JP4501223B2 - Continuous casting method - Google Patents
Continuous casting method Download PDFInfo
- Publication number
- JP4501223B2 JP4501223B2 JP2000145083A JP2000145083A JP4501223B2 JP 4501223 B2 JP4501223 B2 JP 4501223B2 JP 2000145083 A JP2000145083 A JP 2000145083A JP 2000145083 A JP2000145083 A JP 2000145083A JP 4501223 B2 JP4501223 B2 JP 4501223B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- slab
- mass
- mold
- equiaxed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009749 continuous casting Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 title description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 73
- 239000010959 steel Substances 0.000 claims description 73
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000013078 crystal Substances 0.000 description 65
- 238000007711 solidification Methods 0.000 description 23
- 230000008023 solidification Effects 0.000 description 23
- 238000003756 stirring Methods 0.000 description 17
- 229910052684 Cerium Inorganic materials 0.000 description 11
- 210000001787 dendrite Anatomy 0.000 description 11
- 238000005204 segregation Methods 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910000882 Ca alloy Inorganic materials 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 229910006639 Si—Mn Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- -1 Ce (hereinafter Chemical class 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、鋳片の中心部に微細な等軸晶を形成して、中心偏析を防止できる連続鋳造方法に関する。
【0002】
【従来の技術】
一般に連続鋳造によって鋳片を製造する場合、まず鋳型内に注入された溶鋼が鋳型と接触して冷却され、薄い凝固層(以下、凝固シェルという)を形成する。こうして溶鋼を鋳型内に注入しながら凝固シェルを下方へ引き抜くことによって鋳片を製造する。
【0003】
連続鋳造において溶鋼の凝固は、鋳片の凝固シェル側から中心方向へ進行する。そのため鋳片の中心部にはポロシティの多い最終凝固部が形成され、その最終凝固部の周囲に粒径1mm以上の粗大な等軸晶と、その粗大な等軸晶を取り囲む柱状晶が形成される。また溶鋼中のC,Mn,P,S等の成分が鋳片の中心部に濃化する中心偏析が起こる。
【0004】
このような中心部に形成される粗大な等軸晶や中心偏析は、耐水素誘起割れ性や低温靱性を低下させる原因になることが知られている。そこで耐水素誘起割れ性や低温靱性を改善するために、鋳片の中心部に微細な等軸晶を形成させ、中心偏析を抑制する技術が提案されている。
たとえば特公昭54-24373号公報には、連続鋳造法が開示されている。この方法は、低温鋳込において鋳型の下方に設けた電磁攪拌装置によって鋳片の未凝固溶鋼に回転流を付与することにより鋳型外周部の低温溶鋼と中央部の高温溶鋼を攪拌して均一に低下せしめ介在物の浮上および鋳片中央部の偏析や柱状晶の発達を防止しようとするものである。しかしこの方法では、C<0.10質量%,C>0.48質量%の範囲では包晶反応が起こらないので、等軸晶があまり発達しないという問題があった。
【0005】
また特開昭63-157749 号公報には、連続鋳造鋳片の中心偏析防止方法が開示されている。この方法は、複数の電磁攪拌装置を用いて未凝固溶鋼を水平方向あるいは上下方向に攪拌することによって、粗大なデンドライトを微細化して中心偏析を防止しようとするものである。しかしこの方法では、凝固シェルがかなり成長した位置に電磁攪拌装置を配設するため、残溶鋼中に固相が析出しており、鋳片の中心部に結晶粒径1mm以上の粗大な等軸晶が形成されるのを回避できないという問題があった。
【0006】
特公昭59-23902号公報には、連続鋳造における電磁攪拌方法が開示されている。この方法は、水平方向の電磁攪拌装置と鋳片引抜方向の電磁攪拌装置を用いて鋳片内溶鋼を攪拌することによって等軸晶を得ようとするものである。しかしこの方法においても特開昭63-157749 号公報に開示された方法と同様に、凝固シェルがかなり成長した位置に電磁攪拌装置を配設するため、残溶鋼中に固相が析出しており、鋳片の中心部に結晶粒径1mm以上の粗大な等軸晶が形成されるのを回避できないという問題があった。
【0007】
特開平11-320050 号公報には、連続鋳造方法が開示されている。この方法は、取鍋,タンディッシュあるいは鋳型でMgを 0.002〜0.01%となるように含有せしめた溶鋼に、鋳型内メニスカスから鋳型下10mの間に配設された誘導電磁攪拌を用いて水平面内の旋回流を発生させることによって、微細な等軸晶を形成させようとするものである。しかしこの方法では、AlあるいはSiで脱酸処理を行なった溶鋼にMgを単独で添加しても、溶鋼中に存在する Al2O3 系酸化物やSi−Mn系酸化物の還元にMgが費やされるため、凝固末期における等軸晶の結晶核となるMgO等の微細な酸化物が十分に形成されないので、鋳片の中心部に結晶粒径1mm以上の粗大な等軸晶が形成されるのを回避できないという問題があった。
【0008】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、鋳片の中心部に粒径1mm以下の微細な等軸晶を形成して、中心偏析を防止することによって、耐水素誘起割れ性や低温靱性に優れた鋳片を製造する連続鋳造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、Mgを0.0005〜0.005 質量%含有し、さらに REMまたは/およびZrを含有し、 REMまたはZrを 0.001〜0.01質量%あるいは REMおよびZrを合計 0.001〜0.01質量%含有し、かつCaとOとをその含有量の比Ca(質量%)/O(質量%)が 0.3〜2.5 の範囲を満足するように含有した溶鋼を鋳型に注入し、鋳型内の溶鋼を水平に速度20〜40cm/秒で旋回させ、かつ鋳片の厚さの80%〜 100%未満が凝固シェルとなる位置で凝固シェル内の溶鋼を速度5〜60cm/秒で旋回させる連続鋳造方法である。
【0012】
【発明の実施の形態】
図1は、本発明に用いる連続鋳造設備の例を示す配置図である。図中の矢印は鋳片の引き抜き方向を示す。
本発明の連続鋳造方法では、Mgを0.0005〜0.005 質量%含有し、かつCaとOとをその含有量の比Ca(質量%)/O(質量%)が 0.3〜2.5 の範囲を満足するように含有する溶鋼7を鋳型4に注入する。
【0013】
溶鋼7の凝固初期、すなわち鋳型4に注入された溶鋼7が冷却される際には、鋳片の外周部から中心方向へ柱状晶が成長して、凝固シェル6を形成する。溶鋼7中のMgは、溶鋼7中のOと反応してMgOを形成し、このMgOが溶鋼7中を沈降し、凝固末期すなわちクレーターエンド10近傍で鋳片の中心部に形成される等軸晶の結晶核となる。Mgの含有量が0.0005質量%未満の場合は、結晶核となるMgOが十分に形成されないので、鋳片が完全に凝固したときに、中心部には粗大な等軸晶が形成される。
【0014】
一方、AlあるいはSiで脱酸処理を行なった溶鋼7に 0.005質量%を超える量のMgを単独で添加しても、溶鋼7中に存在する Al2O3 系酸化物やSi−Mn系酸化物の還元にMgが費やされる。そのため凝固末期、すなわちクレーターエンド10近傍における等軸晶の結晶核となるMgOが十分に形成されないので、鋳片が完全に凝固したときに、中心部には粗大な等軸晶が生成される。よって溶鋼7のMg含有量の上限は 0.005質量%とする。
【0015】
したがって溶鋼7のMg含有量は0.0005〜0.005 質量%とし、かつ以下に述べる理由によってCaを添加する。
AlあるいはSiで脱酸処理を行なった溶鋼7にCaを添加すると、CaO− Al2O3 系酸化物やCaO−SiO2 系酸化物となる。これらの酸化物は、MgOとともに溶鋼7中を沈降し、凝固末期すなわちクレーターエンド10近傍で鋳片の中心部に形成される等軸晶の結晶核となる。したがって鋳片が完全に凝固したときに、中心部に微細な等軸晶が形成される。
【0016】
溶鋼7のCa含有量は、O含有量(すなわち溶鋼7中のトータル酸素量)に対する比Ca(質量%)/O(質量%)に換算して 0.3〜2.5 の範囲とする必要がある。Ca(質量%)/O(質量%)が 0.3未満の場合は等軸晶の結晶核となる酸化物が十分に形成されず、 2.5を超える場合はCaSが多量に生成されるため鋳片の品質が劣化するからである。
【0017】
鋳型4には電磁攪拌装置(以下、鋳型電磁攪拌装置5という)が配設されており、凝固シェル6内の溶鋼7を水平に旋回させる。溶鋼7を旋回させることによって、凝固シェル6を形成する柱状晶のデンドライトが分断されて微細な粒子として溶鋼7中を沈降し、クレーターエンド10近傍で等軸晶の結晶核となる。
C含有量が0.17〜0.48質量%の溶鋼7の連続鋳造においては包晶反応が起きるため比較的容易に等軸晶が形成されるが、C含有量がこの範囲を外れる溶鋼7の場合は包晶反応が起きないので等軸晶は形成されにくい。そこで包晶反応が起きない成分の溶鋼7を連続鋳造する際に、鋳型電磁攪拌装置5で鋳型4内の溶鋼7を旋回させて、等軸晶の形成を促進する。
【0018】
溶鋼7は、Ce等の希土類金属(以下、REM という)または/およびZrを含有する。通常の連続鋳造では凝固シェル6中のデンドライト2次アームの間隔は 400μm程度であるのに対して、 REMまたは/およびZrを添加するとデンドライト2次アームの間隔が 100μm程度に減少し、微細な柱状晶が得られるからである。したがって鋳型4内の溶鋼7の旋回によって分断されるデンドライトの大きさも微細化され、その微細な粒子が溶鋼7中を沈降してクレーターエンド10近傍で等軸晶の結晶核となる。こうして鋳片の中心部に微細な等軸晶が形成される。
【0019】
REMやZrの含有量は、 REMまたはZrを 0.001〜0.01質量%、あるいは REMおよびZrを合計 0.001〜0.01質量%である。含有量が 0.001質量%未満では柱状晶の微細化の効果が現われず、0.01質量%を超えると溶鋼7中の他の酸化物と反応してクラスターを形成するからである。
鋳型4内の溶鋼7の旋回速度は、20〜40cm/秒である。旋回速度が20cm/秒未満ではデンドライトが分断されず、40cm/秒を超えるとモールドパウダーを巻き込んで鋳片の品質が低下するからである。
【0020】
鋳型4内の溶鋼7の旋回によって分断された微細なデンドライト,あるいはMgやCaの酸化物が、クレーターエンド10近傍へ沈降して等軸晶の結晶核となる。しかしこれらの粒子が沈降の途中で凝集すると、結晶核が減少するので形成される等軸晶は粗大になる。そのため結晶核となる粒子の凝集を抑制し、微細な等軸晶を生成させるために、クレーターエンド10近傍に電磁攪拌装置(以下、凝固末期電磁攪拌装置9という)を配設して、凝固シェル6内の溶鋼7を旋回させる。
【0021】
凝固末期電磁攪拌装置9による凝固シェル6内の溶鋼7の旋回は、水平に旋回させても良いが、凝固末期電磁攪拌装置9を小型化するために、鋳片の横断面方向に旋回させるのが望ましい。
凝固末期電磁攪拌装置9を配設する位置が、鋳片の厚さに対して凝固シェル6の厚さが80%未満の位置である場合は、凝固シェル6内の溶鋼7を旋回した後で粒子が凝集するため、鋳片の中心部に粗大な等軸晶が形成される。また凝固シェル6の厚さが鋳片の厚さの 100%となる位置では凝固が完了している。したがって凝固末期電磁攪拌装置9を配設する位置は、鋳片の厚さの80%〜 100%未満が凝固シェル6となる位置である。
【0022】
なお、凝固シェル6の厚さが鋳片の厚さの80%〜 100%未満となる領域全体で凝固シェル6内の溶鋼7を旋回しても良いし、その領域の一部で凝固シェル6内の溶鋼7を旋回しても良い。
凝固末期電磁攪拌装置9による凝固シェル6内の溶鋼7の旋回速度は、5〜60cm/秒である。旋回流の速度が5cm/秒未満では結晶核となる粒子が凝集し、60cm/秒を超える速度を付与するためには大規模な設備が必要となるからである。
【0023】
なお本発明で製造する鋳片は、特定の形状や寸法に限定されない。すなわち本発明をスラブ,ブルームあるいはビレット等の連続鋳造に適用すれば、微細な等軸晶が中心部に形成され、中心偏析のない耐水素誘起割れ性や低温靱性に優れた鋳片を製造できる。
【0024】
【実施例】
Ar雰囲気に調整した30kg高周波溶解炉を用いて、C含有量が0.08〜0.10質量%の溶鋼を溶製し、さらにFeを被覆したFe−Mg合金ワイヤーおよびFe−Ca合金ワイヤーを添加して、Mg含有量およびCa含有量を種々の組合せに変化させた。得られた溶鋼のO含有量は0.0020質量%、温度は1600℃とした。
【0025】
この溶鋼を水冷鋳型( 150×50×200 mm)内に注入し、鋳型内の溶鋼が旋回速度30cm/秒で水平に旋回するように磁場を印加した。凝固シェルが厚さ 2.5mmに成長したときに溶鋼7の旋回を停止し、さらに鋳型内で冷却して鋳片を製造した。各鋳片の中心部に形成される等軸晶の粒径を調査した。なおCa含有量は、O含有量に対する比Ca(質量%)/O(質量%)に換算して評価した。
【0026】
その結果を表1に示す。表1中のMg含有量が0と記載されているのはFe−Mg合金ワイヤーを添加しなかった例であり、Ca/Oが0と記載されているのはFe−Ca合金ワイヤーを添加しなかった例である。
【0027】
【表1】
【0028】
表1から明らかなように、Mg含有量が0.0005〜0.005 質量%で、かつCa(質量%)/O(質量%)が 0.3〜2.5 を満足する鋳片の中心部に、粒径1mm以下の微細な等軸晶が形成された。
次に、同様にAr雰囲気に調整した30kg高周波溶解炉を用いて、C含有量が0.08〜0.10質量%の溶鋼を溶製し、さらにZrおよび REMとしてCeを添加して、ZrおよびCeの合計含有量を0〜0.014 の範囲で種々に変更した。この溶鋼を水冷鋳型( 150×50×200mm )内に注入し、鋳型内の溶鋼が旋回速度30cm/秒で水平に旋回するように磁場を印加した。凝固シェルが厚さ 2.5mmに成長したときに溶鋼7の旋回を停止し、さらに鋳型内で冷却して鋳片を製造した。
【0029】
各鋳片の断面をピクリン酸を用いてエッチングして、鋳片表面から厚さ 2.5mmまでのデンドライト2次アームの間隔を調査した。ZrおよびCeの合計含有量(質量%)とデンドライト2次アーム間隔の平均値(μm)との関係を図2に示す。図2から明らかなように、ZrおよびCeの合計含有量が 0.001〜0.01質量%の範囲で、デンドライト2次アームの間隔が 100μm程度の微細な柱状晶が形成された。
【0030】
次に、同様にAr雰囲気に調整した30kg高周波溶解炉を用いて、C含有量が0.10質量%、Mg含有量が0.0020質量%、Ca含有量が0.0015質量%、O含有量が0.0020質量%(すなわちCa/O:0.75)、ZrおよびCeの合計含有量が 0.005質量%の溶鋼を溶製して、水冷鋳型( 150×50×200mm )内に注入した。
凝固シェルの厚さが片側 2.5mm,10mm,17.5mm,20mmまたは22.5mmに成長したときに、鋳型内の溶鋼が旋回速度30cm/秒で水平に旋回するように磁場を印加して、そのまま鋳型内で冷却して鋳片を製造した。この鋳片の厚さは50mmであるから、鋳片の厚さに対する凝固シェルの厚さ(片側 2.5mm,10mm,17.5mm,20mm,22.5mm)の割合は、各々10%,40%,70%,80%,90%である。
【0031】
各鋳片の断面をピクリン酸を用いてエッチングして、等軸晶が形成された領域の面積を調査し、等軸晶率を算出した。鋳片の厚さに対する凝固シェルの厚さの割合(%)と等軸晶率(%)との関係を図3に示す。なお等軸晶率は、下記の式で算出される値である。
等軸晶率(%)= 100×等軸晶が形成された領域の面積/鋼塊の断面積
図3から明らかなように、鋳片の厚さに対する凝固シェルの厚さの割合が80%以上の範囲で等軸晶率が向上した。
【0032】
次いで、図1に示すような連続鋳造設備を用いて、C含有量が0.08〜0.10質量%の溶鋼7の連続鋳造を行なった。鋳型4の断面サイズは 260×2000mm,鋳造速度は0.60m/分とした。
その連続鋳造において、Ca,Mg,CeおよびZrの添加の有無、凝固初期の鋳型4内あるいは凝固末期の凝固シェル6内の溶鋼7の旋回の有無を種々の組合せで実施し、鋳片の中心部に形成される等軸晶の粒径を調査した。その結果を表2に示す。
【0033】
【表2】
【0034】
なおCa,Mg,CeおよびZrの添加は、Feを被覆した合金ワイヤーを添加して行なった。ただし本発明においては、Ca,Mg,CeおよびZrの添加方法は特定の方法に限定せず、粉末や塊状の合金をインジェクションする方法を用いても良い。
また凝固初期の鋳型4内の溶鋼7の旋回は、鋳型電磁攪拌装置5に 750Aの電流(周波数3Hz)を流して、速度30cm/秒で旋回させた。凝固末期の凝固シェル6内の溶鋼7の旋回は、凝固末期電磁攪拌装置9に1000Aの電流(周波数 0.5Hz)を流して、速度15cm/秒で旋回させた。凝固末期電磁攪拌装置9は、鋳片の厚さの80%が凝固シェルとなるメニスカス下方15mの位置に配設した。
【0035】
比較例1は、Ca,Mg,CeおよびZrを添加せず、しかも凝固初期の鋳型4内,凝固末期の凝固シェル6内の溶鋼7を旋回しない例であり、等軸晶率が最も低く、等軸晶の粒径が最も大きい。参考例1は、溶鋼のMg含有量,Ca/O値,旋回が本発明の要件を満足するものの、CeやZrを添加しない例である。
参考例1と比較例2を比べると、鋳型4内の溶鋼7を水平に旋回した参考例1の方が、等軸晶率が高くなり、中心偏析は軽減された。しかも等軸晶の粒径は、比較例2が2mmであったのに対して、参考例1は1mmであった。
【0036】
参考例2は、参考例1にCeおよびZrを添加した例であり、等軸晶率が参考例1よりさらに高く、しかも等軸晶の粒径は 0.5mmであった。発明例1は、さらに凝固末期で溶鋼7を旋回した例であり、等軸晶率が参考例2よりさらに高く、しかも等軸晶の粒径がさらに小さくなった。
【0037】
【発明の効果】
本発明によれば、連続鋳造の鋳片の中心部に粒径1mm以下の微細な等軸晶を形成させ、中心偏析を防止することができる。
【図面の簡単な説明】
【図1】本発明を適用する連続鋳造設備の例を示す配置図である。
【図2】 ZrおよびCeの合計含有量とデンドライト2次アーム間隔の平均値との関係を示すグラフである。
【図3】鋳片の厚さに対する凝固シェルの厚さの割合と等軸晶率との関係を示すグラフである。
【符号の説明】
1 取鍋
2 タンディッシュ
3 浸漬ノズル
4 鋳型
5 鋳型電磁攪拌装置
6 凝固シェル
7 溶鋼
8 ガイドロール
9 凝固末期電磁攪拌装置
10 クレーターエンド
11 駆動ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method capable of preventing center segregation by forming fine equiaxed crystals in the center of a slab.
[0002]
[Prior art]
In general, when a slab is manufactured by continuous casting, first, molten steel injected into a mold comes into contact with the mold and is cooled to form a thin solidified layer (hereinafter referred to as a solidified shell). In this way, a slab is manufactured by drawing the solidified shell downward while pouring molten steel into the mold.
[0003]
In continuous casting, solidification of molten steel proceeds from the solidified shell side of the slab toward the center. Therefore, a final solidified part with a lot of porosity is formed at the center of the slab, and a coarse equiaxed crystal with a grain size of 1 mm or more and a columnar crystal surrounding the coarse equiaxed crystal are formed around the final solidified part. The Further, central segregation occurs in which components such as C, Mn, P, and S in the molten steel are concentrated in the center of the slab.
[0004]
It is known that such coarse equiaxed crystals and center segregation formed at the center cause deterioration in hydrogen-induced crack resistance and low-temperature toughness. Therefore, in order to improve hydrogen-induced cracking resistance and low-temperature toughness, a technique has been proposed in which fine equiaxed crystals are formed in the center of the slab to suppress center segregation.
For example, Japanese Patent Publication No. 54-24373 discloses a continuous casting method. In this method, a low temperature casting is performed by applying a rotating flow to the unsolidified molten steel of the slab by means of an electromagnetic stirrer provided below the mold, thereby uniformly stirring the low temperature molten steel at the outer periphery of the mold and the high temperature molten steel at the center. It is intended to prevent the inclusions from being lowered, segregation at the center of the slab and the development of columnar crystals. However, this method has a problem in that equiaxed crystals do not develop so much because no peritectic reaction occurs in the range of C <0.10 mass% and C> 0.48 mass%.
[0005]
Japanese Patent Laid-Open No. 63-157749 discloses a method for preventing center segregation of continuously cast slabs. This method is intended to prevent center segregation by refining coarse dendrites by stirring unsolidified molten steel horizontally or vertically using a plurality of electromagnetic stirrers. However, in this method, an electromagnetic stirrer is disposed at a position where the solidified shell has grown considerably, so that a solid phase is precipitated in the molten steel, and a coarse equiaxed grain with a grain size of 1 mm or more is formed in the center of the slab. There was a problem that the formation of crystals could not be avoided.
[0006]
Japanese Examined Patent Publication No. 59-23902 discloses an electromagnetic stirring method in continuous casting. In this method, equiaxed crystals are obtained by stirring the molten steel in the slab using an electromagnetic stirring device in the horizontal direction and an electromagnetic stirring device in the slab drawing direction. However, in this method as well as the method disclosed in JP-A-63-157749, an electromagnetic stirrer is disposed at a position where the solidified shell has grown considerably, so that a solid phase is precipitated in the residual molten steel. There is a problem that it is impossible to avoid the formation of coarse equiaxed crystals having a crystal grain size of 1 mm or more in the center of the slab.
[0007]
Japanese Patent Application Laid-Open No. 11-320050 discloses a continuous casting method. In this method, molten steel containing 0.002 to 0.01% Mg in a ladle, tundish or mold is used in the horizontal plane using induction electromagnetic stirring placed between the meniscus in the mold and 10 m below the mold. By generating a swirling flow of the following, fine equiaxed crystals are to be formed. However, in this method, even if Mg is added alone to molten steel that has been deoxidized with Al or Si, Mg does not reduce the Al 2 O 3 oxide or Si-Mn oxide present in the molten steel. As a result, the fine oxide such as MgO which becomes the crystal nucleus of the equiaxed crystal at the end of solidification is not sufficiently formed, so that a coarse equiaxed crystal having a crystal grain size of 1 mm or more is formed at the center of the slab. There was a problem that could not be avoided.
[0008]
[Problems to be solved by the invention]
The present invention solves the above problems, forms a fine equiaxed crystal with a grain size of 1 mm or less in the center of the slab, and prevents center segregation, thereby improving hydrogen-induced crack resistance and low temperature toughness. It aims at providing the continuous casting method which manufactures the outstanding slab.
[0009]
[Means for Solving the Problems]
The present invention contains 0.0005 to 0.005% by mass of Mg, further contains REM or / and Zr, 0.001 to 0.01% by mass of REM or Zr, or 0.001 to 0.01% by mass in total of REM and Zr, and Ca. Molten steel containing O and its content ratio Ca (mass%) / O (mass%) satisfying the range of 0.3 to 2.5 is poured into the mold, and the molten steel in the mold is horizontally moved at a speed of 20 to 40 cm. / sec swirled, and a thickness of 80% to a continuous casting method Ru less than 100% to pivot the molten steel in the position in the solidified shell which becomes solidified shell at a
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a layout view showing an example of continuous casting equipment used in the present invention. The arrow in the figure indicates the drawing direction of the slab.
In the continuous casting method of the present invention, Mg is contained in an amount of 0.0005 to 0.005 mass%, and the ratio Ca (mass%) / O (mass%) of Ca and O is within a range of 0.3 to 2.5. The molten steel 7 contained in is poured into the mold 4.
[0013]
When the molten steel 7 is initially solidified, that is, when the molten steel 7 injected into the mold 4 is cooled, columnar crystals grow from the outer peripheral portion of the slab toward the center to form the solidified shell 6. Mg in the molten steel 7 reacts with O in the molten steel 7 to form MgO. This MgO settles in the molten steel 7 and is formed in the center of the slab at the end of solidification, that is, near the
[0014]
On the other hand, even if Mg exceeding 0.005% by mass is added alone to molten steel 7 deoxidized with Al or Si, Al 2 O 3 oxide or Si-Mn oxide present in molten steel 7 Mg is consumed to reduce things. For this reason, MgO that is an equiaxed crystal nucleus in the end of solidification, that is, in the vicinity of the
[0015]
Therefore, the Mg content of the molten steel 7 is 0.0005 to 0.005 mass%, and Ca is added for the reasons described below.
When Ca is added to the molten steel 7 that has been deoxidized with Al or Si, a CaO—Al 2 O 3 oxide or CaO—SiO 2 oxide is obtained. These oxides settle in the molten steel 7 together with MgO and become equiaxed crystal nuclei formed at the center of the slab at the end of solidification, that is, near the
[0016]
The Ca content of the molten steel 7 needs to be in the range of 0.3 to 2.5 in terms of the ratio Ca (mass%) / O (mass%) with respect to the O content (that is, the total oxygen content in the molten steel 7). When Ca (mass%) / O (mass%) is less than 0.3, oxides that are equiaxed crystal nuclei are not sufficiently formed, and when it exceeds 2.5, a large amount of CaS is produced, so This is because the quality deteriorates.
[0017]
The mold 4 is provided with an electromagnetic stirrer (hereinafter referred to as a mold electromagnetic stirrer 5), and the molten steel 7 in the solidified shell 6 is swung horizontally. By turning the molten steel 7, the columnar dendrites forming the solidified shell 6 are divided and settled in the molten steel 7 as fine particles, and become equiaxed crystal nuclei in the vicinity of the
In continuous casting of molten steel 7 having a C content of 0.17 to 0.48% by mass, a peritectic reaction takes place, so an equiaxed crystal is formed relatively easily. Since no crystal reaction takes place, equiaxed crystals are difficult to form. Therefore, when continuously casting the molten steel 7 that does not cause a peritectic reaction, the molten steel 7 in the mold 4 is turned by the mold
[0018]
Molten steel 7, rare earth metals such as Ce (hereinafter, REM hereinafter) contain or / and Zr. In normal continuous casting, the distance between the dendrite secondary arms in the solidified shell 6 is about 400 μm, but when REM or / and Zr is added, the distance between the dendrite secondary arms is reduced to about 100 μm, resulting in fine columnar shapes. This is because crystals are obtained. Therefore, the size of the dendrite divided by the swirling of the molten steel 7 in the mold 4 is also refined, and the fine particles settle in the molten steel 7 and become equiaxed crystal nuclei in the vicinity of the
[0019]
The content of REM and Zr is 0.001 to 0.01% by mass of REM or Zr, or 0.001 to 0.01% by mass in total of REM and Zr. This is because if the content is less than 0.001% by mass, the effect of refining columnar crystals does not appear, and if it exceeds 0.01% by mass, it reacts with other oxides in the molten steel 7 to form clusters.
Turning speed of the molten steel 7 in the mold 4,
[0020]
Fine dendrites or Mg and Ca oxides divided by the swirling of the molten steel 7 in the mold 4 settle to the vicinity of the
[0021]
The swirling of the molten steel 7 in the solidified shell 6 by the end solidification electromagnetic stirring device 9 may be swung horizontally, but in order to reduce the size of the end solidification electromagnetic stirring device 9, it is swung in the cross section direction of the slab. Is desirable.
In the case where the solidification end stage electromagnetic stirring device 9 is disposed at a position where the thickness of the solidified shell 6 is less than 80% of the thickness of the slab, the molten steel 7 in the solidified shell 6 is swung. Since the particles aggregate, coarse equiaxed crystals are formed in the center of the slab. Solidification is completed at a position where the thickness of the solidified shell 6 is 100% of the thickness of the slab. Thus the position to dispose the solidified end electromagnetic stirring device 9, Ru positions der 80% less than 100% of the thickness of the slab is solidified shell 6.
[0022]
Note that the molten steel 7 in the solidified shell 6 may be swung over the entire region where the thickness of the solidified shell 6 is 80% to less than 100% of the slab thickness. The inner molten steel 7 may be turned.
Turning speed of the coagulation end electromagnetic stirring device 9 the molten steel 7 in the solidified shell 6 by the
[0023]
In addition, the slab manufactured by this invention is not limited to a specific shape and dimension. That is, if the present invention is applied to continuous casting of slabs, blooms, billets, etc., a slab having fine equiaxed crystals formed in the center and excellent in hydrogen-induced crack resistance and low temperature toughness without center segregation can be produced. .
[0024]
【Example】
Using a 30 kg high-frequency melting furnace adjusted to an Ar atmosphere, melting a molten steel having a C content of 0.08 to 0.10 mass%, and further adding Fe-Mg alloy wire and Fe-Ca alloy wire coated with Fe, Mg content and Ca content were changed to various combinations. The obtained molten steel had an O content of 0.0020% by mass and a temperature of 1600 ° C.
[0025]
This molten steel was poured into a water-cooled mold (150 × 50 × 200 mm), and a magnetic field was applied so that the molten steel in the mold swirled horizontally at a swirling speed of 30 cm / sec. When the solidified shell grew to a thickness of 2.5 mm, the swirling of the molten steel 7 was stopped and further cooled in the mold to produce a slab. The grain size of equiaxed crystals formed at the center of each slab was investigated. In addition, Ca content converted into ratio Ca (mass%) / O (mass%) with respect to O content, and evaluated.
[0026]
The results are shown in Table 1. In Table 1, the Mg content described as 0 is an example in which no Fe-Mg alloy wire was added, and Ca / O was described as 0 when an Fe-Ca alloy wire was added. This is an example that did not exist.
[0027]
[Table 1]
[0028]
As is clear from Table 1, the Mg content is 0.0005 to 0.005% by mass and the center part of the slab satisfying Ca (mass%) / O (mass%) of 0.3 to 2.5 has a particle size of 1 mm or less. Fine equiaxed crystals were formed.
Next, using a 30 kg high-frequency melting furnace similarly adjusted to an Ar atmosphere, molten steel having a C content of 0.08 to 0.10 mass% was melted, and Ce was added as Zr and REM, and the total of Zr and Ce The content was variously changed in the range of 0 to 0.014. This molten steel was poured into a water-cooled mold (150 × 50 × 200 mm), and a magnetic field was applied so that the molten steel in the mold swirled horizontally at a swirling speed of 30 cm / sec. When the solidified shell grew to a thickness of 2.5 mm, the swirling of the molten steel 7 was stopped and further cooled in the mold to produce a slab.
[0029]
The cross section of each slab was etched with picric acid, and the distance between the dendrite secondary arms from the slab surface to a thickness of 2.5 mm was investigated. FIG. 2 shows the relationship between the total content (% by mass) of Zr and Ce and the average value (μm) of the dendrite secondary arm interval. As is clear from FIG. 2, fine columnar crystals with a dendrite secondary arm spacing of about 100 μm were formed when the total content of Zr and Ce was in the range of 0.001 to 0.01 mass%.
[0030]
Next, using a 30 kg high-frequency melting furnace similarly adjusted to an Ar atmosphere, the C content is 0.10% by mass, the Mg content is 0.0020% by mass, the Ca content is 0.0015% by mass, and the O content is 0.0020% by mass ( That is, molten steel having a total content of Ca / O: 0.75) and Zr and Ce of 0.005% by mass was melted and poured into a water-cooled mold (150 × 50 × 200 mm).
When the thickness of the solidified shell grows to 2.5mm, 10mm, 17.5mm, 20mm or 22.5mm on one side, a magnetic field is applied so that the molten steel in the mold turns horizontally at a turning speed of 30cm / sec. The slab was manufactured by cooling inside. Since the thickness of this slab is 50mm, the ratio of the thickness of the solidified shell (one side 2.5mm, 10mm, 17.5mm, 20mm, 22.5mm) to the thickness of the slab is 10%, 40% and 70%, respectively. %, 80% and 90%.
[0031]
The cross section of each slab was etched using picric acid, the area of the region where the equiaxed crystals were formed was investigated, and the equiaxed crystal ratio was calculated. FIG. 3 shows the relationship between the ratio (%) of the thickness of the solidified shell to the thickness of the slab and the equiaxed crystal ratio (%). The equiaxed crystal ratio is a value calculated by the following equation.
Equiaxial crystal ratio (%) = 100 × area of the region where the equiaxed crystal is formed / cross-sectional area of the steel ingot As is clear from FIG. 3, the ratio of the thickness of the solidified shell to the thickness of the slab is 80%. The equiaxed crystal ratio improved in the above range.
[0032]
Next, continuous casting of molten steel 7 having a C content of 0.08 to 0.10% by mass was performed using a continuous casting facility as shown in FIG. The sectional size of the mold 4 was 260 × 2000 mm, and the casting speed was 0.60 m / min.
In the continuous casting, the presence or absence of addition of Ca, Mg, Ce and Zr and the presence or absence of swirling of the molten steel 7 in the mold 4 at the initial stage of solidification or in the solidified shell 6 at the end of solidification are performed in various combinations. The grain size of equiaxed crystals formed in the part was investigated. The results are shown in Table 2.
[0033]
[Table 2]
[0034]
The addition of Ca, Mg, Ce and Zr was performed by adding an alloy wire coated with Fe. However, in the present invention, the method of adding Ca, Mg, Ce and Zr is not limited to a specific method, and a method of injecting powder or a massive alloy may be used.
In addition, the molten steel 7 in the mold 4 at the initial stage of solidification was swung at a speed of 30 cm / sec by passing a current of 750 A (frequency 3 Hz) through the mold
[0035]
Comparative Example 1 is an example in which Ca, Mg, Ce and Zr are not added, and the molten steel 7 in the solidification shell 6 in the early solidification stage 6 and the solidification shell 6 in the early solidification stage is not swirled, and the equiaxed crystal ratio is the lowest. The grain size of equiaxed crystals is the largest. Reference Example 1 is an example in which Ce and Zr are not added although Mg content, Ca / O value, and turning of molten steel satisfy the requirements of the present invention.
Comparing Comparative Example 2 Reference Example 1, towards the reference example 1 the molten steel 7 in the mold 4 and horizontally turning, equiaxed Akiraritsu increases, the central segregation was reduced. Moreover, the particle diameter of the equiaxed crystal was 2 mm in Comparative Example 2, while 1 mm in Reference Example 1.
[0036]
Reference Example 2 was an example in which Ce and Zr were added to Reference Example 1. The equiaxed crystal ratio was higher than that of Reference Example 1, and the grain size of the equiaxed crystal was 0.5 mm. Invention Example 1 is an example in which the molten steel 7 was swirled at the end of solidification, and the equiaxed crystal ratio was higher than that of Reference Example 2 , and the grain size of the equiaxed crystal was further reduced.
[0037]
【The invention's effect】
According to the present invention, a fine equiaxed crystal having a particle diameter of 1 mm or less can be formed at the center of a continuously cast slab, thereby preventing center segregation.
[Brief description of the drawings]
FIG. 1 is a layout view showing an example of continuous casting equipment to which the present invention is applied.
FIG. 2 is a graph showing the relationship between the total content of Zr and Ce and the average value of the dendrite secondary arm interval.
FIG. 3 is a graph showing the relationship between the ratio of the thickness of the solidified shell to the thickness of the slab and the equiaxed crystal ratio.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ladle 2 Tundish 3 Immersion nozzle 4
10 Crater end
11 Drive roll
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000145083A JP4501223B2 (en) | 2000-05-17 | 2000-05-17 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000145083A JP4501223B2 (en) | 2000-05-17 | 2000-05-17 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001321905A JP2001321905A (en) | 2001-11-20 |
JP4501223B2 true JP4501223B2 (en) | 2010-07-14 |
Family
ID=18651644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000145083A Expired - Fee Related JP4501223B2 (en) | 2000-05-17 | 2000-05-17 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4501223B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01260048A (en) * | 1988-04-11 | 1989-10-17 | Daiwabo Co Ltd | Viscose rayon nonwoven fabric having excellent initial water absorption |
JPH11320050A (en) * | 1998-05-15 | 1999-11-24 | Nippon Steel Corp | Continuous casting method |
JP2000061598A (en) * | 1998-08-21 | 2000-02-29 | Nippon Steel Corp | Continuous casting of molten steel |
JP2000126856A (en) * | 1998-08-19 | 2000-05-09 | Nippon Steel Corp | Method for producing billet free of surface defects due to width reduction |
-
2000
- 2000-05-17 JP JP2000145083A patent/JP4501223B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01260048A (en) * | 1988-04-11 | 1989-10-17 | Daiwabo Co Ltd | Viscose rayon nonwoven fabric having excellent initial water absorption |
JPH11320050A (en) * | 1998-05-15 | 1999-11-24 | Nippon Steel Corp | Continuous casting method |
JP2000126856A (en) * | 1998-08-19 | 2000-05-09 | Nippon Steel Corp | Method for producing billet free of surface defects due to width reduction |
JP2000061598A (en) * | 1998-08-21 | 2000-02-29 | Nippon Steel Corp | Continuous casting of molten steel |
Also Published As
Publication number | Publication date |
---|---|
JP2001321905A (en) | 2001-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113649540B (en) | Method for refining H13 hollow casting liquated carbide | |
JP3488093B2 (en) | Continuous casting method of molten steel | |
JP4501223B2 (en) | Continuous casting method | |
JP2001225154A (en) | Continuous casting method and continuous casting slab of molten steel | |
JPH06246425A (en) | Method for casting large sealed steel ingot | |
US3718173A (en) | Method of removing alumina scum from a continuous-casting mold | |
JP3208941B2 (en) | Continuous casting method of high purity aluminum alloy | |
JP2937707B2 (en) | Steel continuous casting method | |
JP2004009064A (en) | Method for producing continuously cast slab | |
JP2961448B2 (en) | Method for finely dispersing MnS in high S content steel | |
CN102398005B (en) | Built-in type electromagnetic stirring device and application method thereof | |
JP4422362B2 (en) | Method for producing a slab having a fine solidified structure | |
CN2402424Y (en) | Compound mould | |
JP3712338B2 (en) | Method for producing spheroidal graphite cast iron | |
JPH06234050A (en) | Method for continuously casting half-solidified metal and apparatus therefor | |
JPH11320050A (en) | Continuous casting method | |
JP3342777B2 (en) | Silicon steel casting method | |
JP2002059247A (en) | Continuous casting method and continuous casting slab of molten steel | |
JP7376790B2 (en) | Equipment for titanium casting | |
KR200197013Y1 (en) | Vertical continuous casting apparratus for the billet of reactor using the electromagnetic stirrer | |
JPH0314541B2 (en) | ||
JPS62144865A (en) | Casting method | |
JP4163817B2 (en) | Method for continuous casting of molten steel, electromagnetic vibration applying device and continuous cast slab | |
JP3422946B2 (en) | Continuous casting method and continuous casting slab of molten steel | |
JP4469092B2 (en) | Slab with fine solidification structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091022 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100225 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100412 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |