[go: up one dir, main page]

JP4488794B2 - Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid - Google Patents

Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid Download PDF

Info

Publication number
JP4488794B2
JP4488794B2 JP2004153896A JP2004153896A JP4488794B2 JP 4488794 B2 JP4488794 B2 JP 4488794B2 JP 2004153896 A JP2004153896 A JP 2004153896A JP 2004153896 A JP2004153896 A JP 2004153896A JP 4488794 B2 JP4488794 B2 JP 4488794B2
Authority
JP
Japan
Prior art keywords
liquid
solid
fermentation
organic compound
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004153896A
Other languages
Japanese (ja)
Other versions
JP2005334713A (en
Inventor
奈美 松本
卓也 三崎
修 濱本
昌夫 渡辺
信男 野中
俊夫 池田
伸好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004153896A priority Critical patent/JP4488794B2/en
Publication of JP2005334713A publication Critical patent/JP2005334713A/en
Application granted granted Critical
Publication of JP4488794B2 publication Critical patent/JP4488794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液の処理方法及び処理システムに関する。   The present invention relates to a processing method and a processing system for a fermentation residual liquid obtained by subjecting organic waste to methane fermentation and other anaerobic organic compound-containing liquid.

畜産廃棄物や生ごみ等の有機性廃棄物の処理方法の一つとしてメタン発酵が採用される。メタン発酵は、有機性負荷を高密度に受け入れることができる有機性廃棄物の処理方法であり、メタンガスという燃料として利用可能な可燃性ガスを回収できる点で他の処理方法には無い特徴を備えている。有機性廃棄物をメタン発酵して得られる発酵残液(消化液)は、発酵条件によるが通常水分を95重量%程度、固形分を5重量%程度含有する液状物質である。この発酵残液は多量の植物栄養成分を含むことから液肥として、または堆肥化(コンポスト化)することで固形肥料として利用することができる。   Methane fermentation is adopted as one of the methods for treating organic waste such as livestock waste and garbage. Methane fermentation is an organic waste treatment method that can accept organic loads with high density, and has features that other treatment methods do not have in that it can recover flammable gas that can be used as a fuel called methane gas. ing. The fermentation residual liquid (digestion liquid) obtained by subjecting organic waste to methane fermentation is a liquid substance that usually contains about 95% by weight of water and about 5% by weight of solids depending on the fermentation conditions. Since this fermentation residual liquid contains a large amount of plant nutrients, it can be used as liquid fertilizer or as solid fertilizer by composting (composting).

しかし、発酵残液を液肥として処理するいわゆる農地還元では、窒素成分が多すぎるために硝酸、亜硝酸などによって地下水が汚染される問題がある。一方、発酵残液を堆肥化する場合には、例えば無機系、高分子系などの凝集剤を発酵残液に添加して固液分離性を向上させた上で固液分離した後、固分を堆肥化し、液分については窒素成分やリン成分が排出基準に達するように凝集沈殿処理、生物処理(エアレーション、生物膜法など)、脱色処理などの後処理を施す必要がある。さらに凝集剤が堆肥中に混入してしまう問題もある。   However, in so-called farmland reduction in which fermentation residual liquid is treated as liquid fertilizer, there is a problem that groundwater is contaminated by nitric acid, nitrous acid, etc. because there are too many nitrogen components. On the other hand, when composting the fermentation residual liquid, for example, an inorganic or polymer flocculant is added to the fermentation residual liquid to improve the solid-liquid separation, and then the solid content is separated. It is necessary to perform post-treatment such as coagulation sedimentation treatment, biological treatment (aeration, biofilm method, etc.), decolorization treatment, etc. so that the nitrogen component and phosphorus component reach the discharge standard. Further, there is a problem that the flocculant is mixed in the compost.

また、発酵残液を固液分離せずに堆肥化する場合には、含水率が95重量%程度ある発酵残液を濃縮・乾燥する必要があり、多量の熱エネルギーを要してしまい実用的ではない。このように、発酵残液の処理負担が大きいことが有機性廃棄物のメタン発酵処理の普及を妨げる要因となっている。   In addition, when composting the fermentation residue without solid-liquid separation, it is necessary to concentrate and dry the fermentation residue having a moisture content of about 95% by weight, which requires a large amount of heat energy and is practical. is not. Thus, the large processing load of the fermentation residual liquid is a factor that hinders the spread of methane fermentation treatment of organic waste.

発酵残液の処理が困難であるのは、発酵残液中の固形分濃度が一般に5重量%程度と高濃度であること、固形分の親水性が著しく大きく固液分離が困難であること、一般にBODよりCODが大きく生物処理が適用しにくいこと、放流に際しては脱色処理が必要であることなどが挙げられる。固形分の親水性は水酸基やカルボニル基などの親水性基を多くもつことによって発現するものであり、このような性質はフマル酸やフミン酸などの腐食性物質にも同じように見られるものである。   The processing of the fermentation residual liquid is difficult because the solid content concentration in the fermentation residual liquid is generally as high as about 5% by weight, the hydrophilicity of the solid content is remarkably large and solid-liquid separation is difficult, In general, COD is larger than BOD and it is difficult to apply biological treatment, and decolorization treatment is necessary for discharge. The hydrophilicity of the solid content is manifested by having many hydrophilic groups such as hydroxyl groups and carbonyl groups, and these properties are also found in corrosive substances such as fumaric acid and humic acid. is there.

ところで、発酵残液に酸を加えて処理する技術として、特開平7−96297号公報(特許文献1)には生物汚泥に無機酸を加えてpH5以下とし、これをオゾン処理する方法が開示されている。この技術は生物汚泥をオゾン処理する際のオゾン使用量を低減させることを目的とするものであり、オゾン処理に限定された技術である。また、特開2003−275788号公報(特許文献2)には嫌気性消化槽から引き抜いた汚泥をpH5以下に調整した後固液分離し、得られた分離汚泥をオゾン処理する方法が開示されている。この技術はFe2+やMn2+などの還元性物質によるオゾンの消費を回避することを目的としてpHを5以下に調整するものであり、消化汚泥のオゾン処理に限定された技術である。以上の事柄はフミン質の有機物を含み、且つ嫌気化している一部の浸出水に対しても同様に言えるものであり、本発明における処理方法において良好に処理することができる。 By the way, as a technique for adding an acid to a fermentation residual liquid, JP-A-7-96297 (Patent Document 1) discloses a method of adding an inorganic acid to biological sludge so as to have a pH of 5 or less and treating this with ozone. ing. This technique aims to reduce the amount of ozone used when biological sludge is ozone-treated, and is a technique limited to ozone treatment. Japanese Patent Application Laid-Open No. 2003-275788 (Patent Document 2) discloses a method in which sludge extracted from an anaerobic digester is adjusted to pH 5 or lower and then subjected to solid-liquid separation, and the resulting separated sludge is treated with ozone. Yes. This technique adjusts the pH to 5 or less for the purpose of avoiding consumption of ozone by reducing substances such as Fe 2+ and Mn 2+ , and is limited to ozone treatment of digested sludge. The above matters can be similarly applied to some leachate containing humic organic substances and anaerobic, and can be satisfactorily treated in the treatment method of the present invention.

特開平7−96297号公報JP-A-7-96297 特開2003−275788号公報JP 2003-275788 A

本発明はこのような実情に鑑みなされたものであり、その課題は、有機性廃棄物をメタン発酵して得られる発酵残液(消化液)およびその他の嫌気性有機化合物含有液を容易に処理することができる発酵残液の処理方法及び処理システムを提供することにある。   This invention is made | formed in view of such a situation, The subject is processing easily the fermentation residual liquid (digestion liquid) obtained by methane fermentation of organic waste, and other anaerobic organic compound containing liquid. It is providing the processing method and processing system of the fermentation residual liquid which can be performed.

上記課題を解決するため、本発明の第1の態様に係る発酵残液およびその他の嫌気性有機化合物含有液の処理方法は、有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程を含むことを特徴とする。   In order to solve the above-mentioned problems, a method for treating a fermentation residual liquid and other anaerobic organic compound-containing liquid according to the first aspect of the present invention includes a fermentation residual liquid obtained by subjecting an organic waste to methane fermentation and other methods. It includes a liquid treatment step of adjusting the anaerobic organic compound-containing liquid to pH 5.5 or lower and contacting with an oxidizing agent.

この特徴によれば、有機性廃棄物をメタン発酵して得られる液(消化液)をpH5.5以下に調整するため固液分離性を向上させることができ、その後の処理(例えば固液分離処理、濃縮処理、乾燥処理など)における処理効率を著しく向上させることができる。また、発酵残液等の前記液を酸化剤と接触させることで強い還元性雰囲気であるその液性を酸化性雰囲気に調整することができるので、固液分離性をより一層向上させることができる。また、溶存二酸化炭素を放散させることができるので、処理液を例えば真空処理(減圧濃縮処理、真空乾燥処理など)する場合に二酸化炭素の発泡を回避した効率的な処理が可能となる。   According to this feature, since the liquid (digested liquid) obtained by methane fermentation of organic waste is adjusted to pH 5.5 or lower, the solid-liquid separation can be improved, and the subsequent treatment (for example, solid-liquid separation) Processing efficiency in processing, concentration processing, drying processing, etc.) can be significantly improved. Moreover, since the liquid property which is a strong reducing atmosphere can be adjusted to an oxidizing atmosphere by making the said liquids, such as a fermentation residual liquid, contact with an oxidizing agent, solid-liquid separability can be improved further. . Further, since dissolved carbon dioxide can be diffused, an efficient treatment that avoids foaming of carbon dioxide is possible when the treatment liquid is subjected to, for example, vacuum treatment (vacuum concentration treatment, vacuum drying treatment, etc.).

また、本発明の第2の態様に係る発酵残液およびその他の嫌気性有機化合物含有液の処理方法は、有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程と、前記液処理工程における処理液を固液分離する固液分離工程と、を含むことを特徴とする。   Moreover, the processing method of the fermentation residual liquid and other anaerobic organic compound containing liquid which concerns on the 2nd aspect of this invention is the fermentation residual liquid obtained by carrying out methane fermentation of organic waste, and other anaerobic organic compound containing It includes a liquid treatment step of adjusting the liquid to pH 5.5 or lower and contacting with an oxidizing agent, and a solid-liquid separation step of solid-liquid separation of the treatment liquid in the liquid treatment step.

この特徴によれば、有機性廃棄物をメタン発酵して得られる液(消化液)をpH5.5以下に調整するため固液分離性を向上させることができ、固液分離工程における処理効率を著しく向上させることができる。また、発酵残液等の前記液を酸化剤と接触させることで強い還元性雰囲気であるその液性を酸化性雰囲気に調整することができるので、固液分離性をより一層向上させることができる。また、溶存二酸化炭素を放散させることができるので、処理液を例えば真空処理(減圧濃縮処理、減圧乾燥処理など)する場合に二酸化炭素の発泡を回避した効率的な処理が可能となる。   According to this feature, since the liquid (digested liquid) obtained by methane fermentation of organic waste is adjusted to pH 5.5 or less, the solid-liquid separation property can be improved, and the processing efficiency in the solid-liquid separation process can be improved. It can be significantly improved. Moreover, since the liquid property which is a strong reducing atmosphere can be adjusted to an oxidizing atmosphere by making the said liquids, such as a fermentation residual liquid, contact with an oxidizing agent, solid-liquid separability can be improved further. . In addition, since dissolved carbon dioxide can be diffused, an efficient treatment that avoids foaming of carbon dioxide is possible when the treatment liquid is subjected to, for example, vacuum treatment (vacuum concentration treatment, decompression drying treatment, etc.).

また、本発明の第3の態様に係る発酵残液およびその他の嫌気性有機化合物含有液の処理方法は、有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程と、前記液処理工程における処理液を固液分離する固液分離工程と、前記固液分離工程における液分を減圧濃縮する濃縮工程と、を含むことを特徴とする。   Moreover, the processing method of the fermentation residual liquid and the other anaerobic organic compound containing liquid which concerns on the 3rd aspect of this invention is the fermentation residual liquid obtained by methane fermentation of organic waste, and other anaerobic organic compound containing A liquid treatment step for adjusting the liquid to pH 5.5 or lower and contacting with an oxidizing agent, a solid-liquid separation step for solid-liquid separation of the treatment liquid in the liquid treatment step, and a liquid component in the solid-liquid separation step are concentrated under reduced pressure. And a concentration step.

この特徴によれば、有機性廃棄物をメタン発酵して得られる発酵残液(消化液)およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するため固液分離性を向上させることができ、固液分離工程における処理効率を著しく向上させることができる。また、発酵残液等の前記液を酸化剤と接触させることで強い還元性雰囲気であるその液性を酸化性雰囲気に調整することができるので、固液分離性をより一層向上させることができる。また、溶存二酸化炭素を放散させることができるので液分を減圧濃縮する濃縮工程において二酸化炭素の発泡を回避しつつ処理することができ、効率的な濃縮処理が可能である。   According to this feature, the fermentation liquid (digested liquid) obtained by methane fermentation of organic waste and other anaerobic organic compound-containing liquids are adjusted to pH 5.5 or lower, thereby improving solid-liquid separation. And the processing efficiency in the solid-liquid separation step can be remarkably improved. Moreover, since the liquid property which is a strong reducing atmosphere can be adjusted to an oxidizing atmosphere by making the said liquids, such as a fermentation residual liquid, contact with an oxidizing agent, solid-liquid separability can be improved further. . Moreover, since dissolved carbon dioxide can be diffused, it can be processed while avoiding foaming of carbon dioxide in the concentration step of concentrating the liquid under reduced pressure, and an efficient concentration process is possible.

また、本発明の第4の態様に係る発酵残液およびその他の嫌気性有機化合物含有液の処理方法は、前記第1の態様から前記第3の態様のいずれかの態様において、前記液処理工程における酸化剤との接触は、銀塩化銀電極を基準とした酸化還元電位において−15mVより貴側となるように制御することを特徴とする。   Moreover, the processing method of the fermentation residual liquid and the other anaerobic organic compound-containing liquid according to the fourth aspect of the present invention is the liquid processing step according to any one of the first aspect to the third aspect. The contact with the oxidizing agent is controlled to be noble from -15 mV at the oxidation-reduction potential with respect to the silver-silver chloride electrode.

この特徴によれば、液処理工程における発酵残液等の前記液と酸化剤との接触が、銀塩化銀電極(Ag/AgCl)を基準とした酸化還元電位において−15mVより貴(正)側となるように制御されているので、液中に存在する親水基(水酸基やカルボニル基など)の解離を有効に抑制することができるとともに、還元性の親水基をある程度酸化させることで親水性を低下させることができ、もって発酵残液等の前記液の固液分離性を確実に向上させることができる。   According to this feature, the contact between the liquid such as the fermentation residual liquid in the liquid treatment step and the oxidizing agent is more noble (positive) than −15 mV at the redox potential based on the silver-silver chloride electrode (Ag / AgCl). Therefore, dissociation of hydrophilic groups (hydroxyl group, carbonyl group, etc.) present in the liquid can be effectively suppressed, and hydrophilicity can be reduced by oxidizing the reducing hydrophilic group to some extent. Thus, the solid-liquid separability of the liquid such as the fermentation residual liquid can be reliably improved.

また、本発明の第5の態様に係る発酵残液およびその他の嫌気性有機化合物含有液の処理システムは、有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる調整槽を備えていることを特徴とする。この特徴によれば、前記第1の態様と同様の効果が得られる。   Moreover, the processing system of the fermentation residual liquid and other anaerobic organic compound-containing liquid according to the fifth aspect of the present invention includes a fermentation residual liquid obtained by methane fermentation of organic waste and other anaerobic organic compounds. The liquid tank is adjusted to pH 5.5 or lower, and an adjustment tank for contacting with the oxidizing agent is provided. According to this feature, the same effect as in the first aspect can be obtained.

本発明によれば、発酵残液およびその他の嫌気性有機化合物含有液の固液分離性を高めることができるので、その後の処理における処理効率を著しく向上させることができる。また、溶存二酸化炭素を放散させることができるので、処理液を濃縮させる際の発泡を抑制して簡易かつ確実に濃縮処理することができる。すなわち、本発明によれば発酵残液およびその他の嫌気性有機化合物含有液の固液分離性を向上させ、かつ、溶存二酸化炭素を放散させることで、後段での各種処理における処理効率を著しく向上させることができるものである。   According to the present invention, the solid-liquid separability of the fermentation residual liquid and the other anaerobic organic compound-containing liquid can be improved, so that the processing efficiency in the subsequent processing can be significantly improved. Moreover, since the dissolved carbon dioxide can be diffused, foaming when concentrating the treatment liquid can be suppressed and the concentration treatment can be performed easily and reliably. That is, according to the present invention, the solid-liquid separability of the fermentation residual liquid and other anaerobic organic compound-containing liquids is improved, and the processing efficiency in various treatments in the subsequent stage is remarkably improved by releasing dissolved carbon dioxide. It can be made to.

本発明に係る発酵残液等の液の処理方法は、少なくとも、有機性廃棄物をメタン発酵して得られる液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程を含むことを特徴とするものである。   The method for treating a liquid such as a fermentation residue according to the present invention includes at least a liquid treatment step of adjusting a liquid obtained by methane fermentation of organic waste to pH 5.5 or lower and contacting with an oxidizing agent. It is a feature.

以下、図面を参照しつつ本発明について説明する。ここで図1は本発明に係る処理システムを含むシステム全体の概要を示すブロック図であり、図2は処理システムを示す図面である。   The present invention will be described below with reference to the drawings. Here, FIG. 1 is a block diagram showing an outline of the entire system including the processing system according to the present invention, and FIG. 2 is a drawing showing the processing system.

本発明で用いられる有機性廃棄物としては、例えば畜産廃棄物や緑農廃棄物、排水処理汚泥などが挙げられる。ここで畜産廃棄物としては、家畜の糞尿や屠体、その加工品が挙げられ、より具体的には牛、羊、山羊、ニワトリなどの家畜の屠体、そこから分離された骨、肉、脂肪、内臓、血液、脳、眼球、皮、蹄、角などのほか、例えば肉骨粉、肉粉、骨粉、血粉等に代表される家畜屠体の骨、肉等を破砕した破砕物や、血液などを乾燥した乾燥物も含まれる。また、緑農廃棄物としては家庭の生ごみのほか、産業廃棄物生ごみとしての農水産業廃棄物、食品加工廃棄物等が挙げられる。   Examples of the organic waste used in the present invention include livestock waste, green farm waste, and wastewater treatment sludge. Here, livestock waste includes livestock excrement and carcass, and processed products thereof. More specifically, livestock carcasses such as cattle, sheep, goats and chickens, bones, meat separated from them, In addition to fat, internal organs, blood, brain, eyeballs, skin, hoofs, horns, etc., bones, meat, etc. of animal carcasses represented by meat and bone meal, meat meal, bone meal, blood meal, etc. The dried product is also included. In addition to household garbage, examples of green agricultural waste include agricultural and marine industrial waste, food processing waste, and the like as industrial waste.

有機性廃棄物の状態により、必要に応じて前処理として破砕・分別工程を実施することができる。破砕・分別工程は、例えば以下のような分別破砕、全量破砕により行うことができる。分別破砕の場合は破砕分別機を用い、有機性廃棄物のなかで比較的容易に破砕可能な部位を液と共にスラリーとして回収する。一方、破砕しにくい部位は塊状物として別途回収する。スラリーの含水率は70〜98重量%、塊状物の含水率は40〜60重量%程度である。破砕分別機は有機性の固形物をせん断、引っ張り力によって破砕するもので、カッター部位は2軸式または3軸式のものが利用できる。牛などの動物屠体を原料とする場合には3軸式の破砕分別機で破砕処理する方が破砕の細かさや均一性の観点から好ましい。選別除去すべき混入プラスティック類、シート類などはメッシュによる選別、風選などで除去することが好ましい。   Depending on the state of the organic waste, a crushing / sorting step can be performed as a pretreatment as necessary. The crushing / sorting step can be performed, for example, by the following fractional crushing or whole quantity crushing. In the case of fractional crushing, a crushing / separating machine is used to collect a portion of the organic waste that can be crushed relatively easily as a slurry together with the liquid. On the other hand, parts that are difficult to crush are collected separately as a lump. The water content of the slurry is about 70 to 98% by weight, and the water content of the lump is about 40 to 60% by weight. The crushing / separating machine crushes organic solids by shearing and pulling force, and the cutter part can be a biaxial or triaxial type. When animal carcasses such as cows are used as raw materials, it is preferable to crush them with a triaxial crushing and sorting machine from the viewpoint of crushing fineness and uniformity. It is preferable to remove mixed plastics, sheets and the like to be sorted and removed by sorting with a mesh, wind sorting or the like.

有機性廃棄物をメタン発酵するメタン発酵装置としての発酵槽10は、絶対嫌気性であるメタン発酵菌による活動を妨げることがないように、二槽方式をとる発酵プロセスの場合でも後段において空気を完全に遮断したタンクにより構成される。メタン発酵は、いわゆる中温型、高温型、またはスラリー(湿式)型、ドライ(乾燥)型のいずれのタイプであっても適用することができる。発酵槽10は、固形分濃度(通常4〜40重量%の範囲)と発酵温度(通常中温発酵では37℃程度、高温発酵では55℃程度)によって形状や運転条件などを設定する。高含水率の原料(固形分濃度10重量%まで)の場合は湿式型の完全混合方式の発酵槽を、低含水率の原料(固形分濃度30〜40重量%)の場合は乾式型のプラグフロー式(押出式)の発酵槽を用いることができる。なお、発酵槽10には必要に応じて保温のための加熱手段を設けることができる。また、一般にメタン発酵においては、中温発酵では20〜30日間程度、高温発酵では15日間程度の滞留時間をとる。   The fermenter 10 as a methane fermenter for methane fermentation of organic waste does not interfere with the activity of methane fermenting bacteria that are absolutely anaerobic, even in the case of a fermentation process using a two-tank system, Consists of a completely shut off tank. The methane fermentation can be applied to a so-called medium temperature type, a high temperature type, a slurry (wet) type, or a dry (dry) type. The fermenter 10 sets a shape, an operating condition, etc. with solid content concentration (usually the range of 4-40 weight%) and fermentation temperature (about 37 degreeC in normal temperature fermentation, about 55 degreeC in high temperature fermentation). In the case of high moisture content (up to 10 wt% solid content), a wet type fully mixed fermenter, and in the case of low moisture content (solid content of 30-40 wt%), a dry type plug A flow type (extrusion type) fermenter can be used. In addition, the fermenter 10 can be provided with a heating means for keeping warm if necessary. In general, methane fermentation takes a residence time of about 20 to 30 days for medium temperature fermentation and about 15 days for high temperature fermentation.

有機性廃棄物のメタン発酵により得られる発酵残液は、有機性廃棄物や発酵条件により異なるが、含水率95重量%程度、固形分濃度(TS)5重量%程度の液状物質であり、嫌気性微生物の菌体およびその代謝産物に由来する各種のアミノ酸や有機酸などを多量に含んでおり、高い還元性雰囲気を有している。同様に有機性廃棄物を埋め立てた処分場の浸出水も同じ性質を有している。   The fermentation residue obtained by methane fermentation of organic waste is a liquid substance having a water content of about 95% by weight and a solid content concentration (TS) of about 5% by weight, although it varies depending on the organic waste and fermentation conditions. It contains a large amount of various amino acids, organic acids and the like derived from bacterial cells of the sex microorganisms and their metabolites, and has a highly reducing atmosphere. Similarly, leachate from disposal sites filled with organic waste has the same properties.

発酵槽10から排出された発酵残液およびその他の嫌気性有機化合物含有液は、調整槽20に移送される。発酵残液処理工程を実施する本実施形態に係る調整槽20は、図2に示す如く酸供給装置21と、pH測定器22と、攪拌機25と、酸化還元電位測定器26とを備えている。   The fermentation residual liquid and other anaerobic organic compound-containing liquid discharged from the fermenter 10 are transferred to the adjustment tank 20. As shown in FIG. 2, the adjustment tank 20 according to the present embodiment that performs the fermentation residual liquid treatment step includes an acid supply device 21, a pH measuring device 22, a stirrer 25, and a redox potential measuring device 26. .

調整槽20に導入された発酵残液はpH5.5以下、好ましくはpH5.5〜3.0程度、さらに好ましくはpH4.5〜3.5程度に調整される。pHの調整は発酵残液に対して酸供給装置21から酸を添加することにより行うことができる。添加する酸としては例えば塩酸、硫酸、硝酸などの無機酸を挙げることができる。   The fermentation residual liquid introduced into the adjustment tank 20 is adjusted to pH 5.5 or less, preferably about pH 5.5 to 3.0, and more preferably about pH 4.5 to 3.5. The pH can be adjusted by adding an acid from the acid supply device 21 to the fermentation residue. Examples of the acid to be added include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid.

発酵残液等の液のpH値を上記範囲に調整することにより、水酸基やカルボニル基などの親水性基の解離を抑制することができ、多くの有機酸の親水性を低下させることができる。従って、固液分離性を著しく向上させることができ、後段の固液分離装置30における処理効率を著しく向上させることができる。また、発酵残液等の液に溶存している二酸化炭素成分を放散させることができ、後段の濃縮装置40における濃縮効率を著しく向上させることが可能となる。また、カルシウム塩、マグネシウム塩の析出を抑えることができ、従来1日1回程度必要であった酸(有機酸)洗浄処理が不要となる。また、消化タンク・配管スケールと言われるMAP(MgNH4PO4・6H2O)の生成を回避することができるので、従来頻繁に必要であった配管内の機械的清掃作業が不要となる。なお、このスケールの溶解性はpH5.0で2000mg/L、pH7.5で100mg/L、pH8.0で〜0mg/Lである。さらに、重金属がイオン化して溶解するため重金属イオンを固形分側から液分側に移行させることができ、これを電気透析法などによって簡易かつ効率的に回収することが可能となる。 By adjusting the pH value of the liquid such as fermentation residual liquid to the above range, dissociation of hydrophilic groups such as hydroxyl groups and carbonyl groups can be suppressed, and the hydrophilicity of many organic acids can be lowered. Therefore, the solid-liquid separation property can be remarkably improved, and the processing efficiency in the subsequent solid-liquid separation apparatus 30 can be remarkably improved. Moreover, the carbon dioxide component dissolved in the liquid such as the fermentation residual liquid can be diffused, and the concentration efficiency in the subsequent concentration apparatus 40 can be remarkably improved. Moreover, precipitation of calcium salt and magnesium salt can be suppressed, and an acid (organic acid) cleaning treatment that has been conventionally required about once a day is unnecessary. Moreover, since it is possible to avoid the generation of MAP (MgNH 4 PO 4 .6H 2 O), which is called a digestion tank / pipe scale, mechanical cleaning work in the pipe, which has been frequently required in the past, becomes unnecessary. The solubility of this scale is 2000 mg / L at pH 5.0, 100 mg / L at pH 7.5, and ˜0 mg / L at pH 8.0. Further, since the heavy metal is ionized and dissolved, the heavy metal ion can be transferred from the solid content side to the liquid content side, and this can be easily and efficiently recovered by an electrodialysis method or the like.

また、調整槽20では発酵残液等の液を酸化剤と接触させる。発酵残液等の液と酸化剤との接触は、例えば銀塩化銀電極(Ag/AgCl)を基準とした酸化還元電位において−15mVより貴(正)側、好ましくは−15〜+50mV程度、より好ましくは−10〜+20mV程度となるように制御することが望ましい。なお、参照電極として銀塩化銀電極を用いた際の酸化還元電位値は、水素電極電位を用いた場合より約220〜230mV、貴(正)側となる。   Moreover, in the adjustment tank 20, liquids, such as a fermentation residual liquid, are made to contact with an oxidizing agent. The contact between the liquid such as the fermentation residual liquid and the oxidizing agent is, for example, a noble (positive) side from −15 mV, preferably about −15 to +50 mV at a redox potential based on a silver-silver chloride electrode (Ag / AgCl). It is desirable to control so that it becomes about −10 to +20 mV. In addition, the oxidation-reduction potential value at the time of using a silver-silver chloride electrode as a reference electrode is about 220-230 mV and a noble (positive) side than the case where a hydrogen electrode potential is used.

酸化剤は特に限定されるものではなく、例えば空気、酸素、次亜塩素酸、次亜塩素酸塩などを例示できる。空気、酸素などの気体状酸化剤を用いる場合には、攪拌機などの機械式や曝気(エアレーション)などによって発酵残液中に導入することが好ましく、また次亜塩素酸、次亜塩素酸塩などの液体状もしくは固体状酸化剤を用いる場合には、そのまま、または水溶液として発酵残液等の液中に添加することが好ましい。   An oxidizing agent is not specifically limited, For example, air, oxygen, hypochlorous acid, hypochlorite etc. can be illustrated. When a gaseous oxidant such as air or oxygen is used, it is preferably introduced into the fermentation residual liquid by a mechanical method such as a stirrer or aeration, and hypochlorous acid, hypochlorite, etc. When the liquid or solid oxidizing agent is used, it is preferably added as it is or as an aqueous solution to a fermentation residue.

本実施形態では、図2に示す如く攪拌機25の撹拌翼25aの一部を水面から空気中に出るように配設することにより、撹拌翼25aの回転に伴って酸化剤としての空気が発酵残液等の液中に導入されるように構成されている。このように撹拌翼25aの一部を水面上に突出させておくことで簡易かつ効率的に空気(酸化剤)を液中に巻き込むことができるとともに、その空気を均一に分散させることができ、短時間で効率的な処理が可能となる。   In this embodiment, as shown in FIG. 2, by disposing a part of the stirring blade 25a of the stirrer 25 so as to come out into the air from the water surface, air as an oxidant is left as a fermentation residue as the stirring blade 25a rotates. It is configured to be introduced into a liquid such as a liquid. Thus, by allowing a part of the stirring blade 25a to protrude above the water surface, air (oxidant) can be easily and efficiently involved in the liquid, and the air can be uniformly dispersed, Efficient processing is possible in a short time.

pH測定器22にはガラス電極式の市販の測定器を用いることができ、酸化還元電位測定器26には指示電極が白金線からなり、参照電極が銀塩化銀電極からなる測定器を用いることができる。   A commercially available glass electrode type measuring instrument can be used for the pH measuring instrument 22, and a measuring instrument comprising an indicator electrode made of a platinum wire and a reference electrode made of a silver-silver chloride electrode can be used for the oxidation-reduction potential measuring instrument 26. Can do.

発酵残液等の液を酸化剤に接触させることにより、強い還元性雰囲気である液の液性を酸化性雰囲気に調整することができる。従って、液中に存在する親水基(水酸基やカルボニル基など)の解離を有効に抑制することができるとともに、窒素元素や硫黄元素などを有する還元性の親水基(アミノ基、チオール基など)をある程度酸化させることで親水性を低下させることができる。これにより固液分離性をより一層向上させることができ、後段の固液分離装置30における処理効率を著しく高めることができる。   By bringing the liquid such as the fermentation residual liquid into contact with the oxidizing agent, the liquid property of the liquid which is a strong reducing atmosphere can be adjusted to the oxidizing atmosphere. Therefore, the dissociation of hydrophilic groups (hydroxyl group, carbonyl group, etc.) present in the liquid can be effectively suppressed, and reducing hydrophilic groups (amino group, thiol group, etc.) having nitrogen element, sulfur element, etc. Hydrophilicity can be reduced by oxidizing to some extent. Thereby, the solid-liquid separation property can be further improved, and the processing efficiency in the subsequent solid-liquid separation device 30 can be remarkably increased.

すなわち、本実施形態では単一の調整槽20において発酵残液等の液のpH調整処理と酸化剤接触処理との複合処理を同時に実施するものである。   That is, in this embodiment, the single adjustment tank 20 performs simultaneously the combined treatment of the pH adjustment treatment of the liquid such as the fermentation residual liquid and the oxidizing agent contact treatment.

なお、発酵残液等の液のpH調整処理、酸化剤接触処理の順序は特に限定されるものではなく、例えば単一の調整槽において同時に処理する形態(図2に示す形態)、pH調整処理後に酸化剤接触処理する形態、酸化剤接触処理後にpH調整処理する形態(後述する図4に示す形態)とすることができる。酸化剤は酸性雰囲気下であるほうがよりその効果を高められることから、その観点からは同時処理またはpH調整処理後に酸化剤接触処理する形態が好ましく、また、発酵残液等の液が高い濃度でアンモニア成分を含有する場合には酸使用量の低減を図る観点から酸化剤接触処理後にpH調整処理する形態が好ましい。   In addition, the order of pH adjustment processing of liquids, such as a fermentation residual liquid, and oxidizing agent contact processing is not specifically limited, For example, the form (form shown in FIG. 2) processed simultaneously in a single adjustment tank, pH adjustment processing It can be set as the form which performs an oxidizing agent contact process later, and the form (form shown in FIG. 4 mentioned later) which adjusts pH after an oxidizing agent contact process. Since the effect of the oxidizing agent can be enhanced more in an acidic atmosphere, from that viewpoint, the form in which the oxidizing agent is contacted after simultaneous treatment or pH adjustment treatment is preferable, and the liquid such as the fermentation residual liquid has a high concentration. In the case of containing an ammonia component, a form in which pH adjustment treatment is performed after the oxidizing agent contact treatment is preferable from the viewpoint of reducing the amount of acid used.

固液分離工程を実施する固液分離装置30では、処理液を固分と液分とに分離する。固液分離は、例えば重力分離式またはデカンタ式や遠心分離式などの機械式装置により行うことができ、発酵残液等の液の性状に応じて選択される。前記した液処理工程において固液分離性が高められた処理液を固液分離工程で処理することで、例えば固形分濃度7〜20重量%程度の固分と、固形分濃度1〜4重量%程度の液分とに効率的に分離することができる。なお、液分はその状態により、必要に応じて膜処理工程または消泡剤処理工程を設けることができる。   In the solid-liquid separation device 30 that performs the solid-liquid separation step, the treatment liquid is separated into a solid component and a liquid component. Solid-liquid separation can be performed by, for example, a mechanical device such as a gravity separation type, a decanter type, or a centrifugal type, and is selected according to the properties of a liquid such as a fermentation residual liquid. By treating the treatment liquid whose solid-liquid separation property has been improved in the liquid treatment step described above in the solid-liquid separation step, for example, a solid content with a solid content concentration of about 7 to 20% by weight and a solid content concentration of 1 to 4% by weight It can be efficiently separated into liquids of a certain degree. The liquid component can be provided with a film treatment step or an antifoaming agent treatment step depending on the state.

濃縮工程を実施する濃縮装置40では、固液分離工程における液分を濃縮することにより、固形分濃度20〜30重量%程度の濃縮物を生成する。濃縮は既知の濃縮装置を用いて行うことができ、例えば多重効用方式の濃縮装置を用いて減圧下で行うことが好ましい。多重効用方式の濃縮装置としては、二重効用缶、三重効用缶、四重効用缶など既知の構成の装置を使用できる。多重効用方式の濃縮装置を用いることで比較的低い温度での濃縮が可能となり、濃縮工程におけるエネルギー効率を著しく高めることができる。多重効用缶では単一の蒸発缶による濃縮装置と比較して、所要熱量をおよそ1/3(三重または四重効用缶の場合)〜1/4(四重または五重効用缶の場合)程度にまで低減できる。   In the concentration apparatus 40 which implements a concentration process, the concentrate of solid content concentration about 20-30 weight% is produced | generated by concentrating the liquid part in a solid-liquid separation process. Concentration can be carried out using a known concentrator, for example, preferably using a multi-effect type concentrator under reduced pressure. As a multi-effect type concentrator, a device having a known configuration such as a double-effect can, a triple-effect can, or a quadruple-effect can can be used. By using a multi-effect type concentrator, concentration at a relatively low temperature is possible, and the energy efficiency in the concentration step can be significantly increased. Multiple effect cans require approximately 1/3 (for triple or quadruple effect cans) to 1/4 (for quadruple or quintuple effect cans) compared to concentrators with a single evaporator. Can be reduced to

多重効用方式においては、各缶を接続する蒸気導入経路上にスチームコンプレッサー(小さなシステムに取り付けても効率は向上させにくい)を設けた濃縮装置も好ましい。スチームコンプレッサーで蒸気を強制的に再圧縮することにより、再度、温度を上げた処理が可能となり、熱効率も改善されて濃縮効率を向上できる。濃縮工程の過程で生じる凝縮液には窒素成分などが含まれている場合があるが、これらの成分は必要に応じて簡易な脱窒装置50において処理することが可能である。   In the multi-effect system, a concentrator provided with a steam compressor (efficiency is difficult to improve even if attached to a small system) on the steam introduction path connecting each can is also preferable. By forcibly recompressing the steam with a steam compressor, it becomes possible to increase the temperature again, improve the thermal efficiency, and improve the concentration efficiency. The condensate produced during the concentration step may contain nitrogen components and the like, but these components can be processed in a simple denitrification apparatus 50 as necessary.

ここで、図3に沿って本発明の処理システムに好適に用いることができる濃縮装置40について説明する。この濃縮装置40は多重効用方式の濃縮装置であり、第一缶41、第二缶42、第三缶43により構成され、各缶内で流体を強制循環させる強制循環方式の三重効用缶である。強制循環方式とは、加熱部(図示せず)での蒸発は避け、飽和温度の液として濃縮缶内を強制循環させる方式である。液分は濃縮度が進むに従い粘性が増加してくるため、強制循環方式を採用することにより高濃度となった濃縮物の流動性を確保し、かつ装置内でのスケーリング発生を最小限に抑えることができる。   Here, the concentration apparatus 40 which can be used suitably for the processing system of this invention is demonstrated along FIG. The concentrator 40 is a multi-effect type concentrator, and is composed of a first can 41, a second can 42, and a third can 43, and is a forced-circulation type triple effect can that forcibly circulates fluid in each can. . The forced circulation method is a method for avoiding evaporation in a heating unit (not shown) and forcibly circulating the inside of the concentration can as a liquid having a saturation temperature. Since the viscosity of liquid components increases as the degree of concentration increases, the fluidity of the concentrated concentrate is secured by adopting the forced circulation method, and the occurrence of scaling in the device is minimized. be able to.

第一缶41には外部熱源により生成した熱分が蒸気として経路45aにより導入されるとともに、固液分離装置30からの液分が経路31aによって導入される。液分は加熱部(図示せず)において蒸気により予加熱してから第一缶41に導入される。   The heat generated by the external heat source is introduced into the first can 41 as steam through the path 45a, and the liquid from the solid-liquid separator 30 is introduced through the path 31a. The liquid component is preheated with steam in a heating unit (not shown) and then introduced into the first can 41.

第一缶41の内部は減圧装置(図示せず)により負圧状態に維持されており、液分が効率的に濃縮される。第一缶41で所定濃度まで濃縮された濃縮物は、経路31bを介して第二缶42に移送され、そこで第一缶41と同様に濃縮された後、経路31cを介して第三缶43に送られ、さらに同様に濃縮される。また、第一缶41から排出された蒸気は経路45bを通って第二缶42へ送られ、第二缶42から排出された蒸気は経路45cを通って第三缶43に送られる。蒸気が通過する経路45b,45cにはスチームコンプレッサー48,48が配備されている。このように熱分を第一缶41、第二缶42、第三缶43で繰り返し蒸発熱源として利用することができるため、単効用方式に比し数分の一の熱量での濃縮が可能となり、エネルギー効率を著しく高めることができる。なお、各缶における温度、圧力は、例えば第一缶41が130℃程度、0.27MPa程度、第二缶42が115℃程度、0.17MPa程度、第三缶43が100℃程度、0.10MPa程度である。   The inside of the first can 41 is maintained in a negative pressure state by a decompression device (not shown), and the liquid component is efficiently concentrated. The concentrate concentrated to the predetermined concentration in the first can 41 is transferred to the second can 42 via the path 31b, where it is concentrated in the same manner as the first can 41, and then the third can 43 via the path 31c. To be concentrated in the same way. Moreover, the vapor | steam discharged | emitted from the 1st can 41 is sent to the 2nd can 42 through the path | route 45b, and the vapor | steam discharged | emitted from the 2nd can 42 is sent to the 3rd can 43 through the path | route 45c. Steam compressors 48, 48 are disposed in the paths 45b, 45c through which the steam passes. In this way, heat can be repeatedly used as the evaporation heat source in the first can 41, the second can 42, and the third can 43, so that it is possible to concentrate with a heat quantity that is a fraction of that of the single effect method. , Energy efficiency can be significantly increased. The temperature and pressure in each can are, for example, about 130 ° C. and about 0.27 MPa for the first can 41, about 115 ° C. and about 0.17 MPa for the second can 42, about 100 ° C. for the third can 43, About 10 MPa.

濃縮工程の後に必要に応じて乾燥工程を設けることができる。乾燥工程を実施する乾燥装置60では、上記固液分離工程での固分と上記濃縮工程での濃縮物との混合物を、固形分濃度70重量%以上、好ましくは80〜95重量%程度にまで乾燥する。固形分濃度を上記範囲に制御することにより、乾燥物の長期保存が容易となる。なお、固分と濃縮物との混合はラインミキサなどを用いて行うことができる。   A drying step can be provided as necessary after the concentration step. In the drying apparatus 60 that performs the drying process, the solid content in the solid-liquid separation process and the concentrate in the concentration process are mixed to a solid content concentration of 70% by weight or more, preferably about 80 to 95% by weight. dry. Controlling the solid content concentration within the above range facilitates long-term storage of the dried product. In addition, mixing with a solid content and a concentrate can be performed using a line mixer etc.

乾燥は既知の乾燥装置を用いて行うことができ、例えば多重効用方式の乾燥装置を用いて真空下で行うことが好ましい。多重効用方式の乾燥装置としては、二重効用缶、三重効用缶、四重効用缶など既知の構成の装置やドラムドライヤー方式のものを使用することができる。これらによって比較的低い温度での乾燥が可能となり、乾燥工程におけるエネルギー効率を著しく高めることができる。多重効用缶では、単一の乾燥缶による乾燥装置と比較して、所要熱量をおよそ1/3〜1/4程度にまで低減できる。   Drying can be performed using a known drying apparatus, and for example, it is preferably performed under vacuum using a multi-effect drying apparatus. As a multi-effect drying apparatus, a known apparatus such as a double-effect can, triple-effect can, or quadruple-effect can or a drum dryer type can be used. These enable drying at a relatively low temperature and can significantly increase energy efficiency in the drying process. In the multi-effect can, the required amount of heat can be reduced to about 1/3 to 1/4 as compared with a drying apparatus using a single drying can.

乾燥物はペレット化装置70に導入され、ペレット化処理されてペレットを形成する。ペレットの形状、サイズなどは使用される状況に応じて適宜変更する。また、必要に応じてペレットを乾燥装置(図示せず)に導入してさらに乾燥させることで長期保存性、取り扱い性を向上できる。ペレットは特殊肥料や肥料原料、成分調整を行った場合には一般肥料などの固形肥料として用いることができる。   The dried product is introduced into the pelletizing apparatus 70 and pelletized to form pellets. The shape, size, etc. of the pellet are appropriately changed according to the situation in which it is used. Moreover, long-term preservability and handleability can be improved by introducing pellets into a drying apparatus (not shown) and further drying as necessary. The pellet can be used as a solid fertilizer such as a general fertilizer when special fertilizer, fertilizer raw material, or component adjustment is performed.

図4は他の実施形態に係る処理システムの説明に供する図面である。本実施形態では、酸化剤接触処理とpH調整処理とを別々の装置で行うように構成されており、具体的には発酵残液を酸化剤としての空気と接触させる充填塔80と、pH調整を行うpH調整槽90とを備えている。   FIG. 4 is a drawing for explaining a processing system according to another embodiment. In the present embodiment, the oxidizing agent contact treatment and the pH adjustment treatment are configured to be performed by separate apparatuses. Specifically, the packed tower 80 for bringing the fermentation residual liquid into contact with air as the oxidizing agent, and the pH adjustment. PH adjustment tank 90 which performs.

発酵槽10から排出された発酵残液は、ノズル11、一時貯留槽13及びポンプ15を介して充填塔80の上部に導入され、ノズルから充填塔80内に噴霧される。一方、充填塔80の底部からはブロワ81より空気が導入されており、これにより発酵残液と空気とを対向接触させる。充填塔80には充填材が充填されており、発酵残液と空気とが効率的に気液接触するように構成されている。なお、充填塔80への発酵残液導入量と空気導入量との割合は、発酵残液の酸化還元電位値などに応じて適宜調整する。また、充填塔80の底部には酸化還元電位測定器26が設けられている。この処置は還元性有機物含有浸出水に対しても同様に適用できる。   The fermentation residual liquid discharged from the fermenter 10 is introduced into the upper portion of the packed tower 80 via the nozzle 11, the temporary storage tank 13 and the pump 15, and sprayed into the packed tower 80 from the nozzle. On the other hand, air is introduced from the bottom of the packed tower 80 from the blower 81, whereby the fermentation residual liquid and the air are brought into contact with each other. The packed tower 80 is filled with a filler, and is configured so that the fermentation residual liquid and the air are in efficient gas-liquid contact. In addition, the ratio of the fermentation residual liquid introduction amount to the packed tower 80 and the air introduction amount is appropriately adjusted according to the oxidation-reduction potential value of the fermentation residual liquid. A redox potential measuring device 26 is provided at the bottom of the packed tower 80. This treatment can be similarly applied to the leachable water containing reducing organic substances.

充填塔80における発酵残液等の液と空気との接触は、例えば銀塩化銀電極(Ag/AgCl)を基準とした酸化還元電位において−15mVより貴(正)側、好ましくは−15〜+50mV程度、より好ましくは−10〜+20mV程度となるように制御することが望ましい。   The contact between the liquid such as the fermentation residue in the packed tower 80 and the air is, for example, a noble (positive) side from −15 mV, preferably −15 to +50 mV at a redox potential based on a silver-silver chloride electrode (Ag / AgCl). It is desirable to control so as to be about -10, more preferably about -10 to +20 mV.

充填塔80から排出された処理液は、pH調整槽90に移送される。pH調整槽90は、酸供給装置21と、pH測定器22と、攪拌機93とを備えており、導入された処理液に酸を添加することによりpH5.5以下、好ましくはpH5.5〜3.0程度、さらに好ましくはpH4.5〜3.5程度に調整する。pH調整後の処理液は固液分離装置30に導入され、固分と液分とに分離される。なお、充填塔に代えて棚段塔を用いてもよい。   The treatment liquid discharged from the packed tower 80 is transferred to the pH adjustment tank 90. The pH adjusting tank 90 includes an acid supply device 21, a pH measuring device 22, and a stirrer 93. By adding an acid to the introduced processing liquid, the pH is 5.5 or less, preferably pH 5.5-3. Adjust to about 0.0, more preferably about pH 4.5 to 3.5. The treatment liquid after pH adjustment is introduced into the solid-liquid separator 30 and separated into a solid part and a liquid part. A plate tower may be used instead of the packed tower.

本実施形態に係る処理システムは発酵残液等の液の酸化剤接触処理後にpH調整処理を実施するものである。本実施形態は、例えば発酵残液等の液に高い濃度でアンモニア成分が含まれている場合に、酸化剤接触処理においてアンモニア成分を放散させることができ、その後のpH調整処理における酸使用量を低減できる観点から、有効である。   The treatment system according to the present embodiment performs a pH adjustment treatment after an oxidizing agent contact treatment of a liquid such as a fermentation residue. In the present embodiment, for example, when the ammonia component is contained at a high concentration in a liquid such as a fermentation residue, the ammonia component can be diffused in the oxidizing agent contact treatment, and the amount of acid used in the subsequent pH adjustment treatment can be reduced. This is effective from the viewpoint of reduction.

次に、発酵残液をpH5.5以下に調整するとともに酸化剤を接触させることで固液分離性を向上させることができる作用について、固液分離性を評価した試験に基づいて説明する。   Next, the effect | action which can improve solid-liquid separability by adjusting an fermentation residual liquid to pH 5.5 or less and making an oxidizing agent contact is demonstrated based on the test which evaluated solid-liquid separability.

<試験1>
搾乳牛糞尿をメタン発酵して得られる発酵残液〔酸化還元電位(vs Ag/AgCl):−190mV、pH:8.3〕100mlを容量約700mlの遠心分離管にとり、酸(塩酸)を添加してpH値の異なるサンプルを複数調製した。これに空気を巻き込みつつ充分に撹拌した後、静置したものについて固液分離性を評価する試験を行った。固液分離性の評価は、pH5.5以下に調整したサンプルについては二酸化炭素に由来する激しい発泡が生じるため、遠心分離装置にかけて脱気した後、上澄水層(液分)と沈殿層(固分)との量を比較することにより行った。上澄水量が25ml以上である場合を、固液分離性が高いと評価した。なお、遠心分離装置の回転数は2000ppm、温度は15℃とした。結果を表1に示した。
<Test 1>
Fermentation residue obtained by methane fermentation of milking cow manure [redox potential (vs Ag / AgCl): -190 mV, pH: 8.3] 100 ml is taken into a centrifuge tube with a capacity of about 700 ml, and acid (hydrochloric acid) is added. A plurality of samples having different pH values were prepared. A test was conducted to evaluate the solid-liquid separability of the sample that was allowed to stand after being sufficiently stirred while entraining air. In the evaluation of solid-liquid separability, the sample adjusted to pH 5.5 or less causes severe foaming due to carbon dioxide, so after degassing through a centrifugal separator, the supernatant water layer (liquid component) and the precipitate layer (solid Min) and comparing the amount. When the amount of the supernatant water was 25 ml or more, it was evaluated that the solid-liquid separation property was high. The rotation speed of the centrifugal separator was 2000 ppm and the temperature was 15 ° C. The results are shown in Table 1.

なお、遠心分離操作後の酸化還元電位(vs Ag/AgCl)は−80mV〜+10mVの範囲であった。pH値の測定は市販のガラス電極式pHメータを用いて行い、酸化還元電位の測定は白金線を指示電極とし、市販の銀塩化銀電極(Ag/AgCl)を参照電極として行った。   In addition, the oxidation-reduction potential (vs Ag / AgCl) after centrifugation operation was in the range of −80 mV to +10 mV. The pH value was measured using a commercially available glass electrode type pH meter, and the redox potential was measured using a platinum wire as an indicator electrode and a commercially available silver-silver chloride electrode (Ag / AgCl) as a reference electrode.

Figure 0004488794
<試験2>
搾乳牛糞尿をメタン発酵して得られる発酵残液〔酸化還元電位(vs Ag/AgCl):−190mV〕をエアレーション(曝気)処理して酸化還元電位(vs Ag/AgCl)を+15mVに調整した(この際、pHが8.3から7.5に変化した。これはエアレーションの効果だけでなくアンモニア成分の飛散も影響しているものと考えられる。)。
Figure 0004488794
<Test 2>
Fermentation residue obtained by methane fermentation of milked cow manure [redox potential (vs Ag / AgCl): -190 mV] was aerated (aerated) to adjust the redox potential (vs Ag / AgCl) to +15 mV ( At this time, the pH changed from 8.3 to 7.5, which is considered to be influenced not only by the aeration effect but also by the scattering of the ammonia component.

この液100mlを容量約700mlの遠心分離管にとり、酸(塩酸)を加えてpH値の異なるサンプルを複数調製し、空気を巻き込みつつ充分に撹拌した後、静置したものについて固液分離性を評価する試験を行った。固液分離性の評価は、pH5.5以下に調整したサンプルについては二酸化炭素に由来する発泡が生じるため、遠心分離装置にかけて脱気した後、上澄水層(液分)と沈殿層(固分)との量を比較することにより行った。上澄水量が25ml以上である場合を、固液分離性が高いと評価した。なお、遠心分離装置の回転数は2000ppm、温度は15℃とした。結果を表2に示した。pH値の測定は市販のガラス電極式pHメータを用いて行い、酸化還元電位の測定は白金線を指示電極とし、市販の銀塩化銀電極(Ag/AgCl)を参照電極として行った。   Take 100 ml of this liquid in a centrifuge tube with a capacity of about 700 ml, add acid (hydrochloric acid) to prepare a plurality of samples with different pH values, stir well while entraining air, and then leave the liquid solid for separation. The test to evaluate was done. In the evaluation of solid-liquid separation, since foaming derived from carbon dioxide occurs in the sample adjusted to pH 5.5 or lower, after degassing through a centrifugal separator, the supernatant water layer (liquid component) and the precipitate layer (solid component) ) And comparing the amount. When the amount of the supernatant water was 25 ml or more, it was evaluated that the solid-liquid separation property was high. The rotation speed of the centrifugal separator was 2000 ppm and the temperature was 15 ° C. The results are shown in Table 2. The pH value was measured using a commercially available glass electrode type pH meter, and the redox potential was measured using a platinum wire as an indicator electrode and a commercially available silver-silver chloride electrode (Ag / AgCl) as a reference electrode.

Figure 0004488794
<試験3>
さらに、酸化還元電位の効果を確認するために、以下の試験を行った。
搾乳牛糞尿をメタン発酵して得られる発酵残液〔酸化還元電位(vs Ag/AgCl):−190mV〕をエアレーション(曝気)処理して酸化還元電位(vs Ag/AgCl)を−20mV、0mVに調整した。
Figure 0004488794
<Test 3>
Furthermore, in order to confirm the effect of the redox potential, the following test was performed.
Fermentation residue obtained by methane fermentation of milking cow manure [oxidation-reduction potential (vs Ag / AgCl): -190 mV] is aerated (aerated) to reduce the oxidation-reduction potential (vs Ag / AgCl) to -20 mV and 0 mV. It was adjusted.

この液100mlを容量約700mlの遠心分離管にとり、酸(塩酸)を加えてpH値の異なるサンプルを複数調製し、空気を巻き込みつつ充分に撹拌した後、静置したものについて固液分離性を評価する試験を行った。固液分離性の評価は、pH5.8以下に調整したサンプルについては二酸化炭素に由来する激しい発泡が生じるため、遠心分離装置にかけて脱気した後、上澄水層(液分)と沈殿層(固分)との量を比較することにより行った。なお、遠心分離装置の回転数は2000ppm、遠心分離時間は3分間、温度は15℃とした。結果を表3に示した。pH値の測定は市販のガラス電極式pHメータを用いて行い、酸化還元電位の測定は白金線を指示電極とし、市販の銀塩化銀電極(Ag/AgCl)を参照電極として行った。   Take 100 ml of this liquid in a centrifuge tube with a capacity of about 700 ml, add acid (hydrochloric acid) to prepare a plurality of samples with different pH values, stir well while entraining air, and then leave the liquid solid for separation. The test to evaluate was done. In the evaluation of the solid-liquid separation property, the sample adjusted to pH 5.8 or less causes intense foaming derived from carbon dioxide. Therefore, after degassing through a centrifugal separator, the supernatant water layer (liquid component) and the precipitate layer (solid phase) Min) and comparing the amount. The rotation speed of the centrifugal separator was 2000 ppm, the centrifugal time was 3 minutes, and the temperature was 15 ° C. The results are shown in Table 3. The pH value was measured using a commercially available glass electrode type pH meter, and the redox potential was measured using a platinum wire as an indicator electrode and a commercially available silver-silver chloride electrode (Ag / AgCl) as a reference electrode.

Figure 0004488794
これらの試験結果より、発酵残液をpH5.5以下に調整するとともに酸化剤を接触させることで、固液分離性を著しく向上させることが可能であることが判る。
Figure 0004488794
From these test results, it can be seen that the solid-liquid separability can be remarkably improved by adjusting the fermentation residual liquid to pH 5.5 or lower and contacting the oxidizing agent.

なお、酸化剤として次亜塩素酸を用いて酸化還元電位(vs Ag/AgCl)を+20mVに調整したこと以外は試験2と同様に行った試験についても、pHを5.5以下に調整することで高い固液分離性が確認できた。   Note that the pH of the test conducted in the same manner as in Test 2 except that the redox potential (vs Ag / AgCl) was adjusted to +20 mV using hypochlorous acid as the oxidizing agent should be adjusted to 5.5 or lower. The high solid-liquid separation property was confirmed.

また、生ごみスラリーのメタン発酵残液(固形分濃度6.5重量%、pH7.8)及び豚糞尿のメタン発酵残液(固形分濃度4.8重量%、pH8.8)についても上記試験1〜3と同様の試験を行った。その結果、pH5.5以下において酸化還元電位(vs Ag/AgCl)を−15mVより貴側に制御することで高い固液分離性が発現されることが確認できた。ただし、豚糞尿原料の場合は発酵残液のアンモニア濃度が著しく高いため、酸の使用量が著しく多くなった。その使用量は、例えば搾乳牛糞尿の場合の5倍以上に達することがあった。そのため、酸使用量を低減する観点から豚糞尿の発酵残液に適用する場合には、まず充分なエアレーション処理により酸素の添加とアンモニア成分の除去を行い、その後酸を添加してpHを調整することが好ましい。   In addition, the above test was also conducted on the methane fermentation residual liquid (solid content concentration 6.5% by weight, pH 7.8) of food waste slurry and the methane fermentation residual liquid (solid content concentration 4.8% by weight, pH 8.8) of pig manure. The test similar to 1-3 was done. As a result, it was confirmed that a high solid-liquid separation property was exhibited by controlling the redox potential (vs Ag / AgCl) to a noble side from −15 mV at pH 5.5 or lower. However, in the case of pig manure raw material, the amount of acid used was significantly increased because the ammonia concentration in the fermentation residue was extremely high. The amount used may have reached more than five times that of milked cow manure, for example. Therefore, when applying to the fermentation residue of swine manure from the viewpoint of reducing the amount of acid used, first add oxygen and remove ammonia component by sufficient aeration treatment, then add acid to adjust pH It is preferable.

以下、実施例等を挙げて本発明についてより詳細に説明するが、本発明はこれらによってなんら制約されるものではない。   EXAMPLES Hereinafter, although an Example etc. are given and this invention is demonstrated in detail, this invention is not restrict | limited at all by these.

実施例1
水分95重量%、固形分濃度(TS)5重量%、pH8.0、温度50℃の発酵残液に硫酸を添加したとともにエアレーション処理を行い、pHを5.0、酸化還元電位(vs Ag/AgCl)を−10mV、温度40℃に調整した。これを重力分離式固液分離装置を用い、平均滞留時間(分離器容量/流量)を10分として固液分離したところ、固形分濃度1重量%の上層(液分)と、固形分濃度10重量%の下層(固分)とに分離することができた。なお、上層を膜処理した後のBODは205mg/L、SSは30mg/Lであった。
Example 1
Sulfuric acid was added to the fermentation residual liquid having a moisture content of 95% by weight, a solid content concentration (TS) of 5% by weight, pH 8.0, and a temperature of 50 ° C., and aeration treatment was performed. AgCl) was adjusted to -10 mV and a temperature of 40 ° C. When this was subjected to solid-liquid separation using a gravity separation type solid-liquid separation apparatus with an average residence time (separator capacity / flow rate) of 10 minutes, an upper layer (liquid content) with a solid content concentration of 1% by weight and a solid content concentration of 10 It was possible to separate into a lower layer (solid content) of wt%. In addition, BOD after carrying out the film processing of the upper layer was 205 mg / L, and SS was 30 mg / L.

比較例1
硫酸の添加(pH調整)を行わなかったこと以外は実施例1と同様に行った。その結果、固液分離装置で処理しても明瞭に二相に分離することができなかった。さらに、固液分離装置における平均滞留時間を20分としても、固形分濃度〜4.5重量%の上層(液分)と、固形分濃度〜5.5重量%の下層(固分)とに分離するに過ぎず、固液分離が困難であった。
Comparative Example 1
The same procedure as in Example 1 was performed except that sulfuric acid was not added (pH adjustment). As a result, even if it processed with the solid-liquid separator, it could not be separated into two phases clearly. Furthermore, even if the average residence time in the solid-liquid separator is 20 minutes, the upper layer (liquid component) having a solid content concentration of 4.5% by weight and the lower layer (solid component) having a solid content concentration of 5.5% by weight are obtained. It was only separated and solid-liquid separation was difficult.

比較例2
エアレーション処理を行わなかったこと以外は実施例1と同様に行い、pHを5.0、酸化還元電位(vs Ag/AgCl)を−85mV、温度40℃に調整した。これを重力分離式固液分離装置を用い、平均滞留時間を10分として固液分離したところ、固形分濃度3重量%の上層(液分)と、固形分濃度7重量%の下層(固分)とに分離した。しかし、固液分離性が充分でないために上層の膜処理における逆洗頻度を実施例1の10倍以上に保つ必要があり、安定した運転が困難であった。
Comparative Example 2
The procedure was the same as in Example 1 except that the aeration treatment was not performed, and the pH was adjusted to 5.0, the oxidation-reduction potential (vs Ag / AgCl) was adjusted to -85 mV, and the temperature was 40 ° C. This was subjected to solid-liquid separation using a gravity separation type solid-liquid separation apparatus with an average residence time of 10 minutes. As a result, an upper layer (liquid component) having a solid content concentration of 3% by weight and a lower layer (solid component concentration of 7% by weight). ) And separated. However, since the solid-liquid separation property is not sufficient, it is necessary to keep the backwash frequency in the upper layer membrane treatment 10 times or more that in Example 1, and stable operation is difficult.

実施例2
水分95重量%、固形分濃度5重量%、pH8.0、温度50℃の発酵残液に塩酸を添加するとともにエアレーション処理を行い、pHを4.8、酸化還元電位(vs Ag/AgCl)を−5mV、温度40℃に調整した。これを遠心分離式固液分離装置を用いて固液分離したところ、固形分濃度1重量%の上層(液分)と、固形分濃度18重量%の下層(固分)とに分離することができた。
液分を三重効用方式の濃縮装置で濃縮したところ固形分濃度30重量%の濃縮物を得ることができ、この濃縮物を固分と共にドラムドライヤー乾燥装置で乾燥することで固形分濃度90重量%の乾燥肥料を調整することができた。
Example 2
Hydrochloric acid is added to the fermentation residue with a moisture content of 95% by weight, a solid content concentration of 5% by weight, pH 8.0, and a temperature of 50 ° C., and aeration treatment is performed to adjust the pH to 4.8 and the redox potential (vs Ag / AgCl). It adjusted to -5mV and the temperature of 40 degreeC. When this is subjected to solid-liquid separation using a centrifugal solid-liquid separator, it can be separated into an upper layer (liquid component) having a solid content concentration of 1% by weight and a lower layer (solid component) having a solid content concentration of 18% by weight. did it.
When the liquid component is concentrated with a triple effect concentration device, a concentrate with a solid content of 30% by weight can be obtained, and the solid content is dried with a drum dryer dryer together with the solid content to obtain a solid content of 90% by weight. Of dry fertilizer could be adjusted.

比較例3
エアレーション処理を行わなかったこと以外は実施例2と同様に行い、pHを4.8、酸化還元電位(vs Ag/AgCl)を−92mV、温度40℃に調整した。これを遠心分離式固液分離装置を用いて固液分離したところ、固形分濃度3.5重量%の上層(液分)と、固形分濃度15重量%の下層(固分)とに分離した。
液分を濃縮装置で乾燥したところ固形分濃度25重量%の濃縮物となり、この濃縮物を固分と共に乾燥装置で乾燥して固形分濃度90重量%の乾燥肥料を調整するには所要熱量が大きすぎ、実用的ではなかった。
Comparative Example 3
The procedure was the same as in Example 2 except that the aeration treatment was not performed, and the pH was adjusted to 4.8, the oxidation-reduction potential (vs Ag / AgCl) was adjusted to -92 mV, and the temperature was 40 ° C. When this was subjected to solid-liquid separation using a centrifugal solid-liquid separation device, it was separated into an upper layer (liquid component) having a solid content concentration of 3.5% by weight and a lower layer (solid component) having a solid content concentration of 15% by weight. .
When the liquid is dried with a concentrating device, it becomes a concentrate having a solid content of 25% by weight, and this concentrate is dried with a drying device together with the solid to prepare a dry fertilizer with a solid content of 90% by weight. It was too big and not practical.

実施例3
水分95重量%、固形分濃度5重量%、pH8.0、温度50℃の発酵残液に塩酸を添加するとともにエアレーション処理を行い、pHを5.5、酸化還元電位(vs Ag/AgCl)を−11mV、温度40℃に調整した。これを遠心分離式固液分離装置を用いて固液分離して固分と液分とに分離した。液分は消泡剤で処理した後に三重効用方式濃縮装置で濃縮処理することで濃縮物とし、この濃縮物を固分と共にドラムドライヤー乾燥装置で乾燥することで固形分濃度90重量%の乾燥肥料を調整することができた。
Example 3
Hydrochloric acid is added to the fermentation residue with a moisture content of 95% by weight, a solid content concentration of 5% by weight, pH 8.0, and a temperature of 50 ° C., and aeration treatment is performed to adjust the pH to 5.5 and the redox potential (vs Ag / AgCl). The temperature was adjusted to -11 mV and the temperature was 40 ° C. This was separated into solid and liquid by solid-liquid separation using a centrifugal solid-liquid separator. The liquid is treated with an antifoaming agent and then concentrated with a triple effect concentration device to obtain a concentrate, and this concentrate is dried together with the solids with a drum dryer drying device to obtain a dry fertilizer with a solid content of 90% by weight. Could be adjusted.

比較例4
pHを5.7に調整したこと以外は実施例3と同様に行った。これを遠心分離式固液分離装置を用いて固液分離して固分と液分とに分離した。液分を消泡剤で処理したが発泡が激しく濃縮が困難であった。
Comparative Example 4
The same procedure as in Example 3 was performed except that the pH was adjusted to 5.7. This was separated into solid and liquid by solid-liquid separation using a centrifugal solid-liquid separator. Although the liquid was treated with an antifoaming agent, foaming was severe and concentration was difficult.

実施例4
フミン質などの有機性固形分を0.8%含有し、酸化還元電位―110mVvs Ag/AgCl、pH8.5の最終処分場浸出水について、実施例1の方法によって処理を行った。重力分離式固液分離装置後の、上澄固形物濃度は0.05%、下層は2.5%であった。膜処理後の上層のBODは160mg/l、SSは20mg/lであった。
Example 4
The final disposal site leachate containing 0.8% organic solids such as humic substances and having an oxidation-reduction potential of -110 mV vs Ag / AgCl, pH 8.5 was treated by the method of Example 1. The supernatant solid concentration after the gravity separation type solid-liquid separator was 0.05%, and the lower layer was 2.5%. The BOD of the upper layer after membrane treatment was 160 mg / l, and SS was 20 mg / l.

本発明は有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液の処理方法および処理システムとして利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used as a processing method and processing system for a fermentation residue obtained by subjecting organic waste to methane fermentation and other anaerobic organic compound-containing liquids.

システム全体の概略を示すブロック図である。It is a block diagram which shows the outline of the whole system.

本発明に係る処理システムの説明に供する図面である。It is drawing used for description of the processing system which concerns on this invention.

三重効用方式の濃縮装置の説明に供する図面である。It is drawing used for description of the triple effect type concentration apparatus.

他の実施形態に係る処理システムの説明に供する図面である。It is drawing used for description of the processing system which concerns on other embodiment.

符号の説明Explanation of symbols

10 発酵槽
20 調整槽
21 酸供給装置
22 pH測定器
26 酸化還元電位測定器
30 固液分離装置
40 濃縮装置
50 脱窒装置
60 乾燥装置
70 ペレット化装置
80 充填塔
90 pH調整槽
DESCRIPTION OF SYMBOLS 10 Fermenter 20 Adjustment tank 21 Acid supply device 22 pH measuring device 26 Oxidation reduction potential measuring device 30 Solid-liquid separation device 40 Concentration device 50 Denitrification device 60 Drying device 70 Pelletization device 80 Packing tower 90 pH adjustment tank

Claims (4)

有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程を含む発酵残液およびその他の嫌気性有機化合物含有液の処理方法であって、
前記液処理工程における酸化剤との接触は、銀塩化銀電極を基準とした酸化還元電位において−15mV〜50mVとなるように制御することを特徴とする、発酵残液およびその他の嫌気性有機化合物含有液の処理方法。
The liquid processing step of contacting an oxidizing agent with adjusting the resulting organic waste to methane fermentation fermented residual liquid and other anaerobic organic compound-containing solution to pH5.5 or less including calling酵残liquid and other A method of treating an anaerobic organic compound-containing liquid ,
The fermentation residue and other anaerobic organic compounds are characterized in that the contact with the oxidizing agent in the liquid treatment step is controlled to be -15 mV to 50 mV at a redox potential based on a silver-silver chloride electrode . Processing method of contained liquid.
有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程と、
前記液処理工程における処理液を固液分離する固液分離工程と、を含む発酵残液およびその他の嫌気性有機化合物含有液の処理方法であって、
前記液処理工程における酸化剤との接触は、銀塩化銀電極を基準とした酸化還元電位において−15mV〜50mVとなるように制御することを特徴とする、発酵残液およびその他の嫌気性有機化合物含有液の処理方法。
A liquid treatment step of adjusting the fermentation residue obtained by methane fermentation of organic waste and other anaerobic organic compound-containing liquid to pH 5.5 or lower and contacting with an oxidizing agent;
A processing method of the liquid treatment and solid-liquid separation step of processing liquid to solid-liquid separation in the step, the including origination酵残liquid and other anaerobic organic compound containing liquid,
The fermentation residue and other anaerobic organic compounds are characterized in that the contact with the oxidizing agent in the liquid treatment step is controlled to be -15 mV to 50 mV at a redox potential based on a silver-silver chloride electrode . Processing method of contained liquid.
有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに酸化剤と接触させる液処理工程と、
前記液処理工程における処理液を固液分離する固液分離工程と、
前記固液分離工程における液分を減圧濃縮する濃縮工程と、を含む発酵残液およびその他の嫌気性有機化合物含有液の処理方法であって、
前記液処理工程における酸化剤との接触は、銀塩化銀電極を基準とした酸化還元電位において−15mV〜50mVとなるように制御することを特徴とする、発酵残液およびその他の嫌気性有機化合物含有液の処理方法。
A liquid treatment step of adjusting the fermentation residue obtained by methane fermentation of organic waste and other anaerobic organic compound-containing liquid to pH 5.5 or lower and contacting with an oxidizing agent;
A solid-liquid separation step for solid-liquid separation of the treatment liquid in the liquid treatment step;
Wherein a solid-liquid processing method of separation and concentration step was concentrated under reduced pressure a liquid fraction in step a including origination酵残liquid and other anaerobic organic compound containing liquid,
The fermentation residue and other anaerobic organic compounds are characterized in that the contact with the oxidizing agent in the liquid treatment step is controlled to be -15 mV to 50 mV at a redox potential based on a silver-silver chloride electrode . Processing method of contained liquid.
有機性廃棄物をメタン発酵して得られる発酵残液およびその他の嫌気性有機化合物含有液をpH5.5以下に調整するとともに、銀塩化銀電極を基準とした酸化還元電位において−15mV〜50mVとなるように制御して酸化剤と接触させる調整槽を備えていることを特徴とする、発酵残液およびその他の嫌気性有機化合物含有液の処理システム。 The fermentation residue obtained by methane fermentation of organic waste and other anaerobic organic compound-containing liquids are adjusted to pH 5.5 or lower, and at a redox potential of -15 mV to 50 mV based on a silver-silver chloride electrode. A processing system for a fermentation residual liquid and other anaerobic organic compound-containing liquid, comprising an adjustment tank that is controlled to come into contact with an oxidizing agent.
JP2004153896A 2004-05-24 2004-05-24 Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid Expired - Fee Related JP4488794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153896A JP4488794B2 (en) 2004-05-24 2004-05-24 Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153896A JP4488794B2 (en) 2004-05-24 2004-05-24 Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid

Publications (2)

Publication Number Publication Date
JP2005334713A JP2005334713A (en) 2005-12-08
JP4488794B2 true JP4488794B2 (en) 2010-06-23

Family

ID=35488849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153896A Expired - Fee Related JP4488794B2 (en) 2004-05-24 2004-05-24 Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid

Country Status (1)

Country Link
JP (1) JP4488794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773919A (en) * 2015-04-08 2015-07-15 常州大学 Pharmaceutical wastewater advanced treatment system
CN104787972A (en) * 2015-04-10 2015-07-22 常州大学 Coal-coking wastewater treatment system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150212A (en) * 2004-11-29 2006-06-15 Jfe Engineering Kk Method and apparatus for digesting organic waste
JP5154771B2 (en) * 2006-07-05 2013-02-27 三井造船環境エンジニアリング株式会社 Biogas generation system and method
CN105502794B (en) * 2016-01-27 2018-06-26 中信格义循环经济有限公司 A kind of pH adjusting methods of anaerobic fermented liquid
JP7083160B2 (en) * 2018-07-31 2022-06-10 株式会社下瀬微生物研究所 Digestive juice processing device and its processing method in methane fermentation of organic matter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110964A (en) * 1977-03-10 1978-09-28 Kurita Water Ind Ltd Dehydrating method for organic sludge
JPS551851A (en) * 1978-06-20 1980-01-09 Kurita Water Ind Ltd Dehydration of organic sludge
JPH06315698A (en) * 1990-10-31 1994-11-15 Green Environment Syst Ltd Detoxication of sewage sludge
JPH0724499A (en) * 1993-07-15 1995-01-27 Kankyo Eng Kk Treatment of sludge
JPH07148500A (en) * 1993-10-01 1995-06-13 Kankyo Eng Kk Method for treating organic sludge
JPH10165994A (en) * 1996-12-11 1998-06-23 Ishigaki:Kk Method for separating and removing heavy metal from sludge and separation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110964A (en) * 1977-03-10 1978-09-28 Kurita Water Ind Ltd Dehydrating method for organic sludge
JPS551851A (en) * 1978-06-20 1980-01-09 Kurita Water Ind Ltd Dehydration of organic sludge
JPH06315698A (en) * 1990-10-31 1994-11-15 Green Environment Syst Ltd Detoxication of sewage sludge
JPH0724499A (en) * 1993-07-15 1995-01-27 Kankyo Eng Kk Treatment of sludge
JPH07148500A (en) * 1993-10-01 1995-06-13 Kankyo Eng Kk Method for treating organic sludge
JPH10165994A (en) * 1996-12-11 1998-06-23 Ishigaki:Kk Method for separating and removing heavy metal from sludge and separation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104773919A (en) * 2015-04-08 2015-07-15 常州大学 Pharmaceutical wastewater advanced treatment system
CN104773919B (en) * 2015-04-08 2016-06-29 常州大学 A kind of pharmacy waste water advanced treatment system
CN104787972A (en) * 2015-04-10 2015-07-22 常州大学 Coal-coking wastewater treatment system
CN104787972B (en) * 2015-04-10 2016-08-17 常州大学 A kind of coking of coal Waste Water Treatment

Also Published As

Publication number Publication date
JP2005334713A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US6916426B2 (en) Method of waste treatment
US7892310B2 (en) Biowaste treatment
JP5773541B2 (en) Biological purification agent of treated water, biological purification system, and biological purification method
JP7403781B1 (en) Methane fermentation equipment and methane fermentation method
JP3554689B2 (en) Waste disposal method
JP4488794B2 (en) Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid
US20100108615A1 (en) Method and an apparatus for treatment of a substance having organic content
Makara et al. Possibility to eliminate emission of odor from pig manure treated using AMAK filtration method
JP2008100218A (en) Method and apparatus for treating sludge
CN104355488A (en) Domestic sewage treatment method and domestic sewage treatment device
ES2968085T3 (en) Method for conversion of poultry manure
KR100895607B1 (en) Wastewater Treatment System of Food Wastewater Recycling Process
JP4289454B2 (en) Methane fermentation process and methane fermentation system
DK2279153T3 (en) METHOD OF TREATING AND / OR PREPARING LIQUID FERTILIZER OR WASTE FROM BIOGAS SYSTEMS TO ELIMINATE HARMFUL SUBSTANCES, PARTICULAR NITROGEN, PHOSPHORES AND AIR MOLECULES
CN204281502U (en) Waste disposal plant
JP2003340408A (en) Treatment system and treatment method for methane fermentation
JP2007284332A (en) Method and apparatus for producing compost raw material
JP2000079384A (en) Chemical and biological treatment system for waste
RU2120417C1 (en) Method of treatment of cattle-breeding flows
JP3906323B2 (en) Treatment method for highly concentrated waste liquid
CN204281500U (en) Sewage treatment unit
CN204224389U (en) Waste disposal plant
JP4665693B2 (en) Method and apparatus for treating organic waste
KR102564929B1 (en) Zero discharge treatment system for high concentration abandonment waste water
CN211311131U (en) Organic Waste Wastewater Treatment System

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100208

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees