[go: up one dir, main page]

JP4505695B2 - Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same - Google Patents

Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Download PDF

Info

Publication number
JP4505695B2
JP4505695B2 JP2000030226A JP2000030226A JP4505695B2 JP 4505695 B2 JP4505695 B2 JP 4505695B2 JP 2000030226 A JP2000030226 A JP 2000030226A JP 2000030226 A JP2000030226 A JP 2000030226A JP 4505695 B2 JP4505695 B2 JP 4505695B2
Authority
JP
Japan
Prior art keywords
manganese
lithium
active material
positive electrode
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000030226A
Other languages
Japanese (ja)
Other versions
JP2001216967A (en
Inventor
竜一 葛尾
正典 相馬
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000030226A priority Critical patent/JP4505695B2/en
Publication of JP2001216967A publication Critical patent/JP2001216967A/en
Application granted granted Critical
Publication of JP4505695B2 publication Critical patent/JP4505695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解質二次電池用正極活物質およびその製造方法に関するものであり、より詳しくは、高いサイクル特性を損なうことなく電極としての成形性や充填密度を向上させ、さらに電池として高い初期容量を具備させることが可能となる非水系二次電池用の正極活物質およびその製造方法に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型、軽量な二次電池の要求が高まっている。このようなものとして非水電解液タイプのリチウムイオン二次電池があり、研究開発が盛んに行われ、実用化されてきている。
【0003】
このリチウムイオン二次電池は、リチウム含有複合酸化物を活物質とする正極と、リチウム、リチウム合金、金属酸化物あるいはカーボンのような、リチウムを吸蔵・放出することが可能な材料を活物質とする負極と、非水電解液を含むセパレーターまたは固体電解質を主要構成要素としている。これら構成要素のうち、正極活物質として検討されているものにはリチウムコバルト複合酸化物(LiCoO2)、リチウムニッケル複合酸化物(LiNiO2)、リチウムマンガン複合酸化物(LiMn2O4)等がある。とくにリチウムコバルト複合酸化物を正極に用いた電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られ、実用化に至っている。
【0004】
しかし、リチウムコバルト複合酸化物は、原料に希産で高価なコバルトを用いるため、正極活物質さらには電池のコストアップの大きな原因となっている。また、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物は、コスト的にも容量的にも有利であり、リチウムコバルト複合酸化物の有力な代替材料として開発が進められているが、このリチウムニッケル複合酸化物を正極活物質に用いた電池は、充電状態での正極活物質の不安定性から、高温に保持すると分解、発熱、発火などの危険性を有しており、安全性に関して解決しなければならない問題が多く残っている。
【0005】
一方、リチウムマンガン複合酸化物は、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物に比べて容量がやや小さいものの、コバルトやニッケルよりも安価で資源的にも豊富なマンガンを用いているためコスト的に有利であり、充電状態での安全性にも優れているため、次世代の正極材料として期待されている。
【0006】
リチウムイオン二次電池においては、初期の放電容量(初期容量)が高く、かつ充放電サイクルの繰り返しによる容量の劣化(サイクル特性)が少ないものが求められている。さらに容量に関しては、冒頭に述べた小型化の観点から、単位体積当たりの放電容量が大きいものが求められている。
【0007】
しかし、リチウムマンガン複合酸化物は、純粋にマンガンのみで合成した材料を正極活物質としてリチウムイオン二次電池を作製した場合、サイクル特性が悪く、高温環境下で使用されたり保存された場合に比較的電池性能を損ないやすいという欠点を有していた。
【0008】
このような欠点を解決するために、マンガンの一部をクロムやニッケル、コバルトなどの金属元素に置き換える方法が提案され、これにより、結晶構造の安定性が向上し、サイクル特性や高温保持特性が改善されることが判明した。
そして、一般にこれらの金属元素を添加する際には、反応性を向上させ、また反応をより均一に進行させるために、原料の金属元素化合物やマンガン化合物、リチウム化合物とを十分に粉砕して混合してから合成する必要がある。
【0009】
しかしながら、このような方法で得られたリチウムマンガン複合酸化物はその工程上、粒子が非常に細かくなるために、正極を形成する際の成形性が悪い上、電極としての充填密度が上げらず、単位体積当たりの電池としての容量が低いものとなってしまう。
【0010】
したがって、反応性を高め、反応をより均一に進めるための方法として、添加する金属元素化合物とマンガン化合物、リチウム化合物を溶媒に溶かして混合し、スプレードライなどで噴霧して乾燥し、同時に反応を進行させる方法なども提案されているが、この方法で得られたリチウムマンガン複合酸化物は、細かい一次粒子が凝集した二次粒子の形態をもっているものの、二次粒子内部が中空で十分な密度と強度のものが得られず、結果的に電極としての充填密度が上げられないという問題点を有していた。
【0011】
【発明が解決しようとする課題】
このようにリチウムマンガン複合酸化物を正極活物質とした従来の非水系電解質二次電池においては、高いサイクル特性を維持したまま、電極としての成形性、充填密度を向上させ、電池として高い初期容量を具備させることが困難な問題点を有していた。
【0012】
本発明は、このような問題点に着目してなされたもので、その目的とするところは、元素添加によって高いサイクル特性を維持したまま、正極としての成形性、充填密度を損なわずに電池の初期容量の向上を図れる非水系電解質二次電池用正極活物質とその製造方法を提供することにある。
【0013】
【課題を解決するための手段】
記問題を解決するため本発明者等が種々研究を進めた結果、マンガンの一部がチタンで置換されたリチウムマンガン複合酸化物を正極活物質に適用するに際し、細かい一次粒子が凝集して比較的密に詰まった球状または楕円球状の二次粒子を構成した粉体特性をもつマンガン化合物原料の形状を崩さないように金属元素化合物を添加し、これをリチウム化合物と混合して熱処理することにより得たリチウムマンガン複合酸化物を用いることによって、上述した問題の発生を防止でき、かつ、成形性、充填性に優れ、高いサイクル特性を維持したまま単位体積当たりの放電容量が大きい電池を構成できることを見出し、本発明を完成するに至った。
【0014】
すなわち、本発明の第1の実施態様に係る非水系電解質二次電池用正極活物質は、LiMn2-xTixO4(但し、0<x≦0.33なる条件を満たす)で表されるリチウムマンガン複合酸化物において、該リチウムマンガン複合酸化物の二次粒子の形状が球状または楕円球状であることを特徴とする非水系電解質二次電池用正極活物質である。
【0015】
また、本発明の第1の実施態様に係る非水系電解質二次電池用正極活物質の製造方法は、 チタンの化合物をマンガンとチタンのモル比が2-x:x(但し、xは0<x≦0.33なる条件を満たす)となるように、あらかじめ添加した二次粒子の形状が球状または楕円球状であるマンガン化合物をリチウム化合物と混合し、この混合物を熱処理して得ることを特徴とするものである。
そして、前記チタンの化合物をチタンの酸化物とすることを特徴とし、さらに、マンガンの化合物にこのチタン酸化物を添加する際に、チタンの酸化物を溶媒に分散させて、これをマンガン化合物に含浸させたものをリチウム化合物と混合する。
【0016】
前記第2の実施態様に係る製造方法では、前記化合物の熱処理温度は、600℃以上950℃未満とし、4時間以上の熱処理を行うことを特徴とするものである。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。本発明はマンガンの一部をサイクル特性向上のためにチタンで置換した活物質に関するものである。
【0018】
リチウムマンガン複合酸化物は電池活物質として考えた場合、結晶構造からリチウムがイオンとして脱離挿入することによって充放電が行われる。金属元素などで置換しない純粋なリチウムマンガン複合酸化物は、充放電サイクルを繰り返した場合、初期に比べて容量が劣化するという問題がある。これはリチウムイオンが結晶構造から脱離・挿入を繰り返す際に母体の構造が徐々に破壊され、リチウムイオンが戻るべき場所が結晶構造内から失われていくためであると考えられる。この構造破壊を防ぐためにマンガンの一部を他元素に置換する方法が提案され、この方法により充放電サイクルが改善されることが報告されている。
【0019】
一般にはマンガンの一部を他元素に置換することで、正極材料の容量を決定するMn3+の量が減少するため、初期容量は減少してしまうが、LiMn2-xTixO4において、0<x≦0.33なる条件を満たせば、実用的に許容範囲内の容量低下に抑えることができる。
【0020】
しかしながら、一般に他元素に置換するためには、合成の際にマンガン原料化合物と置換金属原料化合物をリチウム原料化合物と粉砕しながらよく混合する必要がある。粉末固体を反応物質として用いる固相反応は、固相相互の接触部分で反応が開始し、それら界面に反応生成物が生成することで反応が進行していくため、粒子が微細であればあるほど接触部分は増大し、均一な組成が得られるためである。
【0021】
このようにしてできるだけ均一な組成になるように細かく粉砕混合する方法で合成された元素置換型リチウムマンガン複合酸化物は、その物質自体の特性としてサイクル特性が改善されている。しかし、これを正極材料としての観点から見ると、細かい粒子が多数存在するため、電極としての充填性に直接影響するタップ密度が低く、電極としての成形性が悪い上、導電助剤として添加するカーボンや、成形性を向上させるための結着剤の量を多くしなければならないため、成形された正極の単位体積中に含まれる活物質の量は少なくなり、結果として電池としての容量が低下してしまう。
【0022】
一方、マンガン原料と金属原料を両方溶媒に溶かして混合し、その後溶媒を蒸発させて原子レベルの混合を実現する方法も提案されているが、例えばスプレードライのような方法では二次粒子内部が中空な球状粒子となり、その強度、タップ密度が十分なものとはならない。また、共沈法のようにマンガン原料と金属原料を原子レベルで共沈殿させる方法は、組成の均一性という観点からは最も理想的な方法であるが、得られる粉末の粒径の制御が難しいという問題点をもつ。
【0023】
よって、粉体ができるだけ大きなタップ密度(充填密度)をもつようにするためには、幾何学的には粉体の粒子が球状である程度の幅を持った粒度分布をもつことが重要であるが、現実の正極活物質としての粉末を考えると、粒子の形状は球に近く、できるだけ粒度分布がシャープで、その中心粒径が数μm〜数十μm程度であり、かつ電極としての成形性を考慮すると粒径1μm以下の微粉はできるだけ少ない方が好ましい。このような粉体性状をもつマンガン化合物は実際に調整可能であり、市販もされている。
【0024】
本発明者らはこのような粉体性状をもつマンガン化合物を原料として、その粉体特性を維持するような金属元素の添加方法を用いて合成を行なえば、結果的に得られるリチウムマンガン複合酸化物もマンガン原料と同様な粉体特性を持ち、上記のような問題点を回避することができることを見出した。
すなわち、本発明の非水系電解質二次電池用正極活物質は、LiMn2-xTixO4(但し、0<x≦0.33なる条件を満たす)で表されるリチウムマンガン複合酸化物であって、該リチウムマンガン複合酸化物の二次粒子の形状が球状または楕円球状であることを特徴とする。
【0025】
このような粉体特性をもつリチウムマンガン複合酸化物は、二次粒子の形状が球状または楕円球状であるマンガン化合物の粉体特性が損なわれるような粉砕混合工程を経ずに、上記のチタンの化合物を、例えばチタンの化合物のみを微粉砕してマンガン化合物と混合したり、チタンの化合物のみを溶媒に溶解してマンガン化合物に分散させるなどの方法で、マンガンとチタンのモル比が2-x:x(但し、xは0<x≦0.33なる条件を満たす)となるようにあらかじめ添加したマンガン化合物をリチウム化合物と混合し、この混合物を熱処理することで得ることができる。
【0026】
すなわち、マンガンとチタンとのモル比が、0<x≦0.33の範囲において、2-x:xとなるように予め添加したマンガン化合物を用いることにより、実用的に許容範囲内の容量低下に抑えることが可能となり、この条件を外れると初期容量が低下してしまう。
【0027】
本発明に用いるリチウム化合物としては炭酸リチウムや水酸化リチウム、水酸化リチウム一水和物、硝酸リチウム、過酸化リチウムなどが挙げられる。
また、マンガン化合物としては、酸化マンガン、水酸化マンガン、塩化マンガン、炭酸マンガン、硝酸マンガン、硫酸マンガン、酢酸マンガンなど二次粒子の形状が球状または楕円球状であるような粉体特性をもつものであれば好適に用いることが可能である。
【0028】
また、チタンの化合物との固相反応が十分進むような微粉砕粉、あるいは溶媒に溶解させマンガン化合物に均一に分散、付着、反応させられるものであれば用いることが可能である。中でも、チタンの酸化物は溶媒(例えば水)に分散可能であり、マンガン化合物への添加が容易である。この酸化物を溶媒に分散し、その中にマンガン化合物を投入してマンガン化合物に均一に分散、添加させたものをリチウム化合物と混合し、熱処理することで、組成的に均一でかつマンガン化合物原料の粉体特性を損なわずに、リチウムマンガン複合酸化物を得ることができる。
【0029】
また、熱処理温度を600℃以上950℃未満とすることで、添加金属元素Mの化合物などの異相を生じさせることなく、金属元素Mを完全に固溶させることができ、結晶構造の高い完全性を実現できる。好ましくは、熱処理温度を700℃以上850℃以下とすることでより高い初期容量を実現できる。
【0030】
なお、熱処理温度が600℃未満であると反応が不十分であるため結晶性が悪くなり、一方950℃以上となると結晶構造が立方晶から、正方晶に変化し好ましくない。また、前記熱処理は4時間以上実施することが好ましく、4時間未満の熱処理では、結晶性の低下や異相の出現を招いてしまう。
【0031】
本発明による、マンガンの一部をチタンで置換した、二次粒子の形状が球状または楕円球状の正極活物質を用いた場合、金属元素の置換によって高いサイクル特性を維持したまま、電極としての成形性、充填密度を向上させ、電池として高い初期容量を具備させることができる。以下、本発明になる一実施の形態を好適な図面に基づいて詳述する。
【0032】
【実施例】
(実施例)
マンガンの一部をチタンに置換した正極活物質を合成するために、市販の水酸化リチウム一水和物、球状二酸化マンガン、酸化チタンを用意した。球状二酸化マンガンと酸化チタンをマンガンとチタンのモル比が▲1▼1.83:0.17、▲2▼1.89:0.11、▲3▼1.94:0.06となるようにそれぞれ秤量した後、酸化チタンが完全に分散する量の純水中に酸化チタンを分散させた。
【0033】
その後その溶液中に球状の二酸化マンガンを入れて加熱しながら攪拌し、水分を揮発させ、乾燥粉末を得た。この乾燥粉末と水酸化リチウム一水和物をリチウムとマンガン+チタンのモル比が1:2となるように秤量し、球状の二次粒子の形骸が維持される程度の強度で十分に混合した。
【0034】
この混合粉末を、酸素気流中で475℃で2時間仮焼した後、800℃で20時間焼成し、室温まで炉冷した。
【0035】
得られた焼成物を、CuのKa線を用いた粉末X線回折で分析したところ、スピネル構造を有した所望の正極活物質のみが単相で確認できた。また、粉末X線回折図形のリートベルト解析から、格子定数を求めたところ、試料▲1▼〜▲3▼に対してチタンの添加量が増大するにつれて直線的に格子定数が減少していくことが確認でき、チタンの固溶が確認された。また得られた正極活物質のタップ密度を測定した。格子定数とタップ密度を表1に示す。
【0036】
得られた活物質を用いて以下のように電池を作製し、充放電容量による電池特性を測定した。活物質粉末90wt%にアセチレンブラック5wt%およびPVDF(ポリ沸化ビニリデン)5wt%を混合し、NMP(n−メチルピロリドン)を加えペースト化した。これを20μm厚のアルミニウム箔に乾燥後の活物質重量が0.05g/cm2になるように塗布し、120℃で真空乾燥を行い、直径1cmの円板状に打ち抜いて正極とした。
【0037】
そして、図1に示すように得られた正極1と負極3としてリチウム金属を、また、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジメチルカーボネート(DMC)の等量混合溶液を用いた。ポリエチレンからなるセパレータ2に電解液を染み込ませ、露点が−80℃に管理されたAr雰囲気のグローブボックス中で、2032型のコイン電池に組み立てた。なお図1において、4はガスケット、5は正極缶、6は負極缶である。
【0038】
このようにして組立てた電池を組立て後24時間程度放置し、開回路電圧(OCV)が安定した後、正極に対する電流密度を0.5mA/cm2とし、カットオフ電圧4.3〜3.0Vで充放電試験を行った。得られた1サイクル目の放電容量(初期容量)と50サイクル目の放電容量、および初期容量に対する50サイクル目の放電容量の比(容量維持率)を表2に示す。
【0039】
(比較例)
マンガンの一部を元素で置換しない純粋な正極活物質を合成するために、市販の水酸化リチウム一水和物、球状二酸化マンガンをリチウムとマンガンのモル比が1:2となるように秤量した以外は、実施例と同様に正極活物質を合成し、さらにリチウムコイン二次電池を作製した。得られた結果を表1と2に示す。
【0040】
【表1】

Figure 0004505695
【0041】
【表2】
Figure 0004505695
【0042】
前記、表1と2から、実施例の電池は比較例の電池と比較して、80%以上のいずれも高い容量維持率を保ちながら、高いタップ密度を実現し、充填性が向上していることがわかる。
【0043】
【発明の効果】
本発明になる非水系電解質二次電池用正極活物質は、非水系二次電池の正極活物質として用いることで、高いサイクル特性を維持したまま、正極としての成形性、充填密度の向上を図ることが可能であり、単位体積当たりの初期容量の大きな二次電池を提供することができるという効果がある。
【図面の簡単な説明】
【図1】 正極活物質を用いたコイン電池の概略縦断面図である。
【符号の説明】
1 正極(評価用電極)
2 セパレーター(電解液含浸)
3 リチウム金属負極
4 ガスケット
5 正極缶
6 負極缶[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same. More specifically, the present invention improves the formability and packing density as an electrode without impairing high cycle characteristics, and is further high as a battery. The present invention relates to a positive electrode active material for a non-aqueous secondary battery that can have an initial capacity, and a method for producing the same.
[0002]
[Prior art]
In recent years, with the widespread use of portable devices such as mobile phones and laptop computers, there is an increasing demand for small and lightweight secondary batteries with high energy density. There is a non-aqueous electrolyte type lithium ion secondary battery as such, and research and development have been actively conducted and put into practical use.
[0003]
This lithium ion secondary battery includes a positive electrode using a lithium-containing composite oxide as an active material, and a material capable of inserting and extracting lithium, such as lithium, a lithium alloy, a metal oxide, or carbon, as an active material. The main components are a negative electrode to be processed and a separator or a solid electrolyte containing a non-aqueous electrolyte. Among these components, lithium cobalt composite oxide (LiCoO 2 ), lithium nickel composite oxide (LiNiO 2 ), lithium manganese composite oxide (LiMn 2 O 4 ), etc. are being studied as positive electrode active materials. is there. In particular, a battery using a lithium cobalt composite oxide as a positive electrode has been developed to obtain excellent initial capacity characteristics and cycle characteristics, and various results have been obtained and put into practical use. .
[0004]
However, since lithium cobalt complex oxide uses rare and expensive cobalt as a raw material, it is a major cause of the cost increase of the positive electrode active material and the battery. In addition, lithium nickel composite oxide using nickel, which is cheaper than cobalt, is advantageous in terms of cost and capacity, and is being developed as a promising alternative material for lithium cobalt composite oxide. Batteries that use lithium-nickel composite oxide as the positive electrode active material have the risk of decomposition, heat generation, and ignition when held at high temperatures due to the instability of the positive electrode active material in the charged state. There are still a lot of problems to do.
[0005]
On the other hand, although lithium manganese composite oxide has a slightly smaller capacity than lithium cobalt composite oxide and lithium nickel composite oxide, it is cheaper than cobalt and nickel, and uses abundant resources. Therefore, it is expected to be a next-generation positive electrode material.
[0006]
A lithium ion secondary battery is required to have a high initial discharge capacity (initial capacity) and a small capacity deterioration (cycle characteristics) due to repeated charge / discharge cycles. Furthermore, with respect to the capacity, from the viewpoint of miniaturization described at the beginning, a battery having a large discharge capacity per unit volume is required.
[0007]
However, lithium-manganese composite oxides have poor cycle characteristics when a lithium-ion secondary battery is made using a material synthesized solely with manganese as the positive electrode active material, compared to when used or stored in high-temperature environments. The battery has a drawback of easily damaging the battery performance.
[0008]
In order to solve these disadvantages, a method of replacing a part of manganese with a metal element such as chromium, nickel, cobalt, etc. has been proposed. This improves the stability of the crystal structure, and improves cycle characteristics and high temperature holding characteristics. It turned out to be improved.
In general, when these metal elements are added, the raw metal element compound, manganese compound, and lithium compound are sufficiently pulverized and mixed in order to improve the reactivity and to promote the reaction more uniformly. Then it is necessary to synthesize.
[0009]
However, since the lithium manganese composite oxide obtained by such a method has very fine particles in the process, the formability when forming the positive electrode is poor and the packing density as an electrode does not increase. As a result, the battery capacity per unit volume is low.
[0010]
Therefore, as a method for improving the reactivity and making the reaction proceed more uniformly, the metal element compound to be added, the manganese compound, and the lithium compound are dissolved in a solvent, mixed, spray-dried and dried, and simultaneously reacted. Although a method of proceeding has been proposed, the lithium manganese composite oxide obtained by this method has a form of secondary particles in which fine primary particles are aggregated, but the inside of the secondary particles is hollow and has a sufficient density. The strength was not obtained, and as a result, the packing density as an electrode could not be increased.
[0011]
[Problems to be solved by the invention]
As described above, in the conventional non-aqueous electrolyte secondary battery using lithium manganese composite oxide as the positive electrode active material, while maintaining high cycle characteristics, the moldability and filling density as an electrode are improved, and the battery has a high initial capacity. It has been difficult to provide
[0012]
The present invention has been made by paying attention to such problems, and the object of the present invention is to maintain the high cycle characteristics by adding elements, and to maintain the high cycle characteristics without impairing the moldability and packing density of the positive electrode. An object of the present invention is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery capable of improving the initial capacity and a method for producing the same.
[0013]
[Means for Solving the Problems]
As a result of various researches conducted by the present inventors to solve the above-mentioned problems, when applying a lithium manganese composite oxide in which a part of manganese is substituted with titanium to a positive electrode active material, fine primary particles are aggregated and compared. By adding a metal element compound so that the shape of the raw material of the manganese compound with powder characteristics that composes closely packed spherical or elliptical secondary particles is not destroyed, and mixing this with a lithium compound and heat-treating By using the obtained lithium manganese composite oxide, it is possible to prevent the occurrence of the above-mentioned problems, and to form a battery having a high discharge capacity per unit volume while maintaining excellent cycle characteristics and excellent moldability and filling properties. As a result, the present invention has been completed.
[0014]
That is, the positive electrode active material for a nonaqueous electrolyte secondary battery according to the first embodiment of the present invention is lithium represented by LiMn 2-x Ti x O 4 (provided that 0 <x ≦ 0.33 is satisfied). The manganese composite oxide is a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the secondary particles of the lithium manganese composite oxide have a spherical shape or an elliptical spherical shape.
[0015]
In addition, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the first embodiment of the present invention includes a titanium compound in which the molar ratio of manganese to titanium is 2-x: x (where x is 0 < x ≦ 0.33 is satisfied), and a manganese compound in which the shape of secondary particles added in advance is spherical or oval is mixed with a lithium compound, and the mixture is obtained by heat treatment It is.
The titanium compound is an oxide of titanium. Further, when the titanium oxide is added to the manganese compound, the titanium oxide is dispersed in a solvent, and this is converted into a manganese compound. The impregnated material is mixed with a lithium compound.
[0016]
In the production method according to the second embodiment, the heat treatment temperature of the compound is 600 ° C. or higher and lower than 950 ° C., and the heat treatment is performed for 4 hours or longer.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. The present invention relates to an active material in which a part of manganese is substituted with titanium for improving cycle characteristics.
[0018]
When the lithium manganese composite oxide is considered as a battery active material, charge and discharge are performed by lithium being desorbed and inserted as ions from the crystal structure. A pure lithium manganese composite oxide that is not substituted with a metal element or the like has a problem that the capacity deteriorates compared to the initial stage when the charge / discharge cycle is repeated. This is considered to be because when the lithium ions are repeatedly desorbed and inserted from the crystal structure, the base structure is gradually destroyed, and the place where the lithium ions should return is lost from within the crystal structure. In order to prevent this structural destruction, a method of substituting a part of manganese with another element has been proposed, and it has been reported that this method improves the charge / discharge cycle.
[0019]
Generally, substituting a part of manganese with another element reduces the amount of Mn 3+ that determines the capacity of the positive electrode material, so the initial capacity decreases, but in LiMn 2-x Ti x O 4 If the condition of 0 <x ≦ 0.33 is satisfied, it is possible to suppress the capacity drop to a practically allowable range.
[0020]
However, in general, in order to substitute with another element, it is necessary to thoroughly mix the manganese raw material compound and the substituted metal raw material compound with the lithium raw material compound during the synthesis. Solid-phase reaction using powdered solid as a reaction substance starts at the contact part between solid phases, and the reaction proceeds by the formation of reaction products at these interfaces, so the particles are fine. This is because the contact area increases and a uniform composition is obtained.
[0021]
In this way, the element-substituted lithium manganese composite oxide synthesized by the method of finely pulverizing and mixing so that the composition is as uniform as possible has improved cycle characteristics as the characteristics of the substance itself. However, from the viewpoint of the positive electrode material, since there are many fine particles, the tap density that directly affects the filling properties as an electrode is low, the moldability as an electrode is poor, and it is added as a conductive auxiliary. Since the amount of carbon and binder for improving moldability must be increased, the amount of active material contained in the unit volume of the molded positive electrode is reduced, resulting in a decrease in battery capacity. Resulting in.
[0022]
On the other hand, a method has been proposed in which both manganese raw material and metal raw material are dissolved in a solvent and mixed, and then the solvent is evaporated to achieve atomic level mixing. It becomes a hollow spherical particle, and its strength and tap density are not sufficient. In addition, a method of coprecipitation of a manganese raw material and a metal raw material at the atomic level as in the coprecipitation method is the most ideal method from the viewpoint of the uniformity of the composition, but it is difficult to control the particle size of the obtained powder. It has the problem.
[0023]
Therefore, in order to ensure that the powder has as large a tap density (packing density) as possible, it is important geometrically that the powder particles are spherical and have a particle size distribution with a certain width. Considering the powder as an actual positive electrode active material, the shape of the particles is close to a sphere, the particle size distribution is as sharp as possible, the center particle size is about several μm to several tens μm, and the moldability as an electrode In consideration, it is preferable that the amount of fine powder having a particle size of 1 μm or less is as small as possible. Manganese compounds having such powder properties are actually adjustable and are also commercially available.
[0024]
When the present inventors use a manganese compound having such powder properties as a raw material and synthesize it using a metal element addition method that maintains its powder characteristics, the resulting lithium manganese composite oxidation It has been found that the product has the same powder characteristics as the manganese raw material and can avoid the above problems.
That is, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a lithium manganese composite oxide represented by LiMn 2-x Ti x O 4 (where 0 <x ≦ 0.33 is satisfied). The shape of secondary particles of the lithium manganese composite oxide is spherical or elliptical.
[0025]
Lithium manganese composite oxide having such powder characteristics can be obtained without the above-described titanium mixing process without undergoing a pulverization and mixing step that impairs the powder characteristics of the manganese compound whose secondary particles are spherical or elliptical. The compound can be mixed with a manganese compound by, for example, pulverizing only a titanium compound, or by dissolving only the titanium compound in a solvent and dispersing it in the manganese compound. : X (wherein x satisfies the condition of 0 <x ≦ 0.33) A manganese compound added in advance is mixed with a lithium compound, and this mixture can be obtained by heat treatment.
[0026]
That is, by using a manganese compound added in advance so that the molar ratio of manganese to titanium is 2-x: x in the range of 0 <x ≦ 0.33, it is suppressed to a practically acceptable capacity reduction. If this condition is not met, the initial capacity will decrease.
[0027]
Examples of the lithium compound used in the present invention include lithium carbonate, lithium hydroxide, lithium hydroxide monohydrate, lithium nitrate, and lithium peroxide.
In addition, the manganese compound has powder characteristics such as manganese oxide, manganese hydroxide, manganese chloride, manganese carbonate, manganese nitrate, manganese sulfate, manganese acetate, etc., with secondary particles having a spherical or elliptical shape. If there is, it can be suitably used.
[0028]
Further, finely pulverized powder that can sufficiently undergo solid phase reaction with a titanium compound, or any powder that can be dissolved in a solvent and uniformly dispersed, adhered, and reacted with a manganese compound can be used. Among these, titanium oxide can be dispersed in a solvent (for example, water) and can be easily added to a manganese compound. This oxide is dispersed in a solvent, and a manganese compound is charged into the manganese compound. The resulting mixture is uniformly dispersed and added to the manganese compound, mixed with the lithium compound, and heat-treated. Thus, a lithium manganese composite oxide can be obtained without impairing the powder characteristics.
