JP4487090B2 - Luminous printed matter with authenticity discrimination - Google Patents
Luminous printed matter with authenticity discrimination Download PDFInfo
- Publication number
- JP4487090B2 JP4487090B2 JP2005006585A JP2005006585A JP4487090B2 JP 4487090 B2 JP4487090 B2 JP 4487090B2 JP 2005006585 A JP2005006585 A JP 2005006585A JP 2005006585 A JP2005006585 A JP 2005006585A JP 4487090 B2 JP4487090 B2 JP 4487090B2
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet
- light
- color
- emission
- fluorescent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 31
- 239000000126 substance Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 52
- 239000000976 ink Substances 0.000 description 41
- 238000007639 printing Methods 0.000 description 32
- 230000005284 excitation Effects 0.000 description 29
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 24
- 238000010521 absorption reaction Methods 0.000 description 14
- 239000002966 varnish Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000003086 colorant Substances 0.000 description 7
- 238000007689 inspection Methods 0.000 description 7
- 239000000049 pigment Substances 0.000 description 7
- 239000006096 absorbing agent Substances 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000008204 material by function Substances 0.000 description 3
- 238000007645 offset printing Methods 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000006081 fluorescent whitening agent Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002070 germicidal effect Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Credit Cards Or The Like (AREA)
Description
本発明は、紫外線領域の波長に応じて少なくとも二色以上に発光色が変化する多色発光部と紫外線波長の一部を吸収する物質が少なくとも一部に重なりをもってなる印刷物であって可視光照射時、紫外線長波光照射時、紫外線短波光照射時、紫外線長短波長照射時に印刷物の発光色あるいは発光形状がそれぞれ変化する真偽判別が可能な発光印刷物に関する。 The present invention is a printed matter comprising a multicolor light emitting portion whose emission color changes in at least two colors or more depending on the wavelength in the ultraviolet region and a substance that absorbs a part of the ultraviolet wavelength, and at least partially overlapping, and is irradiated with visible light In particular, the present invention relates to a light-emitting printed material capable of determining authenticity in which the light emission color or the light-emitting shape of the printed material changes at the time of ultraviolet long-wave light irradiation, ultraviolet short-wave light irradiation, or ultraviolet long-short wavelength irradiation.
銀行券、有価証券、カード及び通行券などの貴重印刷物や、運転免許証、パスポート及び保険証など個人を認証する証明証書は、第三者に偽造及び改ざんされないために常に新たな偽造防止技術を盛り込むことが要求されており、併せて真正品であるかどうかの判断が可能な真偽判別方法が必要とされている。 Precious printed matter such as banknotes, securities, cards and tolls, and certificates that authenticate individuals such as driver's licenses, passports and insurance cards are always equipped with new anti-counterfeiting technology in order not to be counterfeited or tampered with by a third party. There is a demand for a true / false discrimination method that can determine whether the product is genuine.
この中で蛍光体や磁性体等の特殊な発光や磁性を持つ機能性材料を用いる真偽判別方法は数多くあり、これらは機能性材料を印刷物に付与し、機械検査や官能検査においてそれらの発光や磁気の強度や有無を判別の一要素として真偽の判定を行うものである。 Among them, there are many authenticity determination methods using functional materials with special light emission and magnetism such as phosphors and magnetic materials, and these apply functional materials to printed matter, and these light emission in mechanical inspection and sensory inspection As a factor for determining the strength and presence or absence of magnetism, authenticity is determined.
前記機能性材料の特性を真偽判別要素として用いる場合、真性品の品質が安定していなければ、機械検査や官能検査において真性品であっても偽造品として判別される可能性があるために、その製造に当たっては工程全般に及ぶ厳重な品質管理が必要であることに加え、機能性材料を付与するためには特殊な製造設備や複雑な製造工程となることが多いことから、実際にはこれらの真偽判別要素を付与した貴重品の製造は製造者自身にとっても他の製品の生産と比較して多大な労力を必要とすることが通例である。 When using the characteristics of the functional material as an authenticity determination element, if the quality of the authentic product is not stable, it may be determined as a counterfeit product even if it is an authentic product in mechanical inspection or sensory inspection. In addition to the need for strict quality control over the entire process, the production of functional materials often involves special manufacturing equipment and complicated manufacturing processes. In general, the manufacture of a valuable product to which these authenticity determination elements are added requires a great deal of labor for the manufacturer as compared with the production of other products.
以上のことから、真偽判別要素を付与した貴重印刷物や証明書は、偽造者にとって偽造が困難な高度な印刷物であって、かつ、製造者にとっては製造方法が複雑ではなく管理が容易であり、使用者にとっては真偽判別が容易である技術が望まれている。 Based on the above, valuable prints and certificates with authenticity determination elements are advanced prints that are difficult for counterfeiters to forge, and the manufacture methods are not complicated and easy for manufacturers to manage. Therefore, there is a demand for a technique that makes it easy for a user to determine authenticity.
前記の機能性材料を用いた偽造防止技術の一例として、紫外線を照射して可視領域で発光する蛍光体を用いた印刷物があり、この印刷物に紫外線を照射し、蛍光体の発光の有無で真偽を判別する方法は多く提案されている。蛍光体の発光はその種類によって励起特性や発光色、発光強度等がそれぞれに異なることから、その差異を利用して機械検査や官能検査において偽造品と真性品を区別する判定要素として使用されている。紫外線励起型の蛍光体は従来、目視においてはその発光色が、機械検査においては蛍光体の発光強度が判定要素として扱われるのが一般的であったが、偽造者の技術レベルの高度化に対応するため、複数・異種の真偽判別要素として蛍光画像、蛍光強度、残光強度、発光色等、可能な限りの複雑な判別要素を備えることが期待されている。 As an example of the anti-counterfeiting technology using the functional material, there is a printed matter using a phosphor that emits ultraviolet rays and emits light in the visible region. The printed matter is irradiated with ultraviolet rays, and whether or not the phosphor emits light is true. Many methods for discriminating false are proposed. Since the phosphor emission has different excitation characteristics, emission color, emission intensity, etc. depending on the type, it is used as a judgment element to distinguish counterfeit products from genuine products in mechanical inspections and sensory inspections using the differences. Yes. In the past, UV-excited phosphors were generally treated with the light emission color as a visual factor and the light emission intensity of the phosphor as a judgment factor in mechanical inspections. In order to cope with this, it is expected to include as many complex discrimination elements as possible, such as a fluorescence image, fluorescence intensity, afterglow intensity, and emission color, as plural / different kinds of authenticity discrimination elements.
一方、ある種の物質は紫外線(波長400nm未満)のある一定の波長を吸収、あるいは反射する働きを持つ。無機系紫外線遮蔽材としては酸化亜鉛、酸化チタン、酸化セリウム、酸化鉄等が代表的であり、特に紫外線短波領域(約200nm〜300nm)に高い紫外線吸収特性を有している。また、ハロゲン、カルボニル基、ベンゼン環、不飽和基等を含む有機化合物はいずれも少なからず紫外線を吸収する特性を有しているが、サリチル酸系吸収剤やベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、シアノアクリレート系紫外線吸収剤等が代表的であり、特にベンゾトリアゾール系紫外線吸収剤は紫外線長波領域(波長400nm〜300nm)にも顕著な吸収特性を有していることで知られている。また、ポリウレタン樹脂やポリウレア樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネイト樹脂、アミノアルデヒド樹脂、メラミン樹脂、ポリスチレン樹脂、アクリル樹脂、スチレンアクリル共重合体、ゼラチン、ポリビニルアルコール等は紫外線領域の波長の短い領域を特に吸収する特性を持っていることで知られている。特にアクリル樹脂については光学系測定器において紫外線短波をカットするためのフィルターとして使用される。
On the other hand, certain substances have a function of absorbing or reflecting a certain wavelength of ultraviolet rays (having a wavelength of less than 400 nm). Typical examples of the inorganic ultraviolet shielding material include zinc oxide, titanium oxide, cerium oxide, iron oxide and the like, and have high ultraviolet absorption characteristics particularly in the ultraviolet shortwave region (about 200 nm to 300 nm). In addition, all organic compounds containing halogen, carbonyl group, benzene ring, unsaturated group, etc. have a characteristic of absorbing ultraviolet rays, but salicylic acid type absorbers, benzophenone type ultraviolet absorbers, benzotriazole type ultraviolet rays Typical examples include absorbers and cyanoacrylate-based ultraviolet absorbers, and benzotriazole-based ultraviolet absorbers are known to have remarkable absorption characteristics even in the ultraviolet long-wave region (
これら紫外線を吸収する特性を有する物質と紫外線で励起される蛍光体を組み合わせた従来の例のうち、真偽判別が可能な有価証券として、紫外線を吸収又は反射して遮断する透明フィルムに、真偽判別が可能な情報が蛍光材料を含むインキにより、透明な状態で潜像印刷された有価証券が提案されている。これは、蛍光材料を含むインキで印刷された印刷面に、紫外線を照射した場合は、インキが発光し情報が確認できるが、逆に、印刷面の裏面つまりフィルムを介してインキに紫外線を照射した場合は、フィルムが紫外線を遮断するため情報が確認できない、といったものである(例えば、特許文献1参照)。これは製造者の労力は従来と同一で使用者は単一光源を用いてフィルム表裏で2種類の蛍光画像や蛍光発光強度の差異を目視で簡易的に真偽判別ができる例である。 Among the conventional examples that combine these ultraviolet light-absorbing substances and phosphors excited by ultraviolet light, as a security that can determine authenticity, a transparent film that absorbs or reflects ultraviolet light is applied to a transparent film. There has been proposed a securities in which latent information is printed in a transparent state using ink containing a fluorescent material on information that can be falsely identified. This is because when the printed surface printed with ink containing fluorescent material is irradiated with ultraviolet light, the ink emits light and information can be confirmed, but conversely, the ink is irradiated with ultraviolet light through the back side of the printed surface, that is, the film. In such a case, information cannot be confirmed because the film blocks ultraviolet rays (see, for example, Patent Document 1). This is an example in which the manufacturer's labor is the same as in the past, and the user can easily determine the authenticity of the difference between two types of fluorescent images and fluorescent emission intensity on the front and back of the film using a single light source.
ところで、前述の紫外線に対して励起特性を持つ蛍光体は、大別して紫外線短波に高い励起特性をもつ蛍光体と、紫外線長波に高い励起特性を持つ蛍光体がある。 By the way, phosphors having excitation characteristics with respect to ultraviolet rays are roughly classified into phosphors having high excitation characteristics for ultraviolet shortwaves and phosphors having high excitation characteristics for ultraviolet longwaves.
一般的な蛍光印刷物は、紫外線長波で励起する蛍光体を用いて発光色や発光強度を確認して真偽判別に用いるものであるが、この蛍光体自体は多種多様な種類が販売されおり、真性の蛍光体と同様な特性を持つ蛍光体を入手することは比較的容易となっていることに加え、ブラックライトやLEDで蛍光色を確認することができるため、製造や真偽判別が容易であるがゆえに第三者に偽造されやすく、現時点ではすでに偽造抑制力を失いつつある。 A general fluorescent print is one that is used for authenticity discrimination by checking the emission color and emission intensity using a phosphor excited by ultraviolet long waves, but a wide variety of phosphors are sold, In addition to the fact that it is relatively easy to obtain a phosphor with the same characteristics as an intrinsic phosphor, the fluorescent color can be confirmed with a black light or LED, making it easy to manufacture and authenticate. Therefore, it is easy to be counterfeited by a third party, and at present, the anti-counterfeiting power is already being lost.
また、紫外線短波励起の蛍光体については、紫外線長波励起の蛍光体と比較して蛍光体自体が少なく、入手は若干難しくなることに加え、その発光を確認するための装置が水銀灯やキセノンランプ、あるいは殺菌灯が特殊であることから紫外線長波励起蛍光体と比較して偽造抑制効果は高いものの、簡易的な真偽判別が困難であるという問題があった。 In addition, as for the phosphor of ultraviolet short wave excitation, the phosphor itself is less than the phosphor of ultraviolet long wave excitation, and in addition to being slightly difficult to obtain, a device for confirming the light emission is a mercury lamp, xenon lamp, Or, since germicidal lamps are special, there is a problem in that it is difficult to distinguish between authenticity and authenticity, although the anti-counterfeiting effect is higher than that of ultraviolet long-wave excitation phosphors.
以上のように紫外線長波励起及び紫外線短波励起それぞれの蛍光体は相対する問題をかかえており、これを解決するためには紫外線短波励起蛍光体のように偽造が困難であり、正当な使用者に対しては紫外線長波励起蛍光体のように簡易的な確認は容易で、かつ厳重な確認においては高い精度で判別が可能である蛍光体やその蛍光体印刷物が望まれていた。 As described above, phosphors of ultraviolet long-wave excitation and ultraviolet short-wave excitation each have a relative problem, and in order to solve this problem, it is difficult to forge like ultraviolet short-wave excitation phosphors. On the other hand, there has been a demand for a phosphor that can be easily confirmed, such as an ultraviolet long wave excitation phosphor, and that can be discriminated with high accuracy in a strict confirmation, and a phosphor printed material thereof.
これらの技術的な課題を解決するために、紫外線短波励起の蛍光体と紫外線長波励起の蛍光体を組み合わせた多色性蛍光体が提案されている。現時点の具体的な例としては紫外線短波照射時と紫外線長波照射時で発光色が変化する二色性蛍光体を作成することが提案されている(例えば、特許文献2参照)。 In order to solve these technical problems, a polychromatic phosphor combining an ultraviolet short wave excitation phosphor and an ultraviolet long wave excitation phosphor has been proposed. As a specific example at the present time, it has been proposed to create a dichroic phosphor whose emission color changes between ultraviolet short wave irradiation and ultraviolet long wave irradiation (see, for example, Patent Document 2).
紫外線短波及び紫外線長波で発光色が変化する蛍光インキは、従来の上記蛍光インキの問題点を補えるものあり、紫外線短波励起特性の高い蛍光体と紫外線長波励起特性の高い蛍光体を混合することによって、照射波長に応じて発光色が変化することを特徴としている。これらは混合する蛍光体を変えることで紫外線長波及び紫外線短波での発色を変えることが可能であることから、従来の単色の蛍光体と比較して偽造は困難となる。また、紫外線短波と紫外線長波で発光色が変化することから、目視による簡易確認においては紫外線長波で、厳重な機械検出においては紫外線短波で確認するといったセキュリティレベルに応じた確認が可能な蛍光体である。 Fluorescent ink whose emission color changes with ultraviolet shortwave and ultraviolet longwave can compensate for the problems of the conventional fluorescent ink. By mixing phosphors with high ultraviolet shortwave excitation characteristics and phosphors with high ultraviolet longwave excitation characteristics, The emission color changes depending on the irradiation wavelength. Since it is possible to change the color of ultraviolet longwave and ultraviolet shortwave by changing the phosphors to be mixed, forgery is difficult compared to conventional single color phosphors. In addition, since the emission color changes between ultraviolet shortwave and ultraviolet longwave, it is a phosphor that can be confirmed according to the security level, such as ultraviolet longwave for simple visual inspection and ultraviolet shortwave for strict mechanical detection. is there.
また、紫外線短波励起の蛍光体は紫外線長波の紫外線に対しても若干の発光を有するものが多く、ブラックライト等の紫外線長波照射装置しか持たない偽造者にも、紫外線短波励起時の発光色の見当を与えてしまう場合があった。しかし、紫外線長波照射時には紫外線長波励起特性の高い蛍光体の発光が紫外線短波励起特性の高い蛍光体の発光を隠すために、紫外線短波における発光色を想像することは不可能となる。以上のことから、二色性蛍光体は従来の蛍光体と比較して偽造防止の観点において優れた蛍光体であり、現在、様々な製品に応用されつつある。 In addition, many phosphors with ultraviolet shortwave excitation have some light emission even with ultraviolet longwave ultraviolet rays, and even forgers who have only ultraviolet longwave irradiation devices such as black light, the emission color at the time of ultraviolet shortwave excitation can be reduced. There was a case where it gave an idea. However, it is impossible to imagine the emission color in the ultraviolet shortwave because the light emission of the phosphor having high ultraviolet longwave excitation characteristics conceals the light emission of the phosphor having high ultraviolet shortwave excitation characteristics during ultraviolet longwave irradiation. From the above, the dichroic phosphor is an excellent phosphor in terms of preventing counterfeiting as compared with conventional phosphors, and is currently being applied to various products.
現在、印刷物として二色性蛍光体を利用したものにフランスの500フラン紙幣が公知であり、これは紫外線短波を照射した場合には赤色を発し、紫外線長波を照射した場合には緑色を発し、紫外線長波及び紫外線短波の照射で蛍光体印刷部全体の発光色が変化する特徴がある。 Currently, the French 500 franc banknote is well known for printed matter that uses dichroic phosphors, which emits red when irradiated with ultraviolet shortwave, emits green when irradiated with ultraviolet longwave, There is a feature that the emission color of the entire phosphor printed portion is changed by irradiation with ultraviolet longwave and ultraviolet shortwave.
この二色性蛍光インキと紫外線吸収剤を従来の技術を参考にして単純に用いる一つの例としては、紫外線を吸収又は反射して遮断する透明フィルムに、二波長でそれぞれ異なった蛍光を発するインキで印刷した蛍光印刷物が考えられる。具体的な蛍光印刷物を、図12及び図13をもとに説明する。図12は、蛍光印刷物の断面図である。 One example of simply using this dichroic fluorescent ink and ultraviolet absorber with reference to the prior art is an ink that emits different fluorescence at two wavelengths on a transparent film that absorbs or reflects ultraviolet rays and blocks them. Fluorescent printed matter printed with can be considered. A specific fluorescent printed material will be described with reference to FIGS. FIG. 12 is a cross-sectional view of the fluorescent printed material.
蛍光印刷物の構成としては、紫外線を吸収又は反射して遮断する透明フィルム(5)の一部分に、二波長でそれぞれ異なった蛍光を発光する二色発光インキで印刷を行った二色性蛍光印刷部(6)を形成し、二色性蛍光印刷部(6)以外は、可視光下での模様及び文字等の有意味情報の視認性を高めるために通常印刷部(2)を一定の可視光反射性を有する通常のインキで被覆した構成とすることができる。 As a configuration of the fluorescent printed matter, a dichroic fluorescent printed portion printed on two parts of a transparent film (5) that absorbs or reflects ultraviolet rays and blocks different fluorescence at two wavelengths. In order to improve the visibility of meaningful information such as patterns and characters under visible light, except for the dichroic fluorescent printing part (6) It can be set as the structure coat | covered with the normal ink which has reflectivity.
透明フィルム(5)は、300nm以下の波長の光を透過しない基材の中から印刷適性や加工適性に優れたpetフィルムを使用し、蛍光印刷物に使用する二色発光インキは、RBタイプ(254nmで赤発光、365nmで青発光)のインキを使用する。 The transparent film (5) uses a pet film excellent in printability and processability from among substrates that do not transmit light with a wavelength of 300 nm or less, and the two-color luminescent ink used for fluorescent prints is an RB type (254 nm). Ink red light emission, 365 nm blue light emission) is used.
図13(a)は、二色性蛍光体印刷部(6)に印刷面から紫外光(7)を照射した場合の発光例である。この場合は二色性蛍光体印刷部に照射された全波長が達するために、254nmと365nm両方の発光色が現れるが、より発光強度が高い254nm励起時の発光が主体的となり観察者の目視確認では赤発光として観察される。 FIG. 13A shows an example of light emission when the dichroic phosphor printing unit (6) is irradiated with ultraviolet light (7) from the printing surface. In this case, since all the wavelengths irradiated to the dichroic phosphor printing portion reach, both 254 nm and 365 nm emission colors appear, but the emission at 254 nm excitation, which has a higher emission intensity, mainly becomes the visual observation of the observer. In the confirmation, it is observed as red luminescence.
図13(b)は、二色性蛍光体印刷部(6)に印刷面の裏側から透明フィルム(5)を通して紫外光(7)を照射した場合の発光例である。この場合は、300nm以下の波長がフィルムで吸収されることから、この場合蛍光体印刷部に達する波長は紫外線の長波に限定され、365nm励起時の発光色が主体的になり、観察者の目視確認では青発光として観察される。 FIG. 13B shows an example of light emission when the dichroic phosphor printing unit (6) is irradiated with ultraviolet light (7) from the back side of the printing surface through the transparent film (5). In this case, since the wavelength of 300 nm or less is absorbed by the film, in this case, the wavelength reaching the phosphor printing portion is limited to the long wave of ultraviolet rays, and the emission color at the time of excitation at 365 nm mainly becomes the In the confirmation, it is observed as blue luminescence.
前記の例は、二色性蛍光インキと紫外線吸収剤を単に組み合わせたものであるが、この二色性蛍光インキを使用して発光色のみならず発光部位を変化させる提案がなされている。その具体的な一例として、基材上に、蛍光発光を吸収する可視光吸収層を印刷し、その上に二波長でそれぞれ異なった蛍光を発光するインキで、蛍光画像層を印刷した印刷物であり、波長の異なった励起光を照射して二色に変化させたうえで、可視光吸収層によって発光を吸収させ、発光色並びに発光部位を変化させる、真偽判別可能な蛍光画像形成物が挙げられる(例えば、特許文献3参照)。 In the above example, a dichroic fluorescent ink and an ultraviolet absorber are simply combined. However, it has been proposed to use this dichroic fluorescent ink to change not only the luminescent color but also the luminescent site. A specific example is a printed material in which a visible light absorbing layer that absorbs fluorescence emission is printed on a base material, and a fluorescent image layer is printed thereon with inks that emit different fluorescence at two wavelengths. Fluorescent image formations that can authenticate authenticity are obtained by irradiating excitation light with different wavelengths and changing the color to two colors, and then absorbing the emitted light by the visible light absorbing layer, and changing the emission color and emission site. (See, for example, Patent Document 3).
前記の二色性蛍光体と紫外線吸収素材を単純に組み合わせた例においては、フィルム表裏での発光色は異なるものの、蛍光体を付与した部位全体の色が変わるが、単純に単一素材のフィルムを用いた場合には二色性蛍光体の全面を紫外線吸収物質で被覆してしまうことになるため、二色性蛍光体印刷部全面の発光が変化してしまい、蛍光印刷部を部分的に色変化させることができないという問題があった。 In the example in which the dichroic phosphor and the ultraviolet absorbing material are simply combined, the color of the entire area to which the phosphor is applied is changed, although the emission colors on the front and back of the film are different. If the dichroic phosphor is used, the entire surface of the dichroic phosphor is coated with an ultraviolet absorbing material, so that the light emission on the entire dichroic phosphor printing portion changes, and the fluorescent printing portion is partially covered. There was a problem that the color could not be changed.
また、特開平10−250214号公報のように、異なった励起光を照射して紫外線短波と紫外線長波で異なる色を発光させ、発光を吸収する素材を下面に配す場合、本発明と同様に発光色と発光部位を波長によって変化させることが可能である。 Further, as disclosed in Japanese Patent Application Laid-Open No. 10-250214, when different materials are irradiated with different excitation light to emit different colors of ultraviolet shortwave and ultraviolet longwave, and a material that absorbs light emission is arranged on the lower surface, as in the present invention. It is possible to change the light emission color and the light emission site depending on the wavelength.
しかし、蛍光発光を吸収する素材を着色塗料やインキなどの有色顔料で印刷するため、可視光観察時に可視光吸収層が目視で確認できてしまう可能性がある。可視光吸収層が目視で確認できてしまうと、その可視光吸収層の形状から発光が変化する形状を想像することができてしまい、偽造されやすくなってしまう、といった問題が出てくる。さらに、紫外線励起時の発光色を可視光吸収層によって完全に取り除くことを目的とすると、蛍光体の発光色に応じて可視吸収層の色相を微調整しなければならないことから形成物を作製するには技術を要し、作製にかかる労力も必要である。また、発光体の発光強度はその紫外線照射量に比例して増減するのに対して、吸収層の色濃度は一定である、つまり、強い光を吸収するには吸収層の色濃度を極めて高くしなければならないが、弱い光の場合は吸収層の濃度を低くしなければならないことから考え、完全に発光を吸収できる条件は紫外線照射量がある一定の場合のみに限定される。このことから、ある一定の紫外線照射量の場合のみにしか所望の効果を得ることができないと思われる。加えて、発光強度や反射濃度はその観察環境に大きく依存するため、紫外線照射量が想定した値であった場合でも、可視光が差し込む環境で観察した場合と、可視光が差し込まない環境で観察した場合には、その効果は大きく変化するものと思われる。このことから、特定の条件下での観察でのみ所望の効果を得ることができても、その条件を満たさない場合には発光層あるいは吸収層が目視で容易に確認されてしまう可能性がある。 However, since a material that absorbs fluorescent light is printed with a colored pigment such as a colored paint or ink, there is a possibility that the visible light absorbing layer can be visually confirmed during visible light observation. If the visible light absorbing layer can be visually confirmed, a shape in which light emission changes from the shape of the visible light absorbing layer can be imagined, and it becomes easy to forge. Furthermore, if the objective is to completely remove the emission color at the time of UV excitation by the visible light absorption layer, the formed material is prepared because the hue of the visible absorption layer must be finely adjusted according to the emission color of the phosphor. Requires technology and labor for production. In addition, the luminous intensity of the illuminant increases or decreases in proportion to the amount of UV irradiation, whereas the color density of the absorbing layer is constant, that is, the absorbing layer has a very high color density to absorb strong light. However, in the case of weak light, the concentration of the absorbing layer must be lowered, so that the conditions for completely absorbing light emission are limited only to a certain amount of ultraviolet irradiation. From this, it seems that a desired effect can be obtained only when a certain amount of ultraviolet irradiation is applied. In addition, since the emission intensity and reflection density depend greatly on the observation environment, even when the UV irradiation amount is the expected value, observation is performed in an environment where visible light is inserted, and in an environment where no visible light is inserted. If you do, the effect is likely to change greatly. From this, even if the desired effect can be obtained only by observation under a specific condition, the light emitting layer or the absorption layer may be easily confirmed visually when the condition is not satisfied. .
本発明は、上記課題の解決を目的とするものであり、具体的には、紫外線領域の長波長と短波長とで異なった蛍光を発光するインキで印刷を施した後、印刷部分の一部に紫外線吸収剤を含むインキでオーバープリントするといった極めて簡易的な手順で、可視光照射時、紫外線長波光照射時、紫外線短波光照射時、紫外線長短波長照射時に発光色あるいは発光部位を複雑に変化させ、機械判別や目視観察による真偽判別が可能な発光印刷物を提供することを目的とする。 An object of the present invention is to solve the above-described problems. Specifically, after printing is performed with ink that emits fluorescence that is different between the long wavelength and the short wavelength in the ultraviolet region, a part of the printed portion is obtained. In an extremely simple procedure, such as overprinting with ink containing an ultraviolet absorber, the emission color or emission site changes in a complex manner when irradiated with visible light, irradiated with ultraviolet longwave light, irradiated with ultraviolet shortwave light, or irradiated with ultraviolet shortwave light. It is an object of the present invention to provide a luminescent printed material that can be determined by machine discrimination or visual observation.
本発明の真偽判別可能な発光印刷物は、基材に真偽判別領域を有する発光印刷物であって、真偽判別領域の表面に、異なった波長の紫外線を照射することによって、それぞれ発光波長及び/又は発光強度が変化することで発光色が変化する特性を有する多色発光部が形成され、多色発光部の上に、多色発光部を励起させる紫外線波長の一部を吸収する特性を有する物質を、多色発光部の一部分で重なり合わせたオーバープリント部が形成されてなることを特徴とする。 The luminescent printed matter of the present invention is a luminescent printed matter having a true / false discriminating region on a substrate, and the surface of the true / false discriminating region is irradiated with ultraviolet rays of different wavelengths, respectively, A multicolor light-emitting part having the characteristic that the emission color changes by changing the light emission intensity is formed, and has a characteristic of absorbing a part of the ultraviolet wavelength that excites the multicolor light-emitting part on the multicolor light-emitting part. It is characterized in that an overprint portion is formed by overlapping a substance having a part of a multicolor light emitting portion.
また、本発明の真偽判別可能な発光印刷物は、多色発光部が、励起波長と発光波長の異なる複数の蛍光インキがそれぞれ層状に形成してなるか、もしくは励起波長と発光波長の異なる複数の蛍光体を混合したインキで形成してなることを特徴とする。 Further, in the luminescent printed matter of the present invention, the multicolor light emitting part is formed by laminating a plurality of fluorescent inks having different excitation wavelengths and emission wavelengths, or a plurality of different excitation wavelengths and emission wavelengths. It is formed with the ink which mixed the fluorescent substance of this.
この発明によって、紫外線の照射波長によって発光色と発光部位が様々に変化する発光印刷物を得ることが可能となる。真偽判別の要素として、複数色の発光強度を用いることが可能になることに加え、発光部位の変化を画像として認識し、判別要素として加えることが可能となることから、従来と比較して真偽判別判定要素の選択肢が飛躍的に増えることとなる。また、それぞれの照射波長に応じて発光色や発光部位が変化することから、ブラックライトしか持たないユーザであっても紫外線長波発光の確認は可能であり、必要に応じて紫外線短波照射や紫外線長短波照射を行うことで、より高度で複雑な認証を行うことが可能である。 According to the present invention, it is possible to obtain a light-emitting printed matter in which the light emission color and the light-emitting site vary depending on the irradiation wavelength of ultraviolet rays. In addition to being able to use multiple colors of luminescence intensity as an element for authenticity discrimination, it is also possible to recognize changes in the luminescent part as an image and add it as a discrimination element. There will be a dramatic increase in the choices of the true / false discrimination elements. In addition, since the emission color and the emission site change according to each irradiation wavelength, it is possible for users who have only black light to check ultraviolet long-wave light emission. By performing short-wave irradiation, more sophisticated and complicated authentication can be performed.
逆に蛍光混合体はその蛍光体の組み合わせのみならず、蛍光体の混合割合によって様々な色の組み合わせや発光強度の調整が可能であることから、偽造者にとって発光色の変化を再現することは従来の単色蛍光体と比較して困難であることに加えて、波長に応じて発光部位が同時に変化する効果を全く同様に再現することは更に高い技術レベルを要する。 On the other hand, since the fluorescent mixture can adjust not only the combination of the phosphors but also various color combinations and emission intensity depending on the mixing ratio of the phosphors, it is not possible for a counterfeiter to reproduce the change in emission color. In addition to being difficult as compared with conventional monochromatic phosphors, it is necessary to achieve a higher technical level to reproduce the effect of simultaneously changing the light emitting part according to the wavelength.
また、従来、製造者にとって、ある波長の光で同じ発色をしていながら異なる波長の光を当てると色が変化するメタメリズムを利用した印刷物を得ることは、2種類の分光分布の異なるインキを混ぜ合わせて作成するために、調色に極めて高い技能を必要とし、作製にかかる労力も必要であった。しかし、この発明によって蛍光インキと紫外線吸収剤を使用する限り、少なくとも紫外線長波照射時の完全な等色性と紫外線短波照射時の異色性を保障することが可能となった。さらに、紫外線領域の波長に応じて二色に発光色が変化する発光インキの上に、その紫外線波長の一部を吸収する樹脂等を、一部分で重なるようにして印刷をして、本発明の印刷物を作成するため、調色のための高い技能を必要とせず、作製にかかる労力も不必要であり、作業が容易に行えるようになった。 In addition, conventionally, it is difficult for a manufacturer to obtain a printed matter using metamerism that changes color when light of a different wavelength is applied while applying the same color of light of a certain wavelength. In order to make them together, extremely high skill was required for toning, and labor for preparation was also required. However, according to the present invention, as long as the fluorescent ink and the ultraviolet absorber are used, it is possible to guarantee at least complete color matching at the time of ultraviolet long-wave irradiation and color difference at the time of ultraviolet short-wave irradiation. Furthermore, on the luminescent ink whose emission color changes in two colors according to the wavelength in the ultraviolet region, a resin or the like that absorbs a part of the ultraviolet wavelength is printed so that it partially overlaps, In order to produce printed matter, high skill for color matching is not required, and labor for production is unnecessary, and the work can be easily performed.
実施例2において、二色性蛍光体を175線で網点パーセント100%のベタとし、これに紫外線吸収剤を用いて175線で網点パーセントが5%から100%まで徐々に変化するグラデーションスケールの重ね刷りを行い、紫外線短波と紫外線長波を同時に照射したところ、網点面積率が高まるにつれて、色相が赤から青へと連続的に変化した。このように紫外線吸収剤の網点パーセントを故意に変化させることによって、さまざまな階調表現が可能となる。 In Example 2, the dichroic phosphor is made solid with a dot percentage of 100% at 175 line, and a gradation scale in which the dot percentage gradually changes from 5% to 100% at 175 line using an ultraviolet absorber for this. After overprinting and simultaneously irradiating short ultraviolet rays and long ultraviolet rays, the hue continuously changed from red to blue as the dot area ratio increased. In this way, various gradations can be expressed by intentionally changing the halftone dot percentage of the ultraviolet absorber.
以上のように、高い偽造防止効果と製造安定性を同時に成す発光色と発光部位が照射する紫外線波長に応じて変化する印刷物を提案する。 As described above, the present invention proposes a printed matter that changes in accordance with the emission color that simultaneously achieves high anti-counterfeiting effects and manufacturing stability and the ultraviolet wavelength irradiated by the light emitting portion.
発明の実施に当たっては、二色性蛍光顔料を使用して作成したインキにより蛍光印刷物を作成した場合について説明する。二色性蛍光顔料としては、DE−RB、DE−RG、DE−GB、DE−GR(根本特殊化学社製)の四種類を使用し、二色性蛍光顔料20%、ワニス80%に加え、外割りとしてフタロシアニンブルー4%、乾燥剤1%配合で3本ロールミルを使用して酸化重合型オフセットインキを作成した。図1に示すように、これらは単体のインキであるが、254nmの紫外線で励起した場合には主な発光ピークが緑又は赤の波長領域にあり、365nmの紫外線で励起した場合にはその主な発光ピークが青、緑、赤の波長領域に変化する二色性の特性を有している。 In practicing the invention, a case where a fluorescent printed material is prepared using an ink prepared using a dichroic fluorescent pigment will be described. Four types of dichroic fluorescent pigments are used: DE-RB, DE-RG, DE-GB, and DE-GR (manufactured by Nemoto Special Chemical). In addition to 20% dichroic fluorescent pigment and 80% varnish. As an external split, an oxidation polymerization type offset ink was prepared using a 3 roll mill containing 4% phthalocyanine blue and 1% desiccant. As shown in FIG. 1, these are simple inks, but when excited with ultraviolet light at 254 nm, the main emission peak is in the green or red wavelength region, and when excited with ultraviolet light at 365 nm, the main ink peak. The light-emitting peak has a dichroic characteristic that changes in the blue, green, and red wavelength regions.
図2はDE−RBタイプ(254nm励起で赤発光、365nm励起で青発光)の二色性蛍光顔料に対して254nm及び365nmの紫外線を照射した場合の分光強度変化を分光測定器で測定したものである。254nm照射時には、365nm照射時と同様に440nm近傍にピークが存在するものの、この発光ピークと比較して610nm近傍の発光ピークの強度が相対的に強いために、青色発光は目視確認上認められず、赤色発光として認識される。また、365nm照射時には、610nm近傍の発光ピークが存在しないため、青色発光として目視上認識される。また、このインキはフタロシアニンブルーを添加したことにより、若干蛍光発光が低下したものの可視光観察下では薄青色として認識される有色インキとなった。 FIG. 2 shows a spectroscopic measurement of a change in spectral intensity when 254 nm and 365 nm ultraviolet rays are irradiated to a dichroic fluorescent pigment of DE-RB type (red emission when excited at 254 nm, blue emission when excited at 365 nm). It is. When irradiated with 254 nm, there is a peak near 440 nm as in the case of 365 nm irradiation. However, since the intensity of the light emission peak near 610 nm is relatively strong compared to this light emission peak, blue light emission is not recognized by visual confirmation. , Recognized as red light emission. In addition, since there is no emission peak near 610 nm when irradiated with 365 nm, it is visually recognized as blue emission. In addition, this ink became a colored ink which was recognized as a light blue under visible light observation although the fluorescence emission was slightly reduced by adding phthalocyanine blue.
図3はこの発明に係る蛍光印刷物の平面図、図4はこの発明に係る蛍光印刷物の断面図である。図5はこの蛍光印刷物における、二色性蛍光体印刷部とオーバープリント部を各版面に分けたものであり、実際には基材上に二色性蛍光体を印刷した後、二色性蛍光印刷体の一部(オーバープリント部)に紫外線吸収剤を完全に重ね合わせ、所望の位置に印刷するものである。二色性蛍光体印刷部用版面及びオーバープリント部印刷用版面の線数はインキ転移性と発光強度を考慮して175線、加えてすべての印刷部の網点パーセントは100%のベタ版構成とした。 FIG. 3 is a plan view of the fluorescent printed material according to the present invention, and FIG. 4 is a cross-sectional view of the fluorescent printed material according to the present invention. FIG. 5 shows a dichroic phosphor printed portion and an overprint portion of the fluorescent printed material divided into each plate surface. Actually, after the dichroic phosphor is printed on the substrate, the dichroic fluorescent material is printed. An ultraviolet absorber is completely superimposed on a part of the printed body (overprint portion) and printed at a desired position. The number of lines on the printing plate for the dichroic phosphor printing portion and the printing plate for the overprinting portion is 175 lines in consideration of the ink transfer property and the light emission intensity. In addition, the dot percentage of all printing portions is 100%. It was.
本実施例において、オフセット印刷方式を選択したことから、基材は蛍光増白剤を含まない無蛍光オフセット用コート紙を使用した。オフセット用蛍光インキの転移性を考慮した場合、コート紙を用いることが適当であるが、その選別に当たってはコート紙や加工原紙に含まれる蛍光増白剤がインキの蛍光発光を阻害する可能性があることから、蛍光増白剤を含まないコート紙を使用することが望ましい。 In this example, since the offset printing method was selected, a non-fluorescent offset coated paper containing no fluorescent brightening agent was used as the substrate. In consideration of the transferability of offset fluorescent ink, it is appropriate to use coated paper. However, the fluorescent whitening agent contained in the coated paper or processed base paper may interfere with the fluorescence emission of the ink. For this reason, it is desirable to use a coated paper that does not contain an optical brightener.
ただし、蛍光増白剤を含むコート紙を用いて、コート紙自体が発する発光強度と、紫外線長波あるいは紫外線短波照射時の蛍光体の発光強度を同じ程度に調整した構成とすることで、あたかも紫外線長波あるいは紫外線短波照射時に蛍光発光部がほとんど目立たない色の構成とした印刷物や、蛍光増白剤を含むコート紙を用いてコート紙自体が発する発光色と、紫外線長波及び紫外線短波照射時の蛍光体の発光色に差異を設けた構成とした印刷物等、コート紙自体が発する蛍光発光と本発明の効果を同時に利用する形態についても十分本発明が想定する範囲に属することは言うまでもない。 However, by using a coated paper containing a fluorescent brightening agent, the emission intensity emitted from the coated paper itself and the emission intensity of the phosphor when irradiated with ultraviolet longwave or ultraviolet shortwave are adjusted to the same level, as if ultraviolet rays Printed material with a configuration in which the fluorescent light emitting part is almost inconspicuous when irradiated with long waves or ultraviolet short waves, the emission color emitted by the coated paper itself using coated paper containing a fluorescent whitening agent, and fluorescence when irradiated with ultraviolet long waves and ultraviolet short waves Needless to say, the present invention also sufficiently lies in the form of simultaneously utilizing the fluorescence emission emitted from the coated paper itself and the effect of the present invention, such as a printed matter having a configuration in which the color of the body is different.
また、本実施例に当たってはオフセット印刷方式を選択したが、紫外線短波照射時の発光強度と紫外線長波照射時の発光強度のバランスを変えたい場合には紫外線短波励起型の蛍光体と紫外線長波励起型の蛍光体の混合割合を見直すことが適当であることに加え、オフセット印刷による蛍光印刷部がユーザの所望する発光強度より全体に低い場合には、顔料皮膜厚さを得やすい印刷方式、例えばグラビア印刷やスクリーン印刷等の印刷方式を選択することが望ましい。 In addition, the offset printing method was selected in this example, but when changing the balance between the emission intensity at the time of ultraviolet shortwave irradiation and the emission intensity at the time of ultraviolet longwave irradiation, the ultraviolet shortwave excitation type phosphor and the ultraviolet longwave excitation type were selected. It is appropriate to review the mixing ratio of the phosphors, and when the fluorescent printing part by offset printing is entirely lower than the light emission intensity desired by the user, a printing method that can easily obtain the pigment film thickness, for example, gravure It is desirable to select a printing method such as printing or screen printing.
二色性蛍光インキは、図1に示したオフセット用RBタイプの顔料20%、ワニス80%に加え、外割としてフタロシアニンブルー4%、乾燥剤1%を配合してインキを作製し、作製したインキを用いて多色発光部を形成した。また、オーバープリントに用いる紫外線吸収剤を含むインキは、一般用のオフセットインキ(DIC製OPニス new championマット)を使用した。このOPニスの紫外線吸収特性を図7に示す。 The dichroic fluorescent ink was prepared by preparing 20% of the RB type pigment for offset shown in FIG. 1 and 80% of the varnish, and adding 4% of phthalocyanine blue and 1% of the desiccant as an external ratio. A multicolor light emitting part was formed using ink. Further, as an ink containing an ultraviolet absorber used for overprinting, a general-purpose offset ink (DIC varnish new champion mat manufactured by DIC) was used. The UV absorption characteristics of this OP varnish are shown in FIG.
使用する紫外線吸収剤は、これに限るものではなく二色性蛍光体の複数の励起波長のうち、その一部分を吸収あるいは反射して二色性蛍光発光部のある波長域における発光を阻害する働きを成すものであればよい。この例においては紫外線短波長側の発光を抑制することを目的として200〜300nmに強い吸収特性を持つ無機系紫外線吸収物質を含んだニスを選択したが、特にこれに限定するものではなく、紫外線長波側に強い吸収特性を持つ材料を使用しても本発明が目的とする発光色と発光部位の変化は十分成しえることはいうまでもない。 The ultraviolet absorber to be used is not limited to this, and a function of absorbing or reflecting a part of a plurality of excitation wavelengths of the dichroic phosphor to inhibit light emission in a certain wavelength region of the dichroic fluorescent light emitting portion. Anything that constitutes In this example, a varnish containing an inorganic ultraviolet absorbing material having a strong absorption characteristic at 200 to 300 nm was selected for the purpose of suppressing light emission on the ultraviolet short wavelength side, but it is not particularly limited to this. It goes without saying that even if a material having a strong absorption characteristic on the long wave side is used, the change in the luminescent color and the luminescent part targeted by the present invention can be sufficiently achieved.
印刷部は、図5に示すようにオーバープリント部は二色性蛍光体印刷部に重なる領域を持つことが必要であるが、全面を完全に被覆しない構成にすることが発光色のみならず発光部位も変化させる効果を得るという面では適当である。 As shown in FIG. 5, the overprint part needs to have a region overlapping the dichroic phosphor print part as shown in FIG. 5. It is appropriate in terms of obtaining the effect of changing the part.
また、オーバープリント部用インキは一定の紫外線吸収特性を有している必要があるが、乾燥性や印刷適性を考慮した場合、その主要な成分としてはアクリル系樹脂やスチレン系樹脂、ウレタン系樹脂等で構成されたものが望ましい。 In addition, the ink for the overprint part needs to have a certain ultraviolet absorption property, but when considering the drying property and printability, the main components are acrylic resin, styrene resin, urethane resin. Etc. are desirable.
ただし、発色の変化を顕著に生み出すためには紫外線短波側及び紫外線長波側の光をほぼ均等に吸収してしまうものは適当ではない。また、付与できる皮膜厚さに制限がある場合や、製品に対して長期にわたる耐久性を要求される場合には酸化チタンや酸化亜鉛等の無機系紫外線吸収剤を配合することが適当である。加えて蛍光インキ印刷部の可視光観察時の色を阻害しないことが望ましいため、無色であることが好ましい。 However, it is not appropriate to absorb the light on the ultraviolet shortwave side and the ultraviolet longwave side substantially evenly in order to produce the color change remarkably. Further, when there is a limit to the thickness of the film that can be applied, or when long-term durability is required for the product, it is appropriate to blend an inorganic ultraviolet absorber such as titanium oxide or zinc oxide. In addition, since it is desirable not to inhibit the color of the fluorescent ink printed part when visible light is observed, it is preferable that the color is colorless.
この実施の形態において、使用した用紙の平滑性はベック平滑度600秒程度とコート紙としては若干低目で光沢度(75°光沢_JIS_P8142_Z8741)も55%と低いものであり、結果として二色性蛍光体印刷部も同様に55%とマット調であったことからオーバープリントにマット調OPニス単独で使用したが、用紙や二色性蛍光体印刷部の光沢度に応じてオーバープリント部の光沢を調整することが望ましい。具体的にはマット調とグロス調のニスを混合することでオーバープリント部の光沢度を調整することが可能であり、これらの配合割合を変えることで75°光沢においては55%から75%の光沢度、60°光沢においては40%から67%の光沢度での調整が可能であることから、可視光下での蛍光印刷部とオーバープリント部の視認性を考慮する場合、マット調OPニスとグロス調OPニスを混合し、用紙光沢度及び蛍光体印刷部の光沢度と一致させ、できる限りオーバープリント部を目立たせないことが望ましい。 In this embodiment, the smoothness of the paper used is Beck smoothness of about 600 seconds, which is slightly lower for coated paper, and the glossiness (75 ° gloss_JIS_P8142_Z8741) is also as low as 55%, resulting in dichroism. The phosphor printed part was also 55% matte, so the matte OP varnish alone was used for overprinting. However, the gloss of the overprinted part depends on the glossiness of the paper and the dichroic phosphor printed part. It is desirable to adjust. Specifically, it is possible to adjust the glossiness of the overprint portion by mixing a matte tone and glossy varnish. By changing the blending ratio, the glossiness of 55% to 75% is obtained at 75 ° gloss. For glossiness of 60 °, glossiness of 40% to 67% can be adjusted. Therefore, when considering the visibility of fluorescent prints and overprints under visible light, matte OP varnish It is desirable that the glossy OP varnish is mixed so as to match the glossiness of the paper and the phosphor printed portion so that the overprint portion is not as conspicuous as possible.
二色性蛍光体印刷部及びオーバープリント部はともに175線オフセット方式で二色性蛍光インキを付与し乾燥させた後、前記OPニスを使用して重ね刷りを行った。 Both the dichroic phosphor printing part and the overprinting part were applied with dichroic fluorescent ink by a 175 line offset method and dried, and then overprinted using the OP varnish.
図6はこの蛍光印刷物に対して異なった波長の紫外線を照射した際の検出状態を示す図である。(a)に示す通常の可視光下では、蛍光印刷部及びオーバープリント部ともに薄青色として認識される。(b)に示す紫外線長波(365nm)照射時には、マーク全体が青色に蛍光発光し、(c)に示す紫外線短波(254nm)照射時にはオーバープリント部は発光せず、その他の二色性蛍光体付与領域のみ赤色発光に変化した。また(d)に示す紫外線長短波(200〜400nm)照射時を同時に照射時には、オーバープリント部が青発光、その他の領域が赤発光した。 FIG. 6 is a diagram showing a detection state when the fluorescent printed material is irradiated with ultraviolet rays having different wavelengths. Under normal visible light shown in (a), both the fluorescent print portion and the overprint portion are recognized as light blue. When irradiated with the ultraviolet long wave (365 nm) shown in (b), the entire mark fluoresces blue, and when irradiated with the ultraviolet short wave (254 nm) shown in (c), the overprint portion does not emit light, and other dichroic phosphors are added. Only the area changed to red light emission. In addition, when the ultraviolet long and short wave (200 to 400 nm) irradiation shown in (d) was simultaneously performed, the overprint portion emitted blue light, and the other areas emitted red light.
多色性蛍光体と紫外線吸収剤の組み合わせの例として紫外線吸収剤の網点%を変化させ、色相を赤から青に徐々に変化させる場合の本発明実施形態について図面を参照して説明する。 As an example of a combination of a polychromatic phosphor and an ultraviolet absorber, an embodiment of the present invention in the case where the halftone dot% of the ultraviolet absorber is changed and the hue is gradually changed from red to blue will be described with reference to the drawings.
二色性蛍光体を175線で網点パーセント100%のベタとし、これに紫外線吸収剤を用いて175線で網点パーセントが5%から100%まで徐々に変化するグラデーションスケールの重ね刷りを行う。図8はこの発明に係る蛍光印刷物の平面図である。図9(a)は図8における発光印刷物の二色性蛍光印刷部を示し、図9(b)は紫外線吸収剤で印刷を行うオーバープリント部を示す。実際には、基材に二色性蛍光体で印刷をして多色蛍光部を形成し、その後に、紫外線吸収剤を多色蛍光部上の所望の位置に完全に重ね合わせ印刷するものである。 The dichroic phosphor is made solid with a dot percentage of 100% at 175 line, and an ultraviolet absorber is used for this, and overprinting of gradation scale is performed with the dot percentage gradually changing from 5% to 100% at 175 line. . FIG. 8 is a plan view of the fluorescent printed material according to the present invention. FIG. 9A shows a dichroic fluorescent printing portion of the luminescent printed material in FIG. 8, and FIG. 9B shows an overprint portion for printing with an ultraviolet absorber. Actually, a multicolor fluorescent part is formed on a substrate by printing with a dichroic phosphor, and then an ultraviolet absorber is completely overprinted at a desired position on the multicolor fluorescent part. is there.
使用したインキは実施例1と同様に多色性蛍光印刷はRBタイプの二色性蛍光インキにフタロシアニンブルーを加えて使用し、オーバープリントに用いる紫外線吸収剤も実施例1と同様に一般用のオフセットインキ(DIC製OPニス new championマット)を使用した。基材は実施例1と同様に無蛍光オフセット用コート紙を使用し、オフセット印刷機で印刷を行った。 The ink used was the same as in Example 1, and pleochroic fluorescent printing was used by adding phthalocyanine blue to the RB type dichroic fluorescent ink, and the UV absorber used for overprinting was the same as in Example 1. Offset ink (OP varnish new champion mat made by DIC) was used. As in Example 1, a non-fluorescent offset coated paper was used as the substrate, and printing was performed with an offset printer.
図10は、紫外線吸収剤単体の印刷物の紫外線吸収特性を示したものであり、紫外線吸収剤の網点面積率が大きくなるにしたがって、吸収される紫外線の量が増大していることが確認できることに加え、紫外線長波領域(365nm)においては紫外線吸収剤の網点面積率による吸収特性の差はほとんどないにもかかわらず、紫外線短波領域(254nm)においては紫外線吸収剤の網点面積率による吸収特性の差が大きく開くことがわかる。 FIG. 10 shows the ultraviolet absorption characteristics of the printed matter of the ultraviolet absorber alone, and it can be confirmed that the amount of absorbed ultraviolet rays increases as the dot area ratio of the ultraviolet absorber increases. In addition, in the ultraviolet long wave region (365 nm), there is almost no difference in absorption characteristics due to the halftone dot area ratio of the ultraviolet absorber, but in the ultraviolet short wave region (254 nm), absorption due to the halftone dot area ratio of the ultraviolet absorber. It can be seen that the difference in characteristics opens greatly.
図11はこの実施例2における蛍光印刷物の効果を色相の変化で表した図である。蛍光体に対する紫外線吸収剤によるオーバープリント部の網点パーセントを示しており、(a)は0%の部位、(b)は50%の部位、(c)は100%の部位における紫外線短波照射時の蛍光発光分布と紫外線長波照射時の蛍光発光分布を示したものである。紫外線吸収剤の網点面積率が高まるにつれて、紫外線短波照射時の赤色の発光強度が低下するものの、紫外線長波照射時には、青色の発光強度は変化していない。 FIG. 11 is a diagram showing the effect of the fluorescent printed material in Example 2 by the change in hue. The dot percentage of the overprinted portion by the ultraviolet absorber with respect to the phosphor is shown, (a) is a 0% site, (b) is a 50% site, and (c) is 100% of the ultraviolet short wave irradiation time. 2 shows the fluorescence emission distribution and the fluorescence emission distribution during ultraviolet long-wave irradiation. As the halftone dot area ratio of the ultraviolet absorber increases, the red emission intensity during ultraviolet shortwave irradiation decreases, but the blue emission intensity does not change during ultraviolet longwave irradiation.
目視の確認においても、紫外線長波照射時には青の発光が主体的であり、青の濃度はオーバープリント部の網点パーセント5%〜100%の部位でほとんど変化が認められず、紫外線短波照射時には、赤色の発光が主体的であるものの、赤の濃度はオーバープリント部の網点パーセントが大きくなるにつれて、発光が抑制されていた。紫外線短波と紫外線長波を同時に照射したところ、網点面積率が高まるにつれて、色相が赤から青に徐々に変化し、赤から青のグラデーション状に色相が徐々に変化した。 Even in visual confirmation, blue light emission is predominant during ultraviolet long-wave irradiation, and the density of blue hardly changes in the dot percentage of 5% to 100% of the overprint part, and during ultraviolet short-wave irradiation, Although red light emission is dominant, light emission was suppressed as the halftone dot percentage of the overprint portion increased. When ultraviolet shortwave and ultraviolet longwave were irradiated simultaneously, the hue gradually changed from red to blue as the halftone dot area ratio increased, and the hue gradually changed from red to blue.
この実施例において紫外線吸収剤の網点面積で色相を調整したが、紫外線吸収剤の被覆厚さを変化させても同様の効果が得られることは言うまでもない。 In this embodiment, the hue is adjusted by the dot area of the ultraviolet absorber, but it goes without saying that the same effect can be obtained by changing the coating thickness of the ultraviolet absorber.
以上のように、多色性蛍光体と紫外線吸収剤の組み合わせによって、蛍光色と蛍光部位の色相が連続的に変化する偽造防止や真偽判別に有効な蛍光印刷物を得た。 As described above, a combination of the pleochroic phosphor and the ultraviolet absorber gave a fluorescent printed material effective for preventing counterfeiting and authenticity discrimination in which the fluorescent color and the hue of the fluorescent site change continuously.
1 基材
2 通常印刷部
3 多色発光部
4 オーバープリント部
5 透明フィルム
6 二色性蛍光印刷部
7 紫外光
DESCRIPTION OF
Claims (2)
前記真偽判別領域に、長波領域の紫外線及び/又は短波領域の紫外線を照射することによって、発光波長及び/又は発光強度が変化することで発光色が変化する特性を有する多色発光部が形成され、
前記多色発光部の上に、前記多色発光部を励起させる紫外線のうち、短波領域の紫外線を選択的に吸収する特性を有する物質又は長波領域の紫外線を選択的に吸収する特性を有する物質を、前記多色発光部の一部分で重なり合わせたオーバープリント部が形成されてなり、
可視光下の視認画像、紫外線長波光照射時の視認画像、紫外線短波光照射時の視認画像及び紫外線長短波光照射時の視認画像において、それぞれ視認される発光色及び/又は発光部位が異なることにより真偽判別を行うことを特徴とする真偽判別可能な発光印刷物。 A light-emitting printed material having a true / false discrimination region on a substrate,
By irradiating the authenticity discrimination region with ultraviolet light in the long wave region and / or ultraviolet light in the short wave region , a multicolor light emitting part having a characteristic that the emission color changes by changing the emission wavelength and / or emission intensity is formed. And
A substance having a characteristic of selectively absorbing ultraviolet light in a short wave region or a substance having a characteristic of selectively absorbing ultraviolet light in a long wave region among the ultraviolet light that excites the multicolor light emitting unit on the multicolor light emitting unit. and Ri Na said overprinted portion was overlapped by a portion of the multi-color light-emitting portion is formed,
The visible color under visible light, the visible image when irradiated with ultraviolet longwave light, the visible image when irradiated with ultraviolet shortwave light, and the visible image when irradiated with ultraviolet shortwave light are different from each other in the luminescent color and / or luminescent site that is visible. A luminescent printed matter capable of authenticating authenticity, wherein authenticity determination is performed .
前記紫外線長波光及び紫外線短波光を同時に照射した状態で視認した場合に、前記紫外線長波光照射時の発光色から前記紫外線短波光照射時の発光色へと連続的に変化した発光色として視認されることを特徴とする請求項1記載の真偽判別可能な発光印刷物。When viewed with the ultraviolet long-wave light and ultraviolet short-wave light being simultaneously irradiated, it is visually recognized as a light-emitting color continuously changed from the emission color at the time of ultraviolet long-wave light irradiation to the emission color at the time of ultraviolet short-wave light irradiation. The luminescent printed matter capable of authenticating authenticity according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005006585A JP4487090B2 (en) | 2005-01-13 | 2005-01-13 | Luminous printed matter with authenticity discrimination |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005006585A JP4487090B2 (en) | 2005-01-13 | 2005-01-13 | Luminous printed matter with authenticity discrimination |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006192706A JP2006192706A (en) | 2006-07-27 |
JP4487090B2 true JP4487090B2 (en) | 2010-06-23 |
Family
ID=36799141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005006585A Expired - Lifetime JP4487090B2 (en) | 2005-01-13 | 2005-01-13 | Luminous printed matter with authenticity discrimination |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4487090B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5699313B2 (en) * | 2010-08-09 | 2015-04-08 | 大日本印刷株式会社 | Luminescent medium |
JP5622087B2 (en) * | 2010-08-09 | 2014-11-12 | 大日本印刷株式会社 | Luminescent medium |
JP2013129095A (en) * | 2011-12-21 | 2013-07-04 | Kobayashi Create Co Ltd | Form paper with concealment information |
JP2014000684A (en) * | 2012-06-15 | 2014-01-09 | Toppan Printing Co Ltd | Information recording medium |
KR101384612B1 (en) * | 2012-06-20 | 2014-04-11 | 서울대학교산학협력단 | Code mark and manufacturing method, cognition system, cognition method thereof |
JP6600874B2 (en) * | 2016-02-24 | 2019-11-06 | 独立行政法人 国立印刷局 | Anti-counterfeit printed matter |
EP3305543B1 (en) * | 2016-10-04 | 2019-07-31 | Hueck Folien Gesellschaft m.b.H. | Security element and valuable document with this security element |
JP7022356B2 (en) * | 2017-03-16 | 2022-02-18 | 大日本印刷株式会社 | Light emitting medium, anti-counterfeiting medium and its authenticity determination method |
JP2018188416A (en) * | 2017-04-28 | 2018-11-29 | 株式会社Screenホールディングス | Latent image printed matter of solid formulation and imaging method therefor |
WO2018198704A1 (en) * | 2017-04-28 | 2018-11-01 | 株式会社Screenホールディングス | Latent image printed matter of solid formulation and imaging method therefor, and examination method for edible material |
JP2018188417A (en) * | 2017-04-28 | 2018-11-29 | 株式会社Screenホールディングス | Latent image printed matter of solid formulation and imaging method therefor |
TWI664095B (en) * | 2017-04-28 | 2019-07-01 | 日商斯庫林集團股份有限公司 | Latent image printed matter of solid formulation, imaging method thereof and method for inspecting edible material |
JP2019007900A (en) * | 2017-06-27 | 2019-01-17 | 株式会社Screenホールディングス | Inspection method of edible article |
WO2019138439A1 (en) * | 2018-01-09 | 2019-07-18 | 日本電気株式会社 | Confirmation device, confirmation method, and program |
-
2005
- 2005-01-13 JP JP2005006585A patent/JP4487090B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006192706A (en) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102486935B1 (en) | Security devices and methods for manufacturing | |
CA2507900C (en) | Security device and its production method | |
EP2373485B1 (en) | Fluorescence notch coding and authentication | |
RU2264296C2 (en) | Half-tint image, produced by printing method | |
JP4487090B2 (en) | Luminous printed matter with authenticity discrimination | |
WO2012018084A1 (en) | Luminous medium and method for confirming luminous medium | |
RU2538865C2 (en) | Image with binary tilt effect | |
CN103153641A (en) | Light-emitting medium | |
WO2020110458A1 (en) | Printed material, booklet body, assembled body of light source and printed material, and authenticity determining method for printed material | |
JP4418881B2 (en) | Anti-counterfeit printed matter | |
JP2004535963A5 (en) | ||
EP3023258B1 (en) | Multilayered protected composition (variants) and article consisting of said composition | |
JP4983510B2 (en) | Counterfeit prevention medium and verification method using the same | |
JP2003302519A (en) | Film with genuineness deciding function and sheet type body having genuineness deciding function using the same | |
JP2003306897A (en) | Thread having genuineness determination function and forgery preventive sheet using the same | |
JP4552052B2 (en) | Multicolor luminescent mixture, multicolor luminescent ink composition, and image formed product | |
JP2004027416A (en) | Pearl pigment-coated sheet with function of true-false judgment and printed matter with function of true-false judgment using the sheet | |
RU2335404C2 (en) | Print, method of recording, method of information recognition and system of information recognition | |
AU2016369458A1 (en) | Security element comprising hidden information and valuable document comprising same | |
KR100603103B1 (en) | Special hidden line and security paper using the same | |
JP2005138399A (en) | Forgery preventing slip | |
JP2004142175A (en) | Thread having truth or falsehood determining function and forgery preventive sheet using the same | |
WO2010059075A1 (en) | Counterfeit-proof value paper with a security element (variants), a method for protecting a value paper against counterfeit (variants), a display device and a security element (variants) | |
JP5817210B2 (en) | Authenticity identification medium and identification method of authenticity identification medium | |
JP5966255B2 (en) | Authenticity identification medium and identification method of authenticity identification medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100305 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130409 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140409 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |