JP4505594B2 - High accuracy method of quadrupole electromagnet lens by pole length taper - Google Patents
High accuracy method of quadrupole electromagnet lens by pole length taper Download PDFInfo
- Publication number
- JP4505594B2 JP4505594B2 JP2000350517A JP2000350517A JP4505594B2 JP 4505594 B2 JP4505594 B2 JP 4505594B2 JP 2000350517 A JP2000350517 A JP 2000350517A JP 2000350517 A JP2000350517 A JP 2000350517A JP 4505594 B2 JP4505594 B2 JP 4505594B2
- Authority
- JP
- Japan
- Prior art keywords
- lens
- magnetic pole
- quadrupole electromagnet
- magnetic field
- pole length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Particle Accelerators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、粒子加速器において粒子ビームの収束に広く使われている四極電磁石レンズの高精度化方法に関する。特に、本発明においては、四極電磁石レンズのレンズ軸方向にテーパを設けることにより、その積分磁場勾配及び実効磁極長において径方向での平坦性が生ずるために、高い精度の電磁石レンズとなることができる。
【0002】
【従来の技術】
四極電磁石レンズは、粒子加速器において粒子ビームの収束に広く使われているレンズである。
【0003】
【発明が解決しようとする課題】
近年の粒子ビームの高品位化に伴いより高い精度の四極電磁石レンズが求められるようになってきた。
【0004】
【課題を解決すべき手段】
本発明に係る方法は、粒子ビームの収束に用いられる四極電磁石レンズを構成する磁極の各々において、レンズ軸方向における磁極長が前記磁極の径方向内側端からの径方向距離に応じて増大するテーパを形成する工程を備えて構成したものである。これによって、四極電磁石レンズの径方向の収束力をより容易にかつ効果的に均一に近づけることができる。
【0005】
【発明の実施の形態】
これまでの四極電磁石レンズの高精度化は、例えば、K.Yosinoらの論文”Design of MEBT Short Q−magnets With Large Bores using MAFIA for the JHP Proton Linac”(1993年、KEK Preprint)に示されるように、四極電磁石レンズの径方向断面形状(図1参照)を変化させることにより高精度化を行っているが、この方法では四極電磁石の断面形状は図9に示されるように複雑な形状となる。
【0006】
それに対して、本発明における方法は、図2に示されるように、四極電磁石レンズのレンズ軸方向断面形状にテーパ5を付け、径方向での磁極長を最適化することにより高精度化を行っているので、単純な磁極の形状であり、かつ高精度化も従来の方法より効果的に行われる。
【0007】
即ち、図11の下段の図に示される従来型の四極電磁石の全体図、及び図12の下段の図に示されるその断面図(半割)にみられるように、従来型の四極電磁石の磁極にはテーパが設けられていない。これに対し、図11の上段の図に示される本発明の四極電磁石の全体図、及び図12の上段の図に示されるその断面図(半割)にみられるように、本発明の四極電磁石の磁極にはテーパが設けられている。又、四極電磁石レンズのレンズ軸方向は、図13に示されるように、四極電磁石の中央を垂直に通過する方向である。
【0008】
【実施例】
本発明の具体的一例として、ポア半径30mm、磁極長100mmの四極電磁石レンズにおける高精度化の例を次に示す。
【0009】
まず、図1において径方向断面形状を変化させた場合の例として、磁極幅2を変化させた場合の径方向(図2参照、ただしテーパは存在しない)での相対積分磁場勾配GL(x)/GL(0.1)の分布の変化を図3に示す(xは、図1のポア半径方向の座標である)。一般的に四極電磁石レンズの精度の指標として積分磁場勾配の平坦度が用いられる。積分磁場勾配GL(x)は四極電磁石レンズの収束力を表すものであり、これが平坦であるほど精度の高い収差の少ないレンズであると言える。
【0010】
四極電磁石レンズは、磁場により粒子の角度を変えることによって粒子ビームを収束させるものであり、各粒子の偏向角が径に比例しているものが理想的である。実際の四極電磁石レンズは、有限の磁極長(図2参照)を有しており、各点での収束力を示す値としては磁極勾配そのものより、むしろレンズ軸方向で磁場勾配を積分した値、即ち、積分磁場勾配GL(x)を用いるのが適当である。
【0011】
また、磁場勾配とは、四極電磁石レンズの磁束密度B(x)を径方向の位置(x)で割ったものであり、G=B(x)/xで表され、このときのGを磁場勾配と呼んでいる。
【0012】
図3に示しているのは積分磁場勾配を中心付近の値GL(0.1)で規格化したものである。これは、レンズの収束力の平坦度を客観的にみるために、中心付近の値GL(0.1)で規格化したものであり、例えば、Aという四極電磁石レンズは、GL(0.1)が1%変化している範囲がx=10mmまでであるが、Bはx=25mmの範囲まで1%以下になっている場合、Bの方が高精度の四極電磁石であることを示している。
【0013】
図3において、図1の磁極幅2(ただし、テーパは存在しない)を変えることによって少しではあるが積分磁場勾配の分布に改善(変化)が見られることが分かる。このときのレンズ中心での相対磁場勾配GO(x)/GO(0.1)の分布と、相対実効磁極長Leff(x)/Leff(0.1)の分布をそれぞれ添付図4及び図5に示す。
【0014】
実効磁極長とは、実際の四極電磁石レンズでは磁極端面よりも外側に磁場が漏れ出しているために、実効的な磁極長は磁極の機械的な長さと異なる。これは、図10に示されるように、レンズ軸方向に磁場の分布(漏れ出し)があるために生ずることである。そこで積分磁場勾配をレンズ中心での磁場勾配で割った値を実効磁極長Leff(x)=GL(x)/G0(x)とする。
【0015】
積分磁場勾配は磁場勾配と実効磁極長の積であるので、図4、5の分布の積がおおよそ図3であると考えると、この二つの図(図4及び図5)から磁極幅(図1参照)を変えて積分磁場勾配の分布が改善されるのは、実効磁極長の分布は四極電磁石レンズの径が大きくなるにつれ減少している分を磁場勾配の増加分で補っているということが分かる。しかし、磁極幅を変えても実効磁極長はほとんど変化していないので充分な補正がなされず、充分に補正するには上記文献のような複雑な断面形状(図9参照)を取らざるを得ない。
【0016】
そこで、本発明のように、縦方向断面形状にテーパを付け径方向での実効磁極長の分布を改善することにより効果的な積分磁場勾配の補正が行える。ここでは径方向での磁極長を補正するために図2に示すように直線的にテーパを施した。テーパを施した磁極幅66mmの四極電磁石レンズの相対積分磁場勾配、レンズ中心での相対磁場勾配、相対実効磁極長をそれぞれ添付図6、7、8に示す。テーパを10mm程度にするとほぼ平坦な積分磁場勾配の分布が得られている。テーパを付けると、磁場勾配、実効磁極長ともに分布に変化がみられ積分磁場勾配の補正が効率的になされていることが分かる。
【0017】
【発明の効果】
本発明における方法は、四極電磁石レンズのレンズ軸方向断面形状にテーパを付け、径方向での磁極長を最適化することにより、単純な磁極の形状であり、かつ高精度化も従来の方法より効果的に行われる。
【0018】
即ち、本発明においては、図2に示されるように四極電磁石レンズのレンズ軸断面形状にテーパを付けることにより、図6、7及び8に示されるようにテーパを付けたものが、テーパが付いていないものに比較して、その積分磁場勾配及び実効磁極長において径方向での平坦性が維持されるという、本発明に特有の顕著な効果を生ずる。
【図面の簡単な説明】
【図1】四極電磁石レンズの径方向断面形状を示す図である。
【図2】テーパが設けられた四極電磁石レンズのレンズ軸方向断面形状を示す図である。
【図3】磁極幅を変えたときの相対積分磁場勾配GL(x)/GL(0.1)の変化を示す図である。
【図4】磁極幅を変えたときのレンズ中心での相対磁場勾配G0(x)/G0(0.1)の変化を示す図である。
【図5】磁極幅を変えたときの相対実効磁極長Leff(x)/Leff(0.1)の変化を示す図である。
【図6】テーパを変えたときの相対積分磁場勾配GL(x)/GL(0.1)の変化を示す図である。
【図7】テーパを変えたときのレンズ中心での相対積分磁場勾配G0(x)/G0(0.1)の変化を示す図である。
【図8】テーパを変えたときの相対実効磁極長Leff(x)/Leff(0.1)の変化を示す図である。
【図9】従来の四極電磁石レンズの径方向断面形状を示す図である。
【図10】電磁石の実効磁極長を示す図である。
【図11】 本発明のテーパ付四極電磁石レンズ及び従来型四極電磁石レンズの全体図を示す図である。
【図12】 本発明のテーパ付四極電磁石レンズ及び従来型四極電磁石レンズの半割図である。
【図13】 本発明の四極電磁石のレンズ軸を示す図である。
【符号の説明】
1:磁極形状
2:磁極幅
3:ポア半径
4:電磁コイル
5:テーパ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for improving the accuracy of a quadrupole electromagnet lens widely used for particle beam convergence in a particle accelerator. In particular, in the present invention, by providing a taper in the lens axis direction of the quadrupole electromagnet lens, flatness in the radial direction occurs in the integral magnetic field gradient and effective magnetic pole length, so that an electromagnet lens with high accuracy can be obtained. it can.
[0002]
[Prior art]
A quadrupole electromagnet lens is a lens that is widely used to converge a particle beam in a particle accelerator.
[0003]
[Problems to be solved by the invention]
With the recent increase in particle beam quality, quadrupole electromagnet lenses with higher accuracy have been demanded.
[0004]
[Means to solve the problem]
The method according to the present invention is a taper in which the magnetic pole length in the lens axial direction increases in accordance with the radial distance from the radially inner end of the magnetic pole in each of the magnetic poles constituting the quadrupole electromagnet lens used for particle beam convergence. It is comprised including the process of forming. As a result, the converging force in the radial direction of the quadrupole electromagnet lens can be brought closer to the uniformity more easily and effectively.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
For example, K.K. As shown in the figure in the direction of the poles in the shape of the poles in the shape of the poles as shown in Yosino et al.'S “Design of MEBT Short Q-magnets With Large Boles using MAFIA for the JHP Proton Linac” (1993, KEK Preprint) Although the accuracy is improved by changing, the cross-sectional shape of the quadrupole electromagnet becomes a complicated shape as shown in FIG. 9 in this method.
[0006]
On the other hand, as shown in FIG. 2, the method according to the present invention increases the accuracy by adding a taper 5 to the cross-sectional shape of the quadrupole electromagnet lens in the lens axial direction and optimizing the magnetic pole length in the radial direction. As a result, the shape of the magnetic pole is simple, and higher accuracy is achieved more effectively than the conventional method.
[0007]
That is, the magnetic poles of the conventional quadrupole electromagnet as shown in the overall view of the conventional quadrupole electromagnet shown in the lower diagram of FIG. 11 and its cross-sectional view (half) shown in the lower diagram of FIG. Is not provided with a taper. In contrast, the quadrupole electromagnet of the present invention as shown in the overall view of the quadrupole electromagnet of the present invention shown in the upper diagram of FIG. 11 and its cross-sectional view (half) shown in the upper diagram of FIG. The magnetic pole is provided with a taper. Further, the lens axis direction of the quadrupole electromagnet lens is a direction perpendicularly passing through the center of the quadrupole electromagnet, as shown in FIG.
[0008]
【Example】
As a specific example of the present invention, an example of high accuracy in a quadrupole electromagnet lens having a pore radius of 30 mm and a magnetic pole length of 100 mm is shown below.
[0009]
First, as an example of changing the radial cross-sectional shape in FIG. 1, the relative integrated magnetic field gradient GL (x) in the radial direction (see FIG. 2, but no taper) when the magnetic pole width 2 is changed is shown. The change in the distribution of / GL (0.1) is shown in FIG. 3 (x is the coordinate in the pore radial direction of FIG. 1). In general, the flatness of the integrated magnetic field gradient is used as an index of accuracy of the quadrupole electromagnetic lens. The integral magnetic field gradient GL (x) represents the convergence force of the quadrupole electromagnet lens, and it can be said that the flatter the lens, the higher the accuracy and the less the aberration.
[0010]
The quadrupole electromagnet lens converges the particle beam by changing the angle of the particle by a magnetic field, and ideally, the deflection angle of each particle is proportional to the diameter. The actual quadrupole electromagnetic lens has a finite magnetic pole length (see FIG. 2), and the value indicating the convergence force at each point is a value obtained by integrating the magnetic field gradient in the lens axis direction, rather than the magnetic pole gradient itself, That is, it is appropriate to use the integrated magnetic field gradient GL (x).
[0011]
The magnetic field gradient is obtained by dividing the magnetic flux density B (x) of the quadrupole electromagnet lens by the position (x) in the radial direction, and is expressed by G = B (x) / x. It is called a gradient.
[0012]
FIG. 3 shows the integrated magnetic field gradient normalized by the value GL (0.1) near the center. This is standardized by the value GL (0.1) near the center in order to objectively look at the flatness of the convergence force of the lens. For example, a quadrupole electromagnet lens A is GL (0.1 ) Is changed by 1% up to x = 10 mm, but when B is less than 1% up to the range of x = 25 mm, it indicates that B is a highly accurate quadrupole electromagnet. Yes.
[0013]
In FIG. 3, it can be seen that an improvement (change) in the distribution of the integrated magnetic field gradient can be seen to some extent by changing the magnetic pole width 2 of FIG. 1 (however, there is no taper). The distribution of the relative magnetic field gradient G O (x) / G O (0.1) and the distribution of the relative effective magnetic pole length Leff (x) / Leff (0.1) at the lens center at this time are shown in FIGS. As shown in FIG.
[0014]
The effective magnetic pole length is different from the magnetic length of the magnetic pole because the magnetic field leaks outside the magnetic pole end face in an actual quadrupole electromagnet lens. This occurs because there is a magnetic field distribution (leakage) in the lens axis direction as shown in FIG. Therefore, the value obtained by dividing the integral magnetic field gradient by the magnetic field gradient at the center of the lens is defined as the effective magnetic pole length Leff (x) = GL (x) / G 0 (x).
[0015]
Since the integrated magnetic field gradient is the product of the magnetic field gradient and the effective magnetic pole length, when the product of the distributions of FIGS. 4 and 5 is considered to be approximately FIG. 3, from these two diagrams (FIGS. 4 and 5), the magnetic pole width (FIG. The change in the integral magnetic field gradient distribution is improved by changing (see 1) that the effective magnetic pole length distribution compensates for the decrease in the quadrupole electromagnet lens diameter as the magnetic field gradient increases. I understand. However, even if the magnetic pole width is changed, the effective magnetic pole length is hardly changed, so that sufficient correction is not performed, and in order to perform sufficient correction, it is necessary to take a complicated cross-sectional shape (see FIG. 9) as described above. Absent.
[0016]
Therefore, as in the present invention, the integrated magnetic field gradient can be effectively corrected by tapering the longitudinal sectional shape and improving the distribution of the effective magnetic pole length in the radial direction. Here, in order to correct the magnetic pole length in the radial direction, a linear taper is applied as shown in FIG. The relative integrated magnetic field gradient, the relative magnetic field gradient at the center of the lens, and the relative effective magnetic pole length of a tapered quadrupole electromagnet lens having a magnetic pole width of 66 mm are shown in FIGS. When the taper is about 10 mm, a substantially flat integrated magnetic field gradient distribution is obtained. It can be seen that when the taper is added, the distribution is changed in both the magnetic field gradient and the effective magnetic pole length, and the integral magnetic field gradient is corrected efficiently.
[0017]
【The invention's effect】
The method in the present invention is a simple magnetic pole shape by tapering the cross-sectional shape of the quadrupole electromagnet lens in the lens axial direction and optimizing the magnetic pole length in the radial direction, and higher accuracy than the conventional method. Done effectively.
[0018]
That is, in the present invention, as shown in FIGS. 6, 7 and 8, by tapering the lens shaft cross-sectional shape of the quadrupole electromagnetic lens as shown in FIG. As compared with the non-magnetic field, the flatness in the radial direction is maintained in the integral magnetic field gradient and the effective magnetic pole length.
[Brief description of the drawings]
FIG. 1 is a diagram showing a radial cross-sectional shape of a quadrupole electromagnet lens.
FIG. 2 is a diagram showing a cross-sectional shape in a lens axis direction of a quadrupole electromagnet lens provided with a taper.
FIG. 3 is a diagram showing a change in relative integral magnetic field gradient GL (x) / GL (0.1) when the magnetic pole width is changed.
FIG. 4 is a diagram showing a change in relative magnetic field gradient G 0 (x) / G 0 (0.1) at the lens center when the magnetic pole width is changed.
FIG. 5 is a diagram showing a change in relative effective magnetic pole length Leff (x) / Leff (0.1) when the magnetic pole width is changed.
FIG. 6 is a diagram showing a change in relative integral magnetic field gradient GL (x) / GL (0.1) when the taper is changed.
FIG. 7 is a diagram showing a change in a relative integrated magnetic field gradient G 0 (x) / G 0 (0.1) at the lens center when the taper is changed.
FIG. 8 is a diagram showing a change in relative effective magnetic pole length Leff (x) / Leff (0.1) when the taper is changed.
FIG. 9 is a diagram showing a radial cross-sectional shape of a conventional quadrupole electromagnet lens.
FIG. 10 is a diagram showing an effective magnetic pole length of an electromagnet.
FIG. 11 is a diagram showing an overall view of a tapered quadrupole electromagnet lens of the present invention and a conventional quadrupole electromagnet lens.
FIG. 12 is a half view of a tapered quadrupole electromagnet lens and a conventional quadrupole electromagnet lens of the present invention.
FIG. 13 is a diagram showing a lens axis of the quadrupole electromagnet of the present invention.
[Explanation of symbols]
1: Magnetic pole shape 2: Magnetic pole width 3: Pore radius 4: Electromagnetic coil 5: Taper
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000350517A JP4505594B2 (en) | 2000-11-17 | 2000-11-17 | High accuracy method of quadrupole electromagnet lens by pole length taper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000350517A JP4505594B2 (en) | 2000-11-17 | 2000-11-17 | High accuracy method of quadrupole electromagnet lens by pole length taper |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002158100A JP2002158100A (en) | 2002-05-31 |
JP4505594B2 true JP4505594B2 (en) | 2010-07-21 |
Family
ID=18823730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000350517A Expired - Fee Related JP4505594B2 (en) | 2000-11-17 | 2000-11-17 | High accuracy method of quadrupole electromagnet lens by pole length taper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4505594B2 (en) |
-
2000
- 2000-11-17 JP JP2000350517A patent/JP4505594B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002158100A (en) | 2002-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9595359B2 (en) | Magnetic lens for focusing a beam of charged particles | |
JP2010205539A (en) | Electron microscope | |
CN104898308A (en) | Magnetic rotation assembly capable of adjusting magnetic field and optical isolator | |
JPH06103946A (en) | Variable-shaft stigmator | |
JP4505594B2 (en) | High accuracy method of quadrupole electromagnet lens by pole length taper | |
CN102595762B (en) | Multipole magnet and harmonic wave shimming method thereof | |
US4384208A (en) | Electron lens equipped with three magnetic pole pieces | |
US5739646A (en) | Magnetic field adjusting center rods for cyclotron a magnet for cyclotron, and cyclotron | |
CN101488391B (en) | Composite magnet with fringe field correction | |
US3585546A (en) | Objective lens pole pieces | |
CN206907735U (en) | Charged particle circular magnetic lens | |
JPH0644923A (en) | Focusing unit | |
JPH05225936A (en) | Object lens for scanning electron microscope | |
CN106132065B (en) | 230MeV superconducting cyclotron avoids the field structure of draw-out area harmful resonance | |
JP2569131B2 (en) | Electromagnetic focusing device for cathode ray tube | |
CN110972385B (en) | A kind of bending magnet and its magnetic field gradient modulation method | |
JPH0560212B2 (en) | ||
KR100572834B1 (en) | Active Calibration Method for Improving Magnetic Field Uniformity of Superconducting MR Eye Magnets | |
JPS6245662B2 (en) | ||
US4412132A (en) | Electron lens equipped with three magnetic pole pieces | |
JP3491112B2 (en) | Charged particle beam transfer device | |
CN1141833C (en) | Coplanar flat deflection system for flat back cover display tube | |
JPH01294337A (en) | Eight-pole electromagnetic stigmeter | |
CN107204267A (en) | Charged particle circular magnetic lens | |
JPH01209700A (en) | Deflection electromagnet for charged particle accumulation ring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060223 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091130 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100302 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100331 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |