[go: up one dir, main page]

JP4485310B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP4485310B2
JP4485310B2 JP2004283236A JP2004283236A JP4485310B2 JP 4485310 B2 JP4485310 B2 JP 4485310B2 JP 2004283236 A JP2004283236 A JP 2004283236A JP 2004283236 A JP2004283236 A JP 2004283236A JP 4485310 B2 JP4485310 B2 JP 4485310B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
emitting element
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004283236A
Other languages
Japanese (ja)
Other versions
JP2006100472A (en
Inventor
有真 藤田
登美男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2004283236A priority Critical patent/JP4485310B2/en
Publication of JP2006100472A publication Critical patent/JP2006100472A/en
Application granted granted Critical
Publication of JP4485310B2 publication Critical patent/JP4485310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光素子チップ(以下、LEDチップともいう)がボンディングされてその周囲が樹脂などの被覆体で覆われてその被覆体から直接光を放射するランプ型またはチップ型などの半導体発光装置に関する。さらに詳しくは、紫外線や高出力のLEDチップが用いられる場合でも、LEDチップを被覆する被覆体が変色しにくい構造の半導体発光装置に関する。   The present invention relates to a semiconductor light emitting device such as a lamp type or a chip type in which a light emitting element chip (hereinafter also referred to as an LED chip) is bonded and the periphery thereof is covered with a covering such as a resin, and light is emitted directly from the covering. About. More specifically, the present invention relates to a semiconductor light emitting device having a structure in which a covering covering an LED chip is not easily discolored even when an LED chip with high output or high output is used.

半導体発光装置は、たとえば第1のリードの先端部にLEDチップをマウントし、その一対の電極を第1および第2のリードと電気的に接続して、その外周を透光性のエポキシ樹脂などで被覆するランプ型(いわゆる砲弾型)の構造や、両端部に一対の端子電極が形成された絶縁性基板上にLEDチップがマウントされ、その一対の電極と絶縁性基板両端部に設けられた一対の端子電極とが電気的に接続され、その表面を透光性のエポキシ樹脂などで被覆するチップ型の構造などに形成されている。そして、近年では、青色発光または紫外線発光のLEDが開発され、青色や紫外光のLEDチップを用いて、その表面を被覆するエポキシ樹脂内、またはその表面に発光色変換部材を設けて、白色発光装置にするなど、光源の発光色を変換した発光装置が利用されている。このような半導体発光装置は、たとえば図5にランプ型発光装置の例が示されるように構成されている。   In the semiconductor light emitting device, for example, an LED chip is mounted on the tip of a first lead, the pair of electrodes are electrically connected to the first and second leads, and the outer periphery thereof is made of a translucent epoxy resin or the like. The LED chip is mounted on an insulating substrate having a lamp type (so-called bullet type) covering with a pair of terminals and a pair of terminal electrodes formed on both ends, and provided on both ends of the pair of electrodes and the insulating substrate. A pair of terminal electrodes are electrically connected to each other, and are formed in a chip-type structure or the like whose surface is covered with a translucent epoxy resin or the like. In recent years, blue light emitting or ultraviolet light emitting LEDs have been developed, and a blue or ultraviolet light LED chip is used to provide white light emission by providing a light emitting color conversion member in the epoxy resin covering the surface or on the surface thereof. For example, a light emitting device in which the light emission color of a light source is converted is used. Such a semiconductor light emitting device is configured, for example, as shown in FIG. 5 as an example of a lamp type light emitting device.

すなわち、図5において、板状体から形成された第1のリード51の先端部に板状体の端面から形成された凹部51a内にLEDチップ53がボンディングされ、その一方の電極は第1のリード51と電気的に接続され、他方の電極が、同様に板状体から形成された第2のリード52の先端部とワイヤ54により電気的に接続され、さらに第1のリードの凹部51a内に発光色変換部材55が充填され、その周囲がエポキシ樹脂などの透光性樹脂56により被覆される構造になっている(たとえば特許文献1参照)。この発光色変換部材55としては、たとえばイットリウム・アルミニウム・ガーネット(YAG)系の蛍光物質を、たとえば透光性樹脂などに混入したものが用いられている。
特開2003−124530号公報
That is, in FIG. 5, the LED chip 53 is bonded to the tip of the first lead 51 formed from the plate-like body in the recess 51a formed from the end face of the plate-like body, and one electrode thereof is the first electrode. The other electrode is electrically connected to the lead 51, and the other electrode is also electrically connected to the tip of the second lead 52, which is also formed of a plate-like body, by the wire 54, and further in the recess 51a of the first lead. Is filled with a light emitting color conversion member 55 and the periphery thereof is covered with a translucent resin 56 such as an epoxy resin (see, for example, Patent Document 1). As the light emission color conversion member 55, for example, a material obtained by mixing, for example, a yttrium, aluminum, garnet (YAG) -based fluorescent material in a translucent resin or the like is used.
JP 2003-124530 A

前述のように、LEDチップをエポキシ樹脂などの透光性樹脂で被覆する構造の半導体発光装置では、時間の経過と共に透光性樹脂が変色しやすいという問題がある。とくにLEDチップが青色光や紫外光を発光する場合、光強度が大きい場合にはエポキシ樹脂は変色しやすい。そのため、使用時間の経過と共に発光色が変ったり、光強度が弱くなったりするという問題がある。さらに、エポキシ樹脂などは熱に対して弱いため、実装時にハンダ付けなどのためリードの温度が上昇し、被覆体側に熱が伝わると、リードと被覆体とが剥離して、フラックスや水分などが侵入してLEDチップやワイヤボンディングなどの信頼性を低下させるという問題がある。   As described above, in a semiconductor light emitting device having a structure in which an LED chip is covered with a light-transmitting resin such as an epoxy resin, there is a problem that the light-transmitting resin is likely to change color with time. In particular, when the LED chip emits blue light or ultraviolet light, the epoxy resin is likely to change color when the light intensity is high. Therefore, there is a problem that the emission color changes or the light intensity decreases with the passage of time of use. In addition, since epoxy resin is vulnerable to heat, the temperature of the lead rises due to soldering during mounting, and when heat is transferred to the cover, the lead and cover are peeled off, causing flux, moisture, etc. There is a problem that the reliability of LED chips, wire bonding, and the like is reduced due to penetration.

一方、シリコーン樹脂などは紫外光に対しても変色しにくく、変色や光強度低下の問題は発生しないが、シリコーン樹脂は剛性がなく、たとえばランプ型半導体発光装置のパッケージに使用すると、やわらかくて手で触れると変形するという問題がある。   On the other hand, silicone resin and the like are not easily discolored by ultraviolet light and do not cause the problem of discoloration or light intensity reduction. There is a problem of deformation when touched.

本発明はこのような問題を解決するためになされたもので、たとえLEDチップが、青色や紫外光を発光するLEDチップや、光強度が非常に強いLEDチップであっても、また、実装時にリードなどの温度が上昇しやすい発光装置であっても、LEDチップを被覆する被覆体が変色したり、熱によるリードとの剥離や被覆体の変形が生じにくい構造のランプ型やチップ型などの半導体発光装置を提供することを目的とする。   The present invention has been made to solve such problems. Even if the LED chip is an LED chip that emits blue or ultraviolet light, or an LED chip with a very high light intensity, Even in a light emitting device that easily rises in temperature, such as a lead, a lamp type or a chip type that has a structure in which the covering covering the LED chip is not easily discolored or peels off from the lead due to heat or deformation of the covering does not easily occur. An object is to provide a semiconductor light emitting device.

本発明の他の目的は、LEDチップを被覆する変色しにくい被覆体内に発光色変換部材を混入させることにより、LEDチップの発光色を変換して所望の発光色とすることができる半導体発光装置を提供することにある。   Another object of the present invention is to provide a semiconductor light emitting device capable of converting a light emission color of an LED chip into a desired light emission color by mixing a light emission color conversion member in a coating body that is difficult to discolor to cover the LED chip. Is to provide.

本発明による半導体発光装置は、発光素子チップと、該発光素子チップの少なくとも光発射面側を被覆するように設けられる被覆体とからなり、前記被覆体が、発光色変換用の蛍光体粒子を内部に有し、前記発光素子チップで発光する光を所望の発光色に変換するように形成されたガラス粉末を所望の形状に凝集させた外囲器を構成する多孔質ガラス体と、該多孔質ガラス体と同じ屈折率を有し、該多孔質ガラス体の間隙部に充填される耐紫外光樹脂とにより形成されている。この耐紫外光樹脂は、たとえばシリコーン樹脂が用いられることが好ましい。 A semiconductor light emitting device according to the present invention comprises a light emitting element chip and a covering provided so as to cover at least the light emitting surface side of the light emitting element chip, and the covering includes phosphor particles for emission color conversion. has therein a porous glass body constituting the envelope thereby aggregating the glass powder formed so as to convert the light emitted from the light emitting element chip to a desired emission color into a desired shape, porous The glass substrate has the same refractive index as that of the porous glass body, and is formed of an ultraviolet light resistant resin filled in the gaps of the porous glass body. The 耐紫outside light resin, for example, silicone resins is preferably used.

前記多孔質ガラス体内に発光色変換用の蛍光体粒子が混入され、前記発光素子チップで発光する光を所望の発光色に変換する構造にしていることにより、発光素子チップが青色発光や紫外光発光や高輝度発光のチップでも、被覆体が変色したり、変質したりしにくいためとくに効果が大きい。また、ガラス体で構成されているため、ガラス体が変色することがなく、非常に安定した発光色の半導体発光装置とすることができる。 The phosphor glass for phosphor color conversion is mixed in the porous glass body so that the light emitted from the light emitting element chip is converted into a desired light emitting color, so that the light emitting element chip emits blue light or ultraviolet light. Even a chip that emits light or emits high brightness is particularly effective because the covering is unlikely to change color or change quality. Further, since the glass body is constituted, the glass body is not discolored, and a semiconductor light emitting device having a very stable emission color can be obtained.

具体的には、前記発光素子チップが第1のリードの先端部に形成された凹部内にマウントされ、該発光素子チップの一対の電極が前記第1のリードおよび第2のリードとそれぞれ電気的に接続され、該第1および第2のリードの先端部側が前記被覆体によりドーム状に被覆されるランプ型の発光装置にすることもできるし、前記発光素子チップが、両端部に一対の端子電極を有する絶縁性基板上にマウントされ、前記発光素子チップの一対の電極が前記絶縁性基板の両端部に設けられる一対の端子電極とそれぞれ電気的に接続され、前記発光素子チップおよび前記一対の端子電極の接続部が前記被覆体により被覆されるチップ型発光装置の構造にしたりすることもできる。   Specifically, the light emitting element chip is mounted in a recess formed at the tip of the first lead, and the pair of electrodes of the light emitting element chip are electrically connected to the first lead and the second lead, respectively. A lamp-type light emitting device in which the first and second leads are covered in a dome shape with the covering body, and the light emitting element chip has a pair of terminals at both ends. Mounted on an insulating substrate having electrodes, a pair of electrodes of the light emitting element chip are electrically connected to a pair of terminal electrodes provided at both ends of the insulating substrate, respectively, and the light emitting element chip and the pair of pairs A structure of a chip-type light emitting device in which a terminal electrode connection portion is covered with the covering body may be employed.

本発明によれば、ガラス粉末の凝集体でLEDチップを被覆しているため、熱や紫外光に対しても非常に安定した被覆体となり、長時間使用してもエポキシ樹脂などの透光性樹脂のように変色したり、熱によるリードとの剥離や変形が生じたりすることがない。また、ガラス粉末凝集体の空隙部には、シリコーン樹脂のようなガラスと殆ど屈折率が同じ材料が充填されているため、ガラス粉末の間で光が乱反射しないで、光に対して殆ど透明な被覆体になる。すなわち、ガラス粉末の間に空隙部が残存していると、ガラスと空気の屈折率の違いにより空隙部で乱反射してスリガラスのようになって透光性にならないが、樹脂が埋まっていることにより、ガラス粉末とそれ以外のところで殆ど屈折率差がないため、光は乱反射することなく透過する。なお、ガラス粉末と比較して樹脂の量が体積的に小さくなるように調整することにより、従来のエポキシ樹脂の変色を小さくすることができるが、シリコーン樹脂のように耐紫外光樹脂が用いられることにより、変色を完全に防止することができる。   According to the present invention, since the LED chip is coated with an aggregate of glass powder, it becomes a very stable coating against heat and ultraviolet light, and it can transmit light such as epoxy resin even when used for a long time. There is no discoloration like resin, and peeling or deformation from the lead due to heat does not occur. In addition, since the gap portion of the glass powder aggregate is filled with a material such as silicone resin that has almost the same refractive index as that of glass, light is not irregularly reflected between the glass powders and is almost transparent to light. It becomes a covering. That is, if voids remain between the glass powders, they are irregularly reflected in the voids due to the difference in refractive index between glass and air, and become transparent like glass, but the resin is buried. Therefore, since there is almost no difference in refractive index between the glass powder and other portions, the light is transmitted without being irregularly reflected. In addition, by adjusting the amount of the resin to be small in volume as compared with the glass powder, discoloration of the conventional epoxy resin can be reduced, but an ultraviolet light resistant resin like a silicone resin is used. Thus, discoloration can be completely prevented.

しかも、ガラス粉末の間に樹脂を充填することにより空隙部を無くしているため、ガラス粉末の焼結により空隙部をなくする場合のように、高温度の熱処理をする必要がない。そのため、電極が形成されたLEDチップでも、また不純物がドープされた半導体層でも、電極の溶融や半導体層の熱処理による変化などの影響を受けることなく、ガラス粉末間の空隙をなくすることができる。   In addition, since the voids are eliminated by filling the resin between the glass powders, it is not necessary to perform heat treatment at a high temperature as in the case of eliminating the voids by sintering the glass powder. Therefore, the gap between the glass powders can be eliminated without being affected by the melting of the electrodes or the change due to the heat treatment of the semiconductor layer, even in the LED chip on which the electrode is formed or the semiconductor layer doped with impurities. .

なお、このガラス粉末の中に前述の発光色変換用の蛍光体粒子を含有させたものを用いることにより、空隙部に樹脂が充填された多孔質ガラス体が、半導体発光装置の外囲器になると共に、発光色変換部材とすることができる。その結果、LEDチップに青色または紫外光を発光するLEDチップを白色などの所望の発光色に変換した半導体発光装置とすることができる。LEDチップにこのような紫外光のものを使用しても、本発明による半導体発光装置では、被覆体がガラス多孔質体を主体としているため、全く変色などの問題も生じない。なお、発光色変換部材は、ガラス粉末内に包含されていなくても、ガラス粉末と発光色変換用の蛍光体粒子とが混合されて所望の形状のガラス多孔質体に形成されていてもよい。   In addition, by using the glass powder containing the phosphor particles for luminescent color conversion described above, a porous glass body filled with a resin in the void portion is used as an envelope of the semiconductor light emitting device. At the same time, the light emitting color conversion member can be obtained. As a result, a semiconductor light emitting device in which an LED chip that emits blue or ultraviolet light to the LED chip is converted into a desired light emission color such as white can be obtained. Even when such an ultraviolet light is used for the LED chip, in the semiconductor light emitting device according to the present invention, since the covering is mainly composed of a glass porous body, there is no problem such as discoloration. Even if the luminescent color conversion member is not included in the glass powder, the glass powder and phosphor particles for luminescent color conversion may be mixed to form a glass porous body having a desired shape. .

つぎに、図面を参照しながら本発明の半導体発光装置について説明をする。本発明による半導体発光装置は、図1にその一実施形態の断面説明図が示されるように、発光素子チップ1の少なくとも光発射面側を被覆するように、被覆体2が設けられている。そしてその被覆体2が所望の形状にガラス粉末を凝集させた多孔質ガラス体21の間隙部にシリコーン樹脂のような樹脂22が充填されたもので形成されている。   Next, the semiconductor light emitting device of the present invention will be described with reference to the drawings. The semiconductor light emitting device according to the present invention is provided with a covering 2 so as to cover at least the light emitting surface side of the light emitting element chip 1 as shown in FIG. The covering 2 is formed by filling a gap 22 of a porous glass body 21 in which glass powder is aggregated in a desired shape with a resin 22 such as a silicone resin.

図1に示される例では、板状体から形成された第1のリード31の先端部に板状体の端面から形成された凹部31a内にLEDチップ1がボンディングされ、その一方の電極は第1のリード31と、他方の電極が、同様に板状体から形成された第2のリード32の先端部と、それぞれワイヤ33により電気的に接続され、その周囲に被覆体2が形成されたランプ型の半導体発光装置の例が示されている。   In the example shown in FIG. 1, the LED chip 1 is bonded to the tip of the first lead 31 formed from a plate-like body in the recess 31a formed from the end face of the plate-like body, and one electrode thereof is the first electrode. One lead 31 and the other electrode are electrically connected to the tip of a second lead 32, which is also formed of a plate-like body, by a wire 33, and the covering 2 is formed around the lead. An example of a lamp-type semiconductor light emitting device is shown.

また、図1に示される例は、白色光の半導体発光装置の例が示されており、LEDチップ1で発光する青色光をYAG(イットリウム・アルミニウム・ガーネット)蛍光体などの発光色変換用の蛍光体粒子212により白色にする例が示されている。しかし、このような発光色の変換は必須ではない。図1に示されるYAG蛍光体粒子212は、LEDチップ1から発光する青色光を吸収して黄色に変換し、その黄色の光がLEDチップ1から発せられる青色光と混色して白色にするものである。そのため、LEDチップ1は、図2に示されるように、サファイア(Al2 3 単結晶)基板11上に積層される窒化物半導体により形成され、そのLEDチップ1の周囲にYAG蛍光体粒子212を含有するガラス粉末211が凝集したガラス体21とその空隙部に充填された耐紫外光樹脂などの樹脂22とにより被覆体2が形成されている。なお、LEDチップ1の基板は、SiCなどの半導体が用いられてもよいし、窒化物半導体以外の半導体層を積層する場合には、その半導体層に応じて格子定数や熱膨張係数などの観点から選ばれる。 In addition, the example shown in FIG. 1 is an example of a white light semiconductor light emitting device, and blue light emitted from the LED chip 1 is used for light emission color conversion such as YAG (yttrium, aluminum, garnet) phosphor. An example in which the phosphor particles 212 are turned white is shown. However, such conversion of the emission color is not essential. The YAG phosphor particles 212 shown in FIG. 1 absorb blue light emitted from the LED chip 1 and convert it into yellow, and the yellow light is mixed with blue light emitted from the LED chip 1 to make white. It is. Therefore, as shown in FIG. 2, the LED chip 1 is formed of a nitride semiconductor laminated on a sapphire (Al 2 O 3 single crystal) substrate 11, and YAG phosphor particles 212 are formed around the LED chip 1. The covering body 2 is formed by the glass body 21 in which the glass powder 211 containing flocculated and the resin 22 such as an ultraviolet light-resistant resin filled in the voids. The substrate of the LED chip 1 may be made of a semiconductor such as SiC. When a semiconductor layer other than a nitride semiconductor is stacked, the lattice constant, the coefficient of thermal expansion, etc. are taken into account according to the semiconductor layer. Chosen from.

ここに窒化物半導体とは、III 族元素のGaとV族元素のNとの化合物またはIII 族元素のGaの一部または全部がAl、Inなどの他のIII 族元素と置換したものおよび/またはV族元素のNの一部がP、Asなどの他のV族元素と置換した化合物(窒化物)からなる半導体をいう。   Here, the nitride semiconductor means a compound in which a group III element Ga and a group V element N or a part or all of a group III element Ga is substituted with other group III elements such as Al and In, and / or Alternatively, it refers to a semiconductor made of a compound (nitride) in which a part of N of the group V element is substituted with another group V element such as P or As.

図2に示されるLEDチップ1は、サファイア基板11上に窒化物半導体層が積層されることにより形成されている。その半導体積層部17は、たとえばGaNからなる低温バッファ層12が0.005〜0.1μm程度、ついでアンドープのGaNからなる高温バッファ層13が1〜3μm程度、その上にSiをドープしたn形GaNからなるコンタクト層およびn形AlGaN系化合物半導体層からなる障壁層(バンドギャップエネルギーの大きい層)などにより形成されるn形層14が1〜5μm程度、バンドギャップエネルギーが障壁層のそれよりも小さくなる材料、たとえば1〜3nmのIn0.13Ga0.87Nからなるウェル層と10〜20nmのGaNからなるバリア層とが3〜8ペア積層される多重量子井戸 (MQW)構造の活性層15が0.05〜0.3μm程度、p形のAlGaN系化合物半導体層からなるp形障壁層(バンドギャップエネルギーの大きい層)とp形GaNからなるコンタクト層とによるp形層16が合せて0.2〜1μm程度、それぞれ順次積層されることにより形成されている。 The LED chip 1 shown in FIG. 2 is formed by laminating a nitride semiconductor layer on a sapphire substrate 11. The semiconductor laminated portion 17 is, for example, a low temperature buffer layer 12 made of GaN of about 0.005 to 0.1 μm, a high temperature buffer layer 13 of undoped GaN of about 1 to 3 μm, and an n-type doped with Si thereon The n-type layer 14 formed by a contact layer made of GaN and a barrier layer (layer having a large band gap energy) made of an n-type AlGaN compound semiconductor layer or the like is about 1 to 5 μm, and the band gap energy is higher than that of the barrier layer. The active layer 15 having a multiple quantum well (MQW) structure in which 3 to 8 pairs of a smaller material, for example, a well layer made of 1 to 3 nm In 0.13 Ga 0.87 N and a barrier layer made of 10 to 20 nm GaN is stacked. A p-type barrier layer composed of a p-type AlGaN compound semiconductor layer (with a large band gap energy) of about 0.05 to 0.3 μm ) And 0.2~1μm about by the p-type layer 16 is combined by a contact layer made of p-type GaN, it is formed by being sequentially stacked, respectively.

図2に示される例では、アンドープで、半絶縁性のGaNからなる高温バッファ層13が形成されている。このアンドープのバッファ層13が設けられることにより、その上に積層する半導体層の結晶性がよくなるため好ましいが、基板が半導体の場合には、削除するか基板と同一導電形層にする。また、n形層14およびp形層16は、障壁層とコンタクト層の2種類で構成する例であったが、キャリアの閉じ込め効果の点から活性層6側にAlを含む層が設けられることが好ましいものの、GaN層だけでもよい。また、これらを他の窒化物半導体層で形成することもできるし、他の半導体層がさらに介在されてもよい。さらに、この例では、n形層14とp形層16とで活性層15が挟持されたダブルヘテロ接合構造であるが、n形層とp形層とが直接接合するpn接合構造のものでもよい。また、活性層15上に直接p形AlGaN系化合物層を成長したが、数nm程度のアンドープAlGaN系化合物層を成長することにより、活性層15の下側にピット発生層を形成して活性層15にできたピットを埋め込みながら、p形層とn形層との接触によるリークを防止することもできる。   In the example shown in FIG. 2, a high-temperature buffer layer 13 made of undoped and semi-insulating GaN is formed. The provision of the undoped buffer layer 13 is preferable because the crystallinity of the semiconductor layer laminated thereon is improved. However, when the substrate is a semiