JP4500755B2 - EGR failure determination device for internal combustion engine - Google Patents
EGR failure determination device for internal combustion engine Download PDFInfo
- Publication number
- JP4500755B2 JP4500755B2 JP2005288058A JP2005288058A JP4500755B2 JP 4500755 B2 JP4500755 B2 JP 4500755B2 JP 2005288058 A JP2005288058 A JP 2005288058A JP 2005288058 A JP2005288058 A JP 2005288058A JP 4500755 B2 JP4500755 B2 JP 4500755B2
- Authority
- JP
- Japan
- Prior art keywords
- egr
- value
- internal
- ratio
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
Description
本発明は、内部EGR装置および外部EGR装置により内部EGR量および外部EGR量がそれぞれ変更される内燃機関において、これらのEGR装置の故障を判定する内燃機関のEGR故障判定装置に関する。 The present invention relates to an EGR failure determination device for an internal combustion engine that determines a failure of these EGR devices in an internal combustion engine in which an internal EGR amount and an external EGR amount are respectively changed by an internal EGR device and an external EGR device.
従来、内燃機関のEGR故障判定装置として、特許文献1に記載されたものが知られている。この内燃機関には、吸気カム位相可変機構および排気還流機構が設けられており、この吸気カム位相可変機構により、吸気弁のクランクシャフトに対する位相(以下「カム位相」という)が変更され、それにより、バルブオーバーラップが変化することによって、気筒内に残留する既燃ガスの量(以下「内部EGR量」という)が変更される。さらに、排気還流機構は、排気通路と吸気通路の間に延びるEGR通路と、これを開閉するEGR制御弁を備えている。この排気還流機構では、EGR制御弁の開度(以下「EGR開度」という)が変化することにより、排気通路から吸気通路に還流される排ガスの量(以下「外部EGR量」という)が変更される。
Conventionally, what was described in
このEGR故障判定装置は、EGR制御装置を備えており、このEGR制御装置では、内燃機関の運転状態に応じて、カム位相の目標となる目標カム位相と、EGR開度の目標となる目標EGR開度とがそれぞれ設定され、カム位相が目標カム位相になるように、吸気カム位相可変機構を介して、内部EGR量が制御されるとともに、EGR開度が目標EGR開度になるように、EGR制御弁を介して、外部EGR量が制御される。 The EGR failure determination apparatus includes an EGR control apparatus. In the EGR control apparatus, a target cam phase that is a target of the cam phase and a target EGR that is a target of the EGR opening degree are determined according to the operating state of the internal combustion engine. The internal EGR amount is controlled via the intake cam phase variable mechanism so that the opening is set and the cam phase becomes the target cam phase, and the EGR opening becomes the target EGR opening. The external EGR amount is controlled via the EGR control valve.
また、EGR故障判定装置では、EGR開度と目標EGR開度との偏差の絶対値を所定値と比較し、この偏差の絶対値が所定値以上であるときには、EGR制御弁が故障していると判定される。 Further, in the EGR failure determination device, the absolute value of the deviation between the EGR opening and the target EGR opening is compared with a predetermined value, and when the absolute value of the deviation is equal to or greater than the predetermined value, the EGR control valve has failed. It is determined.
さらに、EGR故障判定装置によりEGR制御弁が故障していると判定されたときには、EGR制御装置により、目標カム位相が値0に設定され、それにより、吸気カム位相可変機構を介して、カム位相がバルブオーバーラップを最小とする値に制御される。すなわち内部EGR量が最小となるように制御される。
Further, when it is determined by the EGR failure determination device that the EGR control valve has failed, the EGR control device sets the target cam phase to the
上記従来のEGR故障判定装置によれば、EGR開度と目標EGR開度との偏差の絶対値を、所定値と比較することにより、EGR制御弁の故障が判定されるので、EGR率が小さく、外部EGR量が小さい場合には、その判定精度が低下し、誤判定を招くおそれがある。すなわち、外部EGR量が大きい領域でしか、故障判定を精度よく実行できず、その商品性が低いという問題点がある。 According to the above-described conventional EGR failure determination device, since the failure of the EGR control valve is determined by comparing the absolute value of the deviation between the EGR opening and the target EGR opening with a predetermined value, the EGR rate is small. When the external EGR amount is small, the determination accuracy is lowered, and there is a risk of erroneous determination. That is, there is a problem in that failure determination can be performed accurately only in a region where the external EGR amount is large, and the merchantability is low.
また、吸気カム位相可変機構の故障判定を実行していないので、これが故障していると、EGR制御装置により、内部EGR量が不適切な値に制御されることで、燃焼状態が悪化するおそれがある。これに加えて、EGR故障判定装置によりEGR制御弁が故障していると判定されたときには、EGR制御装置により、吸気カム位相可変機構を介して、内部EGR量が最小となるように制御されるので、内燃機関の高負荷運転時には、ノッキングが発生しやすくなる。 In addition, since the failure determination of the intake cam phase variable mechanism is not executed, if this failure occurs, the EGR control device may control the internal EGR amount to an inappropriate value, which may deteriorate the combustion state. There is. In addition to this, when the EGR failure determination device determines that the EGR control valve has failed, the EGR control device controls the internal EGR amount to be minimized via the intake cam phase variable mechanism. Therefore, knocking tends to occur during high-load operation of the internal combustion engine.
本発明は、上記課題を解決するためになされたもので、EGR量の大小にかかわらず、外部EGR装置および内部EGR装置の双方の故障判定を精度よく行うことができ、商品性を向上させることができる内燃機関のEGR故障判定装置を提供することを目的とする。 The present invention has been made to solve the above-described problem, and can accurately determine the failure of both the external EGR device and the internal EGR device regardless of the amount of EGR, thereby improving the merchantability. An object of the present invention is to provide an EGR failure determination device for an internal combustion engine capable of
上記目的を達成するために、請求項1に係る発明は、気筒3aから排出された排ガスを気筒3a内に還流させるとともに、排ガスの還流量を変更する外部EGR装置(排気還流機構16)と、気筒3a内で発生した既燃ガスを排ガスよりも高温のガスとして気筒3a内に残留させるとともに、既燃ガスの残留量を変更する内部EGR装置(吸気カム位相可変機構50、排気リフト可変機構70、排気カム位相可変機構90)とを有する内燃機関3において、外部EGR装置および内部EGR装置の故障を判定する内燃機関3のEGR故障判定装置1であって、内燃機関3の運転状態を表す第1の運転状態パラメータ(アクセル開度AP、エンジン回転数NE、新気流量GIN、吸気管内圧PBA)に応じて、気筒3a内に還流する排ガス量および気筒3a内に残留する既燃ガス量の和である総EGR量と、総EGR量および気筒3a内に吸入される新気量の和である総ガス量との比率を表すEGR率パラメータ(実新気率KEGR)を算出するEGR率パラメータ算出手段(ECU2、ステップ21)と、EGR率パラメータの目標となる目標値(実新気率の目標値KEGRCMD)を設定する目標値設定手段(ECU2、ステップ60)と、EGR率パラメータおよび目標値に応じて、EGR制御用値(フィードバック補正係数KEGRFB)を算出するEGR制御用値算出手段(ECU2、ステップ80)と、EGR制御用値に応じて、外部EGR装置および内部EGR装置を制御する制御手段(ECU2、ステップ184〜191)と、EGR制御用値が所定範囲(KSTEPEIPDLL<KEGRFB<KSTEPEIPDLH)内にないときには、外部EGR装置および内部EGR装置の少なくとも一方が故障したと判定する故障判定手段(ECU2、ステップ150,155,156,157,162,163)と、内燃機関3の運転状態を表す第2の運転状態パラメータ(アクセル開度AP、エンジン回転数NE)に応じて、外部EGR装置により還流すべき排ガス量の総EGR量に対する割合を外部EGR割合EGRDIVEXとして設定するとともに、内部EGR装置により残留させるべき既燃ガス量の総EGR量に対する割合を内部EGR割合EGRDIVINとして設定するEGR割合設定手段(ECU2、ステップ61,62)と、を備え、制御手段は、外部EGR割合にさらに応じて外部EGR装置を制御するとともに、内部EGR割合にさらに応じて内部EGR装置を制御し、故障判定手段は、EGR制御用値が所定範囲内にない場合において、外部EGR割合が内部EGR割合よりも大きいとき(ステップ154,161の判別結果がNOのとき)には、外部EGR装置が故障したと判定し(ステップ156,163)、内部EGR割合が外部EGR割合よりも大きいとき(ステップ154,161の判別結果がYESのとき)には、内部EGR装置が故障したと判定する(ステップ155,162)ことを特徴とする。
In order to achieve the above object, the invention according to
この内燃機関のEGR故障判定装置によれば、EGR制御用値が、EGR率パラメータおよび目標値に応じて算出され、このEGR制御用値に応じて、外部EGR装置および内部EGR装置が制御されるとともに、EGR制御用値が所定範囲内にない状態が所定時間を超えて継続したときには、外部EGR装置および/または内部EGR装置が故障したと判定される。このように、EGR制御用値を所定範囲と比較することにより、外部EGR装置および/または内部EGR装置の故障判定が実行されるとともに、このEGR制御用値は、EGR率パラメータおよび目標値に応じて算出されるので、EGR開度と目標EGR開度との偏差の絶対値を所定値と比較する従来のEGR故障判定装置と異なり、EGR量が小さい場合でも、外部EGR装置および/または内部EGR装置の故障判定を精度よく行うことができる。すなわち、EGR量の大小にかかわらず、外部EGR装置および/または内部EGR装置の故障判定を精度よく行うことができ、それにより、高い商品性を確保できる。さらに、EGR制御用値が所定範囲内にない場合において、外部EGR割合が内部EGR割合よりも大きいときには、外部EGR装置が故障したと判定され、内部EGR割合が外部EGR割合よりも大きいときには、内部EGR装置が故障したと判定される。これらの外部EGR割合および内部EGR割合はそれぞれ、外部EGR装置および内部EGR装置により還流すべきガス量の総EGR量に対する割合として設定されるとともに、外部EGR装置が外部EGR割合にさらに応じて制御され、内部EGR装置が内部EGR割合にさらに応じて制御されるので、これらの割合の大小を比較することにより、EGR制御用値が所定範囲内にない状態は、外部EGR装置および内部EGR装置のうちのどちらの故障を主因として発生しているのかを特定することができる。すなわち、従来と異なり、2つのEGR装置のどちらが故障しているのかを的確に特定することができ、それにより、メンテナンス時の作業性を向上させることができるとともに、商品性をさらに向上させることができる(なお、本明細書において、「既燃ガスを気筒内に残留させる」ことは、既燃ガスを気筒内に残留させることに加えて、既燃ガスを、シリンダヘッド内の既燃ガス供給路などを介して、外部EGR装置により還流される排ガスよりも高温のガスとして気筒内に還流させることも含む)。 According to the EGR failure determination device for an internal combustion engine, the EGR control value is calculated according to the EGR rate parameter and the target value, and the external EGR device and the internal EGR device are controlled according to the EGR control value. At the same time, when the state where the EGR control value is not within the predetermined range continues for a predetermined time, it is determined that the external EGR device and / or the internal EGR device has failed. Thus, by comparing the EGR control value with the predetermined range, the failure determination of the external EGR device and / or the internal EGR device is executed, and the EGR control value is determined according to the EGR rate parameter and the target value. Unlike the conventional EGR failure determination device that compares the absolute value of the deviation between the EGR opening and the target EGR opening with a predetermined value, even if the EGR amount is small, the external EGR device and / or the internal EGR Device failure determination can be performed with high accuracy. That is, regardless of the amount of EGR, the failure determination of the external EGR device and / or the internal EGR device can be performed with high accuracy, thereby ensuring high merchantability . Further, when the EGR control value is not within the predetermined range, when the external EGR ratio is larger than the internal EGR ratio, it is determined that the external EGR device has failed, and when the internal EGR ratio is larger than the external EGR ratio, It is determined that the EGR device has failed. These external EGR ratio and internal EGR ratio are set as a ratio of the amount of gas to be recirculated by the external EGR device and the internal EGR device, respectively, and the external EGR device is further controlled according to the external EGR rate. Since the internal EGR device is further controlled according to the internal EGR ratio, the state where the EGR control value is not within the predetermined range can be determined by comparing the ratios of these ratios between the external EGR device and the internal EGR device. It is possible to specify which of the failures is caused mainly. That is, unlike the conventional case, it is possible to accurately identify which of the two EGR devices has failed, thereby improving the workability during maintenance and further improving the merchantability. it (in this specification, the "to remain burned gas in the cylinder", in addition to which the residual burned gas in the cylinder, the burned gas, burned gas supply in the cylinder head Including recirculation in the cylinder as a gas having a temperature higher than that of the exhaust gas recirculated by the external EGR device via a passage or the like).
請求項2に係る発明は、請求項1に記載の内燃機関3のEGR故障判定装置1において、外部EGR割合EGRDIVEXが内部EGR割合EGRDIVINよりも大きくかつ第1の所定値(値1.0)以上であるとき(ステップ128の判別結果がYESのとき)に、EGR制御用値の外部EGR用の学習値(外部EGR用学習値KEGRREFEX)を算出するとともに、内部EGR割合EGRDIVINが外部EGR割合EGRDIVEXよりも大きくかつ第2の所定値(値1.0)以上であるとき(ステップ120の判別結果がYESのとき)に、EGR制御用値の内部EGR用の学習値(内部EGR用学習値KEGRREFIN)を算出する学習値算出手段(ECU2、ステップ121,129)をさらに備え、故障判定手段は、算出されたEGR制御用値の外部EGR用の学習値が第1の所定範囲(KEGRREFEXLL<KEGRREFEX<KEGRREFEXLH)内にないとき(ステップ130,131の判別結果がYESのとき)には、外部EGR装置が故障したと判定し(ステップ134)、算出されたEGR制御用値の内部EGR用の学習値が第2の所定範囲(KEGRREFINLL<KEGRREFIN<KEGRREFINLH)内にないとき(ステップ122,123の判別結果がYESのとき)には、内部EGR装置が故障したと判定する(ステップ126)ことを特徴とする。
The invention according to
この内燃機関のEGR故障判定装置によれば、EGR制御用値の外部EGR用の学習値が、外部EGR割合が内部EGR割合よりも大きくかつ第1の所定値以上であるときに算出され、EGR制御用値の内部EGR用の学習値が、内部EGR割合が外部EGR割合よりも大きくかつ第2の所定値以上であるときに算出されるとともに、EGR制御用値の外部EGR用の学習値が第1の所定範囲内にないときには、外部EGR装置が故障したと判定され、EGR制御用値の内部EGR用の学習値が第2の所定範囲内にないときには、内部EGR装置が故障したと判定される。このように、2つのEGR制御用値の学習値をそれぞれ、2つの所定範囲と比較することにより、外部EGR装置および内部EGR装置の故障が判定されるので、EGR開度と目標EGR開度との偏差の絶対値を所定値と比較する従来のEGR故障判定装置と異なり、EGR量が小さい場合でも、外部EGR装置および内部EGR装置の故障判定を精度よく行うことができる。これに加えて、第1の所定値を外部EGR割合が内部EGR割合を大幅に上回るような値に設定し、第2の所定値を内部EGR割合が外部EGR割合を大幅に上回るような値に設定することにより、外部EGR装置および内部EGR装置のうちのどちらが故障しているのかを的確に特定することができる。その結果、2つの異なる故障判定手法によって、外部EGR装置および内部EGR装置の故障を判定できるとともに、故障した装置を特定できることにより、故障判定をさらに的確に行うことができ、判定精度をさらに向上させることができる。 According to the EGR failure determination apparatus for an internal combustion engine, the learning value for external EGR of the EGR control value is calculated when the external EGR ratio is greater than the internal EGR ratio and equal to or greater than the first predetermined value, and EGR The learning value for internal EGR of the control value is calculated when the internal EGR ratio is greater than the external EGR ratio and equal to or greater than the second predetermined value, and the learning value for external EGR of the EGR control value is When it is not within the first predetermined range, it is determined that the external EGR device has failed. When the learning value for internal EGR of the EGR control value is not within the second predetermined range, it is determined that the internal EGR device has failed. Is done. Thus, the failure of the external EGR device and the internal EGR device is determined by comparing the learning values of the two EGR control values with two predetermined ranges, respectively. Unlike the conventional EGR failure determination device that compares the absolute value of the deviation with a predetermined value, the failure determination of the external EGR device and the internal EGR device can be performed accurately even when the EGR amount is small. In addition to this, the first predetermined value is set to a value such that the external EGR ratio greatly exceeds the internal EGR ratio, and the second predetermined value is set to a value such that the internal EGR ratio significantly exceeds the external EGR ratio. By setting, it is possible to accurately identify which one of the external EGR device and the internal EGR device is malfunctioning. As a result, the failure of the external EGR device and the internal EGR device can be determined by two different failure determination methods, and the failure device can be identified, so that the failure determination can be performed more accurately and the determination accuracy is further improved. be able to.
請求項3に係る発明は、気筒3aから排出された排ガスを気筒3a内に還流させるとともに、排ガスの還流量を変更する外部EGR装置(排気還流機構16)と、気筒3a内で発生した既燃ガスを排ガスよりも高温のガスとして気筒3a内に残留させるとともに、既燃ガスの残留量を変更する内部EGR装置(吸気カム位相可変機構50、排気リフト可変機構70、排気カム位相可変機構90)とを有する内燃機関3において、外部EGR装置および内部EGR装置の故障を判定する内燃機関3のEGR故障判定装置1であって、内燃機関3の運転状態を表す第1の運転状態パラメータ(アクセル開度AP、エンジン回転数NE、新気流量GIN、吸気管内圧PBA)に応じて、気筒3a内に還流する排ガス量および気筒3a内に残留する既燃ガス量の和である総EGR量と、総EGR量および気筒3a内に吸入される新気量の和である総ガス量との比率を表すEGR率パラメータ(実新気率KEGR)を算出するEGR率パラメータ算出手段(ECU2、ステップ21)と、EGR率パラメータの目標となる目標値(実新気率の目標値KEGRCMD)を設定する目標値設定手段(ECU2、ステップ60)と、EGR率パラメータおよび目標値に応じて、EGR制御用値(フィードバック補正係数KEGRFB)を算出するEGR制御用値算出手段(ECU2、ステップ80)と、内燃機関3の運転状態を表す第2の運転状態パラメータ(アクセル開度AP、エンジン回転数NE)に応じて、外部EGR装置により還流すべき排ガス量の総EGR量に対する割合を外部EGR割合EGRDIVEXとして設定するとともに、内部EGR装置により残留させるべき既燃ガス量の総EGR量に対する割合を内部EGR割合EGRDIVINとして設定するEGR割合設定手段(ECU2、ステップ61,62)と、EGR制御用値および外部EGR割合に応じて、外部EGR装置を制御するとともに、EGR制御用値および内部EGR割合に応じて、内部EGR装置を制御する制御手段(ECU2)と、外部EGR割合EGRDIVEXが内部EGR割合EGRDIVINよりも大きくかつ第1の所定値(値1.0)以上であるとき(ステップ128の判別結果がYESのとき)に、EGR制御用値の外部EGR用の学習値(外部EGR用学習値KEGRREFEX)を算出するとともに、内部EGR割合EGRDIVINが外部EGR割合EGRDIVEXよりも大きくかつ第2の所定値(値1.0)以上であるとき(ステップ120の判別結果がYESのとき)に、EGR制御用値の内部EGR用の学習値(内部EGR用学習値KEGRREFIN)を算出する学習値算出手段(ECU2、ステップ121,129)と、算出されたEGR制御用値の外部EGR用の学習値が第1の所定範囲(KEGRREFEXLL<KEGRREFEX<KEGRREFEXLH)内にないとき(ステップ130,131の判別結果がYESのとき)には、外部EGR装置が故障したと判定し、算出されたEGR制御用値の内部EGR用の学習値が第2の所定範囲(KEGRREFINLL<KEGRREFIN<KEGRREFINLH)内にないとき(ステップ122,123の判別結果がYESのとき)には、内部EGR装置が故障したと判定する故障判定手段(ECU2、ステップ126,134)と、を備えることを特徴とする。
る。
The invention according to
The
この内燃機関のEGR故障判定装置によれば、EGR制御用値が、EGR率パラメータおよび目標値に応じて算出され、外部EGR割合および内部EGR割合がそれぞれ、外部EGR装置および内部EGR装置により還流すべきガス量の総EGR量に対する割合として設定されるとともに、外部EGR装置が、EGR制御用値および外部EGR割合に応じて制御され、内部EGR装置が、EGR制御用値および内部EGR割合に応じて制御される。さらに、EGR制御用値の外部EGR用の学習値が、外部EGR割合が内部EGR割合よりも大きくかつ第1の所定値以上であるときに算出され、EGR制御用値の内部EGR用の学習値が、内部EGR割合が外部EGR割合よりも大きくかつ第2の所定値以上であるときに算出されるとともに、EGR制御用値の外部EGR用の学習値が第1の所定範囲内にないときには、外部EGR装置が故障したと判定され、EGR制御用値の内部EGR用の学習値が第2の所定範囲内にないときには、内部EGR装置が故障したと判定される。 According to the EGR failure determination device for an internal combustion engine, the EGR control value is calculated according to the EGR rate parameter and the target value, and the external EGR rate and the internal EGR rate are recirculated by the external EGR device and the internal EGR device, respectively. The ratio of the gas amount to the total EGR amount is set, and the external EGR device is controlled according to the EGR control value and the external EGR rate, and the internal EGR device is controlled according to the EGR control value and the internal EGR rate. Be controlled. Further, the learning value for external EGR of the EGR control value is calculated when the external EGR ratio is larger than the internal EGR ratio and equal to or greater than the first predetermined value, and the learning value for internal EGR of the EGR control value is calculated. Is calculated when the internal EGR ratio is greater than the external EGR ratio and greater than or equal to the second predetermined value, and the external EGR learning value of the EGR control value is not within the first predetermined range. When it is determined that the external EGR device has failed and the internal EGR learning value of the EGR control value is not within the second predetermined range, it is determined that the internal EGR device has failed.
このように、2つのEGR制御用値の学習値を、2つの所定範囲とそれぞれ比較することにより、外部EGR装置および内部EGR装置の故障が判定されるので、EGR開度と目標EGR開度との偏差の絶対値を所定値と比較する従来のEGR故障判定装置と異なり、EGR量の大小にかかわらず、外部EGR装置および内部EGR装置の故障判定を精度よく行うことができる。これに加えて、第1の所定値を外部EGR割合が内部EGR割合を大幅に上回るような値に設定し、第2の所定値を内部EGR割合が外部EGR割合を大幅に上回るような値に設定することにより、外部EGR装置および内部EGR装置のうちのどちらが故障しているのかを的確に特定することができる。以上により、商品性を向上させることができる。 As described above, the failure of the external EGR device and the internal EGR device is determined by comparing the learning values of the two EGR control values with two predetermined ranges, respectively. Unlike the conventional EGR failure determination device that compares the absolute value of the deviation with a predetermined value, the failure determination of the external EGR device and the internal EGR device can be performed accurately regardless of the magnitude of the EGR amount. In addition to this, the first predetermined value is set to a value such that the external EGR ratio greatly exceeds the internal EGR ratio, and the second predetermined value is set to a value such that the internal EGR ratio significantly exceeds the external EGR ratio. By setting, it is possible to accurately identify which one of the external EGR device and the internal EGR device is malfunctioning. As described above, merchantability can be improved.
請求項4に係る発明は、請求項1ないし3のいずれかに記載の内燃機関3のEGR故障判定装置1において、内燃機関3は、少なくとも圧縮着火燃焼運転が可能な内燃機関3で構成され、故障判定手段により外部EGR装置および内部EGR装置の一方が故障したと判定されたとき(ステップ109の判別結果がYESのとき)に、内燃機関3の圧縮着火燃焼運転を禁止する禁止手段(ECU2、ステップ4,9,12,14,27,29,111)をさらに備えることを特徴とする。
The invention according to
一般に、内燃機関を圧縮着火燃焼運転する場合、混合気の燃焼に際して筒内温度を高精度で制御する必要があるため、外部EGR装置および内部EGR装置の一方が故障している状態で、内燃機関を圧縮着火燃焼運転すると、筒内温度を適切に制御できないことで、混合気の燃焼状態が悪化するおそれがある。これに対して、このEGR故障判定装置によれば、外部EGR装置および内部EGR装置の一方が故障したと判定されたときには、少なくとも圧縮着火燃焼運転が可能な内燃機関において、圧縮着火燃焼運転が禁止されるので、圧縮着火燃焼運転を行うことによる混合気の燃焼状態の悪化を回避できる。 In general, when a compression ignition combustion operation is performed on an internal combustion engine, it is necessary to control the in-cylinder temperature with high accuracy when the air-fuel mixture is combusted. When the compression ignition combustion operation is performed, the in-cylinder temperature cannot be appropriately controlled, so that the combustion state of the air-fuel mixture may be deteriorated. On the other hand, according to this EGR failure determination device, when it is determined that one of the external EGR device and the internal EGR device has failed, the compression ignition combustion operation is prohibited at least in the internal combustion engine capable of the compression ignition combustion operation. Therefore, the deterioration of the combustion state of the air-fuel mixture due to the compression ignition combustion operation can be avoided.
以下、図面を参照しながら、本発明の一実施形態に係る内燃機関のEGR故障判定装置について説明する。このEGR故障判定装置は、図2に示すように、ECU2を備えており、このECU2は、後述するように、内燃機関(以下「エンジン」という)3の運転状態に応じて、EGR故障判定処理を含む各種の制御処理を実行する。
Hereinafter, an EGR failure determination apparatus for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 2, the EGR failure determination apparatus includes an
図1および図3に示すように、エンジン3は、4組の気筒3aおよびピストン3b(1組のみ図示)を有する直列4気筒ガソリンエンジンであり、図示しない車両に搭載されているとともに、各気筒3aのピストン3bとシリンダヘッド3cとの間に燃焼室3gが形成されている。
As shown in FIGS. 1 and 3, the
エンジン3は、気筒3a毎に設けられた一対の吸気弁4,4(1つのみ図示)および一対の排気弁7,7(図9参照)と、吸気カムシャフト5および吸気カム6を有するとともに各吸気弁4を開閉駆動する吸気側動弁機構40と、排気カムシャフト8および排気カム9を有するとともに各排気弁7を開閉駆動する排気側動弁機構60と、燃料噴射弁10(図2参照)と、点火プラグ11(図2参照)などを備えている。
The
吸気弁4は、そのステム4aがガイド4bに摺動自在に嵌合しており、このガイド4bは、シリンダヘッド3cに固定されている。さらに、吸気弁4は、上下のスプリングシート4c,4dと、これらの間に設けられたバルブスプリング4eとにより、閉弁方向に付勢されている。
The
また、吸気カムシャフト5および排気カムシャフト8はそれぞれ、図示しないホルダを介して、シリンダヘッド3cに回動自在に取り付けられているとともに、気筒3aの配列方向に沿って延びている。この吸気カムシャフト5の一端部上には、吸気スプロケット(図示せず)が同軸に配置され、回転自在に設けられている。この吸気スプロケットは、図示しないタイミングチェーンを介してクランクシャフト3dに連結され、後述する吸気カム位相可変機構50を介して吸気カムシャフト5に連結されている。以上の構成により、吸気カムシャフト5は、クランクシャフト3dが2回転する毎に1回転する。
Each of the
また、吸気カム6は、吸気カムシャフト5上にこれと一体に回転するように設けられており、図示しないが、気筒3a毎に設けられた2つの低速カムと、気筒3a毎に設けられ、低速カムよりも高いカムノーズを有する1つの高速カムで構成されている。
The
さらに、吸気側動弁機構40は、クランクシャフト3dの回転に伴う吸気カムシャフト5の回転により、各気筒3aの吸気弁4を開閉駆動するものであり、後述するように、吸気弁4のリフトを2段階に切り換えるとともに、吸気弁4のバルブタイミングを無段階に変更する可変式の動弁機構で構成されている。なお、本実施形態では、「吸気弁4のリフト(以下「吸気リフト」という)」は、吸気弁4の最大揚程を表すものとする。
Further, the intake
一方、排気弁7は、そのステム7aがガイド7bに摺動自在に嵌合しており、このガイド7bは、シリンダヘッド3cに固定されている。さらに、排気弁7は、上下のスプリングシート7c,7dと、これらの間に設けられたバルブスプリング7eとを備えており、このバルブスプリング7eにより、閉弁方向に付勢されている。
On the other hand, the
また、排気カムシャフト8の一端部上には、排気スプロケット(図示せず)が同軸に配置され、回転自在に設けられている。この排気スプロケットは、図示しないタイミングチェーンを介してクランクシャフト3dに連結され、後述する排気カム位相可変機構90を介して排気カムシャフト8に連結されている。以上の構成により、排気カムシャフト8は、クランクシャフト3dが2回転する毎に1回転する。さらに、排気カム9は、排気カムシャフト8上にこれと一体に回転するように気筒3a毎に設けられている。
An exhaust sprocket (not shown) is coaxially disposed on one end of the
さらに、排気側動弁機構60は、クランクシャフト3dの回転に伴う排気カムシャフト8の回転により、各気筒3aの排気弁7を開閉駆動するものであり、後述するように、排気弁7のリフトおよびバルブタイミングを無段階に変更する可変式の動弁機構で構成されている。なお、本実施形態では、「排気弁7のリフト(以下「排気リフト」という)」は、排気弁7の最大揚程を表すものとする。
Further, the exhaust
一方、燃料噴射弁10は、気筒3a毎に設けられ、燃料を気筒3a内に直接噴射するようにシリンダヘッド3cに取り付けられている。すなわち、エンジン3は直噴エンジンとして構成されている。また、燃料噴射弁10は、ECU2に電気的に接続されており、ECU2により、後述する燃料噴射量TOUTに基づいて、開弁時間および開弁タイミングが制御される。すなわち燃料噴射時間および噴射タイミングが制御される。
On the other hand, the
また、点火プラグ11も、気筒3a毎に設けられ、シリンダヘッド3cに取り付けられている。点火プラグ11は、ECU2に電気的に接続されており、ECU2により、点火時期に応じたタイミングで燃焼室3g内の混合気を燃焼させるように、放電状態が制御される。
A
一方、エンジン3には、クランク角センサ20および水温センサ21が設けられている。このクランク角センサ20は、マグネットロータおよびMREピックアップで構成されており、クランクシャフト3dの回転に伴い、いずれもパルス信号であるCRK信号およびTDC信号をECU2に出力する。
On the other hand, the
このCRK信号は、所定クランク角(例えば10゜)毎に1パルスが出力され、ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。なお、本実施形態では、エンジン回転数NEが第1および第2の運転状態パラメータに相当する。また、TDC信号は、各気筒3aのピストン3bが吸気行程のTDC位置よりも若干、手前の所定のクランク角位置にあることを表す信号であり、所定クランク角毎に1パルスが出力される。
The CRK signal is output at one pulse every predetermined crank angle (for example, 10 °), and the
さらに、水温センサ21は、エンジン3のシリンダブロック3e内を循環する冷却水の温度であるエンジン水温TWを検出して、それを表す検出信号を、ECU2に出力する。
Further, the
一方、エンジン3の吸気管12には、上流側から順に、エアフローセンサ22およびスロットル弁機構13がそれぞれ設けられている。このエアフローセンサ22は、熱線式エアフローメータで構成されており、吸気管12内を流れる新気の流量(以下「新気流量」という)GINを検出して、それを表す検出信号をECU2に出力する。なお、本実施形態では、新気流量GINが第1の運転状態パラメータに相当する。
On the other hand, an
さらに、スロットル弁機構13は、スロットル弁13aおよびこれを開閉駆動するTHアクチュエータ13bなどを備えている。スロットル弁13aは、吸気管12の途中に回動自在に設けられており、回動に伴う開度の変化により吸気管12内の新気流量を変化させる。THアクチュエータ13bは、ECU2に接続されたモータにギヤ機構(いずれも図示せず)を組み合わせたものであり、ECU2からの後述するTH制御入力U_THによって駆動されることにより、スロットル弁13aの開度を変化させる。
Furthermore, the
また、スロットル弁13aには、これを開弁方向および閉弁方向にそれぞれ付勢する2つのばね(いずれも図示せず)が取り付けられている。これら2つのばねの付勢力により、スロットル弁13aは、後述するように、TH制御入力U_THが値0に設定されているときや、TH制御入力U_THがTHアクチュエータ13bに入力されていないときには、所定の初期開度に保持される。この初期開度は、全閉状態に近い値であって、停車中はアイドル運転やエンジン始動を適切に行うことができると同時に、走行中は低速走行状態を維持できるような吸入空気量を確保できる値(例えば6゜)に設定されている。
The
また、吸気管12のスロットル弁機構13よりも下流側には、吸気温センサ23および吸気管内圧センサ24(いずれも図2参照)が設けられている。この吸気温センサ23は、吸気管12内を流れる空気の温度(以下「吸気温」という)TAを検出して、それを表す検出信号をECU2に出力する。吸気管内圧センサ24は、例えば半導体圧力センサなどで構成され、吸気管12内の圧力(以下「吸気管内圧」という)PBAを検出して、それを表す検出信号をECU2に出力する。この吸気管内圧PBAは、絶対圧として検出される。なお、本実施形態では、吸気管内圧PBAが第1の運転状態パラメータに相当する。
Further, an intake
一方、エンジン3の排気管14には、上流側から順に、LAFセンサ25および触媒装置15がそれぞれ設けられている。LAFセンサ25は、ジルコニアおよび白金電極などで構成され、理論空燃比よりもリッチなリッチ領域から極リーン領域までの広範囲な空燃比の領域において、排気管14内を流れる排ガス中の酸素濃度をリニアに検出し、それを表す検出信号をECU2に出力する。ECU2は、このLAFセンサ25の検出信号の値に基づき、排ガス中の空燃比を表す検出空燃比KACTを算出する。この場合、検出空燃比KACTは、具体的には当量比として算出される。
On the other hand, the
また、エンジン3には、排気還流機構16(外部EGR装置)が設けられている。この排気還流機構16は、排気管14内の排ガスを吸気管12側に還流させるものであり、吸気管12および排気管14の間に接続されたEGR管16aと、このEGR管16aを開閉するEGR制御弁16bなどで構成されている。EGR管16aの一端は、排気管14の触媒装置15よりも上流側の部分に開口し、他端は、吸気管12のスロットル弁機構13よりも下流側の部分に開口している。
Further, the
また、EGR制御弁16bは、リニア電磁弁タイプのもので、ECU2からの後述するEGRリフト制御入力U_LIFTに応じて、そのリフト(以下「EGRリフト」という)が最大値と最小値との間でリニアに変化するように構成されており、それにより、EGR管16aの開度すなわち排気還流量(以下「外部EGR量」という)を変化させる。
The
このEGR制御弁16bには、EGRリフトセンサ26が取り付けられており、EGRリフトセンサ26は、EGR制御弁16bの実際のEGRリフトLACTを検出して、それを表す検出信号をECU2に出力する。ECU2は、後述するように、EGR制御弁16bを介して、EGRリフトLACTが目標EGRリフトLCMDに収束するように、外部EGR量を制御する。なお、以下の説明では、排気還流機構16により排気を還流させることを「外部EGR」という。
An
次に、前述した吸気側動弁機構40について説明する。この吸気側動弁機構40は、図4に示すように、吸気カムシャフト5、吸気カム6、吸気リフト切換機構41および吸気カム位相可変機構50などを備えている。
Next, the intake
吸気リフト切換機構41は、本出願人が特開2000−227013号公報などで既に提案したものと同様に構成されているので、その詳細な説明は省略するが、ロッカアームシャフト42と、これに回動自在に取り付けられた2つの低速ロッカアーム43,43(1つのみ図示)および高速ロッカアーム(図示せず)と、ECU2に接続された吸気リフト電磁弁44(図2参照)などを備えている。
The intake
この吸気リフト切換機構41では、ECU2からの吸気リフト制御入力U_VTECにより吸気リフト電磁弁44が制御されることによって、吸気リフト切換機構41の動作モードが低リフトモードまたは高リフトモードに切り換えられる。この低リフトモードでは、吸気カムシャフト5が回転すると、低速カムにより低速ロッカアーム43が駆動され、高速カムにより高速ロッカアームが駆動されるものの、高速ロッカアームは、吸気弁4とは無関係にロッカアームシャフト42の回りを回動する。それにより、吸気弁4は、低速ロッカアーム43によって開閉駆動され、所定のリフトでかつ所定の開弁時間で開閉する。
In the intake
一方、高リフトモードでは、吸気カムシャフト5が回転すると、高速カムにより駆動されることで、高速ロッカアームが回動するとともに、これと一体に低速ロッカアーム43が回動する。その結果、吸気弁4は、低速ロッカアーム43を介して高速ロッカアームにより開閉駆動され、それによって、低リフトモードと比べて、より高いリフトでかつより長い開弁時間で開閉する。なお、エンジン3が後述する圧縮着火燃焼モードで運転されるときには、吸気リフト切換機構41の動作モードが低リフトモードに設定される。
On the other hand, in the high lift mode, when the
次に、吸気カム位相可変機構50について説明する。この吸気カム位相可変機構50は、吸気カムシャフト5のクランクシャフト3dに対する相対的な位相(以下「吸気カム位相」という)CAINを無段階に進角側または遅角側に変更するものであり、吸気カムシャフト5の吸気スプロケット側の端部に設けられている。図5に示すように、吸気カム位相可変機構50は、ハウジング51、3枚羽根式のベーン52、油圧ポンプ53および吸気カム位相電磁弁54などを備えている。
Next, the intake cam
このハウジング51は、吸気カムシャフト5上の吸気スプロケットと一体に構成されており、互いに等間隔に形成された3つの隔壁51aを備えている。ベーン52は、吸気カムシャフト5の吸気スプロケット側の端部に同軸に取り付けられ、吸気カムシャフト5から外方に放射状に延びているとともに、ハウジング51内に回転可能に収容されている。また、ハウジング51では、隔壁51aとベーン52との間に、3つの進角室55および3つの遅角室56が形成されている。
The
油圧ポンプ53は、クランクシャフト3dに連結された機械式のものであり、クランクシャフト3dが回転すると、それに伴って、エンジン3のオイルパン3eに蓄えられた潤滑用のオイルを、油路57cを介して吸い込むとともに、これを昇圧した状態で、油路57cを介して吸気カム位相電磁弁54に供給する。
The
吸気カム位相電磁弁54は、スプール弁機構54aおよびソレノイド54bを組み合わせたものであり、進角油路57aおよび遅角油路57bを介して、進角室55および遅角室56にそれぞれ接続されているとともに、油圧ポンプ53から供給された油圧Poilを、進角油圧Padおよび遅角油圧Prtとして、進角室55および遅角室56にそれぞれ出力する。吸気カム位相電磁弁54のソレノイド54bは、ECU2に電気的に接続されており、ECU2からの後述する吸気位相制御入力U_CAINにより、スプール弁機構54aのスプール弁体を所定の移動範囲内で移動させることで、進角油圧Padおよび遅角油圧Prtをいずれも変化させる。
The intake cam phase
以上の吸気カム位相可変機構50では、油圧ポンプ53の動作中、吸気カム位相電磁弁54が吸気位相制御入力U_CAINに応じて作動することにより、進角油圧Padが進角室55に、遅角油圧Prtが遅角室56にそれぞれ供給され、それにより、ベーン52とハウジング51との間の相対的な位相が進角側または遅角側に変更される。その結果、前述した吸気カム位相CAINが、所定の最遅角値と所定の最進角値との間で連続的に変化し、それにより、吸気弁4のバルブタイミングは、図6に実線で示す最遅角タイミングと、図6に2点鎖線で示す最進角タイミングとの間で無段階に変更される。
In the intake cam phase
なお、この吸気カム位相可変機構50には、図示しないロック機構が設けられており、このロック機構により、吸気カム位相CAINが吸気位相制御入力U_CAINに対応する値に保持される。さらに、油圧ポンプ53からの供給油圧が低いとき、吸気位相制御入力U_CAINが後述するように値0に設定されているとき、または断線などによりU_CAINが吸気カム位相電磁弁54に入力されないときには、ロック機構により、吸気カム位相可変機構50による吸気カム位相CAINの変更が禁止され、吸気カム位相CAINが所定の故障時用値に保持される。
The intake cam phase
一方、吸気カムシャフト5の吸気カム位相可変機構50と反対側の端部には、吸気カム角センサ27(図2参照)が設けられている。この吸気カム角センサ27は、例えばマグネットロータおよびMREピックアップで構成されており、吸気カムシャフト5の回転に伴い、パルス信号であるINCAM信号を所定のカム角(例えば1゜)ごとにECU2に出力する。ECU2は、このINCAM信号および前述したCRK信号に基づき、吸気カム位相CAINを算出する。
On the other hand, an intake cam angle sensor 27 (see FIG. 2) is provided at the end of the
次に、前述した排気側動弁機構60について説明する。この排気側動弁機構60は、図7に示すように、排気カムシャフト8、排気カム9、排気リフト可変機構70および排気カム位相可変機構90などを備えている。
Next, the exhaust
この排気リフト可変機構70は、クランクシャフト3dの回転に伴う排気カムシャフト8の回転により排気弁7を開閉駆動するとともに、排気リフトを値0と所定の最大値LEXMAX(図10参照)との間で無段階に変更するものであり、図8〜9に示すように、コントロールシャフト71およびロッカアームシャフト72と、これらのシャフト71,72上に気筒3a毎に設けられたロッカアーム機構73と、これらのロッカアーム機構73を同時に駆動する排気リフトアクチュエータ80などを備えている。
The variable
コントロールシャフト71は、回動軸部71a、ホルダ部71bおよび偏心軸部71cを一体に組み立てたものであり、排気カムシャフト8に沿って延び、回動軸部71aがシリンダヘッド3cに回動自在に取り付けられているとともに、その一端部が排気リフトアクチュエータ80に連結されている。
The
一方、各ロッカアーム機構73は、上下のロッカアーム74,75を組み合わせたものであり、この上ロッカアーム74は、一対のリンク74a,74a、ローラ軸74b、ローラ74cおよび一対のコイルばね74d,74dを備えている。ローラ軸74bは、その両端部がリンク74a,74aの一端部にそれぞれ取り付けられているとともに、リンク74a,74aにより回転自在に支持されている。また、ローラ74cは、このローラ軸74b上に回転自在に設けられている。
On the other hand, each
また、各リンク74aの他端部は、コントロールシャフト71の偏心軸部71cに回動自在に取り付けられているとともに、コイルばね74dを介してホルダ部71bに連結されている。リンク74aでは、このコイルばね74dの付勢力により、ローラ74cが排気カム9のカム面に当接するとともに、ローラ74cが排気カム9のカム面のベース円部に当接しているときには、ローラ軸74bは、その軸心が回動軸部71aの軸線上に位置するような原点位置(図7に示す位置)に保持される。
The other end of each
一方、下ロッカアーム75は、その一端部がロッカアームシャフト72に回動自在に支持され、他端部にはアジャストボルト75a,75aが取り付けられており、これらのアジャストボルト75a,75aを介して、各排気弁7の上端に当接している。
On the other hand, one end of the
また、下ロッカアーム75は、上方に突出する一対の案内部75b,75bを備えている。各案内部75bは、その上面が上ロッカアーム74のローラ軸74bを案内する案内面75cになっており、バルブスプリング7eの付勢力により、この案内面75cを介してローラ軸74bに当接している。この案内面75cは、リンク74aが図7に実線で示す閉弁位置にある場合の偏心軸部71cを中心とする円弧と一致するような、下方に凸の円弧形状を有している。また、案内部75bとローラ軸74bが互いに当接している状態では、ローラ74cは、案内部75b,75b間に位置するとともに、下ロッカアーム75に当接することなく、排気カム9のみに当接する。
The
一方、排気リフトアクチュエータ80は、モータおよび減速ギヤ機構(いずれも図示せず)などを組み合わせたものであり、ECU2に電気的に接続されているとともに、後述するように、ECU2により駆動されると、コントロールシャフト71をその回動軸部71aを中心として回動させる。このコントロールシャフト71の回動に伴い、リンク74aもローラ軸74bを中心として回動する。
On the other hand, the
次に、以上のように構成された排気リフト可変機構70の動作について説明する。この排気リフト可変機構70では、ECU2からの後述する排気リフト制御入力U_SAAEXにより、排気リフトアクチュエータ80が駆動されると、コントロールシャフト71が回動する。その際、図示しないストッパにより、コントロールシャフト71の回動角SAAEXは所定範囲内に規制され、それにより、リンク74aの回動範囲も、例えばローラ軸74bが前述した原点位置にある場合、図7に実線で示すゼロリフト位置と図7に2点鎖線で示す最大リフト位置との間に規制される。
Next, the operation of the variable
このようにリンク74aがゼロリフト位置にある場合、排気カム9が回転し、そのカムノーズによりローラ74cがロッカアームシャフト72側に押されると、リンク74aは偏心軸部71cを中心として、図7の時計回りに回動する。その際、前述したように、下ロッカアーム75の案内面75cが偏心軸部71cを中心とする円弧と一致するような形状を有しているので、バルブスプリング7eの付勢力により、下ロッカアーム75は図7に示す閉弁位置に保持される。それにより、排気リフトは値0に保持され、排気弁7は閉弁状態に保持される。
When the
一方、リンク74aがゼロリフト位置から最大リフト位置側の位置まで回動し、その位置に保持されている状態では、排気カム9の回転により、リンク74aが偏心軸部71cを中心として図7の時計回りに回動すると、下ロッカアーム75は、バルブスプリング7eの付勢力に抗しながら、図7に示す閉弁位置から下方に回動し、排気弁7を開放する。その際、下ロッカアーム75の回動量すなわち排気リフトは、リンク74aが最大リフト位置側に近い位置にあるほど、より大きくなる。
On the other hand, when the
以上の理由により、排気弁7は、リンク74aが最大リフト位置側に近い位置にあるほど、より大きなリフトで開弁し、具体的には、排気カム9の回転中、排気弁7は、リンク74aが最大リフト位置にあるときには、図10に実線で示すバルブリフト曲線に従って開弁し、排気リフトは、その最大値LEXMAXを示す。したがって、この排気リフト可変機構70では、排気リフトアクチュエータ80を介して、リンク74aをゼロリフト位置と最大リフト位置との間で回動させることにより、排気リフトを値0と所定の最大値LEXMAXとの間で無段階に変化させることができる。
For the above reasons, the
なお、この排気リフト可変機構70には、図示しないロック機構が設けられており、このロック機構により、排気リフト制御入力U_SAAEXが後述するように値0に設定されているとき、または断線などにより排気リフト制御入力U_SAAEXが排気リフトアクチュエータ80に入力されないときには、コントロールシャフト71の回動角すなわち排気リフトが所定の故障時用値に保持される。
The exhaust
また、排気リフト可変機構70には、回動角センサ28が設けられており(図2参照)、この回動角センサ28は、コントロールシャフト71の回動角SAAEXを検出して、それを表す検出信号をECU2に出力する。
Further, the exhaust
次に、排気カム位相可変機構90について説明する。この排気カム位相可変機構90は、排気カムシャフト8のクランクシャフト3dに対する相対的な位相(以下「排気カム位相」という)CAEXを無段階に進角側または遅角側に変更するものであり、排気カムシャフト8の排気スプロケット側の端部に設けられている。
Next, the exhaust cam
この排気カム位相可変機構90は、前述した吸気カム位相可変機構50と同様に構成されているので、その詳細な説明は省略するが、排気カム位相電磁弁91などを備えており、ECU2からの後述する排気位相制御入力U_CAEXにより排気カム位相電磁弁91が駆動されると、排気カム位相CAEXを、所定の最遅角値と所定の最進角値との間で連続的に変化させる。それにより、排気弁7のバルブタイミングは、図6に実線で示す最遅角タイミングと、図6に2点鎖線で示す最進角タイミングとの間で無段階に変更される。
Since the exhaust cam phase
なお、この排気カム位相可変機構90には、図示しないロック機構が設けられており、このロック機構により、排気カム位相CAEXが排気位相制御入力U_CAEXに対応する値に保持される。さらに、排気位相制御入力U_CAEXが後述するように値0に設定されているとき、または断線などにより排気位相制御入力U_CAEXが排気カム位相電磁弁91に入力されないときには、ロック機構により、排気カム位相可変機構90による排気カム位相CAEXの変更が禁止され、排気カム位相CAEXが所定の故障時用値に保持される。
The exhaust cam phase
一方、排気カムシャフト8の排気カム位相可変機構90と反対側の端部には、排気カム角センサ29(図2参照)が設けられている。この排気カム角センサ29は、例えばマグネットロータおよびMREピックアップで構成されており、排気カムシャフト8の回転に伴い、パルス信号であるEXCAM信号を所定のカム角(例えば1゜)ごとにECU2に出力する。ECU2は、このEXCAM信号および前述したCRK信号に基づき、排気カム位相CAEXを算出する。
On the other hand, an exhaust cam angle sensor 29 (see FIG. 2) is provided at the end of the
以上のように、このエンジン3では、吸気カム位相可変機構50により、吸気弁4のバルブタイミングを無段階に変更できるとともに、排気リフト可変機構70および排気カム位相可変機構90により、排気弁7のリフトおよびバルブタイミングを無段階に変更でき、それにより、燃焼行程後も気筒3a内に残留する既燃ガスの量(以下「内部EGR量」という)を、3つの可変機構50,70,90により自在に変更できるように構成されている。なお、本実施形態では、3つの可変機構50,70,90が内部EGR装置に相当する。また、以下の説明では、3つの可変機構50,70,90により既燃ガスを気筒3a内に残留させることを「内部EGR」という。
As described above, in this
さらに、ECU2には、大気圧センサ30、アクセル開度センサ31、スロットル弁開度センサ32および排気温センサ33が接続されている。この大気圧センサ30は、半導体圧力センサで構成されており、大気圧PAを検出して、それを表す検出信号をECU2に出力する。アクセル開度センサ31は、図示しないアクセルペダルの操作量であるアクセル開度APを検出して、それを表す検出信号をECU2に出力する。なお、本実施形態では、アクセル開度APが第1および第2の運転状態パラメータに相当する。
Further, an
また、スロットル弁開度センサ32は、ポテンショメータで構成され、スロットル弁13bの開度(以下「スロットル弁開度」という)THを検出して、それを表す検出信号をECU2に出力する。さらに、排気温センサ33は、排気管14内を流れる排ガスの温度(以下「排気温」という)TEXを検出して、それを表す検出信号をECU2に出力する。
The throttle
一方、ECU2は、CPU、RAM、ROMおよびI/Oインターフェース(いずれも図示せず)などからなるマイクロコンピュータで構成されており、前述した各種のセンサ20〜33の検出信号などに応じて、エンジン3の運転状態を判別し、排気還流機構16および3つの可変機構50,70,90の故障判定を行うとともに、各種の制御処理を実行する。
On the other hand, the
具体的には、ECU2は、エンジン3の運転状態に応じて、後述するように、燃料噴射制御処理、故障判定処理を含むEGR制御処理、点火時期制御処理および可変機構制御処理などを実行する。これらの制御処理により、エンジン3は、後述する圧縮着火燃焼の実行条件が成立しているときには、混合気を火花点火することなく圧縮自着火により燃焼させる圧縮着火燃焼モードで運転され、圧縮着火燃焼の実行条件が成立していないときには、混合気を火花点火により燃焼させる火花点火燃焼モードで運転される。
Specifically, the
なお、本実施形態では、ECU2が、EGR率パラメータ算出手段、目標値設定手段、EGR制御用値算出手段、制御手段、故障判定手段、EGR割合設定手段、学習値算出手段および禁止手段に相当する。
In this embodiment, the
以下、図11を参照しながら、ECU2により、TDC信号の発生に同期する制御周期で実行される制御処理について説明する。なお、以下の説明において算出される各種の値は、ECU2のRAM内に記憶されるものとする。この処理では、まず、ステップ1(図では「S1」と略す。以下同じ)で、後述する外部EGR過小故障フラグFS_EXEGRDNが「1」であるか否かを判別する。
Hereinafter, a control process executed by the
この判別結果がNOのときには、ステップ2に進み、エンジン回転数NEおよびアクセル開度APに応じて、図12に示すマップを検索することにより、要求トルクPMCMDを算出する。同図の記号i,jは、正の整数を示しており、この点は以下の説明においても同様である。このマップでは、要求トルクPMCMDは、エンジン回転数NEが高いほど、またはアクセル開度APが大きいほど、より大きな値に設定されている。これは、エンジン回転数NEが高いほど、またはアクセル開度APが大きいほど、エンジン負荷がより大きい状態になるので、それに対応するためである。 When the determination result is NO, the process proceeds to step 2, and the required torque PMCMD is calculated by searching the map shown in FIG. 12 according to the engine speed NE and the accelerator pedal opening AP. Symbols i and j in the figure indicate positive integers, and this is the same in the following description. In this map, the required torque PMCMD is set to a larger value as the engine speed NE is higher or the accelerator pedal opening AP is larger. This is because the engine load becomes larger as the engine speed NE is higher or the accelerator pedal opening AP is larger, and this is to cope with it.
一方、ステップ1の判別結果がYESで、排気還流機構16の故障により外部EGR量が過小な状態にあるときには、ステップ3に進み、要求トルクPMCMDを所定のリミット値PMEXEGRLMTに設定する。
On the other hand, if the determination result in
ステップ2または3に続くステップ4では、後述するEGR正常フラグF_EGROKが「1」であるか否かを判別する。この判別結果がYESで、内部EGRおよび外部EGRがいずれも正常に行われているときには、ステップ5に進み、エンジン水温TWが所定温度TWHCCIよりも高いか否かを判別する。
In
この判別結果がYESで、TW>TWHCCIであるときには、ステップ6に進み、排気温TEXが所定温度TEXHCCIよりも高いか否かを判別する。この判別結果がYESで、TEX>TEXHCCIであるときには、ステップ7に進み、要求トルクPMCMDおよびエンジン回転数NEに応じて、図13に示すマップを検索することにより、エンジン3が圧縮着火燃焼を行うべきHCCI(Homogeneous Charge Compression Ignition)運転領域(図中にハッチングで示す領域)にあるか否かを判別する。
When the determination result is YES and TW> TWHCCI, the process proceeds to step 6 to determine whether or not the exhaust gas temperature TEX is higher than the predetermined temperature TEXHCCI. If the determination result is YES and TEX> TEXHCCI, the process proceeds to step 7 where the
この判別結果がYESで、エンジン3が圧縮着火燃焼を行うべきHCCI運転領域にあるときには、圧縮着火燃焼運転の実行条件が成立しているとして、ステップ8で、それを表すために圧縮着火燃焼フラグF_HCCIを「1」に設定する。
If the determination result is YES and the
一方、以上のステップ4〜7のいずれかの判別結果がNOであるときには、圧縮着火燃焼運転の実行条件が成立していないとして、ステップ9で、それを表すために圧縮着火燃焼フラグF_HCCIを「0」に設定する。
On the other hand, when the determination result in any of the
ステップ8または9に続くステップ10では、燃料噴射制御処理を実行する。この燃料噴射制御処理は、燃料噴射弁10を介して気筒3a内に噴射すべき燃料量(以下「燃料噴射量」という)TOUTおよびその噴射時期などを算出するものであり、その詳細については後述する。
In
次いで、ステップ11で、EGR制御処理を実行する。このEGR制御処理は、排気還流機構16を介して外部EGR量を制御するための、目標EGRリフトLCMDを算出し、3つの可変機構50,70,90を介して内部EGR量を制御するための、目標回動角SAAEXCMD、目標排気カム位相CAEXCMDおよび目標吸気カム位相CAINCMDを算出するとともに、これらの4つの機構16,50,70,90の故障判定を行うものであり、その詳細については後述する。
Next, in
次に、ステップ12に進み、前述した圧縮着火燃焼フラグF_HCCIが「1」であるか否かを判別する。この判別結果がYESで、圧縮着火燃焼運転の実行条件が成立しているときには、ステップ13で、点火プラグ11による点火を中止した後、本処理を終了する。その結果、エンジン3は、圧縮着火燃焼モードで運転される。
Next, the routine proceeds to step 12 where it is determined whether or not the compression ignition combustion flag F_HCCI described above is “1”. When the determination result is YES and the execution condition of the compression ignition combustion operation is satisfied, the ignition process by the
一方、ステップ12の判別結果がNOのとき、すなわち、圧縮着火燃焼運転の実行条件が不成立で、火花点火燃焼運転を実行すべき運転状態にあるときには、ステップ14で、点火時期制御処理を実行した後、本処理を終了する。この点火時期制御処理では、その詳細についてはここでは省略するが、点火時期がエンジン負荷などに応じて算出される。その結果、点火プラグ11により、算出された点火時期で混合気が点火され、エンジン3は、火花点火燃焼モードで運転される。
On the other hand, when the determination result of
以下、図14を参照しながら、前述した燃料噴射制御処理について説明する。この処理では、まず、ステップ20で、基本燃料噴射量TIMを算出する。この基本燃料噴射量TIMは、具体的には図15に示すように算出される。
Hereinafter, the above-described fuel injection control process will be described with reference to FIG. In this process, first, at
すなわち、まず、ステップ30において、吸入新気量GAIRCYLを算出する。この吸入新気量GAIRCYLは、気筒3a内に吸入されたと推定される新気量であり、エアフローセンサ22により検出された新気流量GINおよびエンジン回転数NEなどに基づいて算出される。
That is, first, in
次いで、ステップ31に進み、上記ステップ30で算出した吸入新気量GAIRCYLに応じて、図16に示すマップを検索することにより、第1基本燃料噴射量TIMAFMXを算出する。このマップでは、吸入新気量GAIRCYLが大きいほど、第1基本燃料噴射量TIMAFMXがより大きい値に設定されている。これは、吸入新気量GAIRCYLが大きいほど、エンジン3に要求される出力がより大きくなることによる。
Next, the routine proceeds to step 31, where the first basic fuel injection amount TIMAFMX is calculated by searching the map shown in FIG. 16 according to the intake fresh air amount GAIRCYL calculated at
次に、ステップ32に進み、吸気リフトフラグF_VTECが「1」であるか否かを判別する。この吸気リフトフラグF_VTECは、エンジン3の運転領域が吸気リフト切換機構41の動作モードを前述した高リフトモードに設定すべき領域にあるときには「1」に設定され、低リフトモードに設定すべき領域にあるときには「0」に設定される。なお、図中では、低リフトモードを「LO.MD」と表記し、高リフトモードを「HI.MD」と表記する。
Next, the routine proceeds to step 32, where it is determined whether or not the intake lift flag F_VTEC is “1”. The intake lift flag F_VTEC is set to “1” when the operation region of the
ステップ32の判別結果がNOで、吸気リフト切換機構41の動作モードを低リフトモードに設定すべき運転領域であるときには、ステップ33に進み、エンジン回転数NEおよび吸気カム位相CAINに応じて、図示しないマップを検索することにより、低リフトモード用の燃料補正係数ATIを算出する。
If the determination result in
次いで、ステップ34で、エンジン回転数NEおよび吸気カム位相CAINに応じて、図示しないマップを検索することにより、低リフトモード用の燃料補正項BTIを算出する。
Next, at
一方、ステップ32の判別結果がYESで、吸気リフト切換機構41の動作モードを高リフトモードに設定すべき運転領域であるときには、ステップ35に進み、エンジン回転数NEおよび吸気カム位相CAINに応じて、図示しないマップを検索することにより、高リフトモード用の燃料補正係数ATIを算出する。
On the other hand, if the determination result in
次いで、ステップ36で、エンジン回転数NEおよび吸気カム位相CAINに応じて、図示しないマップを検索することにより、高リフトモード用の燃料補正項BTIを算出する。
Next, at
ステップ34または36に続くステップ37では、吸気管内圧および燃料補正係数の積と燃料補正項との和(PBA・ATI+BTI)を、第2基本燃料噴射量TIMBSXとして設定する。
In
次いで、ステップ38に進み、エンジン始動フラグF_ENGSTARTが「1」であるか否かを判別する。このエンジン始動フラグF_ENGSTARTは、エンジン始動制御中すなわちクランキング中であるときには「1」に、それ以外のときには「0」にそれぞれ設定される。この判別結果がNOで、エンジン始動済みであるときには、ステップ39に進み、基本燃料噴射量TIMを第2基本燃料噴射量TIMBSXに設定した後、本処理を終了する。 Next, the routine proceeds to step 38, where it is determined whether or not the engine start flag F_ENGSTART is “1”. The engine start flag F_ENGSTART is set to “1” during engine start control, that is, during cranking, and is set to “0” otherwise. If the result of this determination is NO and the engine has already been started, the routine proceeds to step 39, where the basic fuel injection amount TIM is set to the second basic fuel injection amount TIMBSX, and then this processing ends.
一方、ステップ38の判別結果がYESで、エンジン始動制御中であるときには、ステップ40で、エンジン水温TWに応じて、図示しないマップを検索することにより、始動時用の基本燃料噴射量TIMSTXを算出する。次いで、ステップ41で、基本燃料噴射量TIMを始動時用の基本燃料噴射量TIMSTXに設定した後、本処理を終了する。
On the other hand, if the determination result in
図14に戻り、ステップ20で以上のように基本燃料噴射量TIMを算出した後、ステップ21に進み、実新気率KEGRを算出する。この実新気率KEGRは、気筒3a内に吸入された新気量と総ガス量(新気量+内部EGR量+外部EGR量)との比率に相当するとともに、値1.0からこの実新気率KEGRを減算した値(1.0−KEGR)が、総EGR量(内部EGR量+外部EGR量)と総ガス量との比率すなわちEGR率に相当する。すなわち、実新気率KEGRは、EGR率も表すものであり、本実施形態では、EGR率パラメータに相当する。この実新気率KEGRは、具体的には図17に示すように算出される。
Returning to FIG. 14, after calculating the basic fuel injection amount TIM as described above at
すなわち、まず、ステップ50で、下式(1)により、実新気率KEGRの今回算出値KEGRORGを算出する。ここで、KTAは、吸気温補正係数であり、吸気温TAに応じて、図示しないマップを検索することにより算出される。
次いで、ステップ51に進み、今回算出値KEGRORGが値1.0以上であるか否かを判別する。この判別結果がNOのときには、後述するステップ53に進む。一方、この判別結果がYESのときには、ステップ52で、今回算出値KEGRORGを値1.0に設定した後、ステップ53に進む。
Next, the routine proceeds to step 51, where it is determined whether or not the current calculated value KEGORG is a value of 1.0 or more. When the determination result is NO, the process proceeds to Step 53 described later. On the other hand, when the determination result is YES, in
ステップ51または52に続くステップ53では、RAM内に記憶されているm(mは正の整数)個の今回算出値KEGRORGのバッファ値KEGR_TMPn(n=1〜m)を更新する。具体的には、RAM内のバッファ値の各々を、燃料噴射制御における1制御サイクル分、前の演算値としてセットする(例えば、バッファ値の今回値KEGR_TMP1を前回値KEGR_TMP2にシフトさせ、前回値KEGR_TMP2を前々回値KEGR_TMP3にシフトさせる)とともに、ステップ51または52で算出した今回算出値KEGRORGをバッファ値の今回値KEGR_TMP1としてセットする。
In
次いで、ステップ54に進み、下式(2)により、バッファ値KEGR_TMPnの移動平均値KEGR_AVEを算出する。
次に、ステップ55で、実新気率KEGRを上記ステップ54で算出した移動平均値KEGR_AVEに設定した後、本処理を終了する。
Next, in
図14に戻り、ステップ21で以上のように実新気率KEGRを算出した後、ステップ22に進み、内部EGR目標値KEGRCMDINおよび外部EGR目標値KEGRCMDEXを算出する。これらの値KEGRCMDIN,KEGRCMDEXは、具体的には図18に示すように算出される。
Returning to FIG. 14, after calculating the actual fresh air rate KEGR as described above in
すなわち、まず、ステップ60で、要求トルクPMCMDおよびエンジン回転数NEに応じて、図19に示すマップを検索することにより、実新気率KEGRの目標値KEGRCMDを算出する。なお、本実施形態では、実新気率KEGRの目標値KEGRCMDがEGR率パラメータの目標値に相当する。
That is, first, in
次いで、ステップ61に進み、要求トルクPMCMDおよびエンジン回転数NEに応じて、図20に示すマップを検索することにより、内部EGR割合EGRDIVINを算出する。その後、ステップ62で、外部EGR割合EGRDIVEXを、値1から内部EGR割合EGRDIVINを減算した値に設定する。
Next, the routine proceeds to step 61, where an internal EGR ratio EGRDIVIN is calculated by searching a map shown in FIG. 20 according to the required torque PMCMD and the engine speed NE. Thereafter, in
次に、ステップ63で、内部EGR割合EGRDIVINおよび目標値KEGRCMDに基づき、下式(3)により、内部EGR目標値KEGRCMDINを算出する。すなわち、内部EGR目標値KEGRCMDINは、値1から、総EGR量における内部EGR量の割合の目標値を減算した値に相当し、言い換えれば、外部EGR量が値0に制御されていると仮定した場合において、内部EGR量の制御により、気筒3a内に吸入すべき新気量の割合の目標値に相当する。
次いで、ステップ64で、外部EGR割合EGRDIVEXおよび目標値KEGRCMDに基づき、下式(4)により、外部EGR目標値KEGRCMDEXを算出した後、本処理を終了する。すなわち、外部EGR目標値KEGRCMDEXは、値1から、総EGR量における外部EGR量の割合の目標値を減算した値に相当し、言い換えれば、内部EGR量が値0に制御されていると仮定した場合において、外部EGR量の制御により、気筒3a内に吸入すべき新気量の割合の目標値に相当する。
図14に戻り、ステップ22で以上のように2つの目標値KEGRCMDIN,KEGRCMDEXを算出した後、ステップ23に進み、目標空燃比KCMDを算出する。この目標空燃比KCMDは、具体的には図21に示すように算出される。
Returning to FIG. 14, after the two target values KEGRCMDIN and KEGRCMDEX are calculated in
すなわち、まず、ステップ70で、要求トルクPMCMDおよびエンジン回転数NEに応じて、図22に示すマップを検索することにより、目標空燃比のマップ値KCMDMAPを算出する。
That is, first, in
次いで、ステップ71に進み、外部EGR過小故障フラグFS_EXEGRDNが「1」であるか否かを判別する。この判別結果がYESで、EGR制御弁16bの故障により外部EGR量が過小な状態にあるときには、ステップ72に進み、目標空燃比KCMDを、マップ値と実新気率の目標値との積KCMDMAP・KEGRCMDに設定した後、本処理を終了する。
Next, the routine proceeds to step 71, where it is determined whether or not the external EGR under fault flag FS_EXEGRDN is “1”. If the determination result is YES and the external EGR amount is in an excessively small state due to a failure of the
一方、ステップ71の判別結果がNOのときには、ステップ73に進み、目標空燃比KCMDをマップ値KCMDMAPに設定した後、本処理を終了する。
On the other hand, when the determination result of
図14に戻り、ステップ23で以上のように目標空燃比KCMDを算出した後、ステップ24に進み、空燃比補正係数KAFを算出する。この空燃比補正係数KAFは、具体的には、以下に述べるように算出される。
Returning to FIG. 14, after calculating the target air-fuel ratio KCMD as described above in
すなわち、空燃比フィードバック制御の実行条件が成立しているときには、空燃比補正係数KAFは、検出空燃比KACTを目標空燃比KCMDに収束させるように、図示しない所定のフィードバック制御アルゴリズム(例えば、PID制御アルゴリズムや応答指定型制御アルゴリズムなど)により算出される。一方、空燃比フィードバック制御の実行条件が不成立であるときには、空燃比補正係数KAFは、値1に設定される。
That is, when the execution condition of the air-fuel ratio feedback control is satisfied, the air-fuel ratio correction coefficient KAF causes a predetermined feedback control algorithm (not shown) (for example, PID control) to converge the detected air-fuel ratio KACT to the target air-fuel ratio KCMD. Algorithm or response assignment type control algorithm). On the other hand, when the execution condition of the air-fuel ratio feedback control is not satisfied, the air-fuel ratio correction coefficient KAF is set to a
次いで、ステップ25に進み、総補正係数KTOTALおよびバッテリ電圧補正項TIVBを算出する。この総補正係数KTOTALは、各種の運転パラメータ(例えば、吸気温TA、エンジン水温TWおよび大気圧PAなど)に応じて各種のマップを検索することで、各種の補正係数を算出するとともに、これらの各種の補正係数を互いに乗算することにより算出される。また、バッテリ電圧補正項TIVBは、バッテリ電圧に応じて、図示しないマップを検索することにより、算出される。 Next, the routine proceeds to step 25, where a total correction coefficient KTOTAL and a battery voltage correction term TIVB are calculated. The total correction coefficient KTOTAL calculates various correction coefficients by searching various maps according to various operation parameters (for example, intake air temperature TA, engine water temperature TW, atmospheric pressure PA, etc.), and It is calculated by multiplying various correction coefficients with each other. The battery voltage correction term TIVB is calculated by searching a map (not shown) according to the battery voltage.
次に、ステップ26で、以上のように算出した各種の値に基づき、下式(5)により、燃料噴射量TOUTを算出する。
ステップ26に続くステップ27では、前述した圧縮着火燃焼フラグF_HCCIが「1」であるか否かを判別する。この判別結果がYESで、圧縮着火燃焼運転の実行条件が成立しているときには、ステップ28に進み、圧縮着火燃焼用の噴射時期算出処理を実行する。図示しないが、このステップ28では、燃料噴射弁10による燃料噴射の終了タイミングおよび噴射時間が、上記ステップ26で算出した燃料噴射量TOUTに基づき、混合気を圧縮着火燃焼させるのに最適な値として算出される。以上のようにステップ28を実行した後、本処理を終了する。
In
一方、ステップ27の判別結果がNOで、圧縮着火燃焼運転の実行条件が成立していないときには、ステップ29に進み、火花点火燃焼用の噴射時期算出処理を実行する。図示しないが、このステップ29では、燃料噴射弁10による燃料噴射の終了タイミングおよび噴射時間が、上記ステップ26で算出した燃料噴射量TOUTに基づき、混合気を火花点火燃焼させるのに最適な値として算出される。以上のようにステップ29を実行した後、本処理を終了する。
On the other hand, when the determination result of
以下、図23を参照しながら、前述したEGR制御処理について説明する。本処理では、まず、ステップ80において、フィードバック補正係数(以下「FB補正係数」という)KEGRFBの算出処理を実行する。このFB補正係数KEGRFBは、実新気率KEGRを目標値KEGRCMDに収束させるための値であり、その算出処理の具体的な内容については後述する。
Hereinafter, the aforementioned EGR control process will be described with reference to FIG. In this process, first, in
次に、ステップ81で、前述した内部EGR割合EGRDIVINが値0.5以上であるか否かを判別する。この判別結果がYESのとき、すなわち内部EGR量が外部EGR量以上のときには、ステップ82で、前述した内部EGR目標値とFB補正係数の積KEGRCMDIN・KEGRFBを、補正後内部EGR率KEGRMAPINとして設定する。
Next, in
一方、ステップ81の判別結果がNOで、内部EGR量が外部EGR量よりも小さいときには、ステップ83で、内部EGR目標値とFB補正係数の内部EGR用学習値との積KEGRCMDIN・KEGRREFINを、補正後内部EGR率KEGRMAPINとして設定する。
On the other hand, when the determination result in
ステップ82または83に続くステップ84では、前述した吸気リフトフラグF_VTECが「1」であるか否かを判別する。この判別結果がNOで、吸気リフト切換機構41が低リフトモードに設定されているときには、ステップ85で、上記ステップ82または83で算出した補正後内部EGR率KEGRMAPINとエンジン回転数NEに応じて、図24に示すマップを検索することにより、低リフトモード用の目標回動角SAAEXCMDを算出する。この目標回動角SAAEXCMDは、後述するように、回動角SAAEXの目標値として用いられる。
In
次いで、ステップ86に進み、補正後内部EGR率KEGRMAPINおよびエンジン回転数NEに応じて、図25に示すマップを検索することにより、低リフトモード用の目標排気カム位相CAEXCMDを算出する。この目標排気カム位相CAEXCMDは、後述するように、排気カム位相CAEXの目標値として用いられる。 Next, the routine proceeds to step 86, where a target exhaust cam phase CAEXCMD for the low lift mode is calculated by searching the map shown in FIG. 25 according to the corrected internal EGR rate KEGRMAPIN and the engine speed NE. The target exhaust cam phase CAEXCMD is used as a target value for the exhaust cam phase CAEX, as will be described later.
次に、ステップ87で、補正後内部EGR率KEGRMAPINおよびエンジン回転数NEに応じて、図26に示すマップを検索することにより、低リフトモード用の目標吸気カム位相CAINCMDを算出する。この目標吸気カム位相CAINCMDは、後述するように、吸気カム位相CAINの目標値として用いられる。
Next, at
一方、前述したステップ84の判別結果がYESで、吸気リフト切換機構41が高リフトモードに設定されているときには、ステップ88〜90において、要求トルクPMCMDおよびエンジン回転数NEに応じて、それぞれの所定のマップ(図示せず)を検索することにより、高リフトモード用の目標回動角SAAEXCMD、目標排気カム位相CAEXCMDおよび目標吸気カム位相CAINCMDを算出する。
On the other hand, when the determination result in
前述したステップ87または90に続くステップ91では、外部EGR割合EGRDIVEXが値0.5よりも大きいか否かを判別する。この判別結果がYESで、外部EGR量が内部EGR量よりも大きいときには、ステップ92に進み、前述した外部EGR目標値とFB補正係数の積KEGRCMDEX・KEGRFBを、補正後外部EGR率KEGRMAPEXとして設定する。
In
一方、上記ステップ91の判別結果がNOで、外部EGR量が内部EGR量以下のときには、ステップ93で、外部EGR目標値とFB補正係数の外部EGR用学習値との積KEGRCMDEX・KEGRREFEXを、補正後外部EGR率KEGRMAPEXとして設定する。
On the other hand, when the determination result in
次いで、ステップ94において、ステップ92または93で算出した補正後外部EGR率KEGRMAPEXと吸気管内ゲージ圧HPBGAに応じて、図27に示すマップを検索することにより、目標EGRリフトLCMDを算出した後、本処理を終了する。この吸気管内ゲージ圧HPBGAは、吸気管内圧PBAおよび大気圧PAに基づいて算出される。また、目標EGRリフトLCMDは、後述するように、EGRリフトLACTの目標値として用いられる。
Next, after calculating the target EGR lift LCMD in
以下、図28および図29を参照しながら、前述した図23のステップ80のFB補正係数KEGRFBの算出処理について説明する。この処理では、以下に述べるように、FB補正係数KEGRFBに加えて、その内部EGR用学習値KEGRREFINおよび外部EGR用学習値KEGRREFEXが算出される。なお、本実施形態では、FB補正係数KEGRFBがEGR制御用値に相当し、内部EGR用学習値KEGRREFINがEGR制御用値の内部EGR用の学習値に相当し、外部EGR用学習値KEGRREFEXがEGR制御用値の外部EGR用の学習値に相当する。
The processing for calculating the FB correction coefficient KEGRFB in
本処理では、まず、ステップ100において、空燃比フィードバックフラグF_LAFFB=0、または、実新気率KEGRの目標値KEGRCMD=1.0が成立しているか否かを判別する。この判別結果がYESのとき、すなわち、F_LAFFB=0で、LAFセンサ25の検出空燃比KACTに基づく空燃比フィードバック制御が実行されていないとき、またはKEGRCMD=1.0で、内部EGRおよび外部EGRがともに停止中のときには、実新気率KEGRのフィードバック制御領域にないとして、ステップ113に進み、FB補正係数KEGRFBを値1.0に設定した後、本処理を終了する。
In this process, first, in
一方、ステップ100の判別結果がNOのとき、すなわち、空燃比フィードバック制御の実行中で、かつ内部EGRおよび外部EGRの少なくとも一方の実行中であるときには、以下のステップ101〜106において、FB補正係数KEGRFBをI−PD制御アルゴリズムによって算出する。
On the other hand, when the determination result in
すなわち、まず、ステップ101で、エンジン回転数NEおよび要求トルクPMCMDに応じて、それぞれのマップ(図示せず)を検索することにより、P項ゲインKEIPDP、I項ゲインKEIPDIおよびD項ゲインKEIPDDを算出する。
That is, first, in
次いで、ステップ102〜104において、ステップ101で算出したP項ゲインKEIPDP、I項ゲインKEIPDIおよびD項ゲインKEIPDDを用い、下式(6)〜(8)により、P項KEGRFB_P、I項KEGRFB_IおよびD項KEGRFB_Dをそれぞれ算出する。なお、下式(6)および下式(8)のKEGRZ1は、FB補正係数の前回値を表しており、下式(8)のKEGRZ2は、FB補正係数の前々回値を表している。
次に、ステップ105で、ステップ102〜104で算出したP項KEGRFB_P、I項KEGRFB_IおよびD項KEGRFB_Dを用い、下式(9)によって、I−PD項KEGRFB_Sを算出する。
次いで、ステップ106で、I−PD項とFB補正係数の前回値との和KEGRFB_S+KEGRFB_Zを、FB補正係数KEGRFBとして設定する。
Next, in
その後、ステップ107,108において、FB補正係数KEGRFBの内部EGR用学習値KEGRREFINおよび外部EGR用学習値KEGRREFEXを算出するとともに、FB補正係数KEGRFBのリミットチェック処理を行う。これらの具体的な処理については後述する。
Thereafter, in
次に、図29のステップ109に進み、上記ステップ107または108の処理で後述するようにして設定される、外部EGR故障フラグFS_EXEGRFAIL、外部EGR過大故障フラグFS_EXEGRO、外部EGR過小故障フラグFS_EXEGRDN、内部EGR故障フラグFS_INEGRFAIL、内部EGR過大故障フラグFS_INEGROおよび内部EGR過小フラグFS_INEGRDNのいずれかが「1」であるか否かを判別する。
Next, proceeding to step 109 in FIG. 29, the external EGR failure flag FS_EXEGRFAIL, the external EGR excessive failure flag FS_EXEGRRO, the external EGR under-failure flag FS_EXEGRDN, and the internal EGR are set as described later in the processing of
この判別結果がNOで、上記6つのフラグがいずれも「0」のときには、内部EGRおよび外部EGRがいずれも正常に行われているとして、ステップ110で、それを表すためにEGR正常フラグF_EGROKを「1」にセットする。
If the determination result is NO and all the above six flags are “0”, it is determined that both the internal EGR and the external EGR are normally performed, and in
一方、ステップ109の判別結果がYESで、上記6つのフラグのいずれかが「1」のときには、内部EGRおよび/または外部EGRが正常に行われていないとして、ステップ111で、それを表すためにEGR正常フラグF_EGROKを「0」にセットする。
On the other hand, when the determination result in
ステップ110または111に続くステップ112では、実新気率の前回値KEGRZ1を前々回値KEGRZ2に、実新気率KEGRを前回値KEGRZ1に、FB補正係数KEGRFBを前回値KEGRFB_Zにそれぞれシフトする。その後、本処理を終了する。
In
以下、図30を参照しながら、前述した図28のステップ107におけるFB補正係数KEGRFBの内部EGR用学習値KEGRREFINおよび外部EGR用学習値KEGRREFEXの算出処理について説明する。
Hereinafter, the calculation process of the learning value KEGRREFIN for the internal EGR and the learning value KEGRREFEX for the external EGR of the FB correction coefficient KEGRFB in
この処理では、まず、ステップ120において、内部EGR割合EGRDIVINが値1.0(第2の所定値)であるか否かを判別する。この判別結果がYESのとき、すなわち内部EGRのみが実行されているときには、ステップ121で、内部EGR用学習値KEGRREFINを、下式(10)の加重平均演算によって算出する。
次に、以下のステップ122〜127において、ステップ121で算出した内部EGR用学習値KEGRREFINのリミットチェック処理を行う。すなわち、まず、ステップ122で、内部EGR用学習値KEGRREFINが所定の下限値KEGRREFINLL以下であるか否かを判別する。この判別結果がNOのときには、ステップ123に進み、内部EGR用学習値KEGRREFINが所定の上限値KEGRREFINLH以上であるか否かを判別する。
Next, in
この判別結果がNOのとき、すなわちKEGRREFINLL<KEGRREFIN<KEGRREFINLHが成立しているときには、内部EGRが正常に行われているとして、ステップ124で、それを表すために内部EGR故障フラグFS_INEGRFAILを「0」にセットする。その後、本処理を終了する。
When the determination result is NO, that is, when KEGRREFINLL <KEGRREFIN <KEGRREFINH is established, it is determined that the internal EGR is normally performed and, in
一方、前述したステップ123の判別結果がYESで、KEGRREFIN≧KEGRREFINLHのときには、ステップ125で、内部EGR用学習値KEGRREFINをこの上限値KEGRREFINLHに設定する。
On the other hand, if the determination result in
次いで、内部EGRが正常に行われていないとして、ステップ126に進み、それを表すために内部EGR故障フラグFS_INEGRFAILを「1」にセットする。その後、本処理を終了する。 Next, assuming that the internal EGR is not normally performed, the process proceeds to step 126, and the internal EGR failure flag FS_INEGRFAIL is set to “1” to indicate that. Thereafter, this process is terminated.
一方、前述したステップ122の判別結果がYESで、KEGRREFIN≦KEGRREFINLLのときには、ステップ127で、内部EGR用学習値KEGRREFINをこの下限値KEGRREFINLLに設定する。
On the other hand, if the determination result in
次いで、内部EGRが正常に行われていないとして、前述したステップ126で、それを表すために内部EGR故障フラグFS_INEGRFAILを「1」にセットした後、本処理を終了する。
Next, assuming that the internal EGR is not normally performed, the internal EGR failure flag FS_INEGRFAIL is set to “1” to represent it in
一方、前述したステップ120の判別結果がNOのときには、ステップ128で、外部EGR割合EGRDIVEXが値1.0(第1の所定値)であるか否かを判別する。この判別結果がYESで、外部EGRのみが実行されているときには、ステップ129に進み、外部EGR用学習値KEGRREFEXを、下式(11)の加重平均演算によって算出する。
次に、ステップ130〜135において、前述したステップ122〜127と同様の手法により、外部EGR用学習値KEGRREFEXのリミットチェック処理を行う。まず、ステップ130で、外部EGR用学習値KEGRREFEXが所定の下限値KEGRREFEXLL以下であるか否かを判別する。この判別結果がNOのときには、ステップ131に進み、外部EGR用学習値KEGRREFEXが所定の上限値KEGRREFEXLH以上であるか否かを判別する。
Next, in
この判別結果がNOで、KEGRREFEXLL<KEGRREFEX<KEGRREFEXLHが成立しているときには、外部EGRが正常に行われているとして、ステップ132に進み、それを表すために外部EGR故障フラグFS_EXEGRFAILを「0」にセットする。その後、本処理を終了する。 If this determination result is NO and KEGRREFEXLL <KEGRREFEX <KEGRREFEXLH is established, it is determined that the external EGR is normally performed, and the process proceeds to step 132, and the external EGR failure flag FS_EXEGRFAIL is set to “0” to indicate that. set. Thereafter, this process is terminated.
一方、前述したステップ131の判別結果がYESで、KEGRREFEX≧KEGRREFEXLHのときには、ステップ133で、外部EGR用学習値KEGRREFEXをこの上限値KEGRREFEXLHに設定する。次いで、外部EGRが正常に行われていないとして、ステップ134に進み、それを表すために外部EGR故障フラグFS_EXEGRFAILを「1」にセットする。その後、本処理を終了する。
On the other hand, if the determination result in
一方、前述したステップ130の判別結果がYESで、KEGRREFEX≦KEGRREFEXLLのときには、ステップ135に進み、外部EGR用学習値KEGRREFEXをこの下限値KEGRREFEXLLに設定する。次いで、外部EGRが正常に行われていないとして、前述したステップ134に進み、それを表すために外部EGR故障フラグFS_EXEGRFAILを「1」にセットした後、本処理を終了する。
On the other hand, if the determination result in
一方、前述したステップ128の判別結果がNOで、内部EGRおよび外部EGRの双方が実行されているときには、そのまま本処理を終了する。すなわち、この場合には、内部EGR用および外部EGR用学習値KEGRREFIN,KEGRREFEXの算出は行われない。
On the other hand, when the determination result of
以上のように、学習値KEGRREFIN,KEGRREFEXの算出処理では、2つの学習値KEGRREFIN,KEGRREFEXが算出されるとともに、EGRDIVEX=1.0で、外部EGRのみが実行されている場合において、外部EGR用学習値KEGRREFEXが上下限値KEGRREFEXLH,KEGRREFEXLLにより規定される第1の所定範囲(KEGRREFEXLL<KEGRREFEX<KEGRREFEXLH)にないときには、外部EGRが正常に行われていないと判定される。すなわち、排気還流機構16が故障していると判定される。
As described above, in the process of calculating the learning values KEGRREFIN and KEGRREFEX, two learning values KEGRREFIN and KEGRREFEX are calculated, and when EGRDIVEX = 1.0 and only external EGR is executed, learning for external EGR is performed. When the value KEGRREFEX is not within the first predetermined range (KEGRREFEXLL <KEGRREFEX <KEGRREFEXLH) defined by the upper and lower limit values KEGRREFEXLH and KEGRREFEXLL, it is determined that the external EGR is not performed normally. That is, it is determined that the exhaust
また、EGRDIVIN=1.0で、内部EGRのみが実行されている場合において、内部EGR用学習値KEGRREFINが上下限値KEGRREFINLH,KEGRREFINLLにより規定される第2の所定範囲(KEGRREFINLL<KEGRREFIN<KEGRREFINLH)にないときには、内部EGRが正常に行われていないと判定される。すなわち、3つの可変機構50,70,90が故障していると判定される。
When EGRDIVIN = 1.0 and only internal EGR is executed, the internal EGR learning value KEGRREFIN is a second predetermined range defined by upper and lower limit values KEGRREFINLH and KEGRREFINLL (KEGRREFINLL <KEGRREFIN <KEGRREFINH). If not, it is determined that the internal EGR is not normally performed. That is, it is determined that the three
以下、図31を参照しながら、前述した図28のステップ108におけるFB補正係数KEGRFBのリミットチェック処理について説明する。本処理では、まず、ステップ150において、FB補正係数KEGRFBが所定の上限値KSTEPEIPDLH以上であるか否かを判別する。この判別結果がYESのときには、ステップ151に進み、FB補正係数KEGRFBをこの上限値KSTEPEIPDLHに設定する。その後、ステップ152で、過大故障判定用のカウンタ値C_STEPEPCをインクリメントする。
The limit check process for the FB correction coefficient KEGRFB in
次に、ステップ153に進み、このカウンタ値C_STEPEPCが所定値STEPEPCCONTを超えたか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。一方、この判別結果がYESのとき、すなわち、FB補正係数KEGRFBが上限値KSTEPEIPDLH以上になった回数が、所定回数を超えたときには、EGR量が過大な状態で張り付いた過大故障が生じていると判定し、次いで、ステップ154に進み、内部EGR割合EGRDIVINが値0.5よりも大きいか否かを判別する。 Next, the process proceeds to step 153, where it is determined whether or not the counter value C_STEPEPC exceeds a predetermined value STEPEPCONT. When this determination result is NO, this process is terminated as it is. On the other hand, when the determination result is YES, that is, when the number of times that the FB correction coefficient KEGRFB is equal to or greater than the upper limit value KSTEPEDDLH exceeds a predetermined number, an excessive failure stuck with an excessive EGR amount has occurred. Next, the routine proceeds to step 154, where it is determined whether or not the internal EGR ratio EGRDIVIN is larger than 0.5.
この判別結果がYESで、内部EGR量が外部EGR量よりも大きいときには、内部EGR側の故障であると判定して、ステップ155に進み、それを表すために内部EGR過大故障フラグFS_INEGROを「1」にセットした後、本処理を終了する。 If the determination result is YES and the internal EGR amount is larger than the external EGR amount, it is determined that there is a failure on the internal EGR side, and the process proceeds to step 155 to set the internal EGR excessive failure flag FS_INEGRRO to “1”. After the setting, the process is terminated.
一方、ステップ154の判別結果がNOで、外部EGR量が内部EGR量以上であるときには、外部EGR側の故障であると判定して、ステップ156に進み、それを表すために外部EGR過大故障フラグFS_EXEGROを「1」にセットした後、本処理を終了する。
On the other hand, if the determination result in
一方、前述したステップ150の判別結果がNOのときには、ステップ157で、FB補正係数KEGRFBが所定の下限値KSTEPEIPDLL以下であるか否かを判別する。この判別結果がYESのときには、ステップ158に進み、FB補正係数KEGRFBをこの下限値KSTEPEIPDLLに設定する。次いで、ステップ159で、過小故障判定用のカウンタ値C_STEPEVOをインクリメントする。
On the other hand, when the determination result in
次に、ステップ160に進み、このカウンタ値C_STEPEVOが所定値STEPEVOCONTを超えたか否かを判別する。この判別結果がNOのときには、そのまま本処理を終了する。一方、この判別結果がYESのときには、すなわちFB補正係数KEGRFBが下限値KSTEPEIPDLL以下になった回数が所定回数を超えたときには、EGR量が過小な状態で張り付いた過小故障が生じていると判定し、次いで、ステップ161に進み、内部EGR割合EGRDIVINが値0.5よりも大きいか否かを判別する。 Next, the routine proceeds to step 160, where it is determined whether or not the counter value C_STEPEVO has exceeded a predetermined value STEPEVOCONT. When this determination result is NO, this process is terminated as it is. On the other hand, when the determination result is YES, that is, when the number of times that the FB correction coefficient KEGRFB becomes equal to or lower than the lower limit value KSTEPEIPDLL exceeds a predetermined number, it is determined that an under-failure stuck with the EGR amount being too small has occurred. Next, the routine proceeds to step 161, where it is determined whether or not the internal EGR ratio EGRDIVIN is larger than 0.5.
この判別結果がYESで、内部EGR量が外部EGR量よりも大きいときには、内部EGR側の故障であると判定して、ステップ162で、それを表すために内部EGR過小故障フラグFS_INEGRDNを「1」にセットする。その後、本処理を終了する。
If the determination result is YES and the internal EGR amount is larger than the external EGR amount, it is determined that the internal EGR side is malfunctioning, and in
一方、ステップ161の判別結果がNOで、外部EGR量が内部EGR量以上であるときには、外部EGR側の故障であると判定して、ステップ163に進み、それを表すために外部EGR過小故障フラグFS_EXEGRDNを「1」にセットした後、本処理を終了する。
On the other hand, if the determination result in
一方、前述したステップ157の判別結果がNOのとき、すなわちKSTEPEIPDLL<KEGRFB<KSTEPEIPDLHが成立しているときには、ステップ164に進み、過大・過小故障判定用のカウンタ値C_STEPEPC,C_STEPEVOを、それぞれ値0にリセットした後、本処理を終了する。
On the other hand, when the determination result of
以上のように、FB補正係数KEGRFBのリミットチェック処理では、KSTEPEIPDLH≦KEGRFBおよびC_STEPEPC>STEPEPCCONTがいずれも成立している場合において、EGRDIVIN>0.5のときには、内部EGR側の過大故障であると判定され、EGRDIVIN≦0.5のときには、外部EGR側の過大故障であると判定される。また、KEGRFB≦KSTEPEIPDLLおよびC_STEPEVO>STEPEVOCONTがいずれも成立している場合において、EGRDIVIN>0.5のときには、内部EGR側の過小故障であると判定され、EGRDIVIN≦0.5のときには、外部EGR側の過小故障であると判定される。 As described above, in the limit check process for the FB correction coefficient KEGRFB, when KSTEPIPDLH ≦ KEGRRFB and C_STEPEPC> STEPECCONT are both satisfied, it is determined that the internal EGR side is an excessive failure when EGRDIVIN> 0.5. When EGRDIVIN.ltoreq.0.5, it is determined that there is an excessive failure on the external EGR side. Further, in the case where KEGRFB ≦ KSTEPIPIPDLL and C_STEPEVO> STEPEVOCONT are both established, it is determined that the internal EGR side is a minor fault when EGRDIVIN> 0.5, and when EGRDIVIN ≦ 0.5, the external EGR side Is determined to be an under-malfunction.
すなわち、FB補正係数KEGRFBが所定範囲(KEGRREFEXLL<KEGRREFEX<KEGRREFEXLH)内にない状態が所定時間(所定値STEPEVOCONTまたはSTEPEVOCONTに相当する時間)、継続した場合において、内部EGR割合EGRDIVINが外部EGR割合EGRDIVEXよりも大きいときには、3つの可変機構50,70,90が故障していると判定され、外部EGR割合EGRDIVEXが内部EGR割合EGRDIVIN以上のときには、排気還流機構16が故障していると判定される。
That is, when the state in which the FB correction coefficient KEGRFB is not within a predetermined range (KEGRREFEXL <KEGRREFEX <KEGRREFEXLH) continues for a predetermined time (a time corresponding to a predetermined value STEPVOCONT or STEPVOCONT), the internal EGR ratio EGRDIVIN is from the external EGRIVIN X Is larger, it is determined that the three
以下、図32を参照しながら、本実施形態の6つの可変機構、すなわちスロットル弁機構13、排気還流機構16、吸気リフト切換機構41、吸気カム位相可変機構50、排気リフト可変機構70および排気カム位相可変機構90をそれぞれ制御する処理について説明する。この処理は、具体的には、以下に述べるように、6つの可変機構をそれぞれ制御するための6つの制御入力U_VTEC,U_SAAEX,U_CAEX,U_CAIN,U_LIFT,U_THを算出するものであり、タイマ設定により所定周期(例えば10msec)で実行される。
Hereinafter, with reference to FIG. 32, the six variable mechanisms of the present embodiment, that is, the
この処理では、まず、ステップ180において、可変機構故障フラグF_VDNGが「1」であるか否かを判別する。この可変機構故障フラグF_VDNGは、前述した各種の故障フラグの値などに基づき、上記の6つの可変機構13,16,41,50,70,90の少なくとも1つが故障していると判定されたときに、「1」にセットされるものである。
In this process, first, in
このステップ180の判別結果がNOで、これらの可変機構がいずれも正常なときには、ステップ181に進み、吸気リフトフラグF_VTECが「1」であるか否かを判別する。この判別結果がNOで、吸気リフト切換機構41が低リフトモードに設定されているときには、ステップ182に進み、吸気リフト制御入力U_VTECを値0に設定する。
If the determination result in
一方、ステップ181の判別結果がYESで、吸気リフト切換機構41が高リフトモードに設定されているときには、ステップ183に進み、吸気リフト制御入力U_VTECを高リフトモード用の所定値U_HIVTに設定する。
On the other hand, if the determination result in
以上のステップ182または183に続くステップ184では、前述した図23のステップ85または88で算出された目標回動角SAAEXCMDをサンプリングする。その後、ステップ185に進み、この目標回動角SAAEXCMDおよび回動角SAAEXに基づいて、排気リフト可変機構70を制御するための排気リフト制御入力U_SAAEXを算出する。具体的には、排気リフト制御入力U_SAAEXは、回動角SAAEXが目標回動角SAAEXCMDに収束するように、所定のフィードバック制御アルゴリズム(例えばPID制御アルゴリズムや応答指定型制御アルゴリズム)により算出される。
In
次に、ステップ186で、図23のステップ86または89で算出した目標排気カム位相CAEXCMDをサンプリングする。その後、ステップ187に進み、上記ステップ185と同様の手法により、排気カム位相可変機構90を制御するための排気位相制御入力U_CAEXを算出する。すなわち、排気位相制御入力U_CAEXは、排気カム位相CAEXが目標排気カム位相CAEXCMDに収束するように、所定のフィードバック制御アルゴリズムにより算出される。
Next, at
ステップ187に続くステップ188では、図23のステップ87または90で算出した目標吸気カム位相CAINCMDをサンプリングする。その後、ステップ189に進み、上記ステップ185,187と同様の手法により、吸気カム位相可変機構50を制御するための吸気位相制御入力U_CAINを算出する。すなわち、吸気位相制御入力U_CAINは、吸気カム位相CAINが目標吸気カム位相CAINCMDに収束するように、所定のフィードバック制御アルゴリズムにより算出される。
In
次いで、ステップ190に進み、図23のステップ94で算出した目標EGRリフトLCMDをサンプリングする。その後、ステップ191で、前述したステップ185,187,189と同様の手法により、排気還流機構16を制御するためのEGRリフト制御入力U_LIFTを算出する。すなわち、EGRリフト制御入力U_LIFTは、EGRリフトLACTが目標EGRリフトLCMDに収束するように、所定のフィードバック制御アルゴリズムにより算出される。
Next, the process proceeds to step 190, and the target EGR lift LCMD calculated in
次に、ステップ192に進み、スロットル弁機構13を制御するためのTH制御入力U_THを、前述したステップ185,187,189,191と同様の手法により算出する。すなわち、要求トルクPMCMDおよびエンジン回転数NEに応じて、図示しないマップ検索により、目標スロットル弁開度THCMDを算出し、スロットル弁開度THが目標スロットル弁開度THCMDに収束するように、所定のフィードバック制御アルゴリズムにより、TH制御入力U_THを算出する。ステップ192で以上のようにTH制御入力U_THを算出した後、本処理を終了する。
Next, the process proceeds to step 192, and a TH control input U_TH for controlling the
一方、前述したステップ180の判別結果がYESで、前述した6つの可変機構の少なくとも1つが故障しているときには、ステップ193に進み、6つの制御入力U_VTEC,U_SAAEX,U_CAEX,U_CAIN,U_LIFTおよびU_THを、いずれも値0に設定した後、本処理を終了する。このように6つの制御入力がいずれも値0に設定された場合、所定の吸入空気量および排気状態が確保され、それにより、停車中は、アイドル運転およびエンジン始動が可能となるとともに、走行中は低速走行を継続することが可能となる。
On the other hand, if the determination result in
以上のように、本実施形態のEGR故障判定装置1によれば、フィードバック補正係数KEGRFBおよび外部EGR割合EGRDIVEXに応じて、排気還流機構16が制御され、それにより、外部EGR量が制御される。また、フィードバック補正係数KEGRFBおよび内部EGR割合EGRDIVINに応じて、3つの可変機構50,70,90が制御され、それにより、内部EGR量が制御される。そして、KEGRFB≧KSTEPEIPDLHの場合またはKEGRFB≦KSTEPEIPDLLの場合において、EGRDIVIN≦0.5のとき(すなわちEGRDIVEX≧EGRDIVIN)のときには、排気還流機構16が故障することで、外部EGR量の過大故障または過小故障が発生していると判定され、EGRDIVIN>0.5のとき(すなわちEGRDIVIN>EGRDIVEXのとき)には、3つの可変機構50,70,90のいずれかが故障することで、内部EGR量の過大故障または過小故障が発生していると判定される。
As described above, according to the EGR
このフィードバック補正係数KEGRFBは、実新気率KEGRを目標値KEGRCMDに収束させるように算出されるので、EGR開度と目標EGR開度との偏差の絶対値を所定値と比較する従来のEGR故障判定装置と異なり、EGR量が小さい場合でも、排気還流機構16および3つの可変機構50,70,90の双方の故障判定を精度よく行うことができる。すなわち、EGR量の大小にかかわらず、これらの4つの可変機構16,50,70,90の故障判定を精度よく行うことができ、商品性を向上させることができる。
Since this feedback correction coefficient KEGRFB is calculated so that the actual fresh air rate KEGR converges to the target value KEGRCMD, the conventional EGR failure in which the absolute value of the deviation between the EGR opening and the target EGR opening is compared with a predetermined value. Unlike the determination device, even when the EGR amount is small, the failure determination of both the exhaust
また、2つのEGR割合EGRDIVIN,EGRDIVEXの大小を比較することにより、内部EGR量を変更する3つの可変機構50,70,90と、外部EGR量を変更する排気還流機構16のどちらが故障しているのかを特定することができる。すなわち、従来と異なり、内部EGR量を変更する機構と、外部EGR量を変更する機構のどちらが故障しているのかを的確に特定することができ、それにより、メンテナンス時の作業性を向上させることができる。
Also, by comparing the magnitudes of the two EGR ratios EGRDIVIN, EGRDIVEX, which of the three
これに加えて、KEGRFB≧KSTEPEIPDLHが成立しかつC_STEPEPC>STEPEPCCONTが成立したとき、すなわちKEGRFB≧KSTEPEIPDLHとなる状態が所定時間を超えて継続したときに、EGR量が過大な状態で張り付いた過大故障が生じていると判定されるので、誤演算などに起因して、フィードバック補正係数KEGRFBが一時的に上限値KSTEPEIPDLH以上となったときでも、過大故障が発生したと誤判定するのを回避できる。これと同様に、KEGRFB≦KSTEPEIPDLLが成立しかつC_STEPEVO>STEPEVOCONTが成立したとき、すなわちKEGRFB≦KSTEPEIPDLLとなる状態が所定時間を超えて継続したときに、EGR量が過小な状態で張り付いた過小故障が生じていると判定されるので、誤演算などに起因して、フィードバック補正係数KEGRFBが一時的に下限値KSTEPEIPDLL以下となったときでも、過小故障が発生したと誤判定するのを回避できる。以上により、故障判定の精度をさらに向上させることができる。 In addition to this, when KEGRFB ≧ KSTEPIPDLH is established and C_STEPEPC> STEPEPCCONT is established, that is, when KEGRFB ≧ KSTEPEDLDL continues for a predetermined period of time, an excessive fault stuck with an excessive EGR amount. Therefore, even when the feedback correction coefficient KEGRFB temporarily exceeds the upper limit value KSTEPIPDLH due to an erroneous calculation or the like, it is possible to avoid erroneous determination that an excessive failure has occurred. Similarly, when KEGRFB ≦ KSTEPEIPDLL is satisfied and C_STEPEVO> STEPEVOCONT is satisfied, that is, when the state of KEGRFB ≦ KSTEPEIPDLL continues for a predetermined time, an under-failure that is stuck in a state where the EGR amount is too small. Therefore, even when the feedback correction coefficient KEGRFB temporarily falls below the lower limit value KSTEPIPDLL due to an erroneous calculation or the like, it is possible to avoid erroneous determination that an under-failure has occurred. As described above, the accuracy of failure determination can be further improved.
さらに、外部EGR用学習値KEGRREFEXが第1の所定範囲(KEGRREFEXLL<KEGRREFEX<KEGRREFEXLH)内にないときには、排気還流機構16が故障していると判定され、内部EGR用学習値KEGRREFINが第2の所定範囲(KEGRREFINLL<KEGRREFIN<KEGRREFINLH)内にないときには、3つの可変機構50,70,90が故障していると判定される。この外部EGR用学習値KEGRREFEXは、EGRDIVEX=1.0で、外部EGRのみが実行されているときに算出され、内部EGR用学習値KEGRREFINは、EGRDIVIN=1.0で、内部EGRのみが実行されているときに算出されるので、排気還流機構16と3つの可変機構50,70,90のどちらが故障しているのかを的確に特定することができる。これに加えて、2つの学習値KEGRREFEX,KEGRREFINはいずれも、フィードバック補正係数KEGRFBの加重平均演算により算出されるので、誤演算などに起因して、フィードバック補正係数KEGRFBが一時的に過大または過小な値となったときでも、EGR故障が発生したと誤判定するのを回避できる。
Further, when the external EGR learning value KEGRREFEX is not within the first predetermined range (KEGRREFEXL <KEGRREFEX <KEGRREFEXLH), it is determined that the exhaust
以上のように、2つの異なる故障判定手法によって、排気還流機構16と3つの可変機構50,70,90の故障を判定できるとともに、外部EGRを行う機構と内部EGRを行う機構のどちらが故障したのかを特定できる。その結果、故障判定をさらに的確に行うことができ、判定精度をさらに向上させることができる。
As described above, the failure of the exhaust
また、排気還流機構16または3つの可変機構50,70,90の故障が発生していると判定されることで、EGR正常フラグF_EGROKが「0」に設定されたときには、圧縮着火燃焼フラグF_HCCIが「0」に設定され、圧縮着火燃焼運転が禁止されるとともに、火花点火燃焼運転が実行されるので、EGR故障により筒内温度を適切に制御できないことで、混合気の燃焼状態が悪化するのを回避しながら、火花点火により混合気を良好な状態で燃焼させることができる。その結果、排ガス特性および運転性を向上させることができる。
Further, when it is determined that a failure has occurred in the exhaust
なお、実施形態は、内部EGR装置として、気筒3a内に残留させる既燃ガス量を変更するための吸気カム位相可変機構50、排気リフト可変機構70および排気カム位相可変機構90を用いた例であるが、本願発明の内部EGR装置はこれに限らず、既燃ガスを気筒内に残留させる量を変更可能なものであればよい。例えば、既燃ガスを、シリンダヘッド内の還流路を介して外部EGRよりも高温の排ガスとして還流させることにより気筒3a内に残留させるとともに、その還流量を変更可能な装置を用いてもよい。
The embodiment is an example in which an intake cam phase
また、実施形態は、EGR率パラメータとして実新気率KEGRを用いた例であるが、EGR率パラメータはこれに限らず、総EGR量と総ガス量との比率を表すものであればよい。例えば、EGR率パラメータとして、値1から実新気率KEGRを減算した値であるEGR率を用いてもよい。
The embodiment is an example in which the actual fresh air rate KEGR is used as the EGR rate parameter, but the EGR rate parameter is not limited to this, and may be any value that represents a ratio between the total EGR amount and the total gas amount. For example, an EGR rate that is a value obtained by subtracting the actual fresh air rate KEGR from the
さらに、実施形態は、外部EGR割合EGRDIVEXと比較する第1の所定値として、値1.0を用いた例であるが、本願発明の外部EGR割合と比較する第1の所定値はこれに限らず、値0.5より大きくかつ値1.0以下の範囲内の値であればよい。また、実施形態は、内部EGR割合EGRDIVINと比較する第2の所定値として、値1.0を用いた例であるが、本願発明の内部EGR割合の割合と比較する第2の所定値はこれに限らず、値0.5より大きくかつ値1.0以下の範囲内の値であればよい。 Further, the embodiment is an example in which the value 1.0 is used as the first predetermined value compared with the external EGR ratio EGRDIVEX, but the first predetermined value compared with the external EGR ratio of the present invention is not limited to this. However, it may be a value within a range larger than 0.5 and 1.0 or less. In the embodiment, the value 1.0 is used as the second predetermined value to be compared with the internal EGR ratio EGRDIVIN. However, the second predetermined value to be compared with the ratio of the internal EGR ratio of the present invention is However, the present invention is not limited to this, and any value that is larger than 0.5 and not larger than 1.0 is acceptable.
また、実施形態は、KSTEPEIPDLH≦KEGRFBおよびC_STEPEPC>STEPEPCCONTがいずれも成立しているときに、EGR量の過大故障が発生していると判定するとともに、KEGRFB≦KSTEPEIPDLLおよびC_STEPEVO>STEPEVOCONTがいずれも成立しているときに、EGR量の過小故障が発生していると判定した例であるが、KSTEPEIPDLH≦KEGRFBのみが成立しているときにEGR量の過大故障が発生していると判定するとともに、KEGRFB≦KSTEPEIPDLLのみが成立しているときにEGR量の過小故障が発生していると判定してもよい。すなわち、図31の処理において、ステップ152,153,159,160,164を省略してもよい。 Further, in the embodiment, when KSTEPIPDLH ≦ KEGRFB and C_STEPEPC> STEPECCONT are both satisfied, it is determined that an excessive failure of the EGR amount has occurred, and KEGRFB ≦ KSTEPEIPDLL and C_STEPEVO> STEPVOCONT are both satisfied. In this example, it is determined that an EGR amount under-failure has occurred. However, when only KSTEPIPDLH ≦ KEGRFB is satisfied, it is determined that an EGR amount over-failure has occurred, and KEGRFB It may be determined that an EGR amount under-malfunction has occurred when only ≦ KSTEPEIPDLL is established. That is, steps 152, 153, 159, 160, and 164 may be omitted in the process of FIG.
さらに、実施形態は、ステップ153またはステップ160の判別結果がYESのときには、内部EGR割合EGRDIVINの値に応じて、排気還流機構16および3つの可変機構50,70,90のどちらが故障しているのかを判定した例であるが、ステップ153またはステップ160の判別結果がYESのときに、排気還流機構16および3つの可変機構50,70,90がいずれも故障していると判定してもよい。
Furthermore, according to the embodiment, when the determination result in
また、実施形態は、第1の運転状態パラメータとして、アクセル開度AP、エンジン回転数NE、新気流量GINおよび吸気管内圧PBAなどを用いた例であるが、第1の運転状態パラメータはこれに限らず、エンジン3の運転状態を表すものであればよい。例えば、エンジン水温TWなどを用いてもよい。
The embodiment is an example in which the accelerator opening AP, the engine speed NE, the fresh air flow rate GIN, the intake pipe internal pressure PBA, and the like are used as the first operating state parameter. It is not limited to that as long as it represents the operating state of the
さらに、実施形態は、第2の運転状態パラメータとして、アクセル開度APおよびエンジン回転数NEを用いた例であるが、第2の運転状態パラメータはこれに限らず、エンジン3の運転状態を表すものであればよい。例えば、吸入新気量GAIRCYLや吸気管内圧PBAなどを用いてもよい。
Furthermore, although embodiment is an example using accelerator opening AP and engine speed NE as a 2nd driving | running state parameter, a 2nd driving | running state parameter represents not only this but the driving | running state of the
1 EGR故障判定装置
2 ECU(EGR率パラメータ算出手段、目標値設定手段、EGR制御用値算出手
段、制御手段、故障判定手段、EGR割合設定手段、学習値算出手段、禁止手段
)
3 内燃機関
3a 気筒
16 排気還流機構(外部EGR装置)
50 吸気カム位相可変機構(内部EGR装置)
70 排気リフト可変機構(内部EGR装置)
90 排気カム位相可変機構(内部EGR装置)
NE エンジン回転数(第1および第2の運転状態パラメータ)
AP アクセル開度(第1および第2の運転状態パラメータ)
GIN 新気流量(第1の運転状態パラメータ)
PBA 吸気管内圧(第1の運転状態パラメータ)
KEGR 実新気率(EGR率パラメータ)
KEGRCMD 実新気率の目標値(EGR率パラメータの目標値)
KEGRFB フィードバック補正係数(EGR制御用値)
KSTEPEIPDLL 下限値(所定範囲の下限を規定する値)
KSTEPEIPDLH 上限値(所定範囲の上限を規定する値)
EGRDIVEX 外部EGR割合
EGRDIVIN 内部EGR割合
KEGRREFEX 外部EGR用学習値(EGR制御用値の外部EGR用の学習値
)
KEGRREFEXLL 下限値(第1の所定範囲の下限を規定する値)
KEGRREFEXLH 上限値(第1の所定範囲の上限を規定する値)
KEGRREFIN 内部EGR用学習値(EGR制御用値の内部EGR用の学習値
)
KEGRREFINLL 下限値(第2の所定範囲の下限を規定する値)
KEGRREFINLH 上限値(第2の所定範囲の上限を規定する値)
1 EGR
3
50 Intake cam phase variable mechanism (internal EGR device)
70 Exhaust lift variable mechanism (internal EGR device)
90 Exhaust cam phase variable mechanism (internal EGR device)
NE engine speed (first and second operating state parameters)
AP accelerator opening (first and second operating state parameters)
GIN fresh air flow (first operating condition parameter)
PBA intake pipe internal pressure (first operating state parameter)
KEGR actual fresh air rate (EGR rate parameter)
KEGRCMD Target value of actual fresh air rate (target value of EGR rate parameter)
KEGRFB feedback correction coefficient (value for EGR control)
KSTEPEIPDLL lower limit (value that defines the lower limit of the specified range)
KSTEPEIPDLH upper limit (value that defines the upper limit of the predetermined range)
EGRDIVEX External EGR ratio EGRDIVIN Internal EGR ratio KEGRREFEX External EGR learning value (EGR control value learning value for external EGR
)
KEGRREFEXLL lower limit (value that defines the lower limit of the first predetermined range)
KEGRREFEXLH upper limit (value that defines the upper limit of the first predetermined range)
KEGRREFIN Internal EGR learning value (EGR control value learning value for internal EGR
)
KEGRREFINLL lower limit (value that defines the lower limit of the second predetermined range)
KEGRREFINLH upper limit (value that defines the upper limit of the second predetermined range)
Claims (4)
前記内燃機関の運転状態を表す第1の運転状態パラメータに応じて、前記気筒内に還流する前記排ガス量および前記気筒内に残留する前記既燃ガス量の和である総EGR量と、当該総EGR量および前記気筒内に吸入される新気量の和である総ガス量との比率を表すEGR率パラメータを算出するEGR率パラメータ算出手段と、
当該EGR率パラメータの目標となる目標値を設定する目標値設定手段と、
前記EGR率パラメータおよび前記目標値に応じて、EGR制御用値を算出するEGR制御用値算出手段と、
当該EGR制御用値に応じて、前記外部EGR装置および前記内部EGR装置を制御する制御手段と、
前記EGR制御用値が所定範囲内にないときには、前記外部EGR装置および前記内部EGR装置の少なくとも一方が故障したと判定する故障判定手段と、
前記内燃機関の運転状態を表す第2の運転状態パラメータに応じて、前記外部EGR装置により還流すべき排ガス量の前記総EGR量に対する割合を外部EGR割合として設定するとともに、前記内部EGR装置により残留させるべき既燃ガス量の前記総EGR量に対する割合を内部EGR割合として設定するEGR割合設定手段と、備え、
前記制御手段は、前記外部EGR割合にさらに応じて前記外部EGR装置を制御するとともに、前記内部EGR割合にさらに応じて前記内部EGR装置を制御し、
前記故障判定手段は、前記EGR制御用値が前記所定範囲内にない場合において、前記外部EGR割合が前記内部EGR割合よりも大きいときには、前記外部EGR装置が故障したと判定し、前記内部EGR割合が前記外部EGR割合よりも大きいときには、前記内部EGR装置が故障したと判定することを特徴とする内燃機関のEGR故障判定装置。 The exhaust gas exhausted from the cylinder is recirculated into the cylinder, and the external EGR device that changes the recirculation amount of the exhaust gas, and the burned gas generated in the cylinder as a gas having a temperature higher than that of the exhaust gas are contained in the cylinder. In an internal combustion engine having an internal EGR device that changes the residual amount of burned gas while remaining, an EGR failure determination device for an internal combustion engine that determines a failure of the external EGR device and the internal EGR device,
In accordance with a first operating state parameter representing an operating state of the internal combustion engine, a total EGR amount that is a sum of the exhaust gas amount recirculated in the cylinder and the burned gas amount remaining in the cylinder; EGR rate parameter calculation means for calculating an EGR rate parameter that represents a ratio between the EGR amount and the total gas amount that is the sum of the fresh air amount sucked into the cylinder;
Target value setting means for setting a target value as a target of the EGR rate parameter;
EGR control value calculation means for calculating an EGR control value according to the EGR rate parameter and the target value;
Control means for controlling the external EGR device and the internal EGR device in accordance with the EGR control value;
A failure determination means for determining that at least one of the external EGR device and the internal EGR device has failed when the EGR control value is not within a predetermined range;
In accordance with a second operating state parameter representing the operating state of the internal combustion engine, a ratio of the exhaust gas amount to be recirculated by the external EGR device to the total EGR amount is set as an external EGR ratio, and the residual amount is set by the internal EGR device. EGR ratio setting means for setting a ratio of the amount of burned gas to be made to the total EGR amount as an internal EGR ratio;
The control means controls the external EGR device further according to the external EGR rate, and controls the internal EGR device further according to the internal EGR rate,
The failure determination means determines that the external EGR device has failed when the external EGR ratio is larger than the internal EGR ratio when the EGR control value is not within the predetermined range, and the internal EGR ratio Is greater than the external EGR ratio, it is determined that the internal EGR device has failed . An EGR failure determination device for an internal combustion engine, wherein:
前記故障判定手段は、当該算出されたEGR制御用値の外部EGR用の学習値が第1の所定範囲内にないときには、前記外部EGR装置が故障したと判定し、前記算出されたEGR制御用値の内部EGR用の学習値が第2の所定範囲内にないときには、前記内部EGR装置が故障したと判定することを特徴とする請求項1に記載の内燃機関のEGR故障判定装置。 When the external EGR ratio is greater than the internal EGR ratio and equal to or greater than a first predetermined value, a learning value for the external EGR of the EGR control value is calculated, and the internal EGR ratio is the external EGR ratio. A learning value calculation means for calculating a learning value for internal EGR of the EGR control value when the value is greater than or equal to a second predetermined value,
The failure determination means determines that the external EGR device has failed when the external EGR learning value of the calculated EGR control value is not within the first predetermined range, and the calculated EGR control value 2. The EGR failure determination device for an internal combustion engine according to claim 1 , wherein when the learned value for internal EGR of the value is not within a second predetermined range, it is determined that the internal EGR device has failed .
前記内燃機関の運転状態を表す第1の運転状態パラメータに応じて、前記気筒内に還流する前記排ガス量および前記気筒内に残留する既燃ガス量の和である総EGR量と、当該総EGR量および前記気筒内に吸入される新気量の和である総ガス量との比率を表すEGR率パラメータを算出するEGR率パラメータ算出手段と、
当該EGR率パラメータの目標となる目標値を設定する目標値設定手段と、
前記EGR率パラメータおよび前記目標値に応じて、EGR制御用値を算出するEGR制御用値算出手段と、
前記内燃機関の運転状態を表す第2の運転状態パラメータに応じて、前記外部EGR装置により還流すべき排ガス量の前記総EGR量に対する割合を外部EGR割合として設定するとともに、前記内部EGR装置により残留させるべき既燃ガス量の前記総EGR量に対する割合を内部EGR割合として設定するEGR割合設定手段と、
前記EGR制御用値および前記外部EGR割合に応じて、前記外部EGR装置を制御するとともに、前記EGR制御用値および前記内部EGR割合に応じて、前記内部EGR装置を制御する制御手段と、
前記外部EGR割合が前記内部EGR割合よりも大きくかつ第1の所定値以上であるときに、前記EGR制御用値の外部EGR用の学習値を算出するとともに、当該内部EGR割合が当該外部EGR割合よりも大きくかつ第2の所定値以上であるときに、前記EGR制御用値の内部EGR用の学習値を算出する学習値算出手段と、
当該算出されたEGR制御用値の外部EGR用の学習値が第1の所定範囲内にないときには、前記外部EGR装置が故障したと判定し、前記算出されたEGR制御用値の内部EGR用の学習値が第2の所定範囲内にないときには、前記内部EGR装置が故障したと判定する故障判定手段と、
を備えることを特徴とする内燃機関のEGR故障判定装置。 The exhaust gas exhausted from the cylinder is recirculated into the cylinder, and the external EGR device that changes the recirculation amount of the exhaust gas, and the burned gas generated in the cylinder as a gas having a temperature higher than that of the exhaust gas are contained in the cylinder. In an internal combustion engine having an internal EGR device that changes the residual amount of burned gas while remaining, an EGR failure determination device for an internal combustion engine that determines a failure of the external EGR device and the internal EGR device,
In accordance with a first operating state parameter representing the operating state of the internal combustion engine, a total EGR amount that is a sum of the exhaust gas amount recirculated into the cylinder and the burned gas amount remaining in the cylinder, and the total EGR EGR rate parameter calculating means for calculating an EGR rate parameter that represents a ratio between the total amount of gas and the total amount of fresh air sucked into the cylinder;
Target value setting means for setting a target value as a target of the EGR rate parameter;
EGR control value calculation means for calculating an EGR control value according to the EGR rate parameter and the target value;
In accordance with a second operating state parameter representing the operating state of the internal combustion engine, a ratio of the exhaust gas amount to be recirculated by the external EGR device to the total EGR amount is set as an external EGR ratio, and the residual amount is set by the internal EGR device. EGR ratio setting means for setting a ratio of the amount of burned gas to be made to the total EGR amount as an internal EGR ratio;
Control means for controlling the external EGR device according to the EGR control value and the external EGR ratio, and controlling the internal EGR device according to the EGR control value and the internal EGR ratio;
When the external EGR ratio is greater than the internal EGR ratio and equal to or greater than a first predetermined value, a learning value for the external EGR of the EGR control value is calculated, and the internal EGR ratio is the external EGR ratio. Learning value calculation means for calculating a learning value for internal EGR of the value for EGR control when greater than or equal to or greater than a second predetermined value;
If the learned value for external EGR of the calculated EGR control value is not within the first predetermined range, it is determined that the external EGR device has failed, and the calculated EGR control value for internal EGR is determined. Failure determination means for determining that the internal EGR device has failed when the learning value is not within the second predetermined range;
An EGR failure determination apparatus for an internal combustion engine, comprising:
前記故障判定手段により前記外部EGR装置および前記内部EGR装置の一方が故障したと判定されたときに、前記内燃機関の前記圧縮着火燃焼運転を禁止する禁止手段をさらに備えることを特徴とする請求項1ないし3のいずれかに記載の内燃機関のEGR故障判定装置。 The internal combustion engine is composed of an internal combustion engine capable of at least compression ignition combustion operation,
When one of the external EGR device and the internal EGR device is determined to be faulty by the failure determining means, claims, characterized in that further comprising inhibiting means for inhibiting the compression ignition combustion operation of the internal combustion engine The EGR failure determination apparatus for an internal combustion engine according to any one of 1 to 3 .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005288058A JP4500755B2 (en) | 2005-09-30 | 2005-09-30 | EGR failure determination device for internal combustion engine |
EP06019599A EP1770268A3 (en) | 2005-09-30 | 2006-09-19 | Exhaust gas recirculation fault detection system |
US11/526,804 US7392797B2 (en) | 2005-09-30 | 2006-09-26 | EGR failure determination system and control system for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005288058A JP4500755B2 (en) | 2005-09-30 | 2005-09-30 | EGR failure determination device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007100523A JP2007100523A (en) | 2007-04-19 |
JP4500755B2 true JP4500755B2 (en) | 2010-07-14 |
Family
ID=38027717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005288058A Expired - Fee Related JP4500755B2 (en) | 2005-09-30 | 2005-09-30 | EGR failure determination device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4500755B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5169439B2 (en) * | 2008-04-24 | 2013-03-27 | 株式会社デンソー | Internal combustion engine control device and internal combustion engine control system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001207916A (en) * | 2000-01-21 | 2001-08-03 | Toyota Motor Corp | Exhaust gas recirculation system for internal combustion engine |
JP2005240591A (en) * | 2004-02-24 | 2005-09-08 | Toyota Industries Corp | Troubleshooting device of exhaust gas recirculation system of internal combustion engine |
-
2005
- 2005-09-30 JP JP2005288058A patent/JP4500755B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001207916A (en) * | 2000-01-21 | 2001-08-03 | Toyota Motor Corp | Exhaust gas recirculation system for internal combustion engine |
JP2005240591A (en) * | 2004-02-24 | 2005-09-08 | Toyota Industries Corp | Troubleshooting device of exhaust gas recirculation system of internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JP2007100523A (en) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7314041B2 (en) | EGR control system for internal combustion engine | |
US7392797B2 (en) | EGR failure determination system and control system for internal combustion engine | |
US7661407B2 (en) | Control system for internal combustion engine | |
JP4421607B2 (en) | EGR control device for internal combustion engine | |
US7444999B2 (en) | Control system and method for internal combustion engine | |
JP4792454B2 (en) | Ignition timing control device for internal combustion engine | |
JP4463179B2 (en) | EGR control device for internal combustion engine | |
JP4468462B2 (en) | Internal EGR control device for internal combustion engine | |
JP4505398B2 (en) | Control device for internal combustion engine | |
EP2282034B1 (en) | Internal egr control device for internal combustion engine | |
JP2011157903A (en) | Parameter detecting device for internal combustion engine, and control device | |
US8707936B2 (en) | Control system for internal combustion engine | |
JP4500755B2 (en) | EGR failure determination device for internal combustion engine | |
JP4778879B2 (en) | Supercharging pressure control device for internal combustion engine | |
JP4382023B2 (en) | EGR control device for internal combustion engine | |
JP4172716B2 (en) | EGR control device for internal combustion engine | |
JP2004316613A (en) | Variable valve control device for internal combustion engine | |
JP2000320355A (en) | Internal combustion engine controller | |
JP2007040124A (en) | Valve gear for internal combustion engine | |
JP2009097411A (en) | Control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100323 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100419 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |