[go: up one dir, main page]

JP4502294B2 - Medical guidewire - Google Patents

Medical guidewire Download PDF

Info

Publication number
JP4502294B2
JP4502294B2 JP2000136553A JP2000136553A JP4502294B2 JP 4502294 B2 JP4502294 B2 JP 4502294B2 JP 2000136553 A JP2000136553 A JP 2000136553A JP 2000136553 A JP2000136553 A JP 2000136553A JP 4502294 B2 JP4502294 B2 JP 4502294B2
Authority
JP
Japan
Prior art keywords
wire
alloy material
layer
guide wire
blood vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000136553A
Other languages
Japanese (ja)
Other versions
JP2001314513A (en
Inventor
昌彦 宮田
富久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Intecc Co Ltd
Original Assignee
Asahi Intecc Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Intecc Co Ltd filed Critical Asahi Intecc Co Ltd
Priority to JP2000136553A priority Critical patent/JP4502294B2/en
Publication of JP2001314513A publication Critical patent/JP2001314513A/en
Application granted granted Critical
Publication of JP4502294B2 publication Critical patent/JP4502294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、心臓血管系内にカテーテルを導入する際に用いる医療用ガイドワイヤに関するものである。
【0002】
【従来の技術】
血管造影を目的として、極細可撓管体のカテーテルを血管内に挿入したり、または、冠状動脈の閉塞部位の治療に、バルーンカテーテルを血管内に挿入するのに際し、そのカテーテルの挿入を安全確実にするために、可撓性線材からなる医療用ガイドワイヤが用いられており、特公平4−25024号公報・特公平4292175号公報に示される公知例がある。
【0003】
そして、この医療用ガイドワイヤ1(以下、単にガイドワイヤ1という)は、(図7参照)可撓性極細線の主線材2からなる線状形態にして曲りくねった複雑な径路の血管9・分岐血管9Aに先端部3から挿入するので、柔軟な可撓性と進行方向の荷重に対する垂直荷重性(耐座屈性)が要求され、さらに、体外に位置する後端部5を回転させながら血管内へ挿入し進行させるので、その回転に対する応分の捩り剛性と、後端部5の操作によって血管内の先端部3の方向が操作できるステアリング性を併有する高度の機械的性質が必要であり、その先端部3は、血管内挿入の先導部として機能するに足る柔軟性と屈曲変形からの復元性が必要となるので、細径にした主線材2にコイルばね4を嵌装着した基本構造を有している。
【0004】
即ち、例えば分岐血管9Aに挿入する場合は、先端部3の若干を指先等で「くの字状」に塑性変形させたプリシエイプ部8を形成して血管内に挿入し、そのプリシエイプ部8が、挿入すべき分岐血管9Aの分岐点の近傍に達すると、ガイドワイヤ1を回転させてプリシエイプ部8を分岐血管9Aに導入する操作が行われ、その導入操作によって、ガイドワイヤ1を分岐血管9Aに挿入進行させることになる。従って、ガイドワイヤ1は先端部3が高可撓性にしてプリシエイプ部8が成形し易く、かつ後端部5の方向へ剛性が向上する形態が望まれる。
【0005】
以上から、従来のガイドワイヤは、Ni(ニッケル)−Ti(チタン)系の超弾性合金線または剛性合金材のSUS(ステンレス)材からなる主線材2のものが多く、その主線材2を露出形態にしたりテフロン(登録商標)コーティング等の樹脂被覆をした形態にして使用されている。そして、そのNi−Ti合金材・SUS材の固有特性を応用して、ガイドワイヤ1の機械的性質の向上を図る公知例として、特開表9−508538号公報に示される「Ni−Ti合金線とSUS材線を線体長手方向の中間ポイントで接続した2種金属線連結の主線材2からなるガイドワイヤ」と、特開平8−000734号公報に示される「SUS材の芯線を鞘体のNi―Ti合金筒状体に納めた形態」のものがある。
【0006】
【発明が解決しようとする課題】
しかし、SUS材からなる主線材2は「剛性に優れるものの、屈曲(キンク)し易くして屈曲形状からの復元性が劣り(耐キンク性に劣る)」Ni−Ti合金材からなる主線材2は「形状記憶性に優れ、かつ曲げ変形からの復元性が良好であるものの、剛性(捩れ・曲げ剛性)が劣る」固有特性があり、これ等の単独材質からなるものは前記の必要機械的性質の一部が希薄・不備になる。
【0007】
そして、樹脂被覆を施した公知例のものは、伸線加工した伸材の鏡面外周に樹脂被覆を施した構造からなるので、その芯材と樹脂被覆との密着性が悪く、使用中の捩り・曲げ応力によって樹脂被覆の剥離・脱落を生ずることがあり、安全性に劣る。
【0008】
一方、前記Ni―Ti合金線とSUS材線の併合構造のものは、その2種類の金属線を接続管部材によって接続連結するので、その連結部位が段差状の膨径形状となって血管内挿入性を損うと共に、連結部分の機械的強度が不足し、その上、その接続加工が煩雑にして成形性に劣る。そして、前記の「Ni―Ti合金材鞘体形態」のものは、Ni―Ti合金材とSUS材の複合形態になるものの、芯材と鞘体との間には当然にクリヤランスが存在することから、屈曲した細管へ挿入したときの曲げ抵抗によって鞘体が芯材へ圧接する変形を生ずるので、細管への挿入抵抗が大にして挿入操作がしづらく、実質的に挿入不能なるおそれがある。そして、概ね外直径=0.3粍・内直径=0.2粍に制限される長尺筒体のNi―Ti筒状体の成形は極めて困難にして実用性に欠ける。
【0009】
本発明は、以上の従来技術の難点を解消する高品質ガイドワイヤを提供するものである。
【0010】
【課題を解決するための手段】
以上の技術課題を解決する本発明のガイドワイヤは、剛性合金材及び超弾性合金材の一方の合金材からなる芯線材と、その芯線材の外周に形成され剛性合金材及び超弾性合金材の他方の合金材からなる金属溶射層による多孔質形態との2層構造からなり、先端先細り形状であって長尺可撓性の主線材と、前記主線材の先端部分に嵌装着され、剛性合金材及び超弾性合金材の一方の合金材からなる芯線材と、その芯線材の外周に形成され剛性合金材及び超弾性合金材の他方の合金材からなる金属溶射層による多孔質形態との2層構造からなるコイルばねと、前記主線材及び前記コイルばねの前記多孔質形態に被覆された樹脂とを備えたことを特徴とする。
【0011】
即ち、前記の構成からなる本発明のガイドワイヤは、Ni(ニッケル)−Ti(チタン)合金に代表される超弾性合金材と、SUS(ステンレス鋼)材・ピアノ線で代表される剛性合金材の異質2金属の組合せ2層にすると共に、その2層構造の外層を金属溶射手段によって生成できる金属溶射層によって構成し、その2層を構成する異質2種の超弾性合金材と剛性合金材の機械的特性の相互補完によってガイドワイヤとしての必要な機械的性質のさらなる向上を図る思想からなるものである。
【0012】
そして、その2層構造の主線材・コイル線は、太径線材に公知手段による金属溶射層を設けた母線を予め形成し、しかるのち、その母線を伸線加工して所定径の2層構造線状体に成す伸線加工線が主として用いられる。そして、前記の基本構成の態様として、前記第一発明の主線材にテフロン等の樹脂被覆を設ける形態や、前記の伸線加工の縮径伸線工程の中間において、金属溶射層を再生成して伸線再加工する複層金属溶射層形態にすることがある。
【0013】
【作用】
前記構成の第一発明のガイドワイヤは「剛性に欠けるものの形状記憶性・耐キンク性に優れる超弾性合金材」と「耐キンク性に劣るものの剛性・屈曲性に優れる剛性合金材」の2層構造の主線材で構成されるので、その異質2種類の合金材を「芯材にするか溶射層にするか」の組合せ「芯材と溶射層のサイズ調整」によって異質2金属の固有特性を相互補完して前記必要機械的特性のさらなる向上ができると共に、多様な血管事情・治療事情に整合させて機械的特性を微細に調整設定した多様品質ガイドワイヤの提供が可能になる。
【0014】
そして、その金属溶射層は、金属微粒子の集合形態にして微粒子間にミクロ空隙を存在させる多孔形態を呈するので、血管内挿入性を向上させるために主線材の外周に施す親水性ポリマー及びこれと併用するヘパリン等の抗血栓剤の付着保持性が良く、血管内挿入性のさらなる向上及び凝血防止効果が促進できる。さらに、前記の伸線加工を施した2層構造主線材は、伸線加工による残留応力によって線材としての剛性向上と、伸線加工による圧縮力によって芯線材と金属溶射層の密着性が向上して芯線材と金属溶射層が実質一体線になって機能し、前記の補完作用が円滑に達成できる。
【0015】
一方、イドワイヤは、先端部分に嵌装するコイルばねを、前記2層構造のコイル線材によって構成するので、血管内挿入の先導部と機能して屈曲形状の血管内への良好な挿入性・引き抜き性を満足させるための機械的性質のさらなる向上ができると共に、コイル線外周に存在する金属溶射層によって親水性ポリマーの付着保持性が向上して、前記の挿入性・引き抜き性が一段と向上安定する。
【0016】
【発明の実施の形態】
まず、第一発明一実施例のガイドワイヤ1を図1を参照して説明する。即ち、可撓性極細線体の主線材2からなり、その主線材2の先端部分の若干長を細径にしてコイルばね4を嵌装着して高可撓性柔軟形態にした先端部3を備えたガイドワイヤ1において、その先端部3を除く主線材2は超弾性合金材のNi―Ti合金からなる芯線材6の外周に「剛性合金材のSUS材の金属溶射層7」を設けた2層構造をなしている。
【0017】
詳しくは、この2層構造の主線材2は(図1(C)参照)太径のNi―Ti合金の母線12の外周に「ガスフレームで溶融させて細粒化したSUS材溶滴を高速溶射して付着させた」公知の金属溶射手段による金属溶射層7(以下、溶射層7という)を成膜した主線材母線2Aを成形し、しかるのち、その主線材母線2Aを公知の伸線加工によって縮径加工し、Ni―Ti合金材からなる外直径D=概ね0.217粍の芯線材6の外周に、20〜150ミクロン膜厚(本実施例は70ミクロン)のSUS材の溶射層7を備えた2層構造になっている。
【0018】
なお、その主線材2の先端部3は、溶射層7を含む外周を研磨除去した細径部に加工されてコイルばね4が嵌装着されると共に、血管内挿入状態で体外に出す後端部5の端は、溶射層7が研磨除去されている。
【0019】
以上の図1実施例のガイドワイヤ1は、Ni―Ti合金の芯線材6とSUS材溶射層7が一体となって、それぞれの機械的性質を補完するので、主線材2は応分の可撓性・剛性を備えた基において、トルク伝達力・回転伝達性に優れ、血管内への挿入性・ステアリング性に優れる高品質になる。そして、この図1実施例の先端部3はNi―Ti合金材のみの主線材2にコイルばね4を嵌装した形態からなるので、屈曲した血管内へ挿入するときの屈曲変形追従性と屈曲変形からの復元性が良く、血管内への挿入先導部としての先端部3の挿入進行機能に優れ、血管端末まで容易に挿入できると共に、屈曲した血管によって先端部3が補足されて引き抜き困難になるおそれがない。
【0020】
そして、外周を形成する溶射層7が多孔形態であることから、ガイドワイヤ1の血管内挿入性向上のために外周に施す親水性ポリマー・抗血栓剤の付着保持性が良く、潤滑性が一段と向上すると共に凝血防止効果が促進できる。そして、主線材2が伸線細径化加工されているので、その伸線加工による残留応力によって剛性等の機械的性質のさらなる補完・調整が可能になると共に、芯線材6と溶射層7の密着性が向上して両者が実質一体物として機能し、血管内挿入の屈曲変形応力によって溶射層7が剥離するおそれはなく安全性が確保できる。
【0021】
続いて、図2を参照して第一発明のガイドワイヤ1の他の実施例を説明する。即ち、金属製芯線材6の外周に溶射層7を設けた2層構造の主線材2からなるものにおいて、この図2の主線材2は「芯線材6がSUS材にして、溶射層7がNi―Ti合金材」からなり、図1実施例のものと2層材質が逆組合せであり、かつ、溶射層7がコイルばね4を嵌装した先端部3の後半部分に存在している。なお、この図2実施例の主線材2も、太径のSUS材母線にNi―Ti合金材の金属溶射層を設け、しかるのち伸縮加工されて縮径されている。
【0022】
この図2実施例のものは、プリシエイプ部8を形成する部分がSUS材のみの主線材2からなるので、プリシエイプ部8の加工がし易くなる。そして、そのSUS材露出部分を除く主線材2はNi―Ti合金材とSUS材の複合構成となるので両金属の特性補完によって必要にして適度な機械的性質が良好に確保できる。
【0023】
次に、図3を参照して第一発明の他の実施例を説明する。即ち、主線材2を包み込むテフロンコーティング・ポリアミド・ポリウレタン・ふっ素樹脂等の樹脂被覆10を設けたガイドワイヤ1において、この主線材2も図2実施例のものと同様に「Ni―Ti合金材の芯線材6の外周にSUS材の溶射層7を設けた2層構造にして、先端部3のみが溶射層7を研磨除去した構造になっている。そして、この主線材2の全周に樹脂被覆10が施されている。
【0024】
以上の図3実施例のガイドワイヤ1は、主線材2が図1実施例と同一の2層構造であることから、図1実施例のものと同様な「Ni―Ti合金材とSUS材との機械的性質補完」による良好な機械的性質が確保できる。そして、表面多孔質形態の溶射層7への樹脂被覆10の付着密着性が向上するので、血管内において複雑な曲げ・曲げ戻しを反復しても樹脂被覆10が剥離するおそれがなく、安全性が向上する。
【0025】
なお、以上の各実施例に示す主線材2は前記の伸線加工後のストレーナー加工のとき同時に熱処理してNi―Ti合金材の直線形状記憶処理を施し、血管内で屈曲形状を呈した先端部3を含む線状部分が自力で直線形状に復元して「曲りぐせ」が残存しない形状で引き抜きできるよう配慮されている。
【0026】
つぎに、図4を参照して第二発明一実施例のガイドワイヤを説明する。即ち、主線材2の先端部分にコイルばね4を嵌装着した先端部3からなるガイドワイヤ1において、コイルばね4がSUS材の芯線材6の外周にNi―Ti溶射層7を設けた2層構造のコイル線11によって形成されている。詳しくは、コイル線11は図1実施例の主線材2と同様に、太径のSUS材線にNi―Ti溶射層7を設けて伸線加工によって縮径加工した2層構造であり、必要に応じて「芯線材6をNi―Ti合金線・溶射層7をSUS材層」にする形態になっている。
【0027】
この図4実施例のガイドワイヤ1は、先端部3の機械的性質に大きく寄与するコイルばね4が2層金属構造のコイル線11からなるので、第一発明の前記実施例と同様に先端部3の機械的性質のさらなる向上と、その2層金属の内容調整によって機械的性質を微細に調整設定した多様品質の先端部3に成形できる。そして、コイルばね4の外周が多孔質形態の溶射層7からなるので、親水性ポリマーの付着保持性が良く、先端部3の血管挿入性と引き抜き性が向上し安定する。なお、このコイルばね4は、コイリング後に形状記憶処理が施される。
【0028】
続いて図5を参照して、第二発明の他の実施例を説明する。即ち、図4実施例と同様な2層構造金属線のコイル線を用いるものにおいて、この図5のコイルばね4は先端側の1/3が放射線不透過材のコイル線11C・中間の1/3がSUS材線(またはNi―Ti材線)の単質材のコイル線11B・後端側の1/3が図4実施例と同一の2層構造コイル線11Aになり、この3種類のコイル線が溶着連結されて単一のコイルばね4を構成している。
【0029】
以上の図5実施例のものはコイルばね4が前記の3ゾーン形態にして、先端部3の前端が血管内位置の放射線による検知ポイントとして機能すると共に、中間部分が屈曲し易いSUS材からなるので、プリシエイプ部8の形成がし易く、後端部分が2層金属構造にして屈曲による復元性・剛性を保有し、コイルばね4の各部分が性能分担して先端部3の諸性能のさらなる向上ができる。
【0030】
次に図6を参照して第一第二発明の2層構造の主線材2・コイル線材11の他の形態を説明する。即ち、図6に示す2層構造はSUS材またはNi―Ti合金材からなる金属溶射層7が複層積層され、この積層形態の金属溶射層7A・7BとSUS材またはNi―Ti線の芯線材6からなる2層構造を有している。この図6形態の2層構造によると金属溶射層7による特有作用が一段と顕著になる。なお、この積層金属溶射層は母線外周に一次溶射層7Aを設けて一次伸線加工し、しかるのち、その外周に二次溶射層7Bを設けて二次伸線加工して成形される。
【0031】
なお、本発明のガイドワイヤは前記の実施例に限定されず、主線材2とコイルばね4のコイル線11のいずれもを2層構造にする第一第二発明の複合形態にすることがある。そして、超弾性合金材としては、Ni―TiにFe・COを加えた三元系合金材、Cu―Zn―Al系合金材等の公知の超弾性合金材を用いることがある。
【0032】
【発明の効果】
以上の説明のとおり、本発明のガイドワイヤは、金属溶射手段によって金属線外周に金属溶射層を設けた「超弾性合金材と剛性合金材の2層構造」の線材からなる主線材・コイルばね構造を有するので、その異質2種合金材の特性を相互補完して、ガイドワイヤとして具備すべき「可撓性・垂直荷重性・捩り剛性・ステアリング性および先端部の曲げぐせ残留防止性」等の諸機械的性質を一段と向上して、ガイドワイヤのさらなる品質向上が促進できる。
【0033】
そして、その2層構造の合金材の組合せと「芯材径・溶射層厚さの調整」によって、前記の諸機械的特性を微調整して、個個の人体によって異なる「血管サイズ・血管径路・病変狭窄度・大人用・子供用」等の諸条件に適する多様品質のガイドワイヤの成形提供が可能となり、ガイドワイヤによる血管治療の治療性・治療効果の一段の改良向上を図ることができる。以上の有用な諸効果がある。
【図面の簡単な説明】
【図1】第一発明一実施例の医療用ガイドワイヤを示し、(A)はその正面図、(B)は(A)のDD断面図、(C)はその主線材の成形方法の説明図
【図2】第一発明の他の実施例の医療用ガイドワイヤを示し、(A)はその正面図、(B)は(A)のEE断面図、(C)は(A)のFF断面図
【図3】第一発明の他の実施例の医療用ガイドワイヤを示し、(A)はその正面図、(B)は(A)のCC断面図
【図4】第二発明一実施例の医療用ガイドワイヤを示し、(A)はその正面図、(B)は(A)のCC断面図
【図5】第二発明一実施例の医療用ガイドワイヤを示し、(A)はその正面図、(B)は(A)のEE断面図、(B)は(A)のFF断面図、(D)は(A)のGG断面図
【図6】第一発明の主線材・第二発明のコイル線の他の実施例の断面図
【図7】従来の医療用ガイドワイヤ示し、(A)はその正面図、(B)はその使用方法の説明図
【符号の説明】
1 医療用ガイドワイヤ
2 主線材
3 先端部
4 コイルばね
5 後端部
6 芯線材
7 金属溶射層
8 プリシエイプ部
9 血管
10 樹脂被覆
11 コイル線
12 母線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medical guide wire used for introducing a catheter into the cardiovascular system.
[0002]
[Prior art]
For the purpose of angiography, when inserting a catheter with a very thin flexible tube into a blood vessel, or when inserting a balloon catheter into a blood vessel for treatment of a coronary artery occlusion site, the catheter must be inserted safely. to, the medical guide wire comprising a flexible wire is used and Kokoku 4-25024 JP-Kokoku 4 - there is a known example shown in 292175 JP.
[0003]
The medical guide wire 1 (hereinafter simply referred to as the guide wire 1) (see FIG. 7) is a blood vessel 9 of a complicated path that is twisted into a linear form made of a main wire 2 of flexible fine wires. Since it is inserted into the branch blood vessel 9A from the distal end portion 3, soft flexibility and vertical loadability (buckling resistance) against the load in the traveling direction are required, and further, while rotating the rear end portion 5 located outside the body Since it is inserted into the blood vessel and advanced, the torsional rigidity corresponding to the rotation and the high mechanical properties that have the steering property that the direction of the distal end portion 3 in the blood vessel can be operated by the operation of the rear end portion 5 are required. The tip portion 3 is required to be flexible enough to function as a leading portion for insertion into a blood vessel and to be restored from bending deformation. have.
[0004]
That is, for example, when inserting into the branch blood vessel 9A, a pre-shaped portion 8 is formed by plastically deforming a part of the distal end portion 3 into a "<" shape with a fingertip or the like, and the pre-shaped portion 8 is inserted into the blood vessel. When the vicinity of the branch point of the branch blood vessel 9A to be inserted is reached, an operation of rotating the guide wire 1 to introduce the pre-ape portion 8 into the branch blood vessel 9A is performed, and the guide wire 1 is inserted into the branch blood vessel 9A by the introduction operation. The insertion will proceed. Therefore, it is desired that the guide wire 1 has a shape in which the distal end portion 3 is highly flexible, the pre-shaped portion 8 is easily formed, and the rigidity is improved in the direction of the rear end portion 5.
[0005]
As described above, most of the conventional guidewires are the main wire 2 made of a Ni (nickel) -Ti (titanium) superelastic alloy wire or a SUS (stainless steel) material of a rigid alloy material, and the main wire 2 is exposed. It is used in the form of a resin coating such as a Teflon (registered trademark) coating. As a known example of improving the mechanical properties of the guide wire 1 by applying the unique characteristics of the Ni—Ti alloy material / SUS material, “Ni—Ti alloy” disclosed in Japanese Patent Laid-Open No. 9-508538 is disclosed. A guide wire made of a main wire 2 of two types of metal wires connected to a wire and a SUS material wire at an intermediate point in the longitudinal direction of the wire body, and a “SUS material core wire as a sheath body as disclosed in Japanese Patent Application Laid-Open No. 8-000734 Of Ni-Ti alloy cylindrical body ".
[0006]
[Problems to be solved by the invention]
However, the main wire 2 made of a SUS material is “although excellent in rigidity but easy to bend (kinks) and has poor recovery from a bent shape (inferior in kink resistance)”. Main wire 2 made of a Ni—Ti alloy material Has the unique characteristics of “excellent shape memory and good resilience from bending deformation, but poor rigidity (torsion / bending rigidity)”. Some of the properties are sparse and deficient.
[0007]
The known example with resin coating has a structure in which resin coating is applied to the outer periphery of the mirrored surface of the drawn wire, so that the adhesion between the core material and the resin coating is poor, and the twist during use・ Peeling and dropping off of resin coating may occur due to bending stress, resulting in poor safety.
[0008]
On the other hand, the Ni-Ti alloy wire and the SUS material wire combined structure connect and connect the two types of metal wires with a connecting tube member, so that the connecting portion becomes a stepped swelled shape and becomes an intravascular vessel. The insertability is impaired, the mechanical strength of the connecting portion is insufficient, and the connecting process is complicated, resulting in poor moldability. The above-mentioned "Ni-Ti alloy material sheath form" is a composite form of Ni-Ti alloy material and SUS material, but naturally there is a clearance between the core material and the sheath body. Therefore, since the sheath body is deformed by being pressed against the core material by bending resistance when inserted into the bent thin tube, the insertion resistance to the thin tube is increased, making the insertion operation difficult, and there is a possibility that the insertion becomes substantially impossible. . Further, it is extremely difficult to form a long cylindrical Ni—Ti cylindrical body, which is generally limited to an outer diameter = 0.3 mm and an inner diameter = 0.2 mm, and lacks practicality.
[0009]
The present invention provides a high-quality guide wire that solves the above-mentioned problems of the prior art.
[0010]
[Means for Solving the Problems]
The guide wire of the present invention that solves the above technical problems includes a core wire made of one of a rigid alloy material and a superelastic alloy material, and a rigid alloy material and a superelastic alloy material formed on the outer periphery of the core wire material. It has a two-layer structure with a porous form formed by a metal spray layer made of the other alloy material, and has a tapered shape with a tapered end, a long flexible main wire, and a rigid alloy that is fitted and attached to the tip of the main wire. 2 of a core wire made of one of the alloy material and the superelastic alloy material, and a porous form formed by a metal spray layer formed on the outer periphery of the core wire material and made of the other alloy material of the rigid alloy material and the superelastic alloy material. A coil spring having a layer structure and a resin coated on the main wire and the porous form of the coil spring are provided.
[0011]
That is, the guide wire according to the present invention having the above-described configuration includes a superelastic alloy material represented by Ni (nickel) -Ti (titanium) alloy, and a rigid alloy material represented by SUS (stainless steel) material / piano wire. 2 layers of a combination of two different metals, and the outer layer of the two-layer structure is constituted by a metal sprayed layer that can be generated by metal spraying means, and the two kinds of heterogeneous superelastic alloy material and rigid alloy material constituting the two layers It consists of the idea of further improving the required mechanical properties as a guide wire by mutually complementing the mechanical properties.
[0012]
The main wire / coil wire of the two-layer structure is formed in advance with a bus bar in which a metal sprayed layer is formed on a large-diameter wire by a known means, and then the bus bar is drawn to form a two-layer structure with a predetermined diameter. A drawn wire formed into a linear body is mainly used. Then, as an aspect of the basic configuration, a metal sprayed layer is regenerated in the form of providing a resin coating such as Teflon on the main wire of the first invention or in the middle of the diameter drawing process of the wire drawing process. In some cases, a multi-layer metal sprayed layer is formed by redrawing.
[0013]
[Action]
The guide wire according to the first aspect of the present invention has two layers of “a superelastic alloy material having excellent shape memory and kink resistance although lacking rigidity” and “a rigid alloy material having excellent rigidity and flexibility despite being inferior in kink resistance”. Because it is composed of the main wire of the structure, the unique characteristics of the heterogeneous two metals can be achieved by combining the two different kinds of alloy materials into “core material or sprayed layer” combination “size adjustment of core material and sprayed layer”. By complementing each other, the required mechanical characteristics can be further improved, and it is possible to provide various quality guide wires in which the mechanical characteristics are finely adjusted and set in accordance with various vascular and therapeutic situations.
[0014]
And since the metal sprayed layer has a porous form in which microscopic voids exist between the fine particles in the form of aggregated metal fine particles, a hydrophilic polymer applied to the outer periphery of the main wire in order to improve the intravascular insertion property, and this Adhesion retention of antithrombotic agents such as heparin used in combination is good, and further improvement of intravascular insertion and anticoagulation effect can be promoted. Furthermore, the two-layer structure main wire subjected to the wire drawing process has improved rigidity as a wire material due to residual stress due to the wire drawing process, and improved adhesion between the core wire material and the metal sprayed layer due to the compressive force due to the wire drawing process. Thus, the core wire material and the metal sprayed layer function as a substantially integral wire, and the above-described complementary action can be achieved smoothly.
[0015]
On the other hand, gas guide wire is a coil spring that fitted to the tip portion, the so constitutes a coil wire of the two-layer structure, excellent insertability, into a blood vessel of the bent shape and functioning the leading portion of the intravascular insertion In addition to further improving the mechanical properties to satisfy the drawability, the metal sprayed layer on the outer periphery of the coil wire improves the hydrophilic polymer adhesion retention, further improving the above-mentioned insertability and pullout stability. To do.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
First, a guide wire 1 according to an embodiment of the first invention will be described with reference to FIG. That is, the distal end portion 3 which is composed of a main wire 2 of a flexible extra-fine wire body, has a slightly small diameter at the distal end portion of the main wire 2 and is fitted with a coil spring 4 to form a highly flexible flexible form. In the provided guide wire 1, the main wire 2 excluding the tip portion 3 is provided with a “metal sprayed layer 7 of SUS material of rigid alloy material” on the outer periphery of the core wire material 6 made of Ni—Ti alloy which is a superelastic alloy material. It has a two-layer structure.
[0017]
Specifically, the main wire 2 of this two-layer structure (see FIG. 1 (C)) is formed on the outer periphery of the large-diameter Ni—Ti alloy bus 12 with a high-speed SUS material droplet melted and refined by gas flame. A main wire 2A having a metal spray layer 7 (hereinafter referred to as a spray layer 7) formed by a known metal spraying means formed by spraying is formed, and the main wire 2A is then drawn. The SUS material having a thickness of 20 to 150 microns (70 microns in this embodiment) is sprayed on the outer periphery of the core wire 6 made of Ni—Ti alloy material and having an outer diameter D = approximately 0.217 mm. A two-layer structure including the layer 7 is formed.
[0018]
The distal end portion 3 of the main wire 2 is processed into a small-diameter portion obtained by polishing and removing the outer periphery including the sprayed layer 7 and the coil spring 4 is fitted and attached, and the rear end portion that goes out of the body in an intravascular insertion state. At the end of 5, the sprayed layer 7 is removed by polishing.
[0019]
In the guide wire 1 of FIG. 1 embodiment described above, the Ni—Ti alloy core wire 6 and the SUS material sprayed layer 7 are integrated to complement the respective mechanical properties. In the base with the characteristics and rigidity, it is excellent in torque transmission force and rotational transmission, and becomes high quality excellent in insertion into a blood vessel and steering. 1 has a form in which the coil spring 4 is fitted to the main wire 2 made of only the Ni—Ti alloy material, so that it can be bent and deformed when inserted into a bent blood vessel. Good recovery from deformation, excellent insertion advancement function of the distal end portion 3 as a leading portion for insertion into the blood vessel, easy insertion to the blood vessel terminal, and the distal end portion 3 is supplemented by a bent blood vessel, making it difficult to pull out There is no risk of becoming.
[0020]
Further, since the sprayed layer 7 forming the outer periphery is in a porous form, the adhesion retention property of the hydrophilic polymer / antithrombotic agent applied to the outer periphery for improving the intravascular insertion property of the guide wire 1 is good, and the lubricity is further improved. It can improve the coagulation prevention effect while improving. Since the main wire 2 is drawn and thinned, the residual stress caused by the drawing can further complement and adjust mechanical properties such as rigidity, and the core wire 6 and the sprayed layer 7 can be adjusted. The adhesiveness is improved and both function as a substantially integral body, and there is no fear that the thermal spray layer 7 is peeled off by bending deformation stress inserted into the blood vessel, and safety can be secured.
[0021]
Next, another embodiment of the guide wire 1 of the first invention will be described with reference to FIG. That is, in the main wire 2 having a two-layer structure in which the thermal spray layer 7 is provided on the outer periphery of the metal core wire 6, the main wire 2 in FIG. 2 is “the core wire 6 is an SUS material and the spray layer 7 is The Ni-Ti alloy material ", the two-layer material of the embodiment shown in FIG. 1 is a reverse combination, and the thermal spray layer 7 is present in the latter half of the tip 3 where the coil spring 4 is fitted. The main wire 2 in the embodiment of FIG. 2 is also provided with a metal sprayed layer of Ni—Ti alloy material on a large-diameter SUS material bus, and then stretched to reduce the diameter.
[0022]
In the embodiment shown in FIG. 2, the portion that forms the pre-shaped portion 8 is made of the main wire 2 made of only SUS material, so that the pre-shaped portion 8 can be easily processed. Since the main wire 2 excluding the exposed portion of the SUS material has a composite structure of the Ni—Ti alloy material and the SUS material, appropriate mechanical properties can be ensured satisfactorily as required by complementing the characteristics of both metals.
[0023]
Next, another embodiment of the first invention will be described with reference to FIG. That is, in the guide wire 1 provided with a resin coating 10 such as Teflon coating, polyamide, polyurethane, and fluorine resin that wraps the main wire 2, the main wire 2 is also made of “Ni—Ti alloy material” as in the embodiment of FIG. It has a two-layer structure in which a SUS material sprayed layer 7 is provided on the outer periphery of the core wire 6 and has a structure in which only the tip 3 is polished and removed. A coating 10 is applied.
[0024]
Since the main wire 2 has the same two-layer structure as that of the embodiment of FIG. 1, the guide wire 1 of the above embodiment of FIG. 3 has the same “Ni—Ti alloy material and SUS material as those of the embodiment of FIG. Good mechanical properties can be secured by “complementing the mechanical properties of”. And since the adhesion of the resin coating 10 to the thermal spray layer 7 in the surface porous form is improved, there is no possibility that the resin coating 10 is peeled off even if complicated bending and unbending are repeated in the blood vessel. Will improve.
[0025]
In addition, the main wire 2 shown in each of the above embodiments is subjected to a heat treatment at the same time as the strainer processing after the wire drawing and subjected to a linear shape memory treatment of the Ni—Ti alloy material, and the tip which has a bent shape in the blood vessel Consideration is given so that the linear portion including the portion 3 can be pulled out in a shape in which the linear portion is restored to a linear shape by itself and no “bend” remains.
[0026]
Next, a guide wire according to an embodiment of the second invention will be described with reference to FIG. That is, in the guide wire 1 including the distal end portion 3 in which the coil spring 4 is fitted and attached to the distal end portion of the main wire 2, the coil spring 4 has two layers in which the Ni—Ti sprayed layer 7 is provided on the outer periphery of the core wire 6 made of SUS material. It is formed by a coil wire 11 having a structure. Specifically, the coil wire 11 has a two-layer structure in which a Ni—Ti sprayed layer 7 is provided on a large-diameter SUS material wire and the diameter of the coil wire 11 is reduced by wire drawing, as with the main wire 2 in FIG. Accordingly, “the core wire material 6 is made of a Ni—Ti alloy wire and the sprayed layer 7 is made of a SUS material layer”.
[0027]
In the guide wire 1 of FIG. 4 embodiment, the coil spring 4 that greatly contributes to the mechanical properties of the tip 3 is composed of a coil wire 11 having a two-layer metal structure. 3 and further improving the mechanical properties, and by adjusting the contents of the two-layer metal, it is possible to form the tip portion 3 of various quality in which the mechanical properties are finely adjusted and set. And since the outer periphery of the coil spring 4 consists of the thermal sprayed layer 7 of a porous form, the adhesion retention property of a hydrophilic polymer is good, and the blood vessel insertion property and extraction property of the front-end | tip part 3 improve and are stabilized. The coil spring 4 is subjected to shape memory processing after coiling.
[0028]
Next, another embodiment of the second invention will be described with reference to FIG. That is, in the case of using the coil wire of the two-layer structure metal wire similar to the embodiment in FIG. 4, the coil spring 4 in FIG. 3 is a single-layer coil wire 11B of SUS material wire (or Ni-Ti material wire) and 1/3 of the rear end side is the same two-layer structure coil wire 11A as in the embodiment of FIG. Coil wires are welded and connected to form a single coil spring 4.
[0029]
In the embodiment shown in FIG. 5, the coil spring 4 has the above-mentioned three-zone configuration, and the front end of the distal end portion 3 functions as a detection point by radiation at the intravascular position, and the intermediate portion is made of a SUS material that is easily bent. Therefore, it is easy to form the precision portion 8, the rear end portion has a two-layer metal structure, and it has resilience and rigidity by bending, and each portion of the coil spring 4 shares the performance to further improve the various performances of the tip portion 3. You can improve.
[0030]
Next, another form of the main wire 2 and coil wire 11 having a two-layer structure according to the first and second inventions will be described with reference to FIG. That is, in the two-layer structure shown in FIG. 6, the metal sprayed layer 7 made of SUS material or Ni—Ti alloy material is laminated in multiple layers, and the metal sprayed layers 7A and 7B in this laminated form and the core of the SUS material or Ni—Ti wire. It has a two-layer structure made of wire 6. According to the two-layer structure in the form of FIG. The laminated metal sprayed layer is formed by providing the primary sprayed layer 7A on the outer periphery of the bus bar and performing the primary wire drawing, and then forming the secondary sprayed layer 7B on the outer periphery thereof and performing the secondary wire drawing.
[0031]
In addition, the guide wire of this invention is not limited to the said Example, Both the main wire 2 and the coil wire 11 of the coil spring 4 may be made into the composite form of the 1st 2nd invention which makes a 2 layer structure. . As the superelastic alloy material, a known superelastic alloy material such as a ternary alloy material obtained by adding Fe · CO to Ni—Ti or a Cu—Zn—Al alloy material may be used.
[0032]
【The invention's effect】
As described above, the guide wire of the present invention is a main wire / coil spring comprising a wire of “two-layer structure of a superelastic alloy material and a rigid alloy material” in which a metal spray layer is provided on the outer periphery of the metal wire by metal spraying means. Since it has a structure, it should complement each other with the characteristics of the two kinds of heterogeneous alloy materials, and it should be provided as a guide wire such as “flexibility, vertical loadability, torsional rigidity, steering performance, and resistance to residual bending at the tip” These mechanical properties can be further improved, and further quality improvement of the guide wire can be promoted.
[0033]
And by the combination of the alloy material of the two-layer structure and “adjustment of core material diameter / sprayed layer thickness”, the various mechanical characteristics are finely adjusted, and “blood vessel size / blood vessel path” which varies depending on the individual human body.・ Various quality guidewires suitable for various conditions, such as lesion stenosis, adults, and children, can be provided, and the therapeutic and therapeutic effects of vascular treatment using guidewires can be further improved. . There are the above useful effects.
[Brief description of the drawings]
1A and 1B show a medical guide wire according to an embodiment of the first invention, FIG. 1A is a front view thereof, FIG. 1B is a sectional view of DD of FIG. 1A, and FIG. FIG. 2 shows a medical guide wire according to another embodiment of the first invention, in which (A) is a front view thereof, (B) is an EE sectional view of (A), and (C) is an FF of (A). Sectional view [Fig. 3] shows a medical guide wire according to another embodiment of the first invention, (A) is a front view thereof, (B) is a CC sectional view of (A). [Fig. The medical guide wire of an example is shown, (A) is the front view, (B) is CC sectional drawing of (A). FIG. 5 shows the medical guide wire of one Example of 2nd invention, (A) is The front view, (B) is the EE cross section of (A), (B) is the FF cross section of (A), (D) is the GG cross section of (A). Of the coil wire of the second invention Shows a cross-sectional view of the embodiment [7] Conventional medical guide wire, (A) is its front view, (B) is a diagram of its use [EXPLANATION OF SYMBOLS]
DESCRIPTION OF SYMBOLS 1 Medical guide wire 2 Main wire 3 Front-end | tip part 4 Coil spring 5 Rear-end part 6 Core wire 7 Metal sprayed layer 8 Pre-sipe part 9 Blood vessel 10 Resin coating 11 Coil wire 12 Bus line

Claims (1)

剛性合金材及び超弾性合金材の一方の合金材からなる芯線材と、その芯線材の外周に形成され剛性合金材及び超弾性合金材の他方の合金材からなる金属溶射層による多孔質形態との2層構造からなり、先端先細り形状であって長尺可撓性の主線材と、
前記主線材の先端部分に嵌装着され、剛性合金材及び超弾性合金材の一方の合金材からなる芯線材と、その芯線材の外周に形成され剛性合金材及び超弾性合金材の他方の合金材からなる金属溶射層による多孔質形態との2層構造からなるコイルばねと、
前記主線材及び前記コイルばねの前記多孔質形態に被覆された樹脂と
を備えたことを特徴とする医療用ガイドワイヤ。
A core wire made of one alloy material of a rigid alloy material and a superelastic alloy material, and a porous form formed by a metal spray layer formed on the outer periphery of the core wire material and made of the other alloy material of the rigid alloy material and the superelastic alloy material; A two-layer structure, tapered at the tip, and a long flexible main wire,
A core wire made of one of a rigid alloy material and a superelastic alloy material, fitted to the tip of the main wire, and the other alloy of the rigid alloy material and the superelastic alloy material formed on the outer periphery of the core wire material A coil spring having a two-layer structure with a porous form formed of a metal spray layer made of a material;
A resin coated on the porous form of the main wire and the coil spring;
Medical guide wire comprising the.
JP2000136553A 2000-05-10 2000-05-10 Medical guidewire Expired - Fee Related JP4502294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136553A JP4502294B2 (en) 2000-05-10 2000-05-10 Medical guidewire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136553A JP4502294B2 (en) 2000-05-10 2000-05-10 Medical guidewire

Publications (2)

Publication Number Publication Date
JP2001314513A JP2001314513A (en) 2001-11-13
JP4502294B2 true JP4502294B2 (en) 2010-07-14

Family

ID=18644478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136553A Expired - Fee Related JP4502294B2 (en) 2000-05-10 2000-05-10 Medical guidewire

Country Status (1)

Country Link
JP (1) JP4502294B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767446B2 (en) * 2001-07-17 2011-09-07 株式会社日本ステントテクノロジー Catheter guide wire and manufacturing method thereof
JP4271471B2 (en) 2003-03-27 2009-06-03 テルモ株式会社 Guide wire
KR101720593B1 (en) * 2015-08-27 2017-04-10 한밭대학교 산학협력단 Ni-Ti shape memory wire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289266A (en) * 1989-04-28 1990-11-29 Tokin Corp Core for catheter guide wire and catheter guide wire
JPH0324256A (en) * 1989-06-21 1991-02-01 Tokin Corp Superelastic material
JPH04236967A (en) * 1991-01-21 1992-08-25 Tokin Corp Catheter guide wire
JPH0625855A (en) * 1992-07-13 1994-02-01 Tokyo Tungsten Co Ltd Crucible and its production
JPH06289051A (en) * 1993-04-02 1994-10-18 Kobe Steel Ltd Metal wire material and manufacture thereof
JPH08734A (en) * 1994-06-16 1996-01-09 Piolax Inc Insertion tool for tubular organ
JPH08506037A (en) * 1993-01-21 1996-07-02 バイオメット・インコーポレイテッド Method of forming a biocompatible component
JPH09182799A (en) * 1995-12-28 1997-07-15 Nippon Zeon Co Ltd Guidewire
JPH09508538A (en) * 1994-01-14 1997-09-02 アドヴァンスト・カーディオヴァスキュラー・システムズ・インコーポレイテッド Guidewire with superelastic distal portion
JP2000107296A (en) * 1998-10-02 2000-04-18 Terumo Corp Medical wire and its production

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289266A (en) * 1989-04-28 1990-11-29 Tokin Corp Core for catheter guide wire and catheter guide wire
JPH0324256A (en) * 1989-06-21 1991-02-01 Tokin Corp Superelastic material
JPH04236967A (en) * 1991-01-21 1992-08-25 Tokin Corp Catheter guide wire
JPH0625855A (en) * 1992-07-13 1994-02-01 Tokyo Tungsten Co Ltd Crucible and its production
JPH08506037A (en) * 1993-01-21 1996-07-02 バイオメット・インコーポレイテッド Method of forming a biocompatible component
JPH06289051A (en) * 1993-04-02 1994-10-18 Kobe Steel Ltd Metal wire material and manufacture thereof
JPH09508538A (en) * 1994-01-14 1997-09-02 アドヴァンスト・カーディオヴァスキュラー・システムズ・インコーポレイテッド Guidewire with superelastic distal portion
JPH08734A (en) * 1994-06-16 1996-01-09 Piolax Inc Insertion tool for tubular organ
JPH09182799A (en) * 1995-12-28 1997-07-15 Nippon Zeon Co Ltd Guidewire
JP2000107296A (en) * 1998-10-02 2000-04-18 Terumo Corp Medical wire and its production

Also Published As

Publication number Publication date
JP2001314513A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
US6491648B1 (en) Guidewire with tapered flexible core segment
US8257278B2 (en) Metal composite guide wire
US7785274B2 (en) Guide wire
US7722551B2 (en) Guide wire
JP2002534167A (en) Deposition guide wire
JP2009523481A (en) Titanium / molybdenum alloy guide wire
JP2016536029A (en) Guidewire core with improved torsional ductility
US6761696B1 (en) Guide wire with a non-rectangular shaping member
JP2008161589A (en) Guide wire
US6740050B2 (en) Intracorporeal member with improved transition section
JPH1157014A (en) Guide wire
US7083577B2 (en) Guide wire
JP5473677B2 (en) Guide wire
JP4502294B2 (en) Medical guidewire
JP4734015B2 (en) Guide wire manufacturing method
JP4783343B2 (en) Guide wire
JP3288619B2 (en) Guide wire
JP3718413B2 (en) Medical guide wire and medical guide wire forming method
US6638267B1 (en) Guidewire with hypotube and internal insert
JP3795586B2 (en) Medical guidewire
JP4181081B2 (en) Medical guidewire
JP2005177094A (en) Guidewire
JP5328835B2 (en) Guide wire manufacturing method
JP3962652B2 (en) Guide wire
JP3672747B2 (en) Connecting guide wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees