[go: up one dir, main page]

JP4504071B2 - Body motion analysis device - Google Patents

Body motion analysis device Download PDF

Info

Publication number
JP4504071B2
JP4504071B2 JP2004115192A JP2004115192A JP4504071B2 JP 4504071 B2 JP4504071 B2 JP 4504071B2 JP 2004115192 A JP2004115192 A JP 2004115192A JP 2004115192 A JP2004115192 A JP 2004115192A JP 4504071 B2 JP4504071 B2 JP 4504071B2
Authority
JP
Japan
Prior art keywords
acceleration
walking
unit
frequency
calculates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004115192A
Other languages
Japanese (ja)
Other versions
JP2004358229A (en
Inventor
茂之 井上
真司 田中
孝子 白石
浩司 山本
良隆 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004115192A priority Critical patent/JP4504071B2/en
Publication of JP2004358229A publication Critical patent/JP2004358229A/en
Application granted granted Critical
Publication of JP4504071B2 publication Critical patent/JP4504071B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、人間の運動時に抽出された物理的な特徴量に基づいて体勢や運動に関する解析を行う身体運動解析装置に関し、特にリハビリテーションシステムやスポーツトレーニングシステムにおける歩行機能テストに用いる身体運動解析装置等に関する。   The present invention relates to a body motion analysis device that performs analysis on posture and motion based on physical features extracted during human exercise, and more particularly, a body motion analysis device used for a walking function test in a rehabilitation system or a sports training system, etc. About.

近年の高齢化社会の到来という背景の下、高齢者や下肢疾患患者の下肢機能を回復させるための装置や治療方法が注目されている。特に人工関節患者や変形性関節症患者等における下肢機能の回復(又は悪化)の程度を定量的に把握することは、重要な課題の一つとなっており、従来においてもこれらのための装置等がいくつか提案されている(例えば、特許文献1〜3参照)。   In the background of the arrival of an aging society in recent years, devices and treatment methods for restoring lower limb functions of elderly people and patients with lower limb diseases have attracted attention. In particular, quantitatively grasping the degree of recovery (or deterioration) of lower limb function in artificial joint patients, osteoarthritis patients, and the like has become one of the important issues. Have been proposed (see, for example, Patent Documents 1 to 3).

特許文献1の「身体特徴点検出装置および身体運動解析装置」では、身体運動を撮影することによって収集した、身体部品毎の運動上の特徴に基づいて運動解析を行っている。また、特許文献2の「運動解析装置」では、磁気記録媒体上に形成されている着磁部の磁気を運動体に連動する磁気センサによって検出して運動量を定量的に計測している。さらにまた、特許文献3の「運動解析法およびその装置」では、身体の一部に明るい標点をつけて運動する物体を撮影し、標点の軌跡に基づいて運動解析を行っている。   The “body feature point detection device and body motion analysis device” of Patent Document 1 performs motion analysis based on motion characteristics of each body part collected by photographing body motion. In the “motion analysis apparatus” of Patent Document 2, the magnetism of the magnetized portion formed on the magnetic recording medium is detected by a magnetic sensor linked to the moving body to quantitatively measure the momentum. Furthermore, in “Kinematic analysis method and apparatus thereof” in Patent Document 3, a moving object is photographed with a bright mark on a part of the body, and the kinematic analysis is performed based on the locus of the mark.

また、一般に、寝たきりを誘引する、高齢者に懸念される転倒事故は、根本的には姿勢保持能力の低下に起因する。そして、この姿勢保持能力の低下は、歩行時に顕著に現れる。例えば、姿勢保持能力が低下すると、高齢者は、歩行速度が低下すると共に歩幅が短縮し、さらに、両足の左右方向の間隔(以下、スタンスという。)を拡張させて安定性を確保するという補償行動をとる。   Moreover, in general, a fall accident that causes bedridden and is a concern for elderly people is basically caused by a decrease in posture maintenance ability. And this fall of posture maintenance ability appears notably at the time of walking. For example, when posture retention ability declines, elderly people have reduced walking speed and shortened stride, and further compensated for ensuring stability by extending the distance between the left and right sides of both feet (hereinafter referred to as stance). Take action.

そこで、歩行時のスタンスを測定する必要があるが、人体の運動解析を行う一般的な技術としては重心動揺計がある。この技術の特徴は、被験者の荷重を検出するための荷重検出板を水平な床に設置し、被験者が荷重検出板に乗ることで重心の運動解析を行うものである(例えば、特許文献4参照)。
特開平10−111940号公報 特開平5−180861号公報 特開平5−274434号公報 特許第2760472号公報
Therefore, it is necessary to measure the stance during walking, but a general technique for analyzing the motion of the human body is a center of gravity shake meter. A feature of this technique is that a load detection plate for detecting the load of the subject is installed on a horizontal floor, and the subject moves on the load detection plate to perform motion analysis of the center of gravity (see, for example, Patent Document 4). ).
Japanese Patent Laid-Open No. 10-111940 Japanese Patent Laid-Open No. 5-180861 Japanese Patent Laid-Open No. 5-274434 Japanese Patent No. 2760472

しかしながら、上記の特許文献1〜3の画像解析手法等を用いた技術においては、取り扱うデータが膨大かつ冗長であるため、データ収集やデータ分析には多くの労力を要し、時間や費用などにおいて制約があるリハビリテーションやスポーツトレーニングの現場では活用される機会が極めて少ないという課題がある。   However, in the technique using the image analysis methods of Patent Documents 1 to 3 described above, the amount of data to be handled is enormous and redundant. There is a problem that there are very few opportunities to be utilized in the field of restricted rehabilitation and sports training.

また、上記特許文献4の技術の場合は、人体の運動(軌跡)の計測は、荷重検出板上に被験者が乗って行わなければならず、運動を行う領域、運動の種類、及び姿勢などを制限する必要があるため、被験者及び計測者(例えば、医療担当者や介護担当者)にとっては煩わしく、また、歩行状態についての計測は出来ないという課題を有する。   In the case of the technique disclosed in Patent Document 4, measurement of the movement (trajectory) of the human body must be carried out by the subject on the load detection plate. The area in which the exercise is performed, the type of movement, the posture, and the like are determined. Since it is necessary to limit, there is a problem that it is troublesome for a subject and a measurer (for example, a medical staff or a caregiver) and cannot measure the walking state.

そこで、本発明は、上記課題に鑑みてなされたものであり、計測時の制限を緩和しつつ
、短時間かつ安価に人の姿勢や運動に関して定量的に解析し得る運動解析装置を提供することを目的とする。
The present invention has been made in view of the above problems, while relaxing the restriction of the time of measurement, provides a motion analysis equipment capable of quantitatively analyzed with respect to a short time and at low cost human posture and movement For the purpose.

上記目的を達成するために、本発明に係る身体運動解析装置は、人の歩行機能を解析するための身体運動解析装置であって、人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、検出された前記前後方向の加速度の時間的変化に基づいて、周波数スペクトルを生成する周波数分析部と、生成された前記周波数スペクトルの中から最大のパワーの周波数を特定する周波数特定部と、特定された前記周波数スペクトルの最大のパワーから常用対数値を算出する対数値算出部とを備えた加速度分析手段と、予め求められている近似式に、前記算出された常用対数値を適用することにより、歩行時における歩幅を算出する歩行機能量算出手段とを備える。 In order to achieve the above object, a body motion analysis apparatus according to the present invention is a body motion analysis apparatus for analyzing a person's walking function, and includes accelerations in the front-rear direction and left-and-right direction that accompany a person's motion. Acceleration detecting means for detecting at least one of the acceleration and the acceleration in the vertical direction over time, and a frequency analysis for generating a frequency spectrum based on the detected temporal change in the longitudinal acceleration. And a frequency specifying unit for specifying the frequency of the maximum power from the generated frequency spectrum, and a logarithmic value calculating unit for calculating a common logarithm value from the maximum power of the specified frequency spectrum. Walking function amount calculation that calculates the stride during walking by applying the calculated common logarithmic value to the acceleration analysis means and the approximate expression obtained in advance And means.

ここで、本発明に係る身体運動解析装置は、人の歩行機能を解析するための身体運動解析装置であって、人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、検出された前記左右方向の加速度の時間的変化に基づいて、周波数スペクトルを生成する周波数分析部と、生成された前記周波数スペクトルの中から極大値に対応する周波数を特定し、さらに、その中から0Hzを除く最低の周波数を特定する周波数特定部と、特定された前記周波数スペクトルのピーク値から常用対数値を算出する対数値算出部とを備えた加速度分析手段と、予め求められている近似式に、前記算出された常用対数値を適用することにより、歩行時におけるスタンスを算出する歩行機能量算出手段とを備える構成であってもよい。 Here, the body motion analysis device according to the present invention is a body motion analysis device for analyzing a person's walking function, and includes a longitudinal acceleration, a lateral acceleration, and a vertical motion that occur in association with a human motion. An acceleration detector that detects at least one of the accelerations over time; a frequency analyzer that generates a frequency spectrum based on the detected temporal change in the lateral acceleration; In addition, the frequency corresponding to the maximum value is specified from the frequency spectrum, the frequency specifying unit for specifying the lowest frequency excluding 0 Hz from the frequency spectrum, and the common logarithm value from the peak value of the specified frequency spectrum. By applying the calculated common logarithmic value to an acceleration analysis means including a logarithmic value calculating unit to calculate and an approximate expression obtained in advance, Kicking may be configured to include a walking function calculating means for calculating a stance.

また、本発明に係る身体運動解析装置は、人の歩行機能を解析するための身体運動解析装置であって、人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、検出された前記加速度の時間的変化に基づいて、周波数スペクトルを生成する周波数分析部と、生成された前記周波数スペクトルの中から極大値に対応する周波数を特定する周波数特定部と、特定された前記周波数を用いて積分期間を算出する期間算出部と、検出された前記左右方向の加速度を用いて、検出された前記前後方向の加速度が左右の何れの脚に起因するのかを特定する脚特定部とを備えた加速度分析手段と、算出された前記積分期間について、前記特定された脚に係る前後方向の加速度を積分して、左脚および右脚の速度を算出する速度算出部と、算出された前記速度に基づいて、左右の脚の速度の割合を算出する速度比算出部とを備える歩行機能量算出手段とを備える構成であってもよい。 The body motion analysis apparatus according to the present invention is a body motion analysis apparatus for analyzing a human walking function, and includes longitudinal acceleration, lateral acceleration, and vertical acceleration generated by a human motion. Acceleration detecting means for detecting at least one acceleration over time, a frequency analysis unit for generating a frequency spectrum based on the detected temporal change of the acceleration, and the generated frequency spectrum Detected using a frequency specifying unit that specifies a frequency corresponding to the maximum value from among, a period calculating unit that calculates an integration period using the specified frequency, and the detected lateral acceleration Acceleration analysis means comprising a leg specifying unit that specifies which leg on the left and right is caused by the longitudinal acceleration, and the specified integration period is specified. A speed calculator that calculates the speed of the left leg and the right leg by integrating acceleration in the front-rear direction related to the leg, and a speed ratio calculator that calculates the ratio of the speed of the left and right legs based on the calculated speed And a walking function amount calculating means.

また、本発明に係る身体運動解析装置は、人の歩行機能を解析するための身体運動解析装置であって、人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、前記検出された前後方向の加速度を表わす曲線から周波数スペクトルを生成するスペクトル生成部と、前記生成された周波数スペクトルの中から最大のスペクトル成分を特定する最大スペクトル特定部と、前記特定された最大のスペクトル成分のピーク値から常用対数値を算出する対数値算出部と、予め求められている近似式に、前記算出された常用対数値を適用することによって歩幅を算出する歩幅算出部と、検出された前記左右方向の加速度に基づいて歩行周期を算出する歩行周期算出部とを備える加速度分析手段と、抽出された前記歩幅と前記歩行周期に基づいて、歩行速度を算出する歩行機能量算出手段とを備える構成であってもよい。The body motion analysis apparatus according to the present invention is a body motion analysis apparatus for analyzing a human walking function, and includes longitudinal acceleration, lateral acceleration, and vertical acceleration generated by a human motion. An acceleration detecting means for detecting at least one acceleration over time, a spectrum generating section for generating a frequency spectrum from the detected curve representing the acceleration in the front-rear direction, and A maximum spectrum specifying unit that specifies the maximum spectral component from among the above, a logarithmic value calculating unit that calculates a common logarithm value from the peak value of the specified maximum spectral component, and an approximate expression obtained in advance as the calculation A stride calculation unit that calculates a stride by applying the common logarithm value, and a walking period is calculated based on the detected acceleration in the left-right direction. An acceleration analyzing unit and a walking period calculating unit for, on the basis of the walking cycle and extracted the stride length, and may be configured to include a walking function calculating means for calculating a walking speed.

また、本発明に係る身体運動解析装置は、人の歩行機能を解析するための身体運動解析装置であって、人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、前記検出された左右方向の加速度を表わす曲線においてゼロクロス点を特定するゼロクロス点特定部と、前記特定された、少なくとも2つのゼロクロス点から歩行周期を算出する歩行周期算出部と、前記検出された前後方向の加速度を表わす曲線から周波数スペクトルを生成するスペクトル生成部と、前記生成された周波数スペクトルの中から最大のスペクトル成分を特定する最大スペクトル特定部と、前記特定された最大のスペクトル成分のピーク値から常用対数値を算出する対数値算出部と、予め求められている近似式に、前記算出された常用対数値を適用することによって歩幅を算出する歩幅算出部と、検出された前記左右方向の加速度に基づいて歩行周期を算出する歩行周期算出部とを備える加速度分析手段と、抽出された前記歩幅と前記歩行周期に基づいて、歩行速度を算出する歩行機能量算出手段とを備える構成であってもよい。 The body motion analysis apparatus according to the present invention is a body motion analysis apparatus for analyzing a human walking function, and includes longitudinal acceleration, lateral acceleration, and vertical acceleration generated by a human motion. An acceleration detecting means for detecting at least one acceleration over time, a zero-cross point specifying unit for specifying a zero-cross point in a curve representing the detected lateral acceleration, and the specified at least A walking cycle calculation unit that calculates a walking cycle from two zero cross points, a spectrum generation unit that generates a frequency spectrum from the detected curve representing acceleration in the front-rear direction, and a maximum spectrum among the generated frequency spectra A common logarithmic value from the peak value of the specified maximum spectrum component and the maximum spectrum specifying part for specifying the component. A calculated logarithmic value calculating unit; a stride calculating unit that calculates a stride by applying the calculated common logarithmic value to an approximate expression obtained in advance; and walking based on the detected lateral acceleration A structure provided with the acceleration analysis means provided with the walking period calculation part which calculates a period, and the walking function-amount calculation means which calculates walking speed based on the extracted said stride and the said walking period may be sufficient.

本発明によれば、少なくとも1軸の加速度センサによって歩行時の前後方向の加速度又は左右方向の加速度を計測し、この加速度に基づいて歩幅や歩行速度出等を定量的に算出するので、人工関節患者や変形性関節症などの下肢疾患患者における運動機能の回復度合いを短時間かつ安価で定量的に示すことが可能となり、診療時間、労力、費用等において制約のあるリハビリテーションやスポーツトレーニングの現場における活用が期待される。 According to the onset bright, measures acceleration of the longitudinal acceleration or lateral direction during walking by the acceleration sensor of the at least one axis, so quantitatively calculating the stride and walking speed out or the like based on the acceleration, artificial It is possible to quantitatively indicate the degree of recovery of motor function in joint patients and patients with lower limb diseases such as osteoarthritis in a short time and at low cost, and in the field of rehabilitation and sports training with restrictions on medical treatment time, labor, cost, etc. Is expected to be used in

また、被験者に被験者自身の歩行等の身体機能の現状を提示することで、医療スタッフと被験者間で回復状況等に関する問題意識の共有化が可能となり、機能回復訓練をより効果的に支援することが可能となる。   In addition, by presenting the current state of physical function such as walking of the subject to the subject, it becomes possible to share the problem awareness regarding the recovery situation between the medical staff and the subject, and to support the function recovery training more effectively Is possible.

さらに、本発明によれば、計測時の制限が殆どない上、短時間かつ安価に歩行時のスタンスの解析を行うことが可能となる。
さらにまた、本発明によれば、計測時の制限が殆どない上、短時間かつ安価に身体運動における両足の左右差を検出し、機能回復・悪化の程度を簡便に定量化することが可能となる。
Further, according to this onset bright, on little time limit measurement, it is possible to analyze a short time and inexpensively when walking stance.
Furthermore, according to this onset bright, on little time limit measurement, can be a short time and inexpensively detect the left-right difference of the feet in body movement, conveniently quantify the degree of functional recovery and deterioration It becomes.

以下、本発明に係る実施の形態について、図面を参照しながら詳細に説明する。なお、以下の実施の形態において、本発明について図面を用いて説明するが、本発明はこれらに限定することを意図しない。
(実施の形態1)
図1は、本実施の形態における身体運動解析システム100の概略図である。この身体運動解析システム100は、歩行中の被験者1から取得した加速度データに基づいて歩幅や歩行速度等を算出するシステムであり、加速度検出装置10と身体運動解析装置20とを備える。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. In the following embodiments, the present invention will be described with reference to the drawings, but the present invention is not intended to be limited to these.
(Embodiment 1)
FIG. 1 is a schematic diagram of a body movement analysis system 100 in the present embodiment. The body motion analysis system 100 is a system that calculates a stride, a walking speed, and the like based on acceleration data acquired from a walking subject 1 and includes an acceleration detection device 10 and a body motion analysis device 20.

加速度検出装置10は、内蔵する加速度センサにより、被験者1が歩行することによって生ずる加速度を計測し、そのデータを無線(例えば、bluetooth(「ザ ブルートゥース エスアイジー インコーポレーテッド」の登録商標)に準拠した通信方式)で身体運動解析装置20に送信する装置であり、被験者1(例えば、下肢機能不全患者)の体の一部に固定されて使用される。なお、以下では、加速度検出装置10が被験者1の右腰部に装着された場合であって、被験者1の歩行によって生ずる前後方向又は左右方向の加速度を計測し、計測した加速度に基づいて歩行速度を算出する実施例について説明する。   The acceleration detection device 10 measures acceleration generated by the subject 1 walking with a built-in acceleration sensor, and the data is wireless (for example, a communication method based on Bluetooth (registered trademark of “The Bluetooth SIG Inc.”)). ) Is transmitted to the body motion analysis device 20 and is used by being fixed to a part of the body of the subject 1 (for example, a patient with lower limb dysfunction). In the following, it is a case where the acceleration detection device 10 is mounted on the right waist of the subject 1, and the longitudinal or lateral acceleration generated by the walking of the subject 1 is measured, and the walking speed is determined based on the measured acceleration. An example of calculation will be described.

身体運動解析装置20は、一般的なパーソナルコンピュータの機能を備えると共に、加速度検出装置10から送信された加速度データを、上記bluetoothに準じた通信方式等によって受信し、この加速度データに基づいて被験者の歩幅や歩行速度等を算出する機能を有する。   The body motion analysis device 20 has a function of a general personal computer, receives acceleration data transmitted from the acceleration detection device 10 by a communication method or the like according to the bluetooth, and based on the acceleration data, It has a function to calculate the stride and walking speed.

図2は、本発明における加速度検出装置の装着位置と加速度センサの座標軸の関係を示す図である。なお、以下で説明する加速度検出装置の装着位置と加速度センサの座標軸との関係は、本実施の形態に限らず、以下の実施の形態2〜4においても共通である。図2に示されるように、加速度検出装置10は、被験者1の右腰部に、例えばベルト状の装着具5によって固定される。また、本発明においては、被験者1の歩行に伴う加速度を計測する際、左右方向をX軸方向(右方向を“正の方向”)とし、前後方向をY軸方向(前方向を“正の方向”)と定義することとする。   FIG. 2 is a diagram showing the relationship between the mounting position of the acceleration detection device according to the present invention and the coordinate axes of the acceleration sensor. In addition, the relationship between the mounting position of the acceleration detection apparatus described below and the coordinate axis of the acceleration sensor is not limited to the present embodiment, and is common to the following second to fourth embodiments. As shown in FIG. 2, the acceleration detection device 10 is fixed to the right waist of the subject 1 by, for example, a belt-like wearing tool 5. Further, in the present invention, when measuring the acceleration accompanying walking of the subject 1, the left-right direction is the X-axis direction (the right direction is the “positive direction”), and the front-rear direction is the Y-axis direction (the front direction is “positive”. Direction ”).

図3は、上記加速度検出装置10および身体運動解析装置20の各機能構成を示すブロック図である。図3に示されるように、加速度検出装置10は、加速度情報検出部11および無線通信制御部12を備える。一方、身体運動解析装置20は、無線通信制御部21、歩行速度検出部22、表示部23および蓄積部24を備える。まず、加速度検出装置10について説明する。   FIG. 3 is a block diagram showing functional configurations of the acceleration detection device 10 and the body motion analysis device 20. As shown in FIG. 3, the acceleration detection device 10 includes an acceleration information detection unit 11 and a wireless communication control unit 12. On the other hand, the body motion analysis apparatus 20 includes a wireless communication control unit 21, a walking speed detection unit 22, a display unit 23, and a storage unit 24. First, the acceleration detection device 10 will be described.

加速度情報検出部11は、IC型の加速度センサ(例えば、2軸の加速度について計測が可能なもの)により、被験者1が活動することによって生ずる、前後方向(または、左右方向)の加速度を計測し、この加速度を表わす情報(以下、「加速度データ」という。)を無線通信制御部12に送信する。より詳細に説明すると、例えば、所定の時間(例えば、10秒間)、被験者1の歩行における前後方向の加速度をモニタリングし、最大±2G(1G=9.8[m/s])の加速度に応じた電圧変化を125Hzのサンプリング周波数、16ビットの量子化ビット数でサンプリングしてA/D変換を行い、このA/D変換された加速度データを無線通信制御部12に送信する。 The acceleration information detection unit 11 measures the acceleration in the front-rear direction (or the left-right direction) generated by the activity of the subject 1 using an IC-type acceleration sensor (for example, one that can measure biaxial acceleration). Information representing this acceleration (hereinafter referred to as “acceleration data”) is transmitted to the wireless communication control unit 12. More specifically, for example, for a predetermined time (for example, 10 seconds), the longitudinal acceleration in walking of the subject 1 is monitored, and the maximum acceleration is ± 2 G (1 G = 9.8 [m / s 2 ]). A corresponding voltage change is sampled at a sampling frequency of 125 Hz and a quantization bit number of 16 bits to perform A / D conversion, and the A / D converted acceleration data is transmitted to the wireless communication control unit 12.

無線通信制御部12は、例えば、制御プログラム等を格納するROMやRAM等を備えるCPUであり、加速度検出装置10全体を制御する。さらに、無線通信制御部12は、加速度情報検出部11において計測された加速度データを、例えば、上記bluetoothに準拠した通信方式によって身体運動解析装置20に送信する。   The wireless communication control unit 12 is, for example, a CPU including a ROM, a RAM, and the like that stores a control program and the like, and controls the entire acceleration detection device 10. Furthermore, the wireless communication control unit 12 transmits the acceleration data measured by the acceleration information detection unit 11 to the body motion analysis device 20 by, for example, the communication method based on the bluetooth.

次に、身体運動解析装置20について説明する。
無線通信制御部21は、上記加速度検出装置10における無線通信制御部12と同様に、制御プログラム等を格納するROMやRAM等を備えるCPUであり、身体運動解析装置20全体を制御する。さらに、無線通信制御部21は、加速度検出装置10から送信された加速度データを、例えば、上記bluetoothに準拠した通信方式によって受信し、歩行速度検出部22に送信する。
Next, the body motion analysis device 20 will be described.
Similar to the wireless communication control unit 12 in the acceleration detection device 10, the wireless communication control unit 21 is a CPU including a ROM, a RAM, and the like that store a control program and the like, and controls the entire body motion analysis device 20. Further, the wireless communication control unit 21 receives the acceleration data transmitted from the acceleration detection device 10 by, for example, the communication method based on the bluetooth, and transmits it to the walking speed detection unit 22.

歩行速度検出部22は、受信した加速度データに基づいて歩幅および歩行周期を算出すると共に、歩幅と歩行周期から歩行速度を算出する。
表示部23は、例えば液晶パネルを備える表示装置であり、無線通信制御部21の指示により、被験者1の姿勢や運動に関する情報(例えば、歩行速度についての計測値や機能回復した様子など)やアドバイスのための情報などの表示を行う。
The walking speed detection unit 22 calculates a stride and a walking cycle based on the received acceleration data, and calculates a walking speed from the stride and the walking cycle.
The display unit 23 is a display device including a liquid crystal panel, for example, and information on the posture and movement of the subject 1 (for example, a measurement value regarding walking speed and a state in which the function has been recovered) and advice according to an instruction from the wireless communication control unit 21. Display information etc. for

蓄積部24は、例えば、RAMや固定ディスク等からなる記憶装置であり、加速度検出装置10から受信した加速度を表わす情報を記憶すると共に、歩行速度検出部22において算出された、歩行速度を表わす情報(以下、「歩行速度データ」という。)を記憶する。   The storage unit 24 is a storage device made of, for example, a RAM or a fixed disk, and stores information representing acceleration received from the acceleration detection device 10 and information representing walking speed calculated by the walking speed detection unit 22. (Hereinafter referred to as “walking speed data”).

ここで、加速度データから歩行速度を算出する方法について、図4〜図6を参照しながら詳細に説明する。
図4は、被験者の歩行機能テストにおける脚運びと加速度の変化との対応を時間の経過に従って示した一例である。図4における曲線41は、被験者1が歩行機能テストを実施した際の左右方向の加速度の変化を示した図である。一方、曲線42は、上記歩行機能テストを実施した際の前後方向の加速度の変動を示した図である。上記図2において説明したように、左右方向の加速度に対しては「右向き」を正の方向と定義し、前後方向の加速度に対しては「前向き」を正の方向と定義している。本実施の形態においては、次の(1)式における歩行速度の定義を用いることとする。
Here, a method for calculating the walking speed from the acceleration data will be described in detail with reference to FIGS.
FIG. 4 is an example showing the correspondence between leg movement and acceleration change in the walking function test of the subject as time elapses. A curve 41 in FIG. 4 is a diagram illustrating a change in acceleration in the left-right direction when the subject 1 performs the walking function test. On the other hand, a curve 42 is a diagram showing a change in acceleration in the front-rear direction when the walking function test is performed. As described in FIG. 2 above, “rightward” is defined as the positive direction for the acceleration in the left-right direction, and “forward” is defined as the positive direction for the acceleration in the front-rear direction. In this embodiment, the definition of walking speed in the following equation (1) is used.

歩行速度=(歩行周期)×(歩幅) (1)
ここで、上記(1)式における「歩行周期」とは、図4における曲線42(即ち、前後方向の加速度の変化)の平均周期(例えば、T(i)−T(i-1)[sec]に相当する10周期の平均)とする。この場合、上記曲線42においては、負の値から正の値に変化する過程でゼロクロスする、隣り合う2点を用いることとする。
Walking speed = (walking cycle) x (step length) (1)
Here, the “walking cycle” in the above equation (1) is the average cycle (for example, T (i) −T (i−1) [sec) of the curve 42 in FIG. ] Is the average of 10 cycles). In this case, in the curve 42, two adjacent points that are zero-crossed in the process of changing from a negative value to a positive value are used.

さらに、上記(1)式における「歩幅」については、例えば上記の10周期に亙って計測した前後方向の加速度の曲線42をフーリエ変換してパワースペクトルを求め、さらにそのピーク値(これを「周波数パワー」という。)の常用対数を求める。   Further, with respect to the “step length” in the above equation (1), for example, a power spectrum is obtained by Fourier transforming the acceleration / deceleration curve 42 measured in the above 10 cycles, and the peak value (this is expressed as “ The common logarithm of “frequency power” is calculated.

図5に、上記曲線42に関する周波数スペクトルを模式的に示した図である。図5に示される例では、周波数が「1」(即ち、1歩に要する時間が1秒)において周波数パワーが最大となる例(曲線501〜曲線504)を示しており、各々の最大パワーの常用対数値が示されている。従って、図5の曲線504の場合は、1秒間に8歩あるいたこととなる。   FIG. 5 is a diagram schematically showing a frequency spectrum related to the curve 42. In FIG. The example shown in FIG. 5 shows an example (curve 501 to curve 504) in which the frequency power is maximum when the frequency is “1” (that is, the time required for one step is 1 second). Common logarithm values are shown. Therefore, in the case of the curve 504 in FIG. 5, there are 8 steps per second.

図6は、実験的に算出された、周波数パワーの常用対数と歩幅との関係を示す一例である。図6に示されるように、最大周波数パワーの常用対数と歩幅とは比例関係にある。図6の曲線601に基づいて、下記の(2)式が導出される(ここで、歩幅の単位は[cm]である。)。   FIG. 6 is an example showing the relationship between the common logarithm of frequency power and the stride calculated experimentally. As shown in FIG. 6, the common logarithm of the maximum frequency power and the stride are in a proportional relationship. The following equation (2) is derived based on the curve 601 in FIG. 6 (where the unit of stride is [cm]).

歩幅=143×(最大周波数パワーの常用対数)−271 (2)
なお、上記の関係は、個人毎に1つの曲線が定義され得る(従って、被験者が3人いる場合は、曲線601〜603のように3本の曲線が定義され得る。)。
Step length = 143 × (common logarithm of maximum frequency power) −271 (2)
In the above relationship, one curve can be defined for each individual (thus, when there are three subjects, three curves can be defined as curves 601 to 603).

以上の説明で明らかなように、上記(2)式で算出された「歩幅」を、上記(1)式に代入することにより「歩行速度」を算出することが可能となる。
次に、上記のように構成される身体運動解析装置20の動作について説明する。
図7は、身体運動解析装置20の処理の流れを示すフローチャートである。
As apparent from the above description, the “walking speed” can be calculated by substituting the “step length” calculated by the above equation (2) into the above equation (1).
Next, the operation of the body motion analysis apparatus 20 configured as described above will be described.
FIG. 7 is a flowchart showing a process flow of the body motion analysis apparatus 20.

最初に、無線通信制御部21は、加速度検出装置10から送信された加速度データを受信し(S701:Yes)、この加速度データに基づいて、歩行周期を算出する(S702)。次に、無線通信制御部21は、受信した加速度データが左右方向の場合は(S703:Yes)、算出した歩行周期の値を2倍する(S704)。さらに、無線通信制御部21は、受信した加速度データに基づいて歩幅を推定し(S705)、上記歩行周期と歩幅から歩行速度を算出する(S706)。   First, the wireless communication control unit 21 receives acceleration data transmitted from the acceleration detection device 10 (S701: Yes), and calculates a walking cycle based on the acceleration data (S702). Next, when the received acceleration data is in the left-right direction (S703: Yes), the wireless communication control unit 21 doubles the calculated walking cycle value (S704). Further, the wireless communication control unit 21 estimates the stride based on the received acceleration data (S705), and calculates the walking speed from the walking cycle and the stride (S706).

ここで、本身体運動解析システム100の効果的な応用例について説明する。
図8は、表示部23における、歩幅や歩行速度の最新の計測値と前回計測値との比較を行った場合の表示例である。
Here, an effective application example of the body motion analysis system 100 will be described.
FIG. 8 is a display example when the latest measured value of the stride or walking speed is compared with the previous measured value on the display unit 23.

さらに、図9は、被験者1に関する身体運動機能の変化を表示した一例であり、股関節置換手術の患者を対象として術後のリハビリの回復過程における歩行速度の変化の様子を示したグラフである。図9の例では、術後5日目から第1回目の計測を開始し、第1回目の計測値を100とした場合の、その後の歩行速度変化率を術後の経過日数と対応付けて示した図である。図9の例からわかるように、表示部23は、10日間毎の集計機能も有している。   Furthermore, FIG. 9 is an example displaying changes in physical motor functions related to the subject 1, and is a graph showing changes in walking speed during postoperative rehabilitation recovery for patients undergoing hip replacement surgery. In the example of FIG. 9, the first measurement is started from the fifth day after the operation, and the subsequent walking speed change rate when the first measurement value is 100 is associated with the elapsed days after the operation. FIG. As can be seen from the example of FIG. 9, the display unit 23 also has a totaling function every 10 days.

以上のように、本実施の形態に係る身体運動解析システム100を用いることにより、被験者に装着した、少なくとも1軸(前後方向、左右方向など)の加速度センサによって計測した加速度に基づいて、歩幅、歩行周期および歩行速度を算出することが可能となるため、リハビリテーションシステムやスポーツトレーニングシステムにおいて、短時間かつ安価に身体運動解析を実現することが可能となる。   As described above, by using the body motion analysis system 100 according to the present embodiment, the stride based on the acceleration measured by at least one axis (front-rear direction, left-right direction, etc.) acceleration sensor attached to the subject, Since the walking cycle and walking speed can be calculated, body motion analysis can be realized in a short time and at low cost in a rehabilitation system or a sports training system.

なお、上記実施の形態1では、前後方向の加速度においては「前」を正の方向と定義し、左右方向の加速度においては「右」を正の方向と定義したが、これに限定するものではなく、それ以外の定義によって各加速度の値の正負を定義してもよい。また、上記実施の形態では、表示部23に必要な情報の提示を行う実施例を示したが、これに限定するものではなく、例えば、音声によって通知したり、振動等の刺激によって通知したり、光の点滅等によって通知してもよい。   In the first embodiment, “front” is defined as a positive direction in the longitudinal acceleration and “right” is defined as a positive direction in the lateral acceleration. However, the present invention is not limited to this. Alternatively, the sign of each acceleration value may be defined by other definitions. Moreover, in the said embodiment, although the Example which shows required information on the display part 23 was shown, it is not limited to this, For example, it notifies by audio | voice or stimulation by vibration etc. Notification may be made by flashing light.

また、上記実施の形態においては、図4の如く、前後方向の加速度を検出するように構成し、検出した加速度に基づいて歩行周期、歩幅及び歩行速度を算出したが、左右方向の加速度に基づいて歩行周期を求め、前後方向の加速度から歩幅を算出してもよい。但し、その場合の歩行周期は、上記前後方向の加速度に基づいて算出した歩行周期の「1/2」となる点に注意する必要がある。   Further, in the above embodiment, as shown in FIG. 4, it is configured to detect the longitudinal acceleration, and the walking cycle, step length and walking speed are calculated based on the detected acceleration, but based on the lateral acceleration. Thus, the walking cycle may be obtained, and the stride may be calculated from the longitudinal acceleration. However, it should be noted that the walking cycle in that case is “½” of the walking cycle calculated based on the acceleration in the front-rear direction.

また、上記実施の形態では、近距離の無線通信を利用して加速度検出装置10から身体運動解析装置20に加速度データを送信する実施例を示したが、1台の装置に、上記加速度検出装置10および身体運動解析装置20の全ての機能を備えるように構成してもよい。   In the above-described embodiment, an example in which acceleration data is transmitted from the acceleration detection device 10 to the body motion analysis device 20 using short-distance wireless communication has been described. However, the acceleration detection device is included in one device. 10 and the body motion analysis device 20 may be configured to have all the functions.

さらにまた、上記実施の形態では、被験者における歩行時について加速度を計測する実施例を示したが、歩行による加速度に限定するものではなく、周期性を有するその他の運動を被験者に実施させ、その加速度を計測することによって、被験者の運動機能を解析してもよい。   Furthermore, in the above-described embodiment, an example in which acceleration is measured during walking by the subject has been described. However, the present invention is not limited to acceleration due to walking, and the subject is allowed to perform other exercises having periodicity and the acceleration. May be used to analyze the motor function of the subject.

(実施の形態2)
上記実施の形態1においては、歩行中の被験者1から取得した加速度データに基づいて歩幅や歩行速度等を算出する身体運動解析システムについて説明したが、本実施の形態では、同じく取得した加速度データに基づいて歩行時のスタンス(左右方向の脚の開き)を算出する身体運動解析システムについて説明する。
(Embodiment 2)
In the first embodiment, the body motion analysis system that calculates the stride, the walking speed, and the like based on the acceleration data acquired from the walking subject 1 has been described. However, in the present embodiment, the acquired acceleration data is also used. A body motion analysis system for calculating a stance (left / right leg opening) during walking will be described.

図10は、本実施の形態に係る身体運動解析システム200における加速度検出装置10および身体運動解析装置30の各機能構成を示すブロック図である。なお、以下では、上記実施の形態1における身体運動解析システム100と同じ機能構成については同じ符番を付し、その説明は省略することとする。   FIG. 10 is a block diagram illustrating functional configurations of the acceleration detection device 10 and the body motion analysis device 30 in the body motion analysis system 200 according to the present embodiment. In the following description, the same functional configuration as that of body motion analysis system 100 in the first embodiment is denoted by the same reference numeral, and the description thereof is omitted.

加速度検出装置10は、被験者1に対して前後方向、左右方向、上下(鉛直)方向のうち、少なくとも1方向における加速度を計測し、加速度に相当する信号(以下、加速度データという)を無線通信制御部12に出力する。   The acceleration detection device 10 measures the acceleration in at least one direction among the front-rear direction, the left-right direction, and the up-down (vertical) direction with respect to the subject 1 and wirelessly controls a signal corresponding to the acceleration (hereinafter referred to as acceleration data). To the unit 12.

身体運動解析装置30は、計測された加速度データに基づいて歩行時のスタンスを算出する装置であり、無線通信制御部21、運動解析部31、表示部23および蓄積部24を備える。   The body motion analysis device 30 is a device that calculates a stance during walking based on measured acceleration data, and includes a wireless communication control unit 21, a motion analysis unit 31, a display unit 23, and a storage unit 24.

運動解析部31は、上記実施の形態1における歩行速度検出部22に対応する機能を有する部署であり、無線通信制御部21から受信した加速度データに対して所定の時間間隔で波形解析を行う機能を備えている。   The motion analysis unit 31 is a department having a function corresponding to the walking speed detection unit 22 in the first embodiment, and performs a waveform analysis on the acceleration data received from the wireless communication control unit 21 at a predetermined time interval. It has.

図11は、運動解析部31の機能構成を示すブロック図である。図11に示されるように、運動解析部31は、周波数分析部32、極大値検出部33、極大値周波数検出部34、最低周波数検出部35、配列保存部36及び評価部37を備える。   FIG. 11 is a block diagram illustrating a functional configuration of the motion analysis unit 31. As shown in FIG. 11, the motion analysis unit 31 includes a frequency analysis unit 32, a maximum value detection unit 33, a maximum value frequency detection unit 34, a minimum frequency detection unit 35, an array storage unit 36, and an evaluation unit 37.

周波数分析部32は、無線通信制御部21から受信した加速度データに対して周波数分析を実行する。極大値検出部33は、周波数分析部32から入力したパワースペクトラムからパワーの極大値を検出する。極大値周波数検出部34は、極大値検出部33において検出された極大値に対応する周波数を検出する。最低周波数検出部35は、極大値周波数検出部34において抽出された各周波数の中から、0Hzを除いた最低の周波数を検出する。配列保存部36は、最低の周波数、最低の周波数に対応する極大値、及びそれらの計測日時とからなる配列を保存する。評価部37は、配列保存部36に蓄積されているデータから、指定された日時のデータを読み出して無線通信制御部21に出力する。   The frequency analysis unit 32 performs frequency analysis on the acceleration data received from the wireless communication control unit 21. The local maximum detector 33 detects the local maximum value of the power from the power spectrum input from the frequency analyzer 32. The local maximum frequency detector 34 detects a frequency corresponding to the local maximum detected by the local maximum detector 33. The lowest frequency detector 35 detects the lowest frequency excluding 0 Hz from the frequencies extracted by the local maximum frequency detector 34. The array storage unit 36 stores an array including the lowest frequency, the maximum value corresponding to the lowest frequency, and the measurement date and time. The evaluation unit 37 reads out data at the designated date and time from the data stored in the array storage unit 36 and outputs the data to the wireless communication control unit 21.

ここで、左右方向の加速度データを用いて運動解析部31の機能について詳細に説明する。
図12は、被験者1に実施された歩行テストにおける歩行時の左右方向の加速度の時系列データの一例である。図12においては、横軸は時間[sec]を、縦軸は加速度をそれぞれ示している。図12の場合は、10秒間の歩行に対して125Hzのサンプリングレートで収集した加速度データである。
Here, the function of the motion analysis unit 31 will be described in detail using acceleration data in the horizontal direction.
FIG. 12 is an example of time-series data of acceleration in the left-right direction during walking in the walking test performed on the subject 1. In FIG. 12, the horizontal axis represents time [sec], and the vertical axis represents acceleration. In the case of FIG. 12, the acceleration data is collected at a sampling rate of 125 Hz for 10 seconds of walking.

最初に、周波数分析部32は、無線通信制御部21を介して受信した加速度データに対して周波数分析を行い、そのパワースペクトラムを生成する。次に、極大値検出部33は、加速度データから生成されたパワースペクトラムに対して、1以上の包絡線を特定し、特定された包絡線毎に極大値の検出を行う。   First, the frequency analysis unit 32 performs frequency analysis on the acceleration data received via the wireless communication control unit 21 and generates a power spectrum thereof. Next, the maximum value detection unit 33 specifies one or more envelopes with respect to the power spectrum generated from the acceleration data, and detects a maximum value for each specified envelope.

続いて、極大値周波数検出部34は、検出された極大値を有する波形の周波数を検出する。
図13は、周波数分析部32において生成されたパワースペクトラムの一例を示す図である。図13において、横軸は周波数[Hz]を、縦軸はパワーを表す。図13の中のA〜Fは、極大値検出部33において検出された、包絡線で表される複数の凸状部分における各極大値を示すスペクトルを示しており、a〜fは、極大値周波数検出部34によって特定されたそれぞれの極大値に対応する周波数を示している。
Subsequently, the maximum value frequency detection unit 34 detects the frequency of the waveform having the detected maximum value.
FIG. 13 is a diagram illustrating an example of a power spectrum generated in the frequency analysis unit 32. In FIG. 13, the horizontal axis represents frequency [Hz] and the vertical axis represents power. A to F in FIG. 13 indicate spectra that are detected by the maximum value detection unit 33 and indicate respective local maximum values in a plurality of convex portions represented by envelopes, and a to f are local maximum values. The frequency corresponding to each maximum value specified by the frequency detector 34 is shown.

次に、最低周波数検出部35は、a〜fの周波数のうち、0Hzを除く最低の周波数を抽出する。図13の例では、aに相当する。この後、配列保存部36は、上記ように特定された最低の周波数と、この最低の周波数に対応する極大値(図13では、Aに相当する。)とを、それらを計測した日付を対応付けて配列データとして保存する。   Next, the lowest frequency detection unit 35 extracts the lowest frequency excluding 0 Hz from the frequencies a to f. In the example of FIG. 13, it corresponds to a. Thereafter, the array storage unit 36 associates the lowest frequency specified as described above and the maximum value corresponding to the lowest frequency (corresponding to A in FIG. 13) with the date on which they are measured. And save it as sequence data.

続いて、評価部37は、被験者1あるいはその介護者から受け付けた指示に従い、配列保存部36に蓄積されている配列データを読み出す。そして、日毎の最低の周波数に対する極大値をグラフ化表示するためのデータを無線通信制御部21に送信する。無線通信制御部21は、評価部37から受信したデータに基づいて表示を行うべく、表示部23に指示を行う。   Subsequently, the evaluation unit 37 reads the sequence data accumulated in the sequence storage unit 36 in accordance with the instruction received from the subject 1 or its caregiver. Then, data for displaying the maximum value for the lowest frequency for each day in a graph is transmitted to the wireless communication control unit 21. The wireless communication control unit 21 instructs the display unit 23 to perform display based on the data received from the evaluation unit 37.

図14は、歩行時のスタンスを変えて収集した左右方向の加速度波形のパワースペクトラムを用いて特定した、最低の周波数におけるパワー値を示すスタンス評価指数と歩行スタンスとの関係の一例を示す図である。図14において、横軸が歩行スタンス[cm]を示し、縦軸が上記極大値を常用対数で表したスタンス評価指数である。図14により、歩行時のスタンスと極大値との間には線形の関係があることがわかる。   FIG. 14 is a diagram illustrating an example of a relationship between a walking stance and a stance evaluation index indicating a power value at the lowest frequency specified using a power spectrum of a lateral acceleration waveform collected by changing a stance during walking. is there. In FIG. 14, the horizontal axis represents the walking stance [cm], and the vertical axis represents the stance evaluation index in which the maximum value is expressed in common logarithm. FIG. 14 shows that there is a linear relationship between the stance during walking and the maximum value.

図15は、上記図14の関係を利用して作成した、歩行テストによって得られたスタンスの変化の様子を示す一例である。図15において、横軸は歩行テストの日付、縦軸は歩行スタンス評価指数を示している。   FIG. 15 shows an example of a change in stance obtained by the walking test, created using the relationship shown in FIG. In FIG. 15, the horizontal axis indicates the date of the walking test, and the vertical axis indicates the walking stance evaluation index.

図15では、日付の進行に伴って左右方向の歩行スタンスが短縮しており、下肢機能不全患者(被験者1)の運動機能回復の度合いを定量的に把握することができる。
次に、以上のように構成される身体運動解析システム200の動作について説明する。図16は、身体運動解析システム200の処理の流れを示すフローチャートである。
In FIG. 15, the walking stance in the left-right direction is shortened as the date progresses, and the degree of motor function recovery of the lower limb dysfunction patient (subject 1) can be grasped quantitatively.
Next, the operation of the body motion analysis system 200 configured as described above will be described. FIG. 16 is a flowchart showing a process flow of the body motion analysis system 200.

最初に、周波数分析部32は、無線通信制御部21から加速度データを受信すると(S1601)、この加速度データに対して周波数分析を実行し(S1602)、その結果を極大値検出部33に出力する。   First, when the frequency analysis unit 32 receives acceleration data from the wireless communication control unit 21 (S1601), the frequency analysis is performed on the acceleration data (S1602), and the result is output to the maximum value detection unit 33. .

次に、極大値検出部33は、周波数分析部32から入力したパワースペクトラムからパワーの極大値を検出する(S1603)。これにより、極大値周波数検出部34は、極大値検出部33において検出された極大値に対応する周波数を検出する(S1604)。   Next, the maximum value detection unit 33 detects the maximum value of power from the power spectrum input from the frequency analysis unit 32 (S1603). As a result, the local maximum frequency detector 34 detects the frequency corresponding to the local maximum detected by the local maximum detector 33 (S1604).

さらに、最低周波数検出部35は、極大値周波数検出部34において検出された各周波数の中から、0Hzを除いた最低の周波数を検出する(S1605)。そして、配列保存部36は、最低の周波数、最低の周波数に対応する極大値、及びそれらの計測日時とからなる配列を保存する。   Further, the lowest frequency detection unit 35 detects the lowest frequency excluding 0 Hz from the frequencies detected by the local maximum frequency detection unit 34 (S1605). Then, the array storage unit 36 stores an array including the lowest frequency, the maximum value corresponding to the lowest frequency, and the measurement date and time thereof.

評価部37は、配列保存部36に蓄積されているデータから、指定された日時のデータを読み出して無線通信制御部21に出力する(S1606)。
以上のように、本実施の形態に係る身体運動解析システム200により、下肢機能不全患者の運動機能回復の様子を日単位で比較することが可能となる。
The evaluation unit 37 reads out data at the designated date and time from the data stored in the array storage unit 36 and outputs the data to the wireless communication control unit 21 (S1606).
As described above, the body motion analysis system 200 according to the present embodiment makes it possible to compare the state of motor function recovery of lower limb dysfunction patients on a daily basis.

(実施の形態3)
上記実施の形態1では、歩行中の被験者1から取得した加速度データに基づいて歩幅や歩行速度等を算出する身体運動解析システムについて説明したが、本実施の形態では、加速度の差に基づいて歩行機能の回復の程度を定量化する身体運動解析システムについて説明する。
(Embodiment 3)
In the first embodiment, the body motion analysis system that calculates the stride, the walking speed, and the like based on the acceleration data acquired from the walking subject 1 has been described. In the present embodiment, the walking is performed based on the difference in acceleration. A physical motion analysis system that quantifies the degree of functional recovery will be described.

図17は、本実施の形態における身体運動解析システム300における加速度検出装置10および身体運動解析装置20の各機能構成を示すブロック図である。
この身体運動解析システム300は、加速度検出装置10と身体運動解析装置40とを備え、被験者1が運動することによって生ずる、左右それぞれの足に起因する加速度を加速度検出装置10によって計測し、これらの計測された加速度の差に基づいて歩行機能の回復の程度を定量化するシステムである。なお、以下では、被験者1の運動の一例として歩行する場合を想定し、加速度検出装置10は、被験者1の歩行時の加速度を計測するものとする。また、上記実施の形態1における身体運動解析システム100と同じ機能構成については同じ符番を付し、その説明は省略することとする。
FIG. 17 is a block diagram illustrating functional configurations of the acceleration detection device 10 and the body motion analysis device 20 in the body motion analysis system 300 according to the present embodiment.
The body motion analysis system 300 includes an acceleration detection device 10 and a body motion analysis device 40, and the acceleration detection device 10 measures accelerations caused by movement of the subject 1 due to left and right feet. This system quantifies the degree of recovery of walking function based on the difference in measured acceleration. In the following description, it is assumed that the subject 1 walks as an example of the exercise of the subject 1, and the acceleration detection device 10 measures the acceleration when the subject 1 walks. In addition, the same reference numerals are given to the same functional configurations as those of the body motion analysis system 100 in the first embodiment, and the description thereof is omitted.

身体運動解析装置40は、一般的なパーソナルコンピュータの機能を備えると共に、加速度検出装置10から送信された加速度データを、上記bluetoothに準拠した通信方式等によって受信し、この加速度データに基づいて被験者の回復度等を定量化する機能を有する。   The body motion analysis device 40 has a function of a general personal computer, receives acceleration data transmitted from the acceleration detection device 10 by a communication method or the like based on the bluetooth, and based on the acceleration data, Has a function to quantify the degree of recovery.

図17に示されるように、身体運動解析装置40は、無線通信制御部21、左右差判定部43、表示部23および蓄積部24を備える。
左右差判定部43は、無線通信制御部21から受信した加速度データに基づいて数値演算を行うプロセッシングユニットであり、左右の脚に起因する前後方向の加速度の差異を表す左右差判定ポイントを算出する。より詳細には、左右差判定部43は、左右方向の加速度データから歩行の際の加速させる脚を判定すると共に、前後方向の加速度データから左足に起因する加速度データと、右足に起因する加速度データとを抽出し、それらの加速度の比、又はそれらの加速度の差として上記左右差判定ポイントを算出する。
As illustrated in FIG. 17, the body motion analysis device 40 includes a wireless communication control unit 21, a left / right difference determination unit 43, a display unit 23, and a storage unit 24.
The left / right difference determination unit 43 is a processing unit that performs numerical calculation based on the acceleration data received from the wireless communication control unit 21, and calculates a left / right difference determination point that represents a difference in acceleration in the front-rear direction caused by the left and right legs. . More specifically, the left / right difference determination unit 43 determines the leg to be accelerated during walking from the left / right acceleration data, and the acceleration data attributed to the left foot and the acceleration data attributed to the right foot from the acceleration data in the front / rear direction. And the left-right difference determination point is calculated as the ratio of the accelerations or the difference between the accelerations.

表示部23は、例えば液晶パネルを備える表示装置であり、無線通信制御部21の制御の指示により、上記左右差判定部43において算出された左右差判定ポイント等の表示を行う。   The display unit 23 is a display device including, for example, a liquid crystal panel, and displays the left / right difference determination points calculated by the left / right difference determination unit 43 in accordance with a control instruction from the wireless communication control unit 21.

蓄積部24は、例えば、RAM又は固定ディスク等を備える記憶装置であり、無線通信制御部21とのデータのやり取りのための入出力インタフェースを備える。さらに、蓄積部24は、無線通信制御部21の指示により、加速度データや左右差判定部43において算出された左右差判定ポイントを被験者1や計測日時等に対応づけて記憶する。   The storage unit 24 is a storage device including, for example, a RAM or a fixed disk, and includes an input / output interface for exchanging data with the wireless communication control unit 21. Further, the storage unit 24 stores the acceleration data and the left / right difference determination point calculated by the left / right difference determination unit 43 in association with the subject 1 and the measurement date / time according to an instruction from the wireless communication control unit 21.

図18は、上記左右差判定部43における処理内容を説明するための図であり、被験者1の脚運びと左右方向及び上下方向の加速度データとの対応関係を示した図である。図18に示されるように、上段が被験者1の歩行時における左右方向の加速度を示した図であり、下段が同じく前後方向の加速度を示した図である。前述したように、本実施の形態においては、前後方向の加速度情報に対しては前向きが正の方向、左右方向の加速度情報に対しては右向きが正の方向と定義している。   FIG. 18 is a diagram for explaining the processing contents in the left / right difference determination unit 43, and is a diagram showing a correspondence relationship between the leg travel of the subject 1 and acceleration data in the left / right and up / down directions. As shown in FIG. 18, the upper part shows the acceleration in the left-right direction when the subject 1 walks, and the lower part shows the acceleration in the front-rear direction. As described above, in the present embodiment, the forward direction is defined as the positive direction for the longitudinal acceleration information, and the right direction is defined as the positive direction for the lateral acceleration information.

本実施の形態においては、被験者1の回復度を定量化することが特徴である。そこで、左右の脚の速度の差異を左右差判定ポイントとして、健常脚による速度に対する非健常脚による速度の比率(百分率)として定義することとする。即ち、
[左右差判定ポイント]
=[非健常脚による速度]/[健常脚による速度]×100 (3)
によって表現する。
The present embodiment is characterized in that the degree of recovery of the subject 1 is quantified. Therefore, the difference in speed between the left and right legs is defined as a ratio (percentage) of the speed of the non-healthy leg with respect to the speed of the healthy leg, with the difference between the left and right legs as a determination point. That is,
[Left / right difference judgment point]
= [Speed by non-healthy leg] / [Speed by normal leg] x 100 (3)
Expressed by

図18に示されるように、左右の脚に起因する前後方向の速度は、前後方向の加速度の正の部分を時間軸に沿って積分した値で定義され、一つの積分区間は、前後方向の加速度が正になった時点から負になった時点までの区間で定義される。しかし、前後方向の加速度だけを参照した場合、加速度の有無は判別できても、その加速度が左右のどちらの脚に起因するのかを判別することは不可能である。そこで、本実施の形態では、左右方向の加速度を用いてこの問題を解決することとする。   As shown in FIG. 18, the speed in the front-rear direction caused by the left and right legs is defined as a value obtained by integrating the positive part of the acceleration in the front-rear direction along the time axis. It is defined in the interval from the time when the acceleration becomes positive to the time when it becomes negative. However, when only the acceleration in the front-rear direction is referenced, it is impossible to determine whether the acceleration is due to the left or right leg, even if the presence or absence of the acceleration can be determined. Therefore, in the present embodiment, this problem is solved using acceleration in the left-right direction.

即ち、左右方向の加速度の変動に対しては、脚の左右の運びの関与が強く、左脚が接地している時の左右方向の加速度は正の方向に偏位し、右足が接地している時の左右方向の加速度は負の方向に偏位することから、左右の脚に起因する前後方向の速度を算出する際に、左右方向の加速度データを参照することで、前後方向の加速度が左と右のどちらの脚に起因するのかを判別することが可能となる。   In other words, the left / right movement of the leg is strongly involved in fluctuations in the acceleration in the left / right direction, and the left / right acceleration when the left leg is grounded is deviated in the positive direction and the right foot is grounded. Since the acceleration in the left and right direction is deviated in the negative direction, the acceleration in the front and rear direction can be calculated by referring to the acceleration data in the left and right direction when calculating the speed in the front and rear direction due to the left and right legs. It is possible to determine whether the leg is left or right.

上記のように、本実施の形態においては、左右の脚に起因する速度を算出する際は、積分開始時点における左右方向の加速度が負である場合は右脚が接地しており、正である場合は左脚が接地しているという一定の関係を利用している。   As described above, in the present embodiment, when calculating the velocity due to the left and right legs, the right leg is grounded and positive when the acceleration in the left-right direction at the start of integration is negative. In some cases, a certain relationship is used in which the left leg is grounded.

なお、前記積分期間は、上記実施の形態1の場合と同様に、計測された加速度の時間的変化に基づいて周波数スペクトルを生成し、生成された周波数スペクトルの中から極大値を有する周波数スペクトルを特定する。さらに、特定された周波数スペクトルの周波数を特定し、特定された周波数の半周期をもって積分期間とする。   In the integration period, as in the case of the first embodiment, a frequency spectrum is generated based on a temporal change in measured acceleration, and a frequency spectrum having a maximum value is generated from the generated frequency spectrum. Identify. Further, the frequency of the specified frequency spectrum is specified, and the half period of the specified frequency is set as the integration period.

次に、上記のように構成される身体運動解析システム100の動作について説明する。図19は、本身体運動解析システム300の処理の流れを示すフローチャートである。
最初に、加速度情報検出部11において加速度データが収集されると(S1)、左右差判定部43が速度を算出する(S2)。さらに、左右差判定部43は、算出された速度に基づいて、左右差判定ポイントを算出し(S3)、表示部23が算出された左右差判定ポイント等を表示する(S4)。
Next, the operation of the body motion analysis system 100 configured as described above will be described. FIG. 19 is a flowchart showing a process flow of the body motion analysis system 300.
First, when acceleration data is collected in the acceleration information detection unit 11 (S1), the left / right difference determination unit 43 calculates a speed (S2). Further, the left / right difference determination unit 43 calculates a left / right difference determination point based on the calculated speed (S3), and the display unit 23 displays the calculated left / right difference determination point (S4).

より詳細には、所定の時間区間内で同時に計測された前後方向の加速度情報と左右方向の加速度情報を入力し(S1)、入力した加速度情報に対して、一つの積分区間ごとにその積分値を算出し保持する。   More specifically, the acceleration information in the front-rear direction and the acceleration information in the left-right direction, which are simultaneously measured within a predetermined time interval, are input (S1), and the integration value for each integration interval is input to the input acceleration information. Is calculated and held.

さらに、各積分値に対して、その積分開始時における左右方向の加速度の符号を参照することにより、各積分値が左右どちらの脚に対応しているかを示すラベルを付与する。その様にして左右脚に振り分けられた積分値を平均して、健常脚による速度と非健常脚による速度を算出する(S2)。   Furthermore, by referring to the sign of acceleration in the left-right direction at the start of integration, a label indicating which of the integration values corresponds to the left or right leg is assigned to each integration value. The integrated values distributed to the left and right legs in this way are averaged to calculate the speed by the healthy leg and the speed by the non-healthy leg (S2).

このとき、本実施の形態に係る身体運動解析装置においては、予め、左右どちらの脚が非健常脚であり、他の足が非健常脚であるという情報を保持しており、最終的には、上記(3)式で定義した左右差判定ポイントを生成する。   At this time, in the body motion analysis apparatus according to the present embodiment, in advance, information that either the left or right leg is a non-healthy leg and the other leg is a non-healthy leg is retained, and finally The left-right difference determination point defined by the above equation (3) is generated.

なお、両足とも非健常脚の場合は加速の大きい方を健常脚とみなす。また、左右の脚の判別が困難な場合も同様である。
さらに、前記左右差判定ステップ(S3)で生成された左右差判定ポイントを、本実施の形態に係る身体運動解析装置の蓄積部24に出力する(S4)。
If both legs are non-healthy legs, the one with the higher acceleration is regarded as a healthy leg. The same applies to the case where it is difficult to distinguish the left and right legs.
Further, the left / right difference determination point generated in the left / right difference determination step (S3) is output to the storage unit 24 of the body motion analysis apparatus according to the present embodiment (S4).

図20は、表示部23に表示される被験者1の身体運動機能の回復程度を定量的に表示した一例であり、上記(3)式で算出された左右差判定ポイントの表示例である。
なお、本実施の形態においては、左右方向の加速度における正の向きを「右」、前後方向の加速度における正の向きを「前」としたが、それ以外の場合であってもよく、各方向で符号が特定できればよい。
FIG. 20 is an example in which the degree of recovery of the body movement function of the subject 1 displayed on the display unit 23 is quantitatively displayed, and is a display example of the left-right difference determination point calculated by the above equation (3).
In the present embodiment, the positive direction in the lateral acceleration is “right” and the positive direction in the longitudinal acceleration is “front”. However, other directions may be used. It is sufficient if the code can be specified by.

また、上記実施の形態では、表示部23を、液晶パネル等を備える表示装置で構成する実施例を示したが、視覚に対して提示するものに限らず、音声合成や振動など、聴覚や触覚等に対して提示するように構成してもよい。
(実施の形態4)
上記実施の形態3では、被験者が歩行することによって生ずる加速度の差に基づいて歩行機能の回復の程度を定量化するシステムについて説明したが、本実施の形態では、上記システムに、さらに被験者の運動が歩行か否かを自動的に判定し得る機能を有するシステムについて説明する。
In the above-described embodiment, an example in which the display unit 23 is configured by a display device including a liquid crystal panel or the like has been described. Or the like.
(Embodiment 4)
In the third embodiment, the system for quantifying the degree of recovery of the walking function based on the difference in acceleration caused by the walking of the subject has been described. However, in the present embodiment, the exercise of the subject is further added to the system. A system having a function capable of automatically determining whether or not is walking will be described.

図21は、本実施の形態における身体運動解析システム400の機能構成を示すブロック図である。図21に示されるように、身体運動解析システム400は、加速度検出装置10と身体運動解析装置45を備える。なお、以下では、上記実施の形態1における身体運動解析システム100と同じ機能構成については同じ符番を付し、その説明は省略することとする。   FIG. 21 is a block diagram showing a functional configuration of body motion analysis system 400 in the present embodiment. As shown in FIG. 21, the body motion analysis system 400 includes an acceleration detection device 10 and a body motion analysis device 45. In the following description, the same functional configuration as that of body motion analysis system 100 in the first embodiment is denoted by the same reference numeral, and the description thereof is omitted.

身体運動解析装置45は、一般的なパーソナルコンピュータの機能を備えると共に、加速度検出装置10から送信された加速度データに基づいて被験者の運動が歩行か否かを判定し、歩行と判定した場合に加速度データに基づいて被験者の回復度等を定量化する機能を有し、無線通信制御部26、左右差判定部43、表示部23、蓄積部24および歩行検出部27を備える。   The body motion analysis device 45 has a function of a general personal computer and determines whether or not the subject's motion is walking based on the acceleration data transmitted from the acceleration detection device 10. It has a function of quantifying the degree of recovery of the subject based on the data, and includes a wireless communication control unit 26, a left / right difference determination unit 43, a display unit 23, a storage unit 24, and a walking detection unit 27.

無線通信制御部26は、上記実施の形態1における無線通信制御部21の機能に加え、歩行検出部27から被験者1の運動が歩行である旨の通知を受信すると、左右差判定部43に左右差判定ポイントを算出するように指示する。   In addition to the function of the wireless communication control unit 21 in the first embodiment, when the wireless communication control unit 26 receives a notification from the walking detection unit 27 that the exercise of the subject 1 is walking, the wireless communication control unit 26 Instructs to calculate the difference judgment point.

歩行検出部27は、入力した上下方向の加速度データから歩行か否かを自動的に判定し、判定結果を無線通信制御部26に通知する。
図22は、上記歩行検出部27において歩行判定時に参照される、被験者1の歩行時における上下方向の加速度の変化を示す波形の一部である。
The walking detection unit 27 automatically determines whether or not the walking is based on the input vertical acceleration data, and notifies the wireless communication control unit 26 of the determination result.
FIG. 22 is a part of a waveform showing a change in acceleration in the vertical direction when the subject 1 is walking, which is referred to when the walking detector 27 determines the walking.

一般に歩行時は、脚の接地に伴って床(又は地面)からの反力が律動的に生じる。図22は、上記の床反力の変化を示している。
そこで、歩行検出部27は、以下に示す何れかの条件を満たした場合に「歩行」と判定する。すなわち、
(条件1):
「規定時間(例えば、160[msec])の上下方向の加速度において、「極大→極小→極大」の変化が発生し、かつ、極大値−極小値間(又は極小値−極大値間)の振幅(図22の場合であれば、A−B間又はB−C間の振幅)が規定値(例えば、0.15G)以上であり、かつ極大値と極小値(又は極小値と極大値)の中点(図22の場合であれば、D又はE)の値が規定範囲(例えば、0.5G〜1.5G)に収まる場合」
(条件2):
「所定の時間(例えば2秒)に条件1が規定回数(例えば5回)以上発生し、その際の被験者の姿勢が立位の場合」
の2条件である。
In general, when walking, a reaction force from the floor (or the ground) is generated rhythmically with the grounding of the legs. FIG. 22 shows the change in the floor reaction force.
Therefore, the walking detection unit 27 determines “walking” when any of the following conditions is satisfied. That is,
(Condition 1):
“In the acceleration in the vertical direction for a specified time (for example, 160 [msec]), a change of“ maximum → minimum → maximum ”occurs, and the amplitude between the maximum value and the minimum value (or between the minimum value and the maximum value) (In the case of FIG. 22, the amplitude between A and B or between B and C) is a specified value (for example, 0.15 G) or more, and the maximum value and the minimum value (or the minimum value and the maximum value). When the value of the midpoint (D or E in the case of FIG. 22) falls within a specified range (for example, 0.5G to 1.5G) "
(Condition 2):
“When condition 1 occurs more than the specified number of times (for example, 5 times) in a predetermined time (for example, 2 seconds), and the posture of the subject at that time is standing”
These two conditions.

上記の歩行検出部27における歩行判定は、加速度データが取得した後で、速度を算出する前(上記実施の形態3における図19における「加速度情報の入力(S1)」と「速度の算出(S2)」の間)に実施する。   The walking determination in the walking detector 27 is performed after the acceleration data is acquired and before the speed is calculated (“input of acceleration information (S1)” in FIG. 19 in the third embodiment and “speed calculation (S2)”. ) ”).

以上のように、本実施の形態における身体運動解析システムによれば、被験者1の歩行時における3次元の加速度データを収集し、これらの加速度データに基づいて歩行か否かを判定し、さらに歩行機能の回復の程度を定量化することが可能となる。   As described above, according to the body motion analysis system in the present embodiment, the three-dimensional acceleration data at the time of walking of the subject 1 is collected, it is determined whether or not the walking is based on these acceleration data, and further the walking The degree of functional recovery can be quantified.

なお、上記実施の形態2の身体運動解析装置45をインターネット等のネットワークを介して遠隔地にある医療施設の端末(例えば、パーソナルコンピュータ)に接続することも可能である。   Note that the body movement analysis device 45 of the second embodiment can be connected to a terminal (for example, a personal computer) at a remote medical facility via a network such as the Internet.

図23は、上記のように、被験者宅2にある身体運動解析装置45と医療施設4の端末29とがネットワーク3を介して接続されている様子を示した図である。図23に示されるように身体運動解析装置45と端末29とをネットワーク3を介して接続することにより、被験者1の回復度等に関する情報を両装置で共有することが可能となる。   FIG. 23 is a diagram showing a state in which the body motion analysis device 45 in the subject house 2 and the terminal 29 of the medical facility 4 are connected via the network 3 as described above. As shown in FIG. 23, by connecting the body motion analysis device 45 and the terminal 29 via the network 3, it is possible to share information regarding the degree of recovery of the subject 1 between both devices.

図24は、上記の端末29のモニタ(図示せず)において表示された、被験者1の左右差判定ポイントの変化の様子を示す図である。このように、医療施設のスタッフは、遠隔地に居ながら被験者1の回復状況を把握すると共に、適切なアドバイス等も行うことが可能となる。   FIG. 24 is a diagram illustrating a change in the left-right difference determination point of the subject 1 displayed on the monitor (not shown) of the terminal 29 described above. As described above, the staff of the medical facility can grasp the recovery status of the subject 1 while staying at a remote place, and can give appropriate advice and the like.

また、図24は、医療施設の端末29に具備する表示部23に、通信回線を介して表示される被験者1の身体運動機能に関する情報を表示する一例であり、表示部23の機能により、術後日数で過去の左右差判定ポイントをグラフ化したものである。   FIG. 24 is an example of displaying information related to the body movement function of the subject 1 displayed via the communication line on the display unit 23 provided in the terminal 29 of the medical facility. This is a graph of past left / right difference judgment points in the number of days later.

このように医療スタッフに被験者の身体運動機能の回復を定量的に示すことで、機能回復の進捗管理を支援することが可能になる。また、通信回線を活用することで在宅の患者と機能回復の程度を共有することもできる。   Thus, it becomes possible to support the progress management of functional recovery by quantitatively showing the recovery of the body movement function of the subject to the medical staff. In addition, the degree of functional recovery can be shared with patients at home by using communication lines.

以上のように、本実施の形態における身体運動解析システム400は、歩行を自動的に検知し、被験者に自身の身体運動機能を提示することで自律的な機能回復訓練の支援を行うことができる。   As described above, the body motion analysis system 400 according to the present embodiment can automatically detect walking and can support autonomous function recovery training by presenting the subject's body motion function to the subject. .

なお、上記実施の形態1〜4では、被験者1の腰部右側に加速度検出装置10が固定する実施例について説明した。これは、人体の左右方向の歩行スタンスの変動を求める場合は、手や足等ではなく、人体の体幹であることが好ましいためである。さらには、人体の重心に近い腰部である程、より好ましい。   In addition, in the said Embodiment 1-4, the Example which the acceleration detection apparatus 10 fixes to the test subject's 1 waist part right side was demonstrated. This is because it is preferable to use the trunk of the human body rather than the hands and feet when determining the change in the walking stance of the human body in the left-right direction. Furthermore, the waist part closer to the center of gravity of the human body is more preferable.

また、上記実施の形態1〜4においては、125Hzのサンプリングレートで加速度データを収集する実施例を示したが、サンプリングレートは、少なくとも0から20Hzの周波数帯域に含まれる加速度波形が得られるレートであればよい。   In the first to fourth embodiments, the acceleration data is collected at a sampling rate of 125 Hz. However, the sampling rate is a rate at which an acceleration waveform included in the frequency band of at least 0 to 20 Hz is obtained. I just need it.

さらに、実施の形態1〜4では、歩行について運動解析を行う実施例を示したが、身長、体重等の関係から美しい歩行か否かの判定にも応用することが可能である。また、ジョギング、マラソン等の走り方の分析に適用し、効率のよい走り方の研究に利用することも可能である。   Furthermore, although Embodiments 1 to 4 show examples in which exercise analysis is performed for walking, it can also be applied to determination of whether or not walking is beautiful from the relationship of height, weight, and the like. It can also be applied to the analysis of running methods such as jogging and marathon, and can be used to study efficient driving methods.

なお、上記実施の形態4では、条件2における所定の時間を「2秒」としたが、この値は被験者1の状況等に応じて任意の値に設定することとする。   In the fourth embodiment, the predetermined time in the condition 2 is “2 seconds”, but this value is set to an arbitrary value according to the condition of the subject 1 and the like.

以上のように、本発明の身体運動解析システム及び身体運動解析装置は、リハビリテーションシステム、スポーツトレーニング装置、リハビリテーション施設における端末装置、高齢者住宅における通信端末などとして適用が可能である。   As described above, the body motion analysis system and the body motion analysis device of the present invention can be applied as a rehabilitation system, a sports training device, a terminal device in a rehabilitation facility, a communication terminal in an elderly house, and the like.

実施の形態1における身体運動解析システムの概略図である。1 is a schematic diagram of a body movement analysis system in Embodiment 1. FIG. 本発明における加速度検出装置の装着位置と加速度センサの座標軸の関係を示す図である。It is a figure which shows the relationship between the mounting position of the acceleration detection apparatus in this invention, and the coordinate axis of an acceleration sensor. 実施の形態1における加速度検出装置および身体運動解析装置の各機能構成を示すブロック図である。FIG. 2 is a block diagram illustrating functional configurations of an acceleration detection device and a body motion analysis device according to Embodiment 1. 被験者の歩行機能テストにおける脚運びと加速度の変化との対応を時間の経過に従って示した一例である。It is an example which showed correspondence with leg change and change of acceleration in a subject's walking function test over time. 前後方向の加速度曲線に関する周波数スペクトルを模式的に示した図である。It is the figure which showed typically the frequency spectrum regarding the acceleration curve of the front-back direction. 実験的に算出された、周波数パワーの常用対数と歩幅との関係を示す一例である。It is an example which shows the relationship between the common logarithm of frequency power and step length calculated experimentally. 身体運動解析装置の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of a body movement analyzer. 表示部における、歩幅や歩行速度の最新の計測値と前回計測値との比較を行った場合の表示例である。It is a display example at the time of comparing the latest measured value of the stride and the walking speed with the previous measured value on the display unit. 被験者に関する身体運動機能の変化を表示した一例である。It is an example which displayed the change of the body movement function regarding a test subject. 実施の形態2における加速度検出装置および身体運動解析装置の各機能構成を示すブロック図である。It is a block diagram which shows each function structure of the acceleration detection apparatus in Embodiment 2, and a body movement analysis apparatus. 運動解析部の機能構成を示すブロック図である。It is a block diagram which shows the function structure of a motion analysis part. 被験者に実施された歩行テストにおける歩行時の左右方向の加速度の時系列データの一例である。It is an example of the time series data of the acceleration of the left-right direction at the time of the walk in the walk test implemented by the test subject. 周波数分析部において生成されたパワースペクトラムの一例を示す図である。It is a figure which shows an example of the power spectrum produced | generated in the frequency analysis part. 最低の周波数におけるパワー値を示すスタンス評価指数と歩行スタンスとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the stance evaluation index which shows the power value in the lowest frequency, and a walking stance. 歩行テストによって得られたスタンスの変化の様子を示す一例である。It is an example which shows the mode of the change of the stance obtained by the walk test. 実施の形態2における身体運動解析システムの処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing of the body movement analysis system in the second embodiment. 実施の形態3における加速度検出装置および身体運動解析装置の各機能構成を示すブロック図である。FIG. 10 is a block diagram illustrating functional configurations of an acceleration detection device and a body motion analysis device according to Embodiment 3. 被験者の脚運びと左右方向及び上下方向の加速度データとの対応関係を示した図である。It is the figure which showed the correspondence of a test subject's leg movement and the acceleration data of the left-right direction and the up-down direction. 実施の形態3における身体運動解析システムの処理の流れを示すフローチャートである。10 is a flowchart showing a process flow of the body movement analysis system in the third embodiment. 被験者についての左右差判定ポイントの表示例である。It is an example of a display of a right-and-left difference judging point about a subject. 実施の形態4における身体運動解析システムの機能構成を示すブロック図である。FIG. 10 is a block diagram showing a functional configuration of a body movement analysis system in a fourth embodiment. 歩行検出部において歩行判定時に参照される、被験者の歩行時における上下方向の加速度の変化を示す波形の一部である。It is a part of the waveform which shows the change of the acceleration of the up-down direction at the time of a test subject's walk referred at the time of a walk determination in a walk detection part. 被験者宅にある身体運動解析装置と医療施設の端末とがネットワークを介して接続されている様子を示した図である。It is the figure which showed a mode that the body movement analysis apparatus in a test subject's house and the terminal of a medical facility were connected via the network. 遠隔地の端末上に表示された被験者の左右差判定ポイントの変化の様子を示す図である。It is a figure which shows the mode of the change of the subject's left-right difference determination point displayed on the terminal of a remote place.

符号の説明Explanation of symbols

1 被験者
2 被験者宅
3 ネットワーク
4 医療施設
5 装着具
10 加速度検出装置
11 加速度情報検出部
12 無線通信制御部
20 身体運動解析装置
21 無線通信制御部
22 歩行速度検出部
23 表示部
24 蓄積部
26 無線通信制御部
27 歩行検出部
29 端末
30 身体運動解析装置
31 運動解析部
32 周波数分析部
33 極大値検出部
34 極大値周波数検出部
35 最低周波数検出部
36 配列保存部
37 評価部
40 身体運動解析装置
43 左右差判定部
45 身体運動解析装置
100 身体運動解析システム
200 身体運動解析システム
300 身体運動解析システム
400 身体運動解析システム
DESCRIPTION OF SYMBOLS 1 Test subject 2 Test subject's house 3 Network 4 Medical facility 5 Wearing tool 10 Acceleration detection apparatus 11 Acceleration information detection part 12 Wireless communication control part 20 Physical motion analysis apparatus 21 Wireless communication control part 22 Walking speed detection part 23 Display part 24 Accumulation part 26 Wireless Communication control unit 27 Walking detection unit 29 Terminal 30 Body motion analysis device 31 Motion analysis unit 32 Frequency analysis unit 33 Maximum value detection unit 34 Maximum value frequency detection unit 35 Minimum frequency detection unit 36 Array storage unit 37 Evaluation unit 40 Body motion analysis device 43 Left-right difference determination unit 45 Physical motion analysis device 100 Physical motion analysis system 200 Physical motion analysis system 300 Physical motion analysis system 400 Physical motion analysis system

Claims (5)

人の歩行機能を解析するための身体運動解析装置であって、
人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度
のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、
検出された前記前後方向の加速度の時間的変化に基づいて、周波数スペクトルを生成する周波数分析部と、生成された前記周波数スペクトルの中から最大のパワーの周波数を特定する周波数特定部と、特定された前記周波数スペクトルの最大のパワーから常用対数値を算出する対数値算出部とを備えた加速度分析手段と、
予め求められている近似式に、前記算出された常用対数値を適用することにより、歩行
時における歩幅を算出する歩行機能量算出手段と
を備えることを特徴とする身体運動解析装置。
A body movement analysis device for analyzing a human walking function,
Acceleration detecting means for detecting at least one of the acceleration in the front-rear direction, the acceleration in the left-right direction, and the acceleration in the up-down direction caused by the movement of the person over time;
Based on the detected temporal change in the longitudinal acceleration, a frequency analysis unit that generates a frequency spectrum, and a frequency specifying unit that specifies a frequency of the maximum power from the generated frequency spectrum are specified. An acceleration analysis means comprising a logarithmic value calculation unit for calculating a common logarithm value from the maximum power of the frequency spectrum;
A body motion analysis apparatus comprising: a walking function amount calculating unit that calculates a stride during walking by applying the calculated common logarithmic value to an approximate expression obtained in advance.
人の歩行機能を解析するための身体運動解析装置であって、
人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度
のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、
検出された前記左右方向の加速度の時間的変化に基づいて、周波数スペクトルを生成する周波数分析部と、生成された前記周波数スペクトルの中から極大値に対応する周波数を特定し、さ
らに、その中から0Hzを除く最低の周波数を特定する周波数特定部と、特定された前記
周波数スペクトルのピーク値から常用対数値を算出する対数値算出部とを備えた加速度分
析手段と、
予め求められている近似式に、前記算出された常用対数値を適用することにより、歩行
時におけるスタンスを算出する歩行機能量算出手段と
を備えることを特徴とする身体運動解析装置。
A body movement analysis device for analyzing a human walking function,
Acceleration detecting means for detecting at least one of the acceleration in the front-rear direction, the acceleration in the left-right direction, and the acceleration in the up-down direction caused by the movement of the person over time;
Based on the detected temporal change in the lateral acceleration, a frequency analysis unit that generates a frequency spectrum, a frequency corresponding to the maximum value is identified from the generated frequency spectrum, and further, An acceleration analyzing means comprising a frequency specifying unit for specifying the lowest frequency excluding 0 Hz, and a logarithmic value calculating unit for calculating a common logarithm value from the peak value of the specified frequency spectrum;
A body motion analysis device comprising: a walking function amount calculating means for calculating a stance during walking by applying the calculated common logarithmic value to an approximate expression obtained in advance.
人の歩行機能を解析するための身体運動解析装置であって、
人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、
検出された前記加速度の時間的変化に基づいて、周波数スペクトルを生成する周波数分析部と、生成された前記周波数スペクトルの中から極大値に対応する周波数を特定する周波数特定部と、特定された前記周波数を用いて積分期間を算出する期間算出部と、検出された前記左右方向の加速度を用いて、検出された前記前後方向の加速度が左右の何れの脚に起因するのかを特定する脚特定部とを備えた加速度分析手段と、
算出された前記積分期間について、前記特定された脚に係る前後方向の加速度を積分して、左脚および右脚の速度を算出する速度算出部と、算出された前記速度に基づいて、左右の脚の速度の割合を算出する速度比算出部とを備える歩行機能量算出手段と
を備えることを特徴とする身体運動解析装置。
A body movement analysis device for analyzing a human walking function,
Acceleration detecting means for detecting at least one of the acceleration in the front-rear direction, the acceleration in the left-right direction, and the acceleration in the up-down direction caused by the movement of the person over time;
Based on the detected temporal change of the acceleration, a frequency analysis unit that generates a frequency spectrum, a frequency specifying unit that specifies a frequency corresponding to a maximum value from the generated frequency spectrum, and the specified A period calculation unit that calculates an integration period using a frequency, and a leg specification unit that specifies which leg on the left and right of the detected longitudinal acceleration is caused by using the detected acceleration in the left and right direction An acceleration analysis means comprising:
For the calculated integration period, a speed calculation unit that calculates the speed of the left leg and the right leg by integrating the acceleration in the front-rear direction related to the specified leg, and based on the calculated speed, A walking function amount calculating means comprising a speed ratio calculating unit for calculating a rate of leg speed;
A body motion analysis device comprising:
人の歩行機能を解析するための身体運動解析装置であって、
人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、
前記検出された前後方向の加速度を表わす曲線から周波数スペクトルを生成するスペクトル生成部と、前記生成された周波数スペクトルの中から最大のスペクトル成分を特定する最大スペクトル特定部と、前記特定された最大のスペクトル成分のピーク値から常用対数値を算出する対数値算出部と、予め求められている近似式に、前記算出された常用対数値を適用することによって歩幅を算出する歩幅算出部と、検出された前記左右方向の加速度に基づいて歩行周期を算出する歩行周期算出部とを備える加速度分析手段と、
抽出された前記歩幅と前記歩行周期に基づいて、歩行速度を算出する歩行機能量算出手段と
を備えることを特徴とする身体運動解析装置。
A body movement analysis device for analyzing a human walking function,
Acceleration detecting means for detecting at least one of the acceleration in the front-rear direction, the acceleration in the left-right direction, and the acceleration in the up-down direction caused by the movement of the person over time;
A spectrum generation unit that generates a frequency spectrum from the detected curve representing acceleration in the front-rear direction, a maximum spectrum specification unit that specifies a maximum spectral component from the generated frequency spectrum, and the specified maximum A logarithmic value calculation unit that calculates a common logarithm value from a peak value of a spectrum component, a stride calculation unit that calculates a stride by applying the calculated common logarithm value to an approximate expression obtained in advance, and An acceleration analysis means comprising: a walking cycle calculating unit that calculates a walking cycle based on the acceleration in the left-right direction;
A walking function amount calculating means for calculating a walking speed based on the extracted stride and the walking cycle;
A body motion analysis device comprising:
人の歩行機能を解析するための身体運動解析装置であって、
人の運動に伴って生じる前後方向の加速度、左右方向の加速度および上下方向の加速度のうち、少なくとも一の加速度を時間の経過に沿って検出する加速度検出手段と、
前記検出された左右方向の加速度を表わす曲線においてゼロクロス点を特定するゼロクロス点特定部と、前記特定された、少なくとも2つのゼロクロス点から歩行周期を算出する歩行周期算出部と、前記検出された前後方向の加速度を表わす曲線から周波数スペクトルを生成するスペクトル生成部と、前記生成された周波数スペクトルの中から最大のスペクトル成分を特定する最大スペクトル特定部と、前記特定された最大のスペクトル成分のピーク値から常用対数値を算出する対数値算出部と、予め求められている近似式に、前記算出された常用対数値を適用することによって歩幅を算出する歩幅算出部と、検出された前記左右方向の加速度に基づいて歩行周期を算出する歩行周期算出部とを備える加速度分析手段と、
抽出された前記歩幅と前記歩行周期に基づいて、歩行速度を算出する歩行機能量算出手段と
を備えることを特徴とする身体運動解析装置。
A body movement analysis device for analyzing a human walking function,
Acceleration detecting means for detecting at least one of the acceleration in the front-rear direction, the acceleration in the left-right direction, and the acceleration in the up-down direction caused by the movement of the person over time;
A zero-cross point identifying unit that identifies a zero-cross point in the detected curve representing the acceleration in the left-right direction; a walking cycle calculation unit that calculates a walking cycle from the identified at least two zero-cross points; A spectrum generating unit that generates a frequency spectrum from a curve representing acceleration in a direction; a maximum spectrum specifying unit that specifies a maximum spectral component from the generated frequency spectrum; and a peak value of the specified maximum spectral component A logarithmic value calculation unit that calculates a common logarithm value from the above, a stride calculation unit that calculates a stride by applying the calculated common logarithm value to an approximate expression obtained in advance, and the detected left-right direction An acceleration analysis means comprising: a walking cycle calculation unit that calculates a walking cycle based on acceleration;
A walking function amount calculating means for calculating a walking speed based on the extracted stride and the walking cycle;
A body motion analysis device comprising:
JP2004115192A 2003-04-10 2004-04-09 Body motion analysis device Expired - Fee Related JP4504071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115192A JP4504071B2 (en) 2003-04-10 2004-04-09 Body motion analysis device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003106680 2003-04-10
JP2003109288 2003-04-14
JP2003132392 2003-05-09
JP2004115192A JP4504071B2 (en) 2003-04-10 2004-04-09 Body motion analysis device

Publications (2)

Publication Number Publication Date
JP2004358229A JP2004358229A (en) 2004-12-24
JP4504071B2 true JP4504071B2 (en) 2010-07-14

Family

ID=34069234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115192A Expired - Fee Related JP4504071B2 (en) 2003-04-10 2004-04-09 Body motion analysis device

Country Status (1)

Country Link
JP (1) JP4504071B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4611233B2 (en) * 2005-04-06 2011-01-12 ニッタ株式会社 Walking training support device
JP4962765B2 (en) * 2005-09-26 2012-06-27 アイシン精機株式会社 Walking analysis device and walking analysis method
JP2009017895A (en) * 2005-10-31 2009-01-29 New Industry Research Organization Diagnostic system
WO2007136677A2 (en) * 2006-05-17 2007-11-29 24Eight Llc Method and apparatus for mobility analysis using real-time acceleration data
JP5117123B2 (en) * 2007-06-23 2013-01-09 株式会社タニタ Walking evaluation system, pedometer, walking evaluation program, and recording medium
CN102144248B (en) * 2008-09-04 2014-05-14 皇家飞利浦电子股份有限公司 Fall prevention system
JP5343708B2 (en) * 2009-05-27 2013-11-13 トヨタ自動車株式会社 Landing timing specifying device and walking assist device
CH703381B1 (en) * 2010-06-16 2018-12-14 Myotest Sa Integrated portable device and method for calculating biomechanical parameters of the stride.
US9119762B2 (en) 2011-05-30 2015-09-01 Honda Motor Co., Ltd. Walking assist device, walking assist method, walking state estimating device and walking state estimating method
JP5675020B2 (en) * 2011-05-30 2015-02-25 本田技研工業株式会社 Walking state estimation device and walking assist device using the same
JP5557296B2 (en) * 2011-08-22 2014-07-23 株式会社タニタ Speed calculation method, speed calculation device, and computer program
KR101851836B1 (en) 2012-12-03 2018-04-24 나비센스, 인크. Systems and methods for estimating the motion of an object
JP6080078B2 (en) * 2014-08-18 2017-02-15 高知県公立大学法人 Posture and walking state estimation device
JP6552875B2 (en) * 2015-05-28 2019-07-31 株式会社早稲田エルダリーヘルス事業団 Moving motion analysis apparatus, method and program
JP6565369B2 (en) 2015-06-22 2019-08-28 カシオ計算機株式会社 Exercise support device, exercise support method, and exercise support program
JP6578874B2 (en) * 2015-10-15 2019-09-25 花王株式会社 Walking cycle detection method and detection apparatus
WO2018211550A1 (en) * 2017-05-15 2018-11-22 富士通株式会社 Information processing device, information processing system, and information processing method
CN109115207B (en) * 2017-06-23 2021-06-04 北京方位捷讯科技有限公司 Pedestrian walking trajectory detection method, device and system
WO2019111521A1 (en) * 2017-12-06 2019-06-13 株式会社 資生堂 Information processing device and program
JP7525052B2 (en) * 2021-03-24 2024-07-30 日本電気株式会社 FEATURE GENERATION DEVICE, GATHERING MEASUREMENT SYSTEM, FEATURE GENERATION METHOD, AND PROGRAM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003006608A (en) * 2001-06-19 2003-01-10 Seiko Instruments Inc Walk detector
JP2003061935A (en) * 2001-08-22 2003-03-04 Matsushita Electric Ind Co Ltd Personal information terminal and behavior discriminating system

Also Published As

Publication number Publication date
JP2004358229A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP4504071B2 (en) Body motion analysis device
CN100418476C (en) Body motion analysis device, body motion analysis system, and analysis method thereof
CN108095725B (en) A human body exercise ability integrated testing device and using method thereof
Chen et al. Toward pervasive gait analysis with wearable sensors: A systematic review
Higashi et al. Quantitative evaluation of movement using the timed up-and-go test
Sabatini et al. Assessment of walking features from foot inertial sensing
US8246555B2 (en) Method and system for monitoring sport related fitness by estimating muscle power and joint force of limbs
Stamatakis et al. Gait feature extraction in Parkinson's disease using low-cost accelerometers
JP4603884B2 (en) Equilibrium analysis system, program, and recording medium
JP2006026092A (en) Acceleration information transmitting device, body motion analysis device, and body motion analysis method
JPWO2004026138A1 (en) Body motion evaluation apparatus and body motion evaluation system
US20200411160A1 (en) Retrieval apparatus, system, method, and program
Lou et al. IMU-based gait phase recognition for stroke survivors
Suriani et al. Optimal accelerometer placement for fall detection of rehabilitation patients
JP2005342254A (en) Walking cycle detection device
KR102022942B1 (en) The Method of predicting IVLR(instantaneous vertical loading rate) and apparatus for quantifying risk of gait injury using it
JP2003006608A (en) Walk detector
Conger et al. Validity of physical activity monitors for estimating energy expenditure during wheelchair propulsion
Guimarães et al. Phone based fall risk prediction
Alahakone et al. Smart wearable device for real time gait event detection during running
EP3860440B1 (en) Method and system for assessing human movements
Saito et al. Assessment of walking quality by using Inertial Measurement Units
Qin et al. A smart phone based gait monitor system
Niiler Measures to determine dynamic balance
Liang et al. Assessment of gait balance control using inertial measurement units—A narrative review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

R150 Certificate of patent or registration of utility model

Ref document number: 4504071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees