JP4491188B2 - 結合光導波路 - Google Patents
結合光導波路 Download PDFInfo
- Publication number
- JP4491188B2 JP4491188B2 JP2002202526A JP2002202526A JP4491188B2 JP 4491188 B2 JP4491188 B2 JP 4491188B2 JP 2002202526 A JP2002202526 A JP 2002202526A JP 2002202526 A JP2002202526 A JP 2002202526A JP 4491188 B2 JP4491188 B2 JP 4491188B2
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- coupled
- photonic crystal
- light
- waveguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
【発明の属する技術分野】
本発明は、複数の光導波路を結合してなる結合光導波路に関する。
【0002】
【従来の技術】
従来の結合光導波路、例えば方向性結合器は、光ファイバー型のものや、ガラスや半導体基板上に形成する平面導波路型のものが存在する。しかし、光ファイバー型のものはそもそも集積化には適さないし、平面導波路型のものでも、サイズが大きく、多数集積化すると全体サイズが大きくなりすぎる。例えば、結合光導波路構造を有する電気光学効果光スイッチをマトリクス化して集積化する場合、8×8マトリクススイッチとなると、3cm程度の長さとなる。
【0003】
【発明が解決しようとする課題】
このように、従来の結合光導波路は、サイズが大きいという問題が有った。また、平面導波路型のものにおいて、結合光導波路の形成は、ドライエッチングなどにより、二本の光導波路間を隔てる溝を掘り込むなどして作製している。この場合、結合光導波路における二本の光導波路間の光学結合の強さが、導波路間隔に非常に敏感であるため、ドライエッチングによる分離溝形成の精度が作製プロセスの制御性を左右していた。このため、このような従来プロセスで得られる結合光導波路の特性の再現性および制御性はあまり良くはなかった。
【0004】
本発明の目的は、従来の結合光導波路型素子におけるそのような課題を解決するためのもので、サイズが小さい結合光導波路、及びそれを用いた種々の光デバイスを提供することにある。
【0005】
本発明のもう一つの目的は、結合光導波路作製プロセスにおける制御性および再現性を改善できる結合光導波路、及びそれを用いた種々の光デバイスを提供することにある。
【0006】
【課題を解決するための手段】
本発明は、以下に述べるとおりである。
【0007】
(1) ライン・アンド・スペース パターンを形成する溝が表面に形成された基板と、
各々が前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された所定数X(Xは2以上の整数)の格子変調フォトニック結晶光導波路とを有し、
前記所定数Xの格子変調フォトニック結晶光導波路は、前記基板の前記表面に平行な面上に、互いに平行に位置し、かつ前記所定数Xの格子変調フォトニック結晶光導波路の隣接する2つは、それらの間で光の電界が結合するように近接して配置されていることを特徴とする結合光導波路(図3及び図4)。
【0008】
(2) ライン・アンド・スペース パターンを形成する溝が表面に形成された基板と、
各々が前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された規定数Y(Yは2以上の整数)の格子変調フォトニック結晶光導波路とを有し、
前記規定数Yの格子変調フォトニック結晶光導波路は、前記基板の前記表面に垂直な面上に、互いに平行に位置し、かつ前記規定数Yの格子変調フォトニック結晶光導波路の隣接する2つは、それらの間で光の電界が結合するように近接して配置されていることを特徴とする結合光導波路(図5)。
【0009】
(3) ライン・アンド・スペース パターンを形成する溝が表面に形成された基板と、
各々が前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された複数の格子変調フォトニック結晶光導波路とを有し、
前記複数の格子変調フォトニック結晶光導波路は、所定数X(Xは2以上の整数)の格子変調フォトニック結晶光導波路と規定数Y(Yは2以上の整数)の格子変調フォトニック結晶光導波路とを有し、
前記所定数Xの格子変調フォトニック結晶光導波路は、前記基板の前記表面に平行な面上に、互いに平行に位置し、かつ前記所定数Xの格子変調フォトニック結晶光導波路の隣接する2つは、それらの間で光の電界が結合するように近接して配置され、
前記規定数Yの格子変調フォトニック結晶光導波路は、前記基板の前記表面に垂直な面上に、互いに平行に位置し、かつ前記規定数Yの格子変調フォトニック結晶光導波路の隣接する2つは、それらの間で光の電界が結合するように近接して配置されていることを特徴とする結合光導波路(図6)。
【0010】
(4) ライン・アンド・スペース パターンを形成する溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に平行な面上に、複数本互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されていることを特徴とする結合光導波路(図3及び図4)。
【0011】
(5) ライン・アンド・スペース パターンを形成する溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に垂直な面上に、複数本互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されていることを特徴とする結合光導波路(図5)。
【0012】
(6) ライン・アンド・スペース パターンを形成する溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に平行な面上及び前記基板の前記表面に垂直な面上に、複数本ずつ、互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されていることを特徴とする結合光導波路(図6)。
【0013】
(7) 上記(4)又は上記(5)に記載の結合光導波路を用いた方向性結合器であって、前記結合光導波路の前記格子変調フォトニック結晶光導波路の数が二本であり、前記二本の格子変調フォトニック結晶光導波路の一方に入力した光ビームを、前記二本の格子変調フォトニック結晶光導波路の他方に結合させて出力させる動作をすることを特徴とする方向性結合器(図10及び図11)。
【0014】
(8) 上記(4)乃至上記(6)のいずれかに記載の結合光導波路を用いたビーム スプリッターであって、前記複数本の格子変調フォトニック結晶光導波路の一つに入力した光ビームのパワーを、所定の割合で、前記複数本の格子変調フォトニック結晶光導波路の残りのものに結合させることを特徴とするビーム スプリッター(図12)。
【0015】
(9) 上記(4)又は上記(5)に記載の結合光導波路を複数本、横方向にずらして繋ぐことにより、光ビームの伝搬経路をずらしながら伝搬させて行くようにしたことを特徴とする結合光導波路の組合せ(図8)。
【0016】
(10) 上記(7)に記載の方向性結合器を用いた光スイッチであって、前記結合光導波路の前記二本の格子変調フォトニック結晶光導波路の屈折率を変化させる手段を有し、前記結合光導波路の前記二本の格子変調フォトニック結晶光導波路の屈折率を変化させることにより、光ビームを出力させる格子変調フォトニック結晶光導波路を切り替えることを特徴とする光スイッチ(図13)。
【0017】
(11) 上記(4)又は上記(5)に記載の結合光導波路を用いた結合光導波路型波長フィルターであって、前記複数本の格子変調フォトニック結晶光導波路間に、固有の共振周波数を有する短い光導波路を導入することにより、前記複数本の格子変調フォトニック結晶光導波路の一方に入射させた光ビームのうちの特定の波長成分の光のみが前記短い光導波路からなる光共振器内で共振することにより、前記複数本の格子変調フォトニック結晶光導波路の他方に乗り移って出力されることを特徴とする結合光導波路型波長フィルター(図15)。
【0018】
(12) 上記(11)に記載の結合光導波路型波長フィルターにおいて、前記光共振器の前記短い光導波路を構成する多層膜の構造が前記短い光導波路の長手方向に波型に変調される構造を有することにより、前記波型変調の周期に対応するある波長の光のみを選択的に共振させて出力することを特徴とする結合光導波路型波長フィルター(図16)。
【0019】
(13) 上記(11)又は上記(12)に記載の結合光導波路型波長フィルターにおいて、前記光共振器の前記短い光導波路の屈折率を変化させる手段を有し、前記光共振器の前記短い光導波路の屈折率を変化させることにより、出力される光の波長を変化させることを可能とする結合光導波路型波長フィルター(図17)。
【0020】
(14) 上記(7)に記載の方向性結合器を用いたアド・ドロップ・マルチプレクサーであって、前記二本の格子変調フォトニック結晶光導波路の一方の一部に、光導波路を構成する多層膜の構造が前記光導波路の長手方向に波型に変調される構造を有することにより、特定波長の光のみを選択的に反射する分布ブラッグ反射鏡部を有することを特徴とするアド・ドロップ・マルチプレクサー(図18)。
【0021】
(15) 上記(14)に記載のアド・ドロップ・マルチプレクサーにおいて、分布ブラッグ反射鏡部の屈折率を変化させることができる手段を有し、前記分布ブラッグ反射鏡部の屈折率を変化させることにより、アド・ドロップする光の波長を可変できることを特徴とするアド・ドロップ・マルチプレクサー(図19)。
【0022】
(16) 上記(7)に記載の方向性結合器を用いた光制御光スイッチであって、前記結合光導波路の前記二本の格子変調フォトニック結晶光導波路の少なくとも一方の一部に、光導波路を構成する多層膜の構造が長手方向に波型に変調される構造を有することにより、スイッチ制御を行う波長の制御光のみを選択的に反射する分布ブラッグ反射鏡部を有し、前記制御光の入射によって、前記結合光導波路の屈折率を変化されることにより、前記結合光導波路の完全結合長を変化させ、前記結合光導波路に制御光とは別に入射する信号光の出口を切り替えることを特徴とする光制御光スイッチ(図20)。
【0023】
(17) 上記(7)に記載の方向性結合器を用いた光制御光スイッチであって、前記結合光導波路の前記二本の格子変調フォトニック結晶光導波路の少なくとも一方の一部に、光導波路を構成する多層膜の構造が長手方向に波型に変調される構造を有することにより、信号光の波長の光のみを選択的に反射する分布ブラッグ反射鏡部を有し、さらに前記結合光導波路に信号光とは別に制御光を入射させることによって、前記結合光導波路の屈折率を変化されることにより、前記結合光導波路の完全結合長を変化させ、信号光の出口を切り替えることを特徴とする光制御光スイッチ(図21)。
【0024】
(18) 上記(4)に記載の結合光導波路を用いた光制御光スイッチであって、前記結合光導波路は、互いに結合した三本の格子変調フォトニック結晶光導波路を有し、前記結合光導波路の外側の二本の格子変調フォトニック結晶光導波路に挟まれた中央の格子変調フォトニック結晶光導波路に、スイッチングを制御する制御光を入射させることによって、前記結合光導波路の屈折率を変化されることにより、前記結合光導波路の完全結合長を変化させ、前記外側の二本の格子変調フォトニック結晶光導波路の何れかに入射させた信号光の出口を切り替えることを特徴とする光制御光スイッチ(図22)。
【0025】
(19) 上記(5)に記載の結合光導波路において、前記複数本の格子変調フォトニック結晶光導波路の等価屈折率が互いに異なることを特徴とする結合光導波路(図23)。
【0026】
(20) 上記(19)に記載の結合光導波路を用いた分散補償器において、前記複数本の格子変調フォトニック結晶光導波路間での等価屈折率の違いを利用して、異なる波長の光に対して伝搬速度の違いを生じさせ、分散補償を行うことを特徴とする分散補償器(図23)。
【0027】
(21) 上記(4)に記載の結合光導波路において、前記複数本の格子変調フォトニック結晶光導波路が、長手方向に夫々異なる周期の波型周期構造パターンを有することを特徴とする結合光導波路(図24)。
【0028】
(22) 上記(21)に記載の結合光導波路において、前記複数本の格子変調フォトニック結晶光導波路間での前記長手方向の波型周期構造パターンの周期の違いを利用して、異なる波長の光に対して伝搬速度の違いを生じさせ、分散補償を行うことを特徴とする分散補償器(図24)。
【0029】
【発明の実施の形態】
次に本発明の実施例について図面を参照して説明する。
【0030】
本発明は、東北大学 川上彰二郎 教授らが考案した自己クローニング技術(S. Kawakami et al., Appl. Phys. Lett., 74, 463 (1999).)によって作製可能な格子変調フォトニック結晶により形成される光導波路(格子変調フォトニック結晶光導波路)を用いる。
【0031】
図1は、その格子変調フォトニック結晶光導波路10を示している。この格子変調フォトニック結晶光導波路10は、Si等の半導体の基板11上にライン・アンド・スペース パターンを形成する溝12を形成し、その上に自己クローニング技術を用いて屈折率の低い誘電体13としてSiO2を、屈折率の高い誘電体14としてはTa2O5(或はSi)を交互に積層することにより、所謂格子変調フォトニック結晶による光導波路を形成したものである。この格子変調フォトニック結晶光導波路10においては、図示のように、ライン・アンド・スペース パターン上に波形の多層膜が形成されている。
【0032】
この波形多層膜においては、場所による波型パターンの周期の違いによって、伝搬する光ビームが感じる等価的な屈折率に差が付けられる。基板11に平行な面内では、一般的に、波型パターンの周期が短い程等価的な屈折率は高くなる。一方、基板11に垂直な(積層)方向でも等価的な屈折率に差が付けられ、この場合は、多層膜の膜厚が厚いほど等価屈折率は高くなる。従って、図に示すように、導波路コア(0.3μm×0.3μm)15の部分の屈折率を、導波路コア15を取り囲むクラッド部分の屈折率よりも高くすれば、チャネル型の光導波路として機能する。
【0033】
波形パターンの基板11に平行な面内での周期は、最初に基板11上に形成するライン・アンド・スペース パターンの周期によって決まる。具体的には、屈折率の高い誘電体(高屈折率媒質)14として屈折率が約2.1のTa2O5を、屈折率の低い誘電体(低屈折率媒質)13として屈折率が約1.5のSiO2を夫々、クラッド部分は厚さ0.34μmずつ7周期、導波路コア15の部分は厚さ0.38μmずつ4.5周期積層する。このような構造においては、導波路コア15部分の等価屈折率は約1.83となり、周りのクラッド部分の等価屈折率約1.81に比べて1%程度高くなり、チャネル型光導波路として機能する。
【0034】
なお、図示の場合、導波路コア15を形成するための凸部間の間隔は0.3μmである(溝間の間隔も0.3μmである)。導波路コア15の両横のクラッド部分を形成するための凸部間の間隔は0.6μmである(溝間の間隔も0.6μmである)。
【0035】
ところで、本発明の特徴は、このように形成される格子変調フォトニック結晶光導波路を2本平行に並べて近接させることにより、二本の光導波路間での伝搬光ビームの光学的な結合を実現した結合光導波路を得、この結合光導波路を用いて、方向性結合器他の様々なデバイスに展開して行こうとするものである。
【0036】
次に、図2、図3、及び図4を参照して、本発明の第1の実施例による結合光導波路を説明する。
【0037】
この第1の実施例による結合光導波路は、以下の様にして得られる。
【0038】
まず、図2に示すライン・アンド・スペース パターンの溝(深さ約0.4μm)12をSi等の半導体の基板11上に、図3に示すように設ける。
【0039】
続いて、図3において、その基板11上に同様に、屈折率の高い誘電体(高屈折率媒質)14としてTa2O5を、屈折率の低い誘電体(低屈折率媒質)13としてSiO2を夫々、導波路コア15(1,1)及び15(2,1)部分は厚さ0.38μmずつ4.5周期、導波路コア15(1,1)及び15(2,1)部分を取り囲むクラッド部分は厚さ0.34μmずつ7周期積層する。
【0040】
なお、図2に示すように、導波路コア15(1,1)及び15(2,1)の各々を形成するための溝12間の間隔は0.3μmであり、凸部間の間隔も0.3μmである。導波路コア15(1,1)及び15(2,1)の各々の両横のクラッド部分を形成するための溝12間の間隔は0.6μmであり、凸部間の間隔も0.6μmである。
【0041】
こうすることにより、図3に示した様に、平行な二本の近接した導波路コア15(1,1)及び15(2,1)を有するチャネル型の結合光導波路が得られる。導波路コア15(1,1)及び15(2,1)は、それらの間で光の電界が結合するように近接して配置されている。導波路コア15(1,1)及び導波路コア15(2,1)の各々は、図1の導波路コア15と同じ構造を有する。すなわち、導波路コア15(1,1)及び導波路コア15(2,1)は、互いに同じ構造を有している。導波路コア15(1,1)及び15(2,1)間の間隔は、基板11に形成するライン・アンド・スペース パターンによって決まり、電子ビーム露光や、光学露光によるマスクパターンの精度で導波路間隔を正確に制御できる。従って、ドライエッチングなどにより、分離溝を形成する必要がないため、制御性および再現性良く結合光導波路が得られる。
【0042】
図4は、この結合光導波路の斜視図である。なお、導波路コアの数は2に限定されず、3以上であっても良い。
【0043】
図3及び図4をまとめると、この結合光導波路は、ライン・アンド・スペースパターンを形成する溝12が表面に形成された基板11と、各々が基板11上に、屈折率の低い誘電体13と屈折率の高い誘電体14とを交互に積層する自己クローニング技術によって作製された所定数X(Xは2以上の整数)の格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)とを有する。前記所定数Xの格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)は、基板11の前記表面に平行な面上に、互いに平行に位置し、かつ前記所定数Xの格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)の隣接する2つは、それらの間で光の電界が結合するように近接して配置されている。
【0044】
次に、図5を参照して、本発明の第2の実施例による結合光導波路を説明する。
【0045】
この第2の実施例による結合光導波路は、基板11に垂直な方向に形成したものであり、同様の参照符号で示された同様の部分を含む。
【0046】
図5において、基板11に垂直な方向での結合光導波路は、基板11上に、積層方向に、クラッド層、導波路コア15(1,1)、クラッド層、導波路コア15(1,2)、クラッド層の順に積層して格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)を形成する。この場合、基板11のライン・アンド・スペース パターンを形成する溝は、図1の一本の導波路を形成する場合の溝12と同じである。また、導波路コア15(1,1)及び導波路コア15(1,2)の各々は、図1の導波路コア15と同じ構造を有する。すなわち、導波路コア15(1,1)及び導波路コア15(1,2)は、互いに同じ構造を有している。
【0047】
なお、導波路コアの数は2に限定されず、3以上であっても良い。
【0048】
図5をまとめると、この結合光導波路は、ライン・アンド・スペース パターンを形成する溝(図1の12)が表面に形成された基板11と、各々が前記基板11上に、屈折率の低い誘電体(図1の13)と屈折率の高い誘電体(図1の14)とを交互に積層する自己クローニング技術によって作製された規定数Y(Yは2以上の整数)の格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)とを有し、前記規定数Yの格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)は、前記基板11の前記表面に垂直な面上に、互いに平行に位置し、かつ前記規定数Yの格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)の隣接する2つは、それらの間で光の電界が結合するように近接して配置されている。
【0049】
次に、図6を参照して、本発明の第3の実施例による結合光導波路を説明する。
【0050】
この第3の実施例は、基板11に平行な方向に形成した結合光導波路(格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)を有する)と、基板11に垂直な方向に形成した結合光導波路(格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)を有する)とを、同時に形成した2次元の結合光導波路であり、同様の参照符号で示された同様の部分を含む。なお、基板11に平行な方向に形成した結合光導波路における格子変調フォトニック結晶光導波路の数X及び基板11に垂直な方向に形成した結合光導波路の数Yは、2に限定されず、3以上であっても良い。
【0051】
すなわち、図6の結合光導波路は、ライン・アンド・スペース パターンを形成する溝12が、図3の場合と同様にして、表面に形成された基板11と、各々が前記基板11上に、屈折率の低い誘電体(図1の13)と屈折率の高い誘電体(図1の14)とを交互に積層する自己クローニング技術によって作製された複数の格子変調フォトニック結晶光導波路とを有し、前記複数の格子変調フォトニック結晶光導波路は、所定数X(Xは2以上の整数)の格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)と規定数Y(Yは2以上の整数)の格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)とを有し、前記所定数Xの格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)は、前記基板11の前記表面に平行な面上に、互いに平行に位置し、かつ前記所定数Xの格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)の隣接する2つは、それらの間で光の電界が結合するように近接して配置され、前記規定数Yの格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)は、前記基板11の前記表面に垂直な面上に、互いに平行に位置し、かつ前記規定数Yの格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)の隣接する2つは、それらの間で光の電界が結合するように近接して配置されている。
【0052】
なお、図6に図示の結合光導波路は、所定数Xの格子変調フォトニック結晶光導波路10(1,1)及び10(2,1)と規定数Yの格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)とが、共通の格子変調フォトニック結晶光導波路10(1,1)を含んでいるが、所定数Xの格子変調フォトニック結晶光導波路と規定数Yの格子変調フォトニック結晶光導波路とが、共通の格子変調フォトニック結晶光導波路を含まないように、それぞれ別の格子変調フォトニック結晶光導波路を含むように構成しても良い。
【0053】
また、図6の結合光導波路は、基板11の表面に平行な面上に互いに平行に位置する所定数Xの格子変調フォトニック結晶光導波路が、10(1,2)及び10(2,2)に相当し、基板11の表面に垂直な面上に互いに平行に位置する規定数Yの格子変調フォトニック結晶光導波路が、10(2,1)及び10(2,2)に相当するものと定義され得る。これら所定数Xの格子変調フォトニック結晶光導波路10(1,2)及び10(2,2)は、それらの間で光の電界が結合するように近接して配置され、また、規定数Yの格子変調フォトニック結晶光導波路10(2,1)及び10(2,2)は、それらの間で光の電界が結合するように近接して配置されている。
【0054】
次に、上述した図3及び図4の結合光導波路の動作について説明する。
【0055】
まず、結合光導波路での光ビームの伝搬について、3次元BPM(Beam Propagation Method)による電磁界解析の結果を用いて説明する。図7に、解析に用いた結合光導波路の断面構造を示す。本解析では、波型の微細構造については考えず、導波路コア15(1,1)及び15(2,1)とクラッド領域とをある等価屈折率を有する一様媒質として扱った。この場合、導波路コア15(1,1)及び15(2,1)の等価屈折率は1.828とし、それを囲むクラッド領域の屈折率は図のような値を用いた。
【0056】
図8(A)及び(B)に、導波路コア間の間隔1μmの結合光導波路の第1の導波路コアに光を入射させた場合に、光ビームが伝搬して行く様子をシミュレーションした結果を示す。Xは結合光導波路の幅方向の距離、Zは結合光導波路の奥行き方向の距離を示している。第1の導波路コアに入射させた光ビームのエネルギーは、この場合約500μmの距離を伝搬した後、隣の第2の導波路コアに完全に移行する。従って、この場合、完全結合長は500μmである。
【0057】
図8(A)及び(B)において、さらに500μm伝搬すると、光ビームのエネルギーは第1の導波路コアに戻ってくる。これが、完全結合長の結合光導波路を2本繋いだ場合の動作である。
【0058】
従って、完全結合長の長さを有する結合光導波路を何本も横方向にずらして繋いでいくと、図8(C)のように、光ビームの伝搬経路をずらしながら伝搬させて行くこともできる。
【0059】
また、図9(A)及び(B)の様に、導波路コア間の間隔を狭く(0.5μm)したり、広く(1.5μm)したりすると、それに伴い完全結合長も短く(350μm)なったり長く(700μm)なったり変化する。
【0060】
図10を参照すると、本発明の第4の実施例による方向性結合器が示されている。この方向性結合器は、図4の結合光導波路に構造において等しい中央の結合光導波路20と、この結合光導波路20の導波路コア15(1,1)及び15(2,1)の一端に結合された一対の光入力ポート21と、結合光導波路20の導波路コア15(1,1)及び15(2,1)の他端に結合された一対の光出力ポート22とを有する。一対の光入力ポート21の一方を介して導波路コア15(1,1)及び15(2,1)の一方に入力した光ビームは、矢印のように、導波路コア15(1,1)及び15(2,1)の他方に結合されて、それに結合された一対の光出力ポート22の一方から出力される。
【0061】
図では、一対の光入力ポート21及び一対の光出力ポート22として、S字の曲がり導波路コアを採用しているが、このような緩やかな曲がり導波路コアなら、自己クローニング技術において、基板のパターンニングのみで形成できる。
【0062】
図11を参照すると、本発明の第5の実施例による方向性結合器が示されている。この方向性結合器も、図10と同様な中央の結合光導波路20を含む。しかし、この方向性結合器は、一対の光入力ポート23及び一対の光出力ポート24として、図10のようなS字の曲がり導波路コアの代りに、ストレートな導波路コア23(1)、23(2)、24(1)、及び24(2)を用いている。導波路コア23(1)及び23(2)は、導波路コア15(1,1)及び15(2,1)と、完全結合長の結合光導波路を構成している。導波路コア24(1)及び24(2)は、導波路コア15(1,1)及び15(2,1)と、完全結合長の結合光導波路を構成している。完全結合長の結合光導波路であれば、上述したように、理論上は100%のパワーが一方の導波路コアから隣の導波路コアに移行できるので、入力ポート及び出力ポートとして利用できる。
【0063】
図12を参照すると、本発明の第6の実施例によるビームスプリッターが示されている。このビームスプリッターは、図6に示した結合光導波路を用いている。このビームスプリッターは、4(=2×2)本の導波路コア15(1,1)、15(2,1)、15(1,2)、及び15(2,2)を有する2次元の結合光導波路を用いる例であるが、別にこの数に拘る必要は無く、6(=2×3)本の導波路コアを有する結合光導波路を用いても、9(=3×3)本の導波路コアを有する結合光導波路を用いても良いことは言うまでもない。図12の場合で説明すると、4本の導波路コアの何れか1本の導波路コア15(1,1)に光を入射させると、残りの3本の導波路コア15(2,1)、15(1,2)、及び15(2,2)に、導波路コア15(1,1)に対する結合の強さに応じた分配比で光のパワーが移行し、ビームスプリッターとして動作する。また、入射光が波長成分を有していれば、その波長で完全結合長となる導波路コアに最大パワーが移行するので、WDM(Wavelength Division Multiplexing)分波器として動作させることも可能である。
【0064】
図13を参照すると、本発明の第7の実施例による方向性結合器型光スイッチが示されている。この方向性結合器型光スイッチは、図10に示した方向性結合器を用いている。この方向性結合器型光スイッチは、中央の結合光導波路20部分の屈折率を変化させる電極30を有し、この電極30に電界を印加し、結合光導波路20部分の屈折率を変化させ、光ビームを出力させる導波路コアを切り換えるものである。
【0065】
所謂、方向性結合器型光スイッチは、LiNO3やInPなどの半導体基板上に実現されているものは従来から有るが、サイズが大きいのと、製造上の歩留まりが悪いため、多数の光スイッチをマトリクス化して集積化することは非常に困難であった。
【0066】
図13の方向性結合器型光スイッチでは、中央の結合光導波路20部分の導波路コア15(1,1)及び15(2,1)間の間隔を1μm以下と非常に狭くすることも可能であり、素子長を短くできると同時に、製造面での制御性、再現性が良く、マトリクス集積化しても歩留まりが低下しないというメリットが有る。スイッチンク動作は、従来の光スイッチと同様に、中央の結合光導波路20部分の屈折率を、電気光学(EO)効果や熱光学(TO)効果を用いて変化させることにより行うことができる。図13に示すものは、中央の結合光導波路20部分の上方に、電極30を付けることによって、結合光導波路20部分に電界を印加し、電気光学効果によりスイッチングを行うものであるが、電極30の代りにヒーターを設けて、熱光学効果によりスイッチングを行うことも可能である。
【0067】
図14を参照すると、本発明の第8の実施例による方向性結合器型光スイッチが示されている。この方向性結合器型光スイッチは、図13に示した方向性結合器型光スイッチの構造バリエーションの一つである。すなわち、中央の結合光導波路20部分の導波路コア15(1,1)及び15(2,1)間にさらに一本導波路コア40を設けて、この導波路コア40への光の結合を利用することにより、スイッチング動作を効率よく行えるようにしたものである。従って、電気光学効果によるスイッチングを行う場合の電極30への印加電圧を低減できる。
【0068】
図15を参照すると、本発明の第9の実施例による結合光導波路型波長フィルターが示されている。この結合光導波路型波長フィルターは、図10に示した方向性結合器を用いている。この結合光導波路型波長フィルターは、中央の結合光導波路20部分の導波路コア15(1,1)及び15(2,1)間に、固有の共振周波数を有する短い光導波路からなる共振器50を導入することにより、導波路コア15(1,1)及び15(2,1)の一方に入射させた光ビーム(波長成分λj及びλiを含む)のうちの特定の波長成分λiの光のみが短い光導波路50からなる光共振器内で共振することにより、導波路コア15(1,1)及び15(2,1)の他方に乗り移って出力されるものである。
【0069】
このように、この結合光導波路型波長フィルターは、二本の導波路コア15(1,1)及び15(2,1)間に、短い光導波路からなる共振器50を導入し、この部分がある波長λiの光に対して高いQを有するような所謂光共振器として動作する場合、一方の導波路コア15(1,1)に入射させた光のうち、共振器50の共振周波数λiと一致する特定の波長成分λiの光のみが他方の導波路コア15(2,1)に移行し、取り出される。
【0070】
図16を参照すると、本発明の第10の実施例による結合光導波路型波長フィルターが示されている。この結合光導波路型波長フィルターは、同様の参照符号で示された同様の部分を有する。この結合光導波路型波長フィルターは、二本の導波路コア15(1,1)及び15(2,1)間の短い光導波路を構成する多層膜の構造が、短い光導波路の長手方向にも波型に変調されており、短い光導波路の長手方向に分布ブラッグ反射鏡(Distributed Bragg Reflector:DBR)共振器50’として機能するものである。短い光導波路の長手方向への波型変調構造の導入は、この部分の基板のパターンを、ライン・アンド・スペース パターンから、長手方向の波型パターンの周期を含む格子状のパターンに変更するだけである。この場合、格子状パターンの上に積層される多層膜の断面構造は、短い光導波路の長手方向に垂直な所謂横方向に波型パターンを有しているばかりでなく、短い光導波路の長手方向の断面も波型パターンを有する。この場合、中央の光共振器50’の共振波長λiは、短い光導波路の長手方向の波型パターンの周期によるDBRの反射波長によって決まる。従って、一方の導波路コア15(1,1)に入射させた光のうち、波型パターンの周期に応じた波長成分λiの光のみが、他方の導波路コア15(2,1)に移行し、取り出される。
【0071】
このように、この結合光導波路型波長フィルターは、光共振器の短い光導波路を構成する多層膜の構造が短い光導波路の長手方向に波型に変調される構造を有することにより、前記波型変調の周期に対応するある波長の光のみを選択的に共振させて出力するものである。
【0072】
図17を参照すると、本発明の第11の実施例による結合光導波路型波長フィルターが示されている。この結合光導波路型波長フィルターは、図15の波長フィルターの中央の共振器50の上方に設けられ、共振器50の部分の屈折率を変化させる電極60を有し、この電極60に電界を印加し、電気光学効果等により共振器50の部分の屈折率を変化させ、共振器50の共振波長を変化させ、取り出される光の波長を、λi(図15の場合)から、(λi+Δλ)或は(λi−Δλ)にチューニングするものである。
【0073】
電極60の代りにヒーターを設けて、熱光学効果により、取り出される光の波長をチューニングしても良い。
【0074】
また、電極60或いは上記ヒーターを、図16の波長フィルターの中央のDBR共振器50’の上方に設けて、図16の波長フィルターにおいて、取り出される光の波長を、λi(図16の場合)から、(λi+Δλ)或は(λi−Δλ)にチューニングするようにしても良い。
【0075】
図18を参照すると、本発明の第12の実施例によるアド・ドロップ・マルチプレクサー(Add-Drop Multiplexer:ADM)が示されている。このアド・ドロップ・マルチプレクサーは、図10に示した方向性結合器を用いている。このアド・ドロップ・マルチプレクサーは、中央の結合光導波路20部分の二本の導波路コア15(1,1)及び15(2,1)の一方15(1,1)の一部に、DBR部70を有するもので、DBR部70は、図16のDBR共振器50’の場合と同様に、この部分の多層膜の構造が、導波路コアの長手方向にも波型に変調されているものである。DBR部70の作製は、図16の場合と同様に、この部分の基板のパターンを、導波路コアの長手方向の波型パターンの周期を含む格子状のパターンに変更するのみである。
【0076】
ADMとしての動作は、以下の様になる。まず、DBR部70は、波長λiの光に対して選択的に反射が起こるように、この長手方向での波型パターンの周期が設定されているとする。入力ポート71から導入される様々な波長の光の内、DBR部70によって反射されない、波長λi以外の光は、中央の結合光導波路20部分で、一方の導波路コア15(1,1)から他方の導波路コア15(2,1)に乗り移り、出力ポート72から取り出される。一方、入力ポート71から一方の導波路コア15(1,1)に導入された波長λi成分の光は、DBR部70で反射されながら、他方の導波路コア15(2,1)に乗り移り、Drop Out出力ポート73から、Drop Out出力光λiとして取り出される。
【0077】
さらに、Add In入力ポート74から、一方の導波路コア15(1,1)に、波長λiのAdd In入力光を導入してやれば、DBR部70で反射されながら、他方の導波路コア15(2,1)に乗り移り、出力ポート72から取り出される。このように、このデバイスは、DBR部70の反射波長で決まる波長に対するADMとして機能する。
【0078】
図19を参照すると、本発明の第13の実施例によるアド・ドロップ・マルチプレクサー(ADM)が示されている。このアド・ドロップ・マルチプレクサーは、図18に示したADMにおいて、DBR部70の上方に電極75(或いは、ヒーター)を設けて、電気光学(EO)効果(或いは、熱光学(TO)効果)によりDBR部70の屈折率を変化させ、DBR部70での反射波長λiを変化させ、波長チューナブルなADMとして動作させるものである。
【0079】
図20を参照すると、本発明の第14の実施例による光制御光スイッチが示されている。この光制御光スイッチは、図10に示した方向性結合器を用いている。この光制御光スイッチは、信号入力ポート76に信号光が入り、制御光入力ポート77に制御光(波長λi)が入ってない場合は、通常の方向性結合器として動作し、信号光は、結合光導波路20部分の一方の導波路コア15(1,1)から他方の導波路コア15(2,1)に乗り移り、出力ポート78から出力される。次に、スイッチング動作をさせるための前記制御光(波長λi)を、制御光入力ポート77から導入すると、制御光(波長λi)が結合光導波路20部分を通過するうちに、非線形光学効果によりこの部分の屈折率を変化させる。結合光導波路20の二本の導波路コア15(1,1)及び15(2,1)の一方15(1,1)の一部には、図20に示すように、制御光(波長λi)に共振するDBR部75が設けてあり、この屈折率変化を効率よく起こすことができる。DBR部75は、図18のDBR部70の場合と同様に、この部分の多層膜の構造が、導波路コアの長手方向にも波型に変調されているものである。このように、制御光が信号光と共に入力された場合、信号光は結合光導波路20部分で再び元の導波路コア15(1,1)に結合し、出力ポート78には出て来ないような動作をさせることができる。
【0080】
このように、図20の光制御光スイッチは、制御光の波長λiのみを選択的に反射し共振するDBR部75に対する制御光の入射によって、結合光導波路20の屈折率を変化させることにより、結合光導波路20部分の完全結合長を変化させ、結合光導波路20に制御光とは別に入射する信号光の出口を切り替えることができる。
【0081】
図21を参照すると、本発明の第15の実施例による光制御光スイッチが示されている。この光制御光スイッチも、図10に示した方向性結合器を用いている。この光制御光スイッチでは、信号光の波長(λi)の光を反射するDBR部80が結合光導波路20の二本の導波路コア15(1,1)及び15(2,1)の両方に形成されている。導波路コア15(1,1)及び15(2,1)の各々に形成されたDBR部80は、図18のDBR部70の場合と同様に、この部分の多層膜の構造が、導波路コアの長手方向にも波型に変調されているものである。
【0082】
この光制御光スイッチは、次のように動作する。
【0083】
まず、制御光がBarポート81に入射されない場合、入力ポート82から導波路コア15(1,1)に入射された信号光は、導波路コア15(1,1)及び15(2,1)に形成されたDBR部80によって反射され、他方の導波路コア15(2,1)に乗り移りながら、反射出力ポート83から出力される。次に、制御光がBarポート81から導波路コア15(1,1)に入力されると、非線形光学効果により導波路コア15(1,1)及び15(2,1)のDBR部80の屈折率変化がもたらされ、導波路コア15(1,1)及び15(2,1)のDBR部80の反射波長がシフトすることにより、信号光の反射が起こらなくなるため、信号光はCrossポート84から出力される。このようにして、スイッチング動作が行える。
【0084】
なお、DBR部80は、結合光導波路20の二本の導波路コア15(1,1)及び15(2,1)のうちの一方の導波路コア15(1,1)のみに形成されても良い。この場合、制御光がBarポート81に入射されない場合、入力ポート82から導波路コア15(1,1)に入射された信号光は、導波路コア15(1,1)に形成されたDBR部80によって反射され、他方の導波路コア15(2,1)に乗り移りながら、反射出力ポート83から出力される。次に、制御光がBarポート81から導波路コア15(1,1)に入力されると、非線形光学効果により導波路コア15(1,1)のDBR部80の屈折率変化がもたらされ、導波路コア15(1,1)のDBR部80の反射波長がシフトすることにより、信号光の反射が起こらなくなるため、信号光はCrossポート84から出力される。
【0085】
このように、図21の光制御光スイッチは、結合光導波路20に信号光とは別に制御光を入射させることによって、結合光導波路20の屈折率を変化させることにより、結合光導波路20の完全結合長を変化させ、信号光の出口を切り替える。
【0086】
図22を参照すると、本発明の第16の実施例による光制御光スイッチが示されている。この光制御光スイッチも、図10に示した方向性結合器を用いている。この光制御光スイッチは、結合光導波路20の二本の導波路コア15(1,1)及び15(2,1)に挟まれた中央の導波路コア85を有する。中央の導波路コア85は、二本の導波路コア15(1,1)及び15(2,1)の各々と同様の構造を有する。中央の導波路コア85に制御光入力ポート86から制御光を導入してスイッチング動作を行うものである。制御光が導入されていない場合、信号入力ポート87から導波路コア15(1,1)に入力された信号光は、結合光導波路20部分で、導波路コア85を経由して、導波路コア15(2,1)に乗り移りながら、OFF出力ポート88から出力される。一方、制御光信号光が導波路コア85に入力されている場合は、信号入力ポート87から導波路コア15(1,1)に入力された信号光は、結合光導波路20部分で導波路コア85を経由して、再び元の導波路コア15(1,1)に戻ってきて、ON出力ポート89から出力される。このようにして、スイッチング動作が行える。結合光導波路20の長さを適切に選んでやれば、OFF出力ポートとON出力ポートを逆にすることもできる。
【0087】
このように、図22の光制御光スイッチは、結合光導波路20は、互いに結合した三本の導波路コア15(1,1)、85、及び15(2,1)を有し、結合光導波路20の外側の二本の導波路コア15(1,1)及び15(2,1)に挟まれた中央の導波路コア85に、スイッチングを制御する制御光を入射させることによって、結合光導波路20の屈折率を変化されることにより、結合光導波路20の完全結合長を変化させ、外側の二本の導波路コア15(1,1)及び15(2,1)の何れかに入射させた信号光の出口を切り替えるものである。
【0088】
図23を参照すると、本発明の第17の実施例による分散補償器が示されている。この分散補償器は、図5に示した結合光導波路を用いており、同様の参照符号で示した同様の部分を含む。この分散補償器は、上下に結合した格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)から成るが、結合する上下の格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)の導波路コア15(1,1)及び15(1,2)の等価屈折率が互いに異なり、その結果、導波路コア15(1,1)及び15(1,2)の互いに群速度が異なるように設計されている。図示の例では、導波路コア15(1,1)は、群速度の速い導波路コアを構成し、導波路コア15(1,2)は、群速度の遅い導波路コアを構成している。上下の導波路コア15(1,1)及び15(1,2)で等価屈折率を異なるようにするためには、導波路コア15(1,1)及び15(1,2)を構成する波型多層膜の各膜の厚さを微妙に異ならせればよい。光は、上下の導波路コアを同時に励振するように入射するが、入射する光の波長によって、上下の導波路コアの各々に結合する割合が異なり、従って、波長により異なる群速度が得られることになる。このことは正しく分散を意味しており、入射光のチャープ波長成分を打ち消すような分散を与えれば、分散補償が可能となる。
【0089】
このように、図23の分散補償器は、格子変調フォトニック結晶光導波路10(1,1)及び10(1,2)間での等価屈折率の違いを利用して、異なる波長の光に対して伝搬速度の違いを生じさせ、分散補償を行うものである。
【0090】
図24を参照すると、本発明の第18の実施例による分散補償器が示されている。この分散補償器は、図4に示した結合光導波路をモディファイしたものを用いている。この分散補償器においては、導波路コア15(1,1)及び15(2,1)は、図4の結合光導波路と同様に、基板11の表面に平行な面上に、互いに平行に形成されている。この分散補償器では、導波路コア15(1,1)及び15(2,1)の各々には、断面が長手方向に波型の周期パターンを有するようなDBRが形成されている。さらに、波型パターンの周期は、導波路コア15(1,1)及び15(2,1)間で異なる。このように結合光導波路を基板11と平行な面上に形成することにより、DBR構造を用いて導波路コア15(1,1)及び15(2,1)とで大きな群速度の差を付けることができる。
【0091】
以上に示した種々の実施例では、屈折率の高い誘電体14としてTa2O5を使用しているが、Ta2O5の代わりに、屈折率が約3.5のSiやその他の材料を用いることも可能である。また同様に、屈折率の低い誘電体13としてSiO2以外の材料を用いることも当然考えられる。さらに、波型パターンを構成する波型の単位格子の代りに、例えば、くさび型の単位格子を用いるという方法も考えられる。本発明の結合光導波路において、基本格子の構造が何かということは、本質的ではない。
【0092】
【発明の効果】
本発明による、自己クローニング技術を用いた結合光導波路の最大の特徴は、導波路コア間の間隔を1μm以下と非常に狭く作ることが可能である点である。このため、完全結合長を短くでき、結果的に結合光導波路を用いる素子の長さを短く出来ることである。導波路コア間の間隔を狭くできる理由は、自己クローニング技術によるその製法にある。従来の結合光導波路は、二本の導波路間の溝を掘り込んで形成するため、プロセスの加工精度上この間隔を2μm程度以下にはできなかった。従って、導波路間での結合が弱く、完全結合長を短くできなかった。これに対して、本発明の結合光導波路の製法では、溝を掘り込むことなく、基板のパターンニングのみで形成できるため、導波路コアの間隔を1μm以下にすることも可能であり、完全結合長を短くできる。また、このような結合光導波路を作製するプロセスの制御性および再現性も、従来の溝を掘り込むタイプの結合光導波路に比べると格段に良くなる。
【図面の簡単な説明】
【図1】本発明で用いられる格子変調フォトニック結晶光導波路の斜視図である。
【図2】本発明の第1の実施例による結合光導波路の基板上に設けられるライン・アンド・スペース パターンの溝を説明するための図である。
【図3】本発明の第1の実施例による結合光導波路の断面図である。
【図4】本発明の第1の実施例による結合光導波路を説明するための図である。
【図5】本発明の第2の実施例による結合光導波路を説明するための図である。
【図6】本発明の第3の実施例による結合光導波路を説明するための図である。
【図7】図3及び図4の結合光導波路の動作を説明するための図である。
【図8】(A)〜(C)は図3及び図4の結合光導波路の動作を説明するための図である。
【図9】(A)及び(B)は図3及び図4の結合光導波路の動作を説明するための図である。
【図10】本発明の第4の実施例による方向性結合器を説明するための図である。
【図11】本発明の第5の実施例による方向性結合器を説明するための図である。
【図12】本発明の第6の実施例によるビームスプリッターを説明するための図である。
【図13】本発明の第7の実施例による方向性結合器型光スイッチを説明するための図である。
【図14】本発明の第8の実施例による方向性結合器型光スイッチを説明するための図である。
【図15】本発明の第9の実施例による結合光導波路型波長フィルターを説明するための図である。
【図16】本発明の第10の実施例による結合光導波路型波長フィルターを説明するための図である。
【図17】本発明の第11の実施例による結合光導波路型波長フィルターを説明するための図である。
【図18】本発明の第12の実施例によるアド・ドロップ・マルチプレクサーを説明するための図である。
【図19】本発明の第13の実施例によるアド・ドロップ・マルチプレクサーを説明するための図である。
【図20】本発明の第14の実施例による光制御光スイッチを説明するための図である。
【図21】本発明の第15の実施例による光制御光スイッチを説明するための図である。
【図22】本発明の第16の実施例による光制御光スイッチを説明するための図である。
【図23】本発明の第17の実施例による分散補償器を説明するための図である。
【図24】本発明の第18の実施例による分散補償器を説明するための図である。
【符号の説明】
10 格子変調フォトニック結晶光導波路
10(1,1) 格子変調フォトニック結晶光導波路
10(2,1) 格子変調フォトニック結晶光導波路
10(1,2) 格子変調フォトニック結晶光導波路
10(2,2) 格子変調フォトニック結晶光導波路
11 基板
12 溝
13 屈折率の低い誘電体
14 屈折率の高い誘電体
15 導波路コア
15(1,1) 導波路コア
15(2,1) 導波路コア
15(1,2) 導波路コア
15(2,2) 導波路コア
Claims (12)
- 分配補償を行う結合光導波路であって、
前記結合光導波路は、複数の溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に平行な面上に、複数本互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されており、
前記複数本の格子変調フォトニック結晶光導波路が、長手方向に波型周期構造を有し、前記波型周期構造の周期は前記複数本の格子変調フォトニック結晶光導波路のそれぞれで異なっていることを特徴とする結合光導波路。 - 請求項1に記載の結合光導波路において、
前記基板に形成されている前記複数の溝は、隣接する前記溝との間に所定の間隔を有していることを特徴とする結合光導波路。 - 請求項2に記載の結合光導波路において、
前記基板に形成されている前記複数の溝と、隣接する前記溝とが平行であることを特徴とする結合光導波路。 - 請求項1に記載の結合光導波路を用いた分散補償器において、前記複数本の格子変調フォトニック結晶光導波路間での前記長手方向の波型周期構造パターンの周期の違いを利用して、異なる波長の光に対して伝搬速度の違いを生じさせ、分散補償を行うことを特徴とする分散補償器。
- 方向性結合器を用いた光制御光スイッチであって、
前記方向性結合器は、結合光導波路を用いた方向性結合器であり、
前記結合光導波路は、複数の溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に平行な面上に、複数本互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されており、
前記結合光導波路を用いた方向性結合器は、前記結合光導波路の前記格子変調フォトニック結晶光導波路の数が二本であり、前記二本の格子変調フォトニック結晶光導波路の一方に入力した光ビームを、前記二本の格子変調フォトニック結晶光導波路の他方に結合させて出力させる動作をするものであり、
前記方向性結合器を用いた光制御光スイッチは、前記結合光導波路の前記二本の格子変調フォトニック結晶光導波路の少なくとも一方の一部に、光導波路を構成する多層膜の構造が長手方向に波型に変調される構造を有することにより、スイッチ制御を行う波長の制御光のみを選択的に反射する分布ブラッグ反射鏡部を有し、前記制御光の入射によって、前記結合光導波路の前記分布ブラッグ反射鏡部の屈折率が変化されることにより、前記結合光導波路の完全結合長を変化させ、前記結合光導波路に制御光とは別に入射する信号光の出口を切り替えることを特徴とする光制御光スイッチ。 - 方向性結合器を用いた光制御光スイッチであって、
前記方向性結合器は、結合光導波路を用いた方向性結合器であり、
前記結合光導波路は、複数の溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に垂直な面上に、複数本互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されており、
前記結合光導波路を用いた方向性結合器は、前記結合光導波路の前記格子変調フォトニック結晶光導波路の数が二本であり、前記二本の格子変調フォトニック結晶光導波路の一方に入力した光ビームを、前記二本の格子変調フォトニック結晶光導波路の他方に結合させて出力させる動作をするものであり、
前記方向性結合器を用いた光制御光スイッチは、前記結合光導波路の前記二本の格子変調フォトニック結晶光導波路の少なくとも一方の一部に、光導波路を構成する多層膜の構造が長手方向に波型に変調される構造を有することにより、スイッチ制御を行う波長の制御光のみを選択的に反射する分布ブラッグ反射鏡部を有し、前記制御光の入射によって、前記結合光導波路の前記分布ブラッグ反射鏡部の屈折率が変化されることにより、前記結合光導波路の完全結合長を変化させ、前記結合光導波路に制御光とは別に入射する信号光の出口を切り替えることを特徴とする光制御光スイッチ。 - 結合光導波路を用いた光制御光スイッチであって、
前記結合光導波路は、複数の溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に平行な面上に、複数本互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されており、
前記結合光導波路は、互いに結合した三本の格子変調フォトニック結晶光導波路を有し、
前記結合光導波路の外側の二本の格子変調フォトニック結晶光導波路に挟まれた中央の格子変調フォトニック結晶光導波路に、スイッチングを制御する制御光を入射させることによって、前記結合光導波路の屈折率を変化されることにより、前記結合光導波路の完全結合長を変化させ、前記外側の二本の格子変調フォトニック結晶光導波路の何れかに入射させた信号光の出口を切り替えることを特徴とする光制御光スイッチ。 - 請求項5、6、及び7のいずれかに記載の光制御光スイッチにおいて、
前記結合光導波路において、前記基板に形成されている前記複数の溝は、隣接する前記溝との間に所定の間隔を有していることを特徴とする光制御光スイッチ。 - 請求項8に記載の光制御光スイッチにおいて、
前記結合光導波路において、前記基板に形成されている前記複数の溝と、隣接する前記溝とが平行であることを特徴とする光制御光スイッチ。 - 結合光導波路を用いた分散補償器において、
前記結合光導波路は、複数の溝が表面に形成された基板と、前記基板上に、屈折率の低い誘電体と屈折率の高い誘電体とを交互に積層する自己クローニング技術によって作製された格子変調フォトニック結晶光導波路とを有し、前記格子変調フォトニック結晶光導波路は、前記基板の前記表面に垂直な面上に、複数本互いに平行に形成され、かつ前記複数本の格子変調フォトニック結晶光導波路間で光の電界が結合するように近接して形成されており、
前記結合光導波路においては、前記複数本の格子変調フォトニック結晶光導波路の等価屈折率が互いに異なり、
前記複数本の格子変調フォトニック結晶光導波路間での等価屈折率の違いを利用して、異なる波長の光に対して伝搬速度の違いを生じさせ、分散補償を行うことを特徴とする分散補償器。 - 請求項10に記載の分散補償器において、
前記結合光導波路において、前記基板に形成されている前記複数の溝は、隣接する前記溝との間に所定の間隔を有していることを特徴とする分散補償器。 - 請求項11に記載の分散補償器において、
前記結合光導波路において、前記基板に形成されている前記複数の溝と、隣接する前記溝とが平行であることを特徴とする分散補償器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002202526A JP4491188B2 (ja) | 2002-07-11 | 2002-07-11 | 結合光導波路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002202526A JP4491188B2 (ja) | 2002-07-11 | 2002-07-11 | 結合光導波路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004045709A JP2004045709A (ja) | 2004-02-12 |
JP4491188B2 true JP4491188B2 (ja) | 2010-06-30 |
Family
ID=31708688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002202526A Expired - Fee Related JP4491188B2 (ja) | 2002-07-11 | 2002-07-11 | 結合光導波路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4491188B2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005085921A1 (ja) | 2004-03-03 | 2005-09-15 | Japan Science And Technology Agency | フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス |
JP4504738B2 (ja) * | 2004-06-03 | 2010-07-14 | 日立電線株式会社 | 分散制御素子及びそれを用いた分散制御方法並びに分散補償器 |
JP5083732B2 (ja) * | 2007-11-26 | 2012-11-28 | 学校法人慶應義塾 | 光スイッチ |
CN104375267B (zh) * | 2014-12-10 | 2017-01-11 | 欧阳征标 | 基于平板光子晶体高消光比tm光开关 |
GB201903708D0 (en) * | 2019-03-19 | 2019-05-01 | Wave Optics Ltd | Improved angular uniformity waveguide for augmented or virtual reality |
CN112526773B (zh) * | 2020-12-09 | 2023-01-17 | 武汉光谷信息光电子创新中心有限公司 | 一种电光调制器 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04234007A (ja) * | 1990-12-28 | 1992-08-21 | Kyocera Corp | 光スタ−カプラ及びその製造方法 |
JPH05323138A (ja) * | 1992-05-18 | 1993-12-07 | Nippon Telegr & Teleph Corp <Ntt> | 積層型光導波回路 |
JPH0695182A (ja) * | 1992-07-15 | 1994-04-08 | Nippon Telegr & Teleph Corp <Ntt> | 光スイッチ |
JPH08234032A (ja) * | 1994-12-30 | 1996-09-13 | At & T Corp | 偏光および波長に依存しない光導波管タップ |
JPH1010590A (ja) * | 1996-06-19 | 1998-01-16 | Fujikura Ltd | 光分波合波素子 |
JPH10213714A (ja) * | 1997-01-31 | 1998-08-11 | Hitachi Ltd | 光パルス分散補償器、及びこれを用いた光パルス圧縮器、半導体短パルスレーザ素子並びに光通信システム |
JPH10335758A (ja) * | 1997-03-29 | 1998-12-18 | Shojiro Kawakami | 3次元周期構造体及びその作製方法並びに膜の製造方法 |
JP2000221346A (ja) * | 1999-01-28 | 2000-08-11 | Hitachi Cable Ltd | 光集積回路 |
JP2001083555A (ja) * | 1999-09-13 | 2001-03-30 | Hitachi Ltd | 光スイッチ |
JP2001508887A (ja) * | 1997-06-09 | 2001-07-03 | マサチューセッツ インスティトゥート オブ テクノロジー | 吸収誘発オン/オフ切替えおよび変調を有する高効率チャネルドロップフィルタ |
JP2001516062A (ja) * | 1997-08-13 | 2001-09-25 | フォスター−ミラー・インコーポレーテッド | スイッチング可能な光学構成要素 |
JP2001281480A (ja) * | 2000-03-29 | 2001-10-10 | Nec Corp | フォトニック結晶光導波路と方向性結合器 |
-
2002
- 2002-07-11 JP JP2002202526A patent/JP4491188B2/ja not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04234007A (ja) * | 1990-12-28 | 1992-08-21 | Kyocera Corp | 光スタ−カプラ及びその製造方法 |
JPH05323138A (ja) * | 1992-05-18 | 1993-12-07 | Nippon Telegr & Teleph Corp <Ntt> | 積層型光導波回路 |
JPH0695182A (ja) * | 1992-07-15 | 1994-04-08 | Nippon Telegr & Teleph Corp <Ntt> | 光スイッチ |
JPH08234032A (ja) * | 1994-12-30 | 1996-09-13 | At & T Corp | 偏光および波長に依存しない光導波管タップ |
JPH1010590A (ja) * | 1996-06-19 | 1998-01-16 | Fujikura Ltd | 光分波合波素子 |
JPH10213714A (ja) * | 1997-01-31 | 1998-08-11 | Hitachi Ltd | 光パルス分散補償器、及びこれを用いた光パルス圧縮器、半導体短パルスレーザ素子並びに光通信システム |
JPH10335758A (ja) * | 1997-03-29 | 1998-12-18 | Shojiro Kawakami | 3次元周期構造体及びその作製方法並びに膜の製造方法 |
JP2001508887A (ja) * | 1997-06-09 | 2001-07-03 | マサチューセッツ インスティトゥート オブ テクノロジー | 吸収誘発オン/オフ切替えおよび変調を有する高効率チャネルドロップフィルタ |
JP2001516062A (ja) * | 1997-08-13 | 2001-09-25 | フォスター−ミラー・インコーポレーテッド | スイッチング可能な光学構成要素 |
JP2000221346A (ja) * | 1999-01-28 | 2000-08-11 | Hitachi Cable Ltd | 光集積回路 |
JP2001083555A (ja) * | 1999-09-13 | 2001-03-30 | Hitachi Ltd | 光スイッチ |
JP2001281480A (ja) * | 2000-03-29 | 2001-10-10 | Nec Corp | フォトニック結晶光導波路と方向性結合器 |
Also Published As
Publication number | Publication date |
---|---|
JP2004045709A (ja) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xie et al. | Thermally-reconfigurable silicon photonic devices and circuits | |
Niemi et al. | Wavelength-division demultiplexing using photonic crystal waveguides | |
US6873777B2 (en) | Two-dimensional photonic crystal device | |
US6853760B2 (en) | Optical functional device and optical integrated device | |
US5970186A (en) | Hybrid digital electro-optic switch | |
WO2000050938A1 (en) | Vertically coupled optical resonator devices over a cross-grid waveguide architecture | |
US20180088275A1 (en) | Wavelength filter | |
Chen et al. | Subwavelength grating waveguide devices for telecommunications applications | |
JP2007212787A (ja) | 光制御素子、光スイッチングユニットおよび光変調器 | |
JP6028339B2 (ja) | 波長選択性経路切換素子 | |
CN107407776B (zh) | 高折射率对比度光子器件及其应用 | |
JP4491188B2 (ja) | 結合光導波路 | |
JP4327064B2 (ja) | 光制御素子 | |
Zhang et al. | Optical spectral shaping based on reconfigurable integrated microring resonator-coupled Fabry–Perot cavity | |
JP2004054197A (ja) | 可変特性フォトニック結晶導波路 | |
WO2010073704A1 (ja) | 光スイッチ | |
JP6335238B2 (ja) | 波長フィルタ | |
JPH08234149A (ja) | 電子−光学材料を使用した光フィルタ | |
JP2006284791A (ja) | マルチモード干渉光カプラ | |
JP4052082B2 (ja) | 分波器及びそれを用いた光スイッチング装置 | |
KR20170095891A (ko) | 스트레스에 동조된 평면 광파회로 및 이를 위한 방법 | |
JP2713358B2 (ja) | ピルボックス型光共振器の波長選択フィルタ | |
JP2008281639A (ja) | 光偏向素子、光偏向モジュール及び光スイッチモジュール、並びに光偏向方法 | |
JP4909528B2 (ja) | 光制御素子 | |
JP2005037684A (ja) | 可変特性フォトニック結晶導波路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040415 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100405 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |