The longitudinal cross-sectional view which shows the pulverized coal blowing pipe | tube tip part in other embodiment of the pulverized coal blowing burner of this invention 本発明の微粉炭吹き込みバーナーの他の実施形態を示す縦断面図The longitudinal cross-sectional view which shows other embodiment of the pulverized-coal blowing burner of this invention 本発明の微粉炭吹き込みバーナーの他の実施形態を示す縦断面図The longitudinal cross-sectional view which shows other embodiment of the pulverized-coal blowing burner of this invention 本発明の微粉炭吹き込みバーナーの他の実施形態における微粉炭吹き込み管先端部を示す縦断面図The longitudinal cross-sectional view which shows the pulverized coal blowing pipe | tube tip part in other embodiment of the pulverized coal blowing burner of this invention 本発明の微粉炭吹き込みバーナーの他の実施形態における微粉炭吹き込み管先端部を示す縦断面図The longitudinal cross-sectional view which shows the pulverized coal blowing pipe | tube tip part in other embodiment of the pulverized coal blowing burner of this invention 縮径管部と拡径管部を有しない単管構造の微粉炭吹き込み管を備えた微粉炭吹き込みバーナーの一実施形態において、微粉炭吹き込み管先端部を示す縦断面図The longitudinal cross-sectional view which shows the pulverized-coal-injection pipe front-end | tip part in one Embodiment of the pulverized-coal-injection burner provided with the pulverized-coal-injection pipe of the single pipe | tube structure which does not have a reduced diameter pipe part and an enlarged diameter pipe part 本発明の微粉炭吹き込みバーナーを用いた微粉炭の吹き込み方法の一実施形態を示すもので、(a)はブローパイプ内での微粉炭吹き込みバーナーの配置を示す平面図、(b)は同じく正面図FIG. 1 shows an embodiment of a pulverized coal blowing method using the pulverized coal blowing burner of the present invention, (a) is a plan view showing the arrangement of the pulverized coal blowing burner in the blow pipe, and (b) is also a front view. Figure 本発明の実施例で用いた試験設備を示す説明図Explanatory drawing which shows the test equipment used in the Example of this invention 従来型の微粉炭吹き込みバーナーを使用した操業を行い、次いで本発明例の微粉炭吹き込みバーナーに切り替えて操業を行った実施例2について、送風圧力の推移を示すグラフThe graph which shows the transition of ventilation pressure about Example 2 which performed operation using the conventional type pulverized coal injection burner, and then switched to the pulverized coal injection burner of the example of the present invention.

符号の説明Explanation of symbols

1 バーナー本体
2 微粉炭吹き込み管
2a,2b,2c 管体部
3,3a 外管
4,4a 流路
5 羽口
6 ブローパイプ
7 最外管
8 流路
9 流路
20 縮径管部
21 拡径管部
22 等径管部
23 等径管部
A,A,A 微粉炭吹き込みバーナー
,x バーナー中心軸
DESCRIPTION OF SYMBOLS 1 Burner main body 2 Pulverized coal blow-in pipe 2a, 2b, 2c Tube part 3, 3a Outer pipe 4, 4a Flow path 5 Tuyere 6 Blow pipe 7 Outermost pipe 8 Flow path 9 Flow path 20 Reduced diameter pipe part 21 Diameter expansion Pipe part 22 Equal-diameter pipe part 23 Equi-diameter pipe part A, A 1 , A 2 Pulverized coal blowing burner x 1 , x 2 Burner central axis

Claims (10)

羽口を通じて冶金炉内に微粉炭を吹き込むための微粉炭吹き込みバーナーにおいて、
バーナー本体を構成する微粉炭吹き込み管の先端側部分が、内径が管端側に向けて漸次縮径した縮径管部と、該縮径管部に連なる管端部であって、内径が管端側に向けて漸次拡径した拡径管部とからなり、前記拡径管部内面の管軸に対する広がり角θが10°未満であることを特徴とする冶金炉用微粉炭吹き込みバーナー。
In the pulverized coal blowing burner for blowing pulverized coal into the metallurgical furnace through the tuyere,
The tip side portion of the pulverized coal blowing pipe constituting the burner main body is a reduced diameter pipe portion whose inner diameter is gradually reduced toward the pipe end side, and a pipe end portion connected to the reduced diameter pipe portion, the inner diameter of the pipe A pulverized coal-injection burner for a metallurgical furnace, comprising a diameter-expanded pipe portion that gradually increases in diameter toward the end, and having a spread angle θ with respect to the pipe axis of the inner diameter of the diameter-expanded pipe portion being less than 10 °.
拡径管部内面の管軸に対する広がり角θが5°以上、10°未満であることを特徴とする請求項1に記載の冶金炉用微粉炭吹き込みバーナー。   2. The pulverized coal blowing burner for metallurgical furnace according to claim 1, wherein a divergence angle θ of the inner surface of the expanded diameter pipe portion with respect to the tube axis is 5 ° or more and less than 10 °. 縮径管部と拡径管部との間に、内径が一定の等径管部を有することを特徴とする請求項1又は2に記載の冶金炉用微粉炭吹き込みバーナー。   The pulverized coal blowing burner for a metallurgical furnace according to claim 1 or 2, wherein an equal-diameter tube portion having a constant inner diameter is provided between the reduced-diameter tube portion and the expanded-diameter tube portion. 縮径管部のバーナー後端寄り端部の内径Dと縮径管部のバーナー先端寄り端部の内径Dが下記(1)式を満足することを特徴とする請求項1〜3のいずれかに記載の冶金炉用微粉炭吹き込みバーナー。
0.6≦D/D≦0.8 …(1)
Of claims 1 to 3, the inner diameter D 2 of the burner tip inboard end of the inner diameter D 1 and the reduced tube of the burner near the rear end edge portion of the reduced tube portion and satisfies the following formula (1) The pulverized coal blowing burner for a metallurgical furnace according to any one of the above.
0.6 ≦ D 2 / D 1 ≦ 0.8 (1)
縮径管部のバーナー後端寄り端部の内径Dと拡径管部先端の内径Dが下記(2)式を満足することを特徴とする請求項1〜4のいずれかに記載の冶金炉用微粉炭吹き込みバーナー。
/D≦1.0 …(2)
The inner diameter D 1 and the radially enlarged tube inner diameter D 3 of the tip of the burner near the rear end edge portion of the reduced tube portion according to claim 1, characterized by satisfying the following formula (2) Pulverized coal blowing burner for metallurgical furnaces.
D 1 / D 3 ≦ 1.0 (2)
バーナー本体が内管と外管とからなる2重管構造を有し、前記内管が微粉炭吹き込み管を構成するとともに、前記外管が支燃性ガスの吹き込み管を構成することを特徴とする請求項1〜5のいずれかに記載の冶金炉用微粉炭吹き込みバーナー。   The burner body has a double pipe structure composed of an inner pipe and an outer pipe, the inner pipe constitutes a pulverized coal blowing pipe, and the outer pipe constitutes a combustion-supporting gas blowing pipe. The pulverized coal blowing burner for metallurgical furnaces according to any one of claims 1 to 5. バーナー本体が内管と外管とからなる2重管構造を有し、前記内管が微粉炭吹き込み管を構成するとともに、前記外管が冷却流体用の流路を構成することを特徴とする請求項1〜5のいずれかに記載の冶金炉用微粉炭吹き込みバーナー。   The burner main body has a double pipe structure composed of an inner pipe and an outer pipe, the inner pipe constitutes a pulverized coal blowing pipe, and the outer pipe constitutes a flow path for cooling fluid. The pulverized coal blowing burner for metallurgical furnaces according to any one of claims 1 to 5. 微粉炭吹き込み管が、管壁内部に冷却流体用の流路を備えた構造であることを特徴とする請求項1〜6のいずれかに記載の冶金炉用微粉炭吹き込みバーナー。   The pulverized coal blowing burner for a metallurgical furnace according to any one of claims 1 to 6, wherein the pulverized coal blowing tube has a structure including a flow path for cooling fluid inside the tube wall. バーナー本体が内管と外管と最外管とからなる3重管構造を有し、前記内管が微粉炭吹き込み管を構成し、前記外管が支燃性ガスの吹き込み管を構成し、前記最外管が冷却用流体の流路を構成することを特徴とする請求項1〜5のいずれかに記載の冶金炉用微粉炭吹き込みバーナー。   The burner body has a triple pipe structure consisting of an inner pipe, an outer pipe, and an outermost pipe, the inner pipe constitutes a pulverized coal blowing pipe, and the outer pipe constitutes a combustion supporting gas blowing pipe, The pulverized coal blowing burner for a metallurgical furnace according to any one of claims 1 to 5, wherein the outermost pipe constitutes a flow path for a cooling fluid. 請求項1〜9のいずれかに記載の微粉炭吹き込みバーナーを用いた冶金炉内への微粉炭の吹き込み方法であって、
微粉炭吹き込みバーナーのバーナー本体の先端側部分を冶金炉の羽口又はこれに連設されたブローパイプ内に挿入し、該微粉炭吹き込みバーナーから羽口を通じて冶金炉内に微粉炭を吹き込むことを特徴とする冶金炉内への微粉炭吹き込み方法。
A method for blowing pulverized coal into a metallurgical furnace using the pulverized coal blowing burner according to any one of claims 1 to 9,
Inserting the tip side of the burner body of the pulverized coal blowing burner into the tuyere of the metallurgical furnace or a blow pipe connected thereto, and blowing the pulverized coal into the metallurgical furnace through the tuyere A pulverized coal injection method into a metallurgical furnace.
JP2004224745A 2003-07-31 2004-07-30 Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace Expired - Lifetime JP4506337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224745A JP4506337B2 (en) 2003-07-31 2004-07-30 Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003284516 2003-07-31
JP2004224745A JP4506337B2 (en) 2003-07-31 2004-07-30 Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace

Publications (2)

Publication Number Publication Date
JP2005060834A JP2005060834A (en) 2005-03-10
JP4506337B2 true JP4506337B2 (en) 2010-07-21

Family

ID=34380272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224745A Expired - Lifetime JP4506337B2 (en) 2003-07-31 2004-07-30 Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace

Country Status (1)

Country Link
JP (1) JP4506337B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046887B2 (en) * 2007-11-27 2012-10-10 三菱重工業株式会社 High caking coal burner and gasifier
JP4955117B1 (en) 2011-03-15 2012-06-20 新日鉄エンジニアリング株式会社 Top-fired hot air furnace
JP4892107B1 (en) 2011-03-23 2012-03-07 新日鉄エンジニアリング株式会社 Top-fired hot air furnace
JP5724659B2 (en) * 2011-06-15 2015-05-27 Jfeスチール株式会社 Apparatus and method for injecting reducing material into blast furnace
JP6477607B2 (en) * 2016-06-15 2019-03-06 Jfeスチール株式会社 Lance
JP6481662B2 (en) * 2016-06-15 2019-03-13 Jfeスチール株式会社 Lance
KR102088446B1 (en) * 2017-12-13 2020-03-12 주식회사 포스코 Lance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160215A (en) * 1998-12-01 2000-06-13 Nippon Steel Corp Temperature control method in blast furnace raceway

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128312U (en) * 1982-02-19 1983-08-31 住友金属工業株式会社 fuel injector
JP2901998B2 (en) * 1989-07-24 1999-06-07 川崎製鉄株式会社 How to inject pulverized coal into the blast furnace
JP2953255B2 (en) * 1993-05-25 1999-09-27 日本鋼管株式会社 Method and apparatus for injecting solid fuel into blast furnace
JP3598536B2 (en) * 1994-06-21 2004-12-08 Jfeスチール株式会社 Lance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160215A (en) * 1998-12-01 2000-06-13 Nippon Steel Corp Temperature control method in blast furnace raceway

Also Published As

Publication number Publication date
JP2005060834A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
AU2007246207B2 (en) Apparatus for injecting gas into a vessel
KR101555222B1 (en) Blast furnace operating method and tube bundle-type lance
JP4506337B2 (en) Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace
JP2009139081A (en) Burner lance for charging powdery and granular matter of smelting reduction furnace and manufacturing method of molten metal by smelting reduction
JP3796021B2 (en) Method of blowing pulverized coal from blast furnace tuyere and blowing lance
JP5286768B2 (en) Burner lance for charging granular material in smelting reduction furnace and method for producing molten metal by smelting reduction
JP2003194307A5 (en)
JP2000192119A (en) Method for blowing auxiliary fuel into blast furnace
JP2009097051A (en) Blast furnace lance for blast furnace
JP3493937B2 (en) How to blow pulverized coal into the blast furnace
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JP4427469B2 (en) Blast furnace pulverized coal injection burner and pulverized coal injection method using the same
JPH1112613A (en) Lance for injecting pulverized fine coal into blast furnace
KR101693136B1 (en) Blast furnace operation method
JP2004091921A (en) Method for blowing solid fuel into blast furnace and blown lance
JP4127032B2 (en) Blast furnace pulverized coal injection burner and pulverized coal injection method into blast furnace
JP4218234B2 (en) Converter blowing method
JPH1112612A (en) Lance for injecting pulverized fine coal into blast furnace
KR101629122B1 (en) Blast furnace operation method
JP2001115202A (en) Operation method for blowing of auxiliary fuel into blast furnace
JP2000239719A (en) Operation for blowing auxiliary fuel into blast furnace
JPH11209807A (en) Pulverized coal injection method from blast furnace tuyere and injection lance
JP2000328115A (en) Lance for injecting granular solid fuel into blast furnace and method for injecting granular solid fuel into blast furnace using this lance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4506337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term