[0029]
In addition, by setting the heat treatment temperature to 600 ° C or more and less than 950 ° C, the metal element M can be completely dissolved without causing a heterogeneous phase such as a compound of the additive metal element M, and the crystal structure has high integrity. Can be realized. Preferably, a higher initial capacity can be realized by setting the heat treatment temperature to 700 ° C. or higher and 850 ° C. or lower.
[0030]
Note that if the heat treatment temperature is less than 600 ° C., the crystallinity deteriorates because the reaction is insufficient, while if it exceeds 950 ° C., the crystal structure changes from cubic to tetragonal, which is not preferable. Further, the heat treatment is preferably performed for 4 hours or longer, and heat treatment for less than 4 hours causes a decrease in crystallinity and appearance of a different phase.
[0031]
When a positive electrode active material in which a part of manganese according to the present invention is substituted with titanium and the shape of secondary particles is spherical or elliptical spherical is used, forming as an electrode while maintaining high cycle characteristics by substitution of metal elements And a high initial capacity as a battery. Hereinafter, an embodiment according to the present invention will be described in detail with reference to the preferred drawings.
[0032]
【Example】
(Example)
Commercially available lithium hydroxide monohydrate, spherical manganese dioxide, and titanium oxide were prepared in order to synthesize a positive electrode active material in which a part of manganese was substituted with titanium. Spherical manganese dioxide and titanium oxide are weighed so that the molar ratio of manganese to titanium is (1) 1.83: 0.17, (2) 1.89: 0.11, (3) 1.94: 0.06, and then the titanium oxide is completely dispersed. Titanium oxide was dispersed in a quantity of pure water.
[0033]
Thereafter, spherical manganese dioxide was put into the solution and stirred while heating to volatilize water, thereby obtaining a dry powder. This dry powder and lithium hydroxide monohydrate were weighed so that the molar ratio of lithium to manganese + titanium was 1: 2, and mixed well enough to maintain the shape of spherical secondary particles. .
[0034]
The mixed powder was calcined at 475 ° C. for 2 hours in an oxygen stream, then calcined at 800 ° C. for 20 hours, and cooled to room temperature.
[0035]
When the obtained fired product was analyzed by powder X-ray diffraction using Cu Ka line, only a desired positive electrode active material having a spinel structure could be confirmed in a single phase. Moreover, when the lattice constant was obtained from the Rietveld analysis of the powder X-ray diffraction pattern, the lattice constant decreased linearly as the amount of titanium added to the samples (1) to (3) increased. The solid solution of titanium was confirmed. Moreover, the tap density of the obtained positive electrode active material was measured. Table 1 shows the lattice constant and tap density.
[0036]
Using the obtained active material, a battery was produced as follows, and the battery characteristics according to charge / discharge capacity were measured. 90 wt% of the active material powder was mixed with 5 wt% of acetylene black and 5 wt% of PVDF (polyvinylidene fluoride), and NMP (n-methylpyrrolidone) was added to make a paste. This was applied to a 20 μm thick aluminum foil so that the weight of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and punched into a disk shape having a diameter of 1 cm to obtain a positive electrode.
[0037]
As shown in FIG. 1, the equivalent amounts of ethylene carbonate (EC) and dimethyl carbonate (DMC) using lithium metal as the positive electrode 1 and negative electrode 3 obtained and 1M LiClO 4 as the supporting salt in the electrolyte solution. A mixed solution was used. The separator 2 made of polyethylene was impregnated with an electrolytic solution and assembled into a 2032 type coin battery in a glove box in an Ar atmosphere in which the dew point was controlled at −80 ° C. In FIG. 1, 4 is a gasket, 5 is a positive electrode can, and 6 is a negative electrode can.
[0038]
The battery assembled in this way is left for about 24 hours after assembly, and after the open circuit voltage (OCV) has stabilized, the current density with respect to the positive electrode is 0.5 mA / cm 2 and the charge / discharge test is performed at a cutoff voltage of 4.3 to 3.0 V. Went. Table 2 shows the obtained discharge capacity (initial capacity) at the first cycle, the discharge capacity at the 50th cycle, and the ratio of the discharge capacity at the 50th cycle to the initial capacity (capacity maintenance ratio).
[0039]
(Comparative example)
In order to synthesize a pure positive electrode active material in which a part of manganese is not replaced with an element, commercially available lithium hydroxide monohydrate, spherical manganese dioxide was weighed so that the molar ratio of lithium to manganese was 1: 2. Except for the above, a positive electrode active material was synthesized in the same manner as in the Examples, and a lithium coin secondary battery was further produced. The results obtained are shown in Tables 1 and 2.
[0040]
[Table 1]
Figure 0004505695
[0041]
[Table 2]
Figure 0004505695
[0042]
From Tables 1 and 2, the battery of the example achieves a high tap density while maintaining a high capacity retention rate of 80% or more compared to the battery of the comparative example, and the filling property is improved. I understand that.
[0043]
【The invention's effect】
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is used as a positive electrode active material for a non-aqueous secondary battery, thereby improving the formability and packing density as a positive electrode while maintaining high cycle characteristics. Therefore, it is possible to provide a secondary battery having a large initial capacity per unit volume.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a coin battery using a positive electrode active material.
[Explanation of symbols]
1 Positive electrode (Evaluation electrode)
2 Separator (electrolyte impregnation)
3 Lithium metal negative electrode
4 Gasket
5 Positive electrode can
6 Negative electrode can

Claims (2)

一般式LiMn2-xTixO4(0<x≦0.33である)で表されるリチウムマンガン複合酸化物からなる非水系電解質二次電池用正極活物質の製造方法であって、
タンの酸化物を溶媒中に分散させて、マンガンとチタンのモル比が2−x:x(xは0<x≦0.33である)となるように、二次粒子の形状が球状または楕円球状であるマンガン化合物を、前記チタンの酸化物が分散している溶液中に加えて、チタンの酸化物をマンガン化合物に含浸させ、その後乾燥させて乾燥粉末を得た後、該乾燥粉末の二次粒子の形状が維持される強度でリチウム化合物と混合し、この混合物を熱処理して、二次粒子の形状が球状または楕円球状であるリチウムマンガン複合酸化物を得ることを特徴とする非水系電解質二次電池用正極活物質の製造方法。
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising a lithium manganese composite oxide represented by the general formula LiMn 2-x Ti x O 4 (0 <x ≦ 0.33),
The oxide of titanium is dispersed in a solvent, manganese and titanium molar ratio is 2-x: x (x is 0 <x ≦ 0.33) as a shape of the secondary particles is spherical or oval A spherical manganese compound is added to the solution in which the titanium oxide is dispersed, the manganese oxide is impregnated in the manganese compound, and then dried to obtain a dry powder. A non-aqueous electrolyte characterized by mixing with a lithium compound at such a strength that the shape of the secondary particles is maintained, and heat-treating the mixture to obtain a lithium manganese composite oxide in which the shape of the secondary particles is spherical or elliptical A method for producing a positive electrode active material for a secondary battery.
前記混合物の熱処理は、600℃以上で950℃未満とし、4時間以上実施することを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。  2. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the heat treatment of the mixture is performed at 600 ° C. or higher and lower than 950 ° C. for 4 hours or longer.
JP2000030226A 2000-02-02 2000-02-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Lifetime JP4505695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030226A JP4505695B2 (en) 2000-02-02 2000-02-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030226A JP4505695B2 (en) 2000-02-02 2000-02-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001216967A JP2001216967A (en) 2001-08-10
JP4505695B2 true JP4505695B2 (en) 2010-07-21

Family

ID=18555268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030226A Expired - Lifetime JP4505695B2 (en) 2000-02-02 2000-02-02 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4505695B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199509A (en) * 1997-01-17 1998-07-31 Ricoh Co Ltd Solid electrolyte battery
JPH11329432A (en) * 1998-05-21 1999-11-30 Japan Energy Corp Cathode materials for lithium secondary batteries
JP2000012031A (en) * 1997-06-13 2000-01-14 Hitachi Maxell Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacture, and the nonaqueous electrolyte secondary battery using the positive active material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199509A (en) * 1997-01-17 1998-07-31 Ricoh Co Ltd Solid electrolyte battery
JP2000012031A (en) * 1997-06-13 2000-01-14 Hitachi Maxell Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacture, and the nonaqueous electrolyte secondary battery using the positive active material
JPH11329432A (en) * 1998-05-21 1999-11-30 Japan Energy Corp Cathode materials for lithium secondary batteries

Also Published As

Publication number Publication date
JP2001216967A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
KR100542184B1 (en) Battery active material and its manufacturing method
JP3047827B2 (en) Lithium secondary battery
JP4592931B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4086654B2 (en) Lithium-containing composite oxide, method for producing the same, and non-aqueous secondary battery
US6924064B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JP2002373658A (en) Method for producing positive electrode active material for lithium secondary battery
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
JP4813453B2 (en) Lithium-containing composite oxide and non-aqueous secondary battery
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JP3296204B2 (en) Lithium secondary battery
US6756154B2 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP2005268127A (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2009242121A (en) Lithium manganese oxide powder particle and production method of the same, and lithium secondary battery using the same as positive active material
JP3835180B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2000077097A (en) Nonaqueous electrolyte secondary battery
JP4505695B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2000154022A (en) Novel lithium manganese composite oxide, its production method and its use
JP2002151079A (en) Positive electrode active material for non-aqueous system electrolyte secondary battery, and its manufacturing method
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002298843A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4505695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

EXPY Cancellation because of completion of term