[go: up one dir, main page]

JP4500971B2 - Top heat type heat pipe - Google Patents

Top heat type heat pipe Download PDF

Info

Publication number
JP4500971B2
JP4500971B2 JP2004032340A JP2004032340A JP4500971B2 JP 4500971 B2 JP4500971 B2 JP 4500971B2 JP 2004032340 A JP2004032340 A JP 2004032340A JP 2004032340 A JP2004032340 A JP 2004032340A JP 4500971 B2 JP4500971 B2 JP 4500971B2
Authority
JP
Japan
Prior art keywords
heat exchange
liquid
heat
pipe
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004032340A
Other languages
Japanese (ja)
Other versions
JP2005221200A (en
Inventor
康志 小糸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto Technology and Industry Foundation
Original Assignee
Kumamoto Technology and Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto Technology and Industry Foundation filed Critical Kumamoto Technology and Industry Foundation
Priority to JP2004032340A priority Critical patent/JP4500971B2/en
Publication of JP2005221200A publication Critical patent/JP2005221200A/en
Application granted granted Critical
Publication of JP4500971B2 publication Critical patent/JP4500971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、ヒートパイプに関する。本発明は特に温熱を下方に、冷熱を上方に輸送する、いわゆるトップヒート型ヒートパイプ、およびこのヒートパイプを利用した冷却システムに関する。   The present invention relates to a heat pipe. The present invention particularly relates to a so-called top heat type heat pipe that transports warm heat downward and cold heat upward, and a cooling system using the heat pipe.

ヒートパイプは離れた場所に熱を高速で移動させる特徴があり、例えばノート型パソコン等で局所的に発生する熱を除去したり、あるいは道路の凍結防止、融雪等のため使用されている。ヒートパイプのうち温熱を下方に、冷熱を上方に輸送する、いわゆるトップヒート型ヒートパイプが知られている。   The heat pipe has a feature of moving heat to a distant place at a high speed, and is used, for example, for removing heat locally generated by a notebook personal computer or the like, or for preventing freezing of a road, melting snow, and the like. Among the heat pipes, a so-called top heat type heat pipe is known that transports warm heat downward and cold heat upward.

例えば、特許文献1および特許文献2には、図2に示したような蒸発器1aより高所に貯液タンク2aを設置し、前記蒸発器1aの気相領域と前記蒸発器1aより低所に設置された凝縮器3aとを蒸気管4aで連通させるとともに、前記凝縮器3aと前記貯液タンク2aとを液管5aで連通させ、前記蒸発器1aと前記貯液タンク2aとを気体連結管6aおよび液体供給管7aで連通し、前記気体連結管6aに、前記蒸発器1aの液面が所定のレベル以下になったとき、又は前記貯液タンク2aの液面が所定のレベル以上になったときに開く開閉弁8aを設置し、前記液体供給管7aに、液体が前記貯液タンク2aから前記蒸発器1aの方向にのみ流れるように制御する流路制御弁9aを設置したトップヒート型ヒートパイプが提案されている。
特開平7−91870 特開平7−218164
For example, in Patent Document 1 and Patent Document 2, a liquid storage tank 2a is installed at a higher position than the evaporator 1a as shown in FIG. 2, and a gas phase region of the evaporator 1a and a lower position than the evaporator 1a. The condenser 3a installed in the tank is communicated with a vapor pipe 4a, the condenser 3a and the liquid storage tank 2a are communicated with each other through a liquid pipe 5a, and the evaporator 1a and the liquid storage tank 2a are connected by gas. When the liquid level of the evaporator 1a falls below a predetermined level, or when the liquid level of the liquid storage tank 2a exceeds a predetermined level, the pipe 6a and the liquid supply pipe 7a communicate with each other. An on-off valve 8a that opens when the top of the liquid supply pipe 7a is installed, and a flow control valve 9a that controls the liquid to flow only from the liquid storage tank 2a to the evaporator 1a is installed in the liquid supply pipe 7a. Type heat pipe has been proposed .
JP-A-7-91870 JP-A-7-218164

しかし、従来提案されているトップヒート型ヒートパイプは、動力を用いることなく冷却、又は加熱が可能である点で優れたヒートパイプであるが、実際に操作する際には多くの問題点が残っている。例えば、ヒートパイプの熱伝達特性(=蒸発器と凝縮器の温度差)に及ぼす熱輸送距離(=蒸発器と凝縮器の高さの差)の影響が大きいという問題がある。ヒートパイプとしては、蒸発器と凝縮器の温度差をできるだけ小さくして熱輸送するものが望まれるが、従来のトップヒート型ヒートパイプの場合、ヒートパイプの高さが高くなるとこの温度差が大きくなるので、ヒートパイプの高さを高くできないという問題があった。   However, the conventionally proposed top heat type heat pipe is an excellent heat pipe in that it can be cooled or heated without using power, but many problems remain in actual operation. ing. For example, there is a problem that the influence of the heat transport distance (= the difference in height between the evaporator and the condenser) on the heat transfer characteristics (= temperature difference between the evaporator and the condenser) of the heat pipe is large. A heat pipe that transports heat with the temperature difference between the evaporator and the condenser as small as possible is desired. However, in the case of a conventional top heat type heat pipe, this temperature difference increases as the height of the heat pipe increases. Therefore, there was a problem that the height of the heat pipe could not be increased.

また、特許文献1および特許文献2ではヒートパイプを安定的に作動させるため、補助タンクを設けたりしているが、構造が複雑でメンテナンスに手間がかかるという問題があった。   Further, in Patent Document 1 and Patent Document 2, an auxiliary tank is provided in order to operate the heat pipe stably, but there is a problem that the structure is complicated and maintenance is troublesome.

本発明は前記従来提案されているトップヒート型ヒートパイプの欠点を解決することを目的としており、ヒートパイプの高さを高くとることができるトップヒート型ヒートパイプ、およびそれを用いた冷却システムを提供することにある。本発明の他の目的は、安定的に作動しうるトップヒート型ヒートパイプ、およびそれを用いた冷却システムを提供することにある。   The present invention aims to solve the drawbacks of the conventional top heat type heat pipe, and a top heat type heat pipe capable of increasing the height of the heat pipe, and a cooling system using the top heat type heat pipe. It is to provide. Another object of the present invention is to provide a top heat type heat pipe that can operate stably, and a cooling system using the top heat type heat pipe.

すなわち本発明は、高所に設置された熱交換タンク、この熱交換タンクよりも低所に設置された熱交換ゾーン、前記熱交換タンクの液相領域と前記熱交換ゾーンとを連通する温熱液管、前記熱交換タンクの最高液面レベルより高所に設置され、前記熱交換タンクの気相領域と気相領域とが気体連結管で連通され、かつ熱交換タンクの気相又は液相領域と液相領域とが液体供給管で連結された貯液タンク、前記熱交換ゾーンと前記貯液タンクとを連通する冷熱液管、前記気体連結管に設置され、前記熱交換タンクの液面が所定のレベル以下になったとき又は前記貯液タンクの液面が所定レベル以上になったときに開く開閉弁、および、前記液体供給管に設置され、液体が前記貯液タンクから熱交換タンク方向にのみ流れるように制御する流路制御弁を備え、温熱液管、熱交換ゾーン、冷熱液管内が常に作動液で満たされていることを特徴とするトップヒート型ヒートパイプである。 That is, the present invention relates to a heat exchange tank installed at a high place, a heat exchange zone installed at a lower position than the heat exchange tank, and a hot liquid that communicates the liquid phase region of the heat exchange tank with the heat exchange zone. A pipe, installed above the highest liquid level of the heat exchange tank, the gas phase region of the heat exchange tank and the gas phase region communicate with each other through a gas connection pipe, and the gas phase or liquid phase region of the heat exchange tank A liquid storage tank in which the liquid phase region is connected by a liquid supply pipe, a cold / hot liquid pipe that connects the heat exchange zone and the liquid storage tank, and a gas connection pipe, and the liquid level of the heat exchange tank is An open / close valve that opens when the liquid level of the liquid storage tank is lower than a predetermined level or when the liquid level of the liquid storage tank is higher than a predetermined level, and is installed in the liquid supply pipe so that the liquid flows from the liquid storage tank to the heat exchange tank. Flow path control that controls to flow only in A valve, which is the top heat heat pipe, characterized in that the thermal fluid tube, the heat exchange zone, is cold liquid pipe is always filled with hydraulic fluid.

本発明は、別の面から見ると、高所に設置され、被冷却体の熱を吸収する熱交換タンク、この熱交換タンクよりも低所に設置された系外に熱を放出する熱交換ゾーン、前記熱交換タンクの液相領域と前記熱交換ゾーンとを連通する温熱液管、前記熱交換タンクの最高液面レベルより高所に設置され、前記熱交換タンクの気相領域と気相領域とが気体連結管で連通され、かつ熱交換タンクの気相又は液相領域と液相領域とが液体供給管で連結された貯液タンク、前記熱交換ゾーンと前記貯液タンクとを連通する冷熱液管、前記気体連結管に設置され、前記熱交換タンクの液面が所定のレベル以下になったとき又は前記貯液タンクの液面が所定レベル以上になったときに開く開閉弁、および、前記液体供給管に設置され、液体が前記貯液タンクから熱交換タンク方向にのみ流れるように制御する流路制御弁を備え、温熱液管、熱交換ゾーン、冷熱液管内が常に作動液で満たされていることを特徴とするトップヒート型ヒートパイプを用いた冷却システムである。


From another aspect, the present invention is a heat exchange tank that is installed at a high place and absorbs the heat of the object to be cooled, and a heat exchange that releases heat to the outside of the system installed at a lower place than the heat exchange tank. A zone, a hot liquid pipe that communicates the liquid phase region of the heat exchange tank and the heat exchange zone, and is installed higher than the highest liquid level of the heat exchange tank, and the gas phase region and the gas phase of the heat exchange tank A storage tank in which the region is connected by a gas connection pipe and the gas phase or liquid phase area of the heat exchange tank and the liquid phase area are connected by a liquid supply pipe, and the heat exchange zone and the storage tank are in communication. A cold / hot liquid pipe that is installed in the gas connection pipe, and opens and closes when the liquid level of the heat exchange tank falls below a predetermined level or when the liquid level of the liquid storage tank rises above a predetermined level, And installed in the liquid supply pipe, the liquid is stored in the liquid storage tank. Use with a flow path control valve for controlling the flow only to the heat exchange tank direction, thermal fluid tube, the heat exchange zone, the top heat-type heat pipe, characterized in that the cold liquid pipe is always filled with hydraulic fluid It was a cooling system.


本発明によるトップヒート型ヒートパイプ、および冷却システムは、熱交換タンクより低部の、温熱液管、熱交換ゾーン、冷熱液管内が常に作動液で満たされているため、ヒートパイプの高さに関係なく作動する。すなわち、本発明によるトップヒート型ヒートパイプは、前記従来提案されているトップヒート型ヒートパイプにおける欠点を解決したものである。又、本発明によるトップヒート型ヒートパイプにおいては、後述のように外部動力の導入無くして作動液が循環するので、より低コストで熱輸送することができる。更に、本発明によるトップヒート型ヒートパイプは、簡単な構造をしており、メンテナンスを容易に行うことができる。   In the top heat type heat pipe and the cooling system according to the present invention, the hot liquid pipe, the heat exchange zone, and the cold hot liquid pipe, which are lower than the heat exchange tank, are always filled with the working liquid. Operates regardless. That is, the top heat type heat pipe according to the present invention solves the disadvantages of the conventionally proposed top heat type heat pipe. Further, in the top heat type heat pipe according to the present invention, since the working fluid circulates without introducing external power as described later, it is possible to transport the heat at a lower cost. Furthermore, the top heat type heat pipe according to the present invention has a simple structure and can be easily maintained.

本発明の実施例を、図面に沿って説明する。図1は本発明の第1実施例を示す。図1において、11は熱交換タンク、12は温熱液管、13は熱交換ゾーン、14は冷熱液管、15は貯液タンク、16は気体連結管、17は液体供給管、18は開閉弁、19は流路制御弁、20は排出口、21は作動液である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. In FIG. 1, 11 is a heat exchange tank, 12 is a hot and cold liquid pipe, 13 is a heat exchange zone, 14 is a cold / hot liquid pipe, 15 is a liquid storage tank, 16 is a gas connection pipe, 17 is a liquid supply pipe, and 18 is an on-off valve. , 19 is a flow path control valve, 20 is a discharge port, and 21 is a working fluid.

本発明のヒートパイプの材質としては、機械的強度があり、かつ作動液により腐食されない材質、例えば、ステンレス等を選定するとよい。   As the material of the heat pipe of the present invention, a material that has mechanical strength and is not corroded by the hydraulic fluid, such as stainless steel, may be selected.

熱交換タンク11は、内部に作動液が貯液可能なタンクの構造をしている。一方では、作動液に熱を吸収させやすいように外部にフィン等が設けられていてもよい。熱交換タンク11内部では被冷却体からの熱を受けて作動液の一部が蒸発し、その圧力によりタンク内の作動液を液相領域、好ましくはタンク底部に設けられた排出口20から温熱液管12を経て熱交換ゾーン13へと流下させる。次に熱交換タンク11内の作動液の量が一定量以下になったら、貯液タンク15から作動液を受け入れる。熱交換タンク11はヒートパイプ全体では上部に位置している。   The heat exchange tank 11 has a tank structure in which hydraulic fluid can be stored. On the other hand, a fin or the like may be provided outside so that the hydraulic fluid can easily absorb heat. The heat exchange tank 11 receives heat from the object to be cooled and a part of the working fluid evaporates, and the pressure causes the working fluid in the tank to be heated from the discharge port 20 provided in the liquid phase region, preferably the tank bottom. It flows down to the heat exchange zone 13 through the liquid pipe 12. Next, when the amount of the hydraulic fluid in the heat exchange tank 11 becomes a certain amount or less, the hydraulic fluid is received from the liquid storage tank 15. The heat exchange tank 11 is located at the top of the entire heat pipe.

本発明のヒートパイプで用いられる作動液21としては、水、アンモニア水、メタノール、エタノール、これらの混合物等の各種低粘度液媒体を用いることができる。ヒートパイプの使用目的に応じて、液の温度と蒸気の圧力との関係を考慮し、選定するとよい。   As the hydraulic fluid 21 used in the heat pipe of the present invention, various low-viscosity liquid media such as water, aqueous ammonia, methanol, ethanol, and mixtures thereof can be used. Depending on the purpose of use of the heat pipe, the relationship between the temperature of the liquid and the pressure of the steam should be taken into consideration.

作動液の量は、熱交換タンク11、温熱液管12、熱交換ゾーン13、冷熱液管14の大きさに左右されるが、ヒートパイプが順調に作動するためには、熱交換タンク11より低部の、温熱液管12、熱交換ゾーン13、冷熱液管14内が常に作動液で満たされてなければならない。   The amount of hydraulic fluid depends on the size of the heat exchange tank 11, the hot and cold liquid tube 12, the heat exchange zone 13, and the cold and hot liquid tube 14, but from the heat exchange tank 11 in order for the heat pipe to operate smoothly. In the lower part, the hot liquid pipe 12, the heat exchange zone 13, and the cold liquid pipe 14 must always be filled with the working fluid.

本発明のヒートパイプで冷却されうる被冷却体は、特に限定されないが、例えばビルディングに設置される温水冷却装置や太陽電池パネル等、高所に設置されており、高さ方向に熱を移動させる必要がある対象に対して好ましく用いることができる。   The object to be cooled that can be cooled by the heat pipe of the present invention is not particularly limited, but is installed at a high place such as a hot water cooling device or a solar battery panel installed in a building, and moves heat in the height direction. It can be preferably used for a subject in need.

熱交換タンク11の液相領域、好ましくは熱交換タンク11の底と、前記熱交換タンク11より低所に設置されている熱交換ゾーン13との間には温熱液管12が設けられている。熱交換タンク11で加熱された作動液は、温熱液管12内を経て熱交換ゾーン13に流下される。   A hot liquid pipe 12 is provided between the liquid phase region of the heat exchange tank 11, preferably the bottom of the heat exchange tank 11, and the heat exchange zone 13 installed at a lower position than the heat exchange tank 11. . The hydraulic fluid heated in the heat exchange tank 11 flows down to the heat exchange zone 13 through the hot-heat liquid pipe 12.

熱交換ゾーン13は、作動液を系外の冷却媒体と熱交換させることにより冷却するゾーン(場所)である。熱交換ゾーン13は、作動液が冷却されやすいように、例えば、いくつかのパイプを束ねた構造としていてもよい。熱交換ゾーン13の内容積は充分大きくすべきである。具体的には、熱交換タンク11の内容積と温熱液管12の内容積の合計量より、熱交換ゾーン13の内容積を大きくとることが好ましい。後述のように、本発明のヒートパイプは周期的な作動を繰り返すが、熱交換ゾーン13内に1サイクルの時間以上作動液が滞留しないと、作動液と冷却媒体との熱交換が充分に行われず、系の温度が次第に上昇する恐れがある。このように熱交換ゾーン13内の内容積を大きくとるためには、例えば図3に示したような、パイプをコイル状に曲げた熱交換器を用いれば良い。   The heat exchange zone 13 is a zone (place) where the hydraulic fluid is cooled by exchanging heat with a cooling medium outside the system. The heat exchange zone 13 may have, for example, a structure in which several pipes are bundled so that the hydraulic fluid is easily cooled. The internal volume of the heat exchange zone 13 should be sufficiently large. Specifically, it is preferable to make the internal volume of the heat exchange zone 13 larger than the total amount of the internal volume of the heat exchange tank 11 and the internal volume of the hot liquid pipe 12. As will be described later, the heat pipe of the present invention repeats periodic operation. However, if the hydraulic fluid does not stay in the heat exchange zone 13 for more than one cycle, heat exchange between the hydraulic fluid and the cooling medium is sufficiently performed. Otherwise, the temperature of the system may gradually increase. In order to increase the internal volume in the heat exchange zone 13 as described above, for example, a heat exchanger in which a pipe is bent into a coil shape as shown in FIG. 3 may be used.

熱交換ゾーン13で作動液を冷却する冷却媒体としては、海水、河川水、地下水等の自然の冷熱源を用いるか、あるいは、冷媒、例えば、冷却水を好ましくは向流に流すことにより作動液を冷却する。熱交換ゾーン13で冷却に用いた冷却水は、温水として風呂、洗面、食器洗浄、あるいは融雪等に用いてもよい。   As a cooling medium for cooling the working fluid in the heat exchange zone 13, a natural cooling source such as seawater, river water, groundwater or the like is used, or a working fluid is preferably obtained by flowing a coolant, for example, cooling water, preferably in a countercurrent. Cool down. The cooling water used for cooling in the heat exchange zone 13 may be used as hot water for bathing, washing, dish washing, snow melting or the like.

熱交換ゾーン13は、冷熱液管14により貯液タンク15と連通している。熱交換ゾーン13で冷却された作動液は、熱交換タンク11内の圧力により、冷熱液管14内を上昇して貯液タンク15に到達し、貯液される。   The heat exchange zone 13 communicates with the liquid storage tank 15 through a cold / hot liquid pipe 14. The hydraulic fluid cooled in the heat exchange zone 13 rises in the cold hot liquid pipe 14 due to the pressure in the heat exchange tank 11, reaches the liquid storage tank 15, and is stored therein.

貯液タンク15内の作動液が熱交換ゾーン13の方へ逆流しないようにするため、熱交換ゾーン13と貯液タンク15とを連通する冷熱液管14の途中に逆止弁を設置してもよい。 In order to prevent the working fluid in the liquid storage tank 15 from flowing back toward the heat exchange zone 13, a check valve is installed in the middle of the cold heat liquid pipe 14 that communicates the heat exchange zone 13 and the liquid storage tank 15. Also good.

貯液タンク15は冷却された作動液を貯蔵して、熱交換タンク11内の作動液の量が所定のレベル以下になったとき、あるいは、貯液タンク15内の作動液の量が所定のレベル以上になったとき、熱交換タンク11に作動液をヘッド差により供給する役割をもつ。従って、貯液タンク15は、熱交換タンク11よりも高所に位置するように設置される。また、貯液タンク15の内容積は、熱交換タンク11の内容積と同等か、それ以上であることが好ましい。   The liquid storage tank 15 stores the cooled hydraulic fluid, and when the amount of hydraulic fluid in the heat exchange tank 11 falls below a predetermined level, or the amount of hydraulic fluid in the liquid storage tank 15 is predetermined. When the level exceeds the level, the hydraulic fluid is supplied to the heat exchange tank 11 by the head difference. Therefore, the liquid storage tank 15 is installed at a higher position than the heat exchange tank 11. The internal volume of the liquid storage tank 15 is preferably equal to or greater than the internal volume of the heat exchange tank 11.

貯液タンク15はまた、後述の気体連結管16の途中に設置された開閉弁18が開放された後、作動液の蒸気が作動液中に吸収されやすくするため、同じ内容積であれば、縦、横を長く、深さを浅くし、気液界面の表面積が大きくなる形状とすることが好ましい。   The liquid storage tank 15 also has the same internal volume so that the vapor of the hydraulic fluid is easily absorbed into the hydraulic fluid after the on-off valve 18 installed in the middle of the gas connection pipe 16 described later is opened. It is preferable that the length and width are long, the depth is shallow, and the surface area of the gas-liquid interface is increased.

貯液タンク15と熱交換タンク11とは気体連結管16と液体供給管17との2本の管で連結されている。気体連結管16は貯液タンク15の気相領域と熱交換タンク11の気相領域とを連結している。一方、液体供給管17は貯液タンク15の液相領域と熱交換タンク11の気相又は液相領域とを連結するよう構成されている。   The liquid storage tank 15 and the heat exchange tank 11 are connected by two pipes, a gas connection pipe 16 and a liquid supply pipe 17. The gas connection pipe 16 connects the gas phase region of the liquid storage tank 15 and the gas phase region of the heat exchange tank 11. On the other hand, the liquid supply pipe 17 is configured to connect the liquid phase region of the liquid storage tank 15 and the gas phase or liquid phase region of the heat exchange tank 11.

気体連結管16には、開閉弁18が設けられており、弁の作用により貯液タンク15と熱交換タンク11の気相部同士を連結させたり、遮断したりする。開閉弁としては、例えば電磁弁が好ましい。   The gas connection pipe 16 is provided with an on-off valve 18 that connects or shuts off the gas phase portions of the liquid storage tank 15 and the heat exchange tank 11 by the action of the valve. As the on-off valve, for example, an electromagnetic valve is preferable.

液体供給管17には、液が流れる方向によって流路抵抗が異なるように形成された流路制御弁19が設けられており、液体は貯液タンク15から熱交換タンク11方向へのみ流れ、その反対方向には流れないようにされている。前記の作用をする弁としては、例えばチェッキ弁が知られている。   The liquid supply pipe 17 is provided with a flow path control valve 19 formed so that the flow path resistance varies depending on the direction in which the liquid flows. The liquid flows only from the liquid storage tank 15 toward the heat exchange tank 11, It does not flow in the opposite direction. For example, a check valve is known as a valve that performs the above-described operation.

本発明によるトップヒート型ヒートパイプ、および冷却システムにおいて、前記開閉弁18は、熱交換タンク11の液面が所定のレベル以下になったとき、又は貯液タンク15の液面が所定のレベル以上になったときに開くように制御されるものであり、このような制御のための最も一般的な手段は、前記熱交換タンク11又は貯液タンク15の液面の変化を検出するフロートその他のレベルセンサーを設置し、このレベルセンサーの検出値により前記開閉弁18を開閉するように構成することである。   In the top heat type heat pipe and the cooling system according to the present invention, the on-off valve 18 is configured so that the liquid level of the heat exchange tank 11 becomes a predetermined level or lower, or the liquid level of the liquid storage tank 15 exceeds a predetermined level. The most common means for such control is a float or the like that detects a change in the liquid level of the heat exchange tank 11 or the storage tank 15. A level sensor is installed, and the on-off valve 18 is configured to open and close according to the detection value of the level sensor.

本発明のトップヒート型ヒートパイプは、冷却を必要とする場所に設置し、前記ヒートパイプ内に適量の作動液を封入することにより製作できる。このとき、ヒートパイプ内を真空脱気してから作動液を封入してもよいし、貯液タンク15を大気開放にして作動液を封入してもよい。   The top heat type heat pipe of the present invention can be manufactured by installing it in a place requiring cooling and enclosing an appropriate amount of working fluid in the heat pipe. At this time, the working fluid may be sealed after the inside of the heat pipe is vacuum degassed, or the working fluid may be sealed with the liquid storage tank 15 opened to the atmosphere.

本発明のヒートパイプの作動原理について説明すると、被冷却体から温熱が熱交換タンク11に供給され、その熱により熱交換タンク11内で作動液が蒸発する。蒸気の発生により、熱交換タンク11内の圧力が上昇すると、作動液が熱交換タンク11の排出口20から温熱液管12、熱交換ゾーン13、冷熱液管14を経て貯液タンク15へと流入する。その間熱交換ゾーン13で冷却媒体と熱交換されて作動液の熱が系外に放出されることにより、温熱が下方に、冷熱が上方に輸送される。   The operation principle of the heat pipe of the present invention will be described. Warm heat is supplied from the object to be cooled to the heat exchange tank 11, and the working liquid evaporates in the heat exchange tank 11 by the heat. When the pressure in the heat exchange tank 11 rises due to the generation of steam, the working fluid flows from the outlet 20 of the heat exchange tank 11 to the liquid storage tank 15 via the hot-heat liquid pipe 12, the heat exchange zone 13, and the cold-heat liquid pipe 14. Inflow. Meanwhile, heat is exchanged with the cooling medium in the heat exchange zone 13 and the heat of the working fluid is released to the outside of the system, so that the warm heat is transported downward and the cool heat is transported upward.

熱交換タンク11から温熱液管12への作動液の流下が進み、熱交換タンク11内の作動液の液面が所定のレベル以下になるか、又は貯液タンク15の液面が所定のレベル以上になると、気体連結管16の開閉弁18が開き、熱交換タンク11内の蒸気が貯液タンク15に移動するとともに、熱交換タンク11と貯液タンク15の圧力が同じになるので、貯液タンク15内の作動液がヘッド差により液体供給管17を経て熱交換タンク11に流れる。熱交換タンク11内の液面が所定のレベル以上になるか、又は貯液タンク15内の液面が所定のレベル以下になると、開閉弁18は閉じる。   The flow of the working fluid from the heat exchange tank 11 to the hot-heat liquid pipe 12 proceeds, and the level of the working fluid in the heat exchange tank 11 falls below a predetermined level, or the level of the liquid storage tank 15 reaches a predetermined level. When the above is reached, the on-off valve 18 of the gas connection pipe 16 opens, the steam in the heat exchange tank 11 moves to the liquid storage tank 15, and the pressure in the heat exchange tank 11 and the liquid storage tank 15 becomes the same. The hydraulic fluid in the liquid tank 15 flows to the heat exchange tank 11 through the liquid supply pipe 17 due to the head difference. When the liquid level in the heat exchange tank 11 becomes a predetermined level or higher, or the liquid level in the liquid storage tank 15 becomes a predetermined level or lower, the on-off valve 18 is closed.

前記開閉弁18が閉じているときは、熱交換タンク11内の圧力の方が貯液タンク15内の圧力より高いため、液体供給管17に設置されている流路制御弁19の働きにより、作動液は貯液タンク15から熱交換タンク11へと流下することはない。開閉弁18が開き、熱交換タンク11内の圧力と貯液タンク15内の圧力が等しくなってはじめて、作動液は貯液タンク15から熱交換タンク11へと流下する。   When the on-off valve 18 is closed, the pressure in the heat exchange tank 11 is higher than the pressure in the liquid storage tank 15, so that the flow control valve 19 installed in the liquid supply pipe 17 works. The hydraulic fluid does not flow down from the storage tank 15 to the heat exchange tank 11. The on-off valve 18 is opened, and the hydraulic fluid flows from the storage tank 15 to the heat exchange tank 11 only after the pressure in the heat exchange tank 11 and the pressure in the liquid storage tank 15 become equal.

また、熱交換タンク11内の圧力と貯液タンク15内の圧力との差によって、作動液を熱交換タンク11から熱交換ゾーン13を経て貯液タンク15へと押し上げるため、この発明によるトップヒート型ヒートパイプは、作動液を循環させるための外部動力無くして、円滑にかつ連続して作動する。 Further, the hydraulic fluid is pushed up from the heat exchange tank 11 through the heat exchange zone 13 to the liquid storage tank 15 due to the difference between the pressure in the heat exchange tank 11 and the pressure in the liquid storage tank 15. The mold heat pipe operates smoothly and continuously without external power for circulating the working fluid.

冷却対象の空間もしくは物体に熱交換タンク11を設置し、冷熱源に熱交換ゾーン13を設置すると、冷熱源から冷熱が輸送されるので、冷却対象の空間もしくは物体を冷却することができる。このようにして、本発明のヒートパイプを用いることにより、冷却システムを構成することができる。   When the heat exchange tank 11 is installed in the space or object to be cooled and the heat exchange zone 13 is installed in the cold source, the cold heat is transported from the cold source, so that the space or object to be cooled can be cooled. Thus, a cooling system can be comprised by using the heat pipe of this invention.

次に実施例を挙げて本発明につき更に詳しく説明するが、本発明はその要旨を超えない限りこれらの実施例になんら制約されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all to these Examples, unless the summary is exceeded.

(実施例1)
図4に示した実験装置を用いて実験を行った。なお、この実施例において、熱交換タンク11の内容積は12000cm3 、貯液タンク15の内容積は12000cm3(縦:30cm、横:40cm、深さ:10cm)であり、温熱液管12は内径1.4cm、長さ380cmのアクリルパイプ、冷熱液管14は内径1.4cm、長さ430cmのアクリルパイプで製作し、熱交換ゾーン13の内容積は3600cm3に設定している。
Example 1
Experiments were performed using the experimental apparatus shown in FIG. In this embodiment, the internal volume of the heat exchange tank 11 is 12000 cm 3 , the internal volume of the liquid storage tank 15 is 12000 cm 3 (length: 30 cm, width: 40 cm, depth: 10 cm), and the hot liquid tube 12 is The acrylic pipe having an inner diameter of 1.4 cm and a length of 380 cm and the cold / hot liquid pipe 14 are made of an acrylic pipe having an inner diameter of 1.4 cm and a length of 430 cm, and the internal volume of the heat exchange zone 13 is set to 3600 cm 3 .

この実施例のトップヒート型ヒートパイプの系内に10500cm3 の作動液(アンモニア水)を封入し、熱交換タンク11の内底部に挿入した発熱量400Wのヒーター31により熱交換タンク11内の作動液を加熱した。 10500 cm 3 of hydraulic fluid (ammonia water) is sealed in the system of the top heat type heat pipe of this embodiment, and the operation in the heat exchange tank 11 is performed by the heater 31 having a heating value of 400 W inserted in the inner bottom portion of the heat exchange tank 11. The liquid was heated.

一方、熱交換ゾーン13は、図4のように、チューブを巻くことにより製作し、これを恒温槽32内の20℃に保たれた水の中に入れ、実験に供した。   On the other hand, as shown in FIG. 4, the heat exchange zone 13 was produced by winding a tube, and this was put in water kept at 20 ° C. in a thermostatic bath 32 and used for the experiment.

実験結果を図5に示す。図において、T1は貯液タンク15液相領域の温度、T2は熱交換タンク11液相領域の温度、T3は熱交換ゾーン13出口の温度、T4は恒温槽32内の水温である。   The experimental results are shown in FIG. In the figure, T1 is the temperature in the liquid phase region of the liquid storage tank 15, T2 is the temperature in the liquid phase region of the heat exchange tank 11, T3 is the temperature at the outlet of the heat exchange zone 13, and T4 is the water temperature in the thermostat 32.

図5より明らかなように、熱交換タンク11内の作動液の温度T2は、ヒーター31での加熱により37℃まで上昇するが、貯液タンク15から21℃の作動液が流入することにより、直ちに28℃まで冷却される。その繰り返しが約450秒間隔で行われていることがわかる。また、熱交換ゾーン13出口の温度T3は21℃前後の温度を示しており、系の冷却が問題無く行われていることがわかる。   As is clear from FIG. 5, the temperature T2 of the working fluid in the heat exchange tank 11 rises to 37 ° C. due to heating by the heater 31, but when the working fluid at 21 ° C. flows from the liquid storage tank 15, Immediately cool to 28 ° C. It can be seen that the repetition is performed at intervals of about 450 seconds. The temperature T3 at the outlet of the heat exchange zone 13 indicates a temperature around 21 ° C., and it can be seen that the system is cooled without any problem.

本発明のヒートパイプは、太陽熱温水器による太陽熱の有効利用、建物の冷却システム、あるいは太陽電池パネル等の高所にある熱源の冷却に利用することができる。特に太陽電池パネルの冷却に本発明のヒートパイプを用いることにより太陽電池パネルの発電効率の大幅な向上が期待できる。   The heat pipe of the present invention can be used for effective utilization of solar heat by a solar water heater, cooling system for buildings, or cooling of a heat source at a high place such as a solar battery panel. In particular, the use of the heat pipe of the present invention for cooling the solar cell panel can be expected to greatly improve the power generation efficiency of the solar cell panel.

図1は、本発明のトップヒート型ヒートパイプの一例を示した概要図である。FIG. 1 is a schematic view showing an example of a top heat type heat pipe of the present invention. 図2は、従来のトップヒート型ヒートパイプの一例を示した概要図である。FIG. 2 is a schematic view showing an example of a conventional top heat type heat pipe. 図3は、本発明のトップヒート型ヒートパイプにおける熱交換ゾーンの一例を示した概要図である。FIG. 3 is a schematic view showing an example of a heat exchange zone in the top heat type heat pipe of the present invention. 図4は、本発明のトップヒート型ヒートパイプの実施例1において用いた実験装置の概要図である。FIG. 4 is a schematic diagram of an experimental apparatus used in Example 1 of the top heat type heat pipe of the present invention. 図5は、本発明のトップヒート型ヒートパイプの実施例1において得られた実験結果を示した図である。FIG. 5 is a diagram showing experimental results obtained in Example 1 of the top heat type heat pipe of the present invention.

符号の説明Explanation of symbols

11:熱交換タンク
12:温熱液管
13:熱交換ゾーン
14:冷熱液管
15、2a:貯液タンク
16、6a:気体連結管
17、7a:液体供給管
18、8a:開閉弁
19、9a:流路制御弁
20:排出口
21:作動液
31:ヒーター
32:恒温槽
1a:蒸発器
3a:凝縮器
4a:蒸気管
5a:液管
T1:貯液タンク液相領域の温度
T2:熱交換タンク液相領域の温度
T3:熱交換ゾーン出口の温度
T4:恒温槽内の水温
11: Heat exchange tank 12: Hot liquid pipe 13: Heat exchange zone 14: Cold hot liquid pipe 15, 2a: Liquid storage tank 16, 6a: Gas connection pipe 17, 7a: Liquid supply pipe 18, 8a: Open / close valves 19, 9a : Flow control valve 20: Discharge port 21: Hydraulic fluid 31: Heater 32: Thermostatic chamber 1 a: Evaporator 3 a: Condenser 4 a: Steam pipe 5 a: Liquid pipe T 1: Temperature of liquid storage tank liquid phase region T 2: Heat exchange Tank liquid phase temperature T3: Heat exchange zone outlet temperature T4: Water temperature in the thermostat

Claims (2)

高所に設置された熱交換タンク、この熱交換タンクよりも低所に設置された熱交換ゾーン、前記熱交換タンクの液相領域と前記熱交換ゾーンとを連通する温熱液管、前記熱交換タンクの最高液面レベルより高所に設置され、前記熱交換タンクの気相領域と気相領域とが気体連結管で連通され、かつ熱交換タンクの気相又は液相領域と液相領域とが液体供給管で連結された貯液タンク、前記熱交換ゾーンと前記貯液タンクとを連通する冷熱液管、前記気体連結管に設置され、前記熱交換タンクの液面が所定のレベル以下になったとき又は前記貯液タンクの液面が所定レベル以上になったときに開く開閉弁、および、前記液体供給管に設置され、液体が前記貯液タンクから熱交換タンク方向にのみ流れるように制御する流路制御弁を備え、温熱液管、熱交換ゾーン、冷熱液管内が常に作動液で満たされていることを特徴とするトップヒート型ヒートパイプ。 A heat exchange tank installed in a high place, a heat exchange zone installed in a lower place than the heat exchange tank, a hot liquid pipe communicating the liquid phase region of the heat exchange tank and the heat exchange zone, the heat exchange It is installed higher than the highest liquid level of the tank, the gas phase region and the gas phase region of the heat exchange tank are communicated by a gas connection pipe, and the gas phase or liquid phase region and the liquid phase region of the heat exchange tank Is installed in a liquid storage tank connected by a liquid supply pipe, a cold / hot liquid pipe communicating the heat exchange zone and the liquid storage tank, and the gas connection pipe, and the liquid level of the heat exchange tank is below a predetermined level. An on-off valve that opens when the liquid level of the liquid storage tank reaches a predetermined level or more, and is installed in the liquid supply pipe so that the liquid flows only from the liquid storage tank to the heat exchange tank. comprising a flow path control valve for controlling, thermal fluid , Top heat heat pipe, wherein the heat exchange zone, is cold liquid pipe is always filled with hydraulic fluid. 高所に設置され、被冷却体の熱を吸収する熱交換タンク、この熱交換タンクよりも低所に設置された系外に熱を放出する熱交換ゾーン、前記熱交換タンクの液相領域と前記熱交換ゾーンとを連通する温熱液管、前記熱交換タンクの最高液面レベルより高所に設置され、前記熱交換タンクの気相領域と気相領域とが気体連結管で連通され、かつ熱交換タンクの気相又は液相領域と液相領域とが液体供給管で連結された貯液タンク、前記熱交換ゾーンと前記貯液タンクとを連通する冷熱液管、前記気体連結管に設置され、前記熱交換タンクの液面が所定のレベル以下になったとき又は前記貯液タンクの液面が所定レベル以上になったときに開く開閉弁、および、前記液体供給管に設置され、液体が前記貯液タンクから熱交換タンク方向にのみ流れるように制御する流路制御弁を備え、温熱液管、熱交換ゾーン、冷熱液管内が常に作動液で満たされていることを特徴とするトップヒート型ヒートパイプを用いた冷却システム。 A heat exchange tank that is installed at a high place and absorbs the heat of the object to be cooled, a heat exchange zone that releases heat outside the system installed at a lower place than the heat exchange tank, and a liquid phase region of the heat exchange tank; A hot liquid pipe communicating with the heat exchange zone, installed at a location higher than the highest liquid level of the heat exchange tank, and a gas phase region and a gas phase region of the heat exchange tank are communicated by a gas connection pipe; and Installed in a liquid storage tank in which the gas phase or liquid phase region of the heat exchange tank and the liquid phase region are connected by a liquid supply pipe, a cold heat liquid pipe that connects the heat exchange zone and the liquid storage tank, and the gas connection pipe An open / close valve that opens when the liquid level of the heat exchange tank falls below a predetermined level or when the liquid level of the liquid storage tank rises above a predetermined level, and is installed in the liquid supply pipe. Flows only from the storage tank toward the heat exchange tank Comprising a flow path control valve for controlling such a cooling system using top heat heat pipe, characterized in that the thermal fluid tube, the heat exchange zone, is cold liquid pipe is always filled with hydraulic fluid.
JP2004032340A 2004-02-09 2004-02-09 Top heat type heat pipe Expired - Fee Related JP4500971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032340A JP4500971B2 (en) 2004-02-09 2004-02-09 Top heat type heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032340A JP4500971B2 (en) 2004-02-09 2004-02-09 Top heat type heat pipe

Publications (2)

Publication Number Publication Date
JP2005221200A JP2005221200A (en) 2005-08-18
JP4500971B2 true JP4500971B2 (en) 2010-07-14

Family

ID=34996975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032340A Expired - Fee Related JP4500971B2 (en) 2004-02-09 2004-02-09 Top heat type heat pipe

Country Status (1)

Country Link
JP (1) JP4500971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767980A (en) * 2012-07-26 2012-11-07 北京德能恒信科技有限公司 Two-phase flow dynamic heat pipe system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL217073B1 (en) * 2010-07-26 2014-06-30 Univ Warmińsko Mazurski W Olsztynie Method for automatic transfer of heat in the direction opposite to the natural circulation and a device for automatic transfer of heat in the direction opposite to the natural circulation
JP5887682B2 (en) * 2011-03-30 2016-03-16 公益財団法人若狭湾エネルギー研究センター Heat pipe that can switch heat transport direction and heat pipe that can automatically switch heat transport direction by check valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767980A (en) * 2012-07-26 2012-11-07 北京德能恒信科技有限公司 Two-phase flow dynamic heat pipe system

Also Published As

Publication number Publication date
JP2005221200A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4029103B2 (en) Containment tank for hot water system
EP2331882B1 (en) Adaptive self pumping solar hot water heating system with overheat protection
JP5612096B2 (en) Self-supporting pump for heated liquid, and heat-driven liquid closed-loop automatic circulation system using the same
RU2330219C1 (en) Geothermal installation for supply of energy to consumers
JP2010038507A (en) Heat pump utilizing underground heat reserve
US4171721A (en) Refrigeration apparatus
KR20160035905A (en) Thermal storage tank using phase change material
CN201000293Y (en) Hot pipe type heat radiator
JP4500971B2 (en) Top heat type heat pipe
US9890314B2 (en) Using heat of solution of aluminum sulfate to store energy in tankless vacuum-tube solar water heaters
KR101729238B1 (en) compact hybrid heat exchanger built in thermal storage tank
JP2007232227A (en) Solar water heater
CN105091411A (en) Refrigerating and heating dual-purpose heat pipe type ground heat exchanger
AU2006203413B2 (en) A heat sink and a heat exchanger
RU63867U1 (en) GEOTHERMAL INSTALLATION OF POWER SUPPLY OF CONSUMERS
RU2121627C1 (en) Closed autonomous heating system
JP2002364924A (en) Power-saving quick-heating electric water-heater
JP2014081088A (en) Heat exchanging apparatus
JP4339293B2 (en) Regenerative water heater
JP4115079B2 (en) Water heater
JP2011502239A (en) Heating device in which medium flows in a fixed direction and circulating heating system including the device
JP4567909B2 (en) Heat pump type water heater
KR200215784Y1 (en) Heating system for Boiler
CN110986400A (en) Underground energy storage system with double liquid storage cavity structure and control method thereof
JP7603803B2 (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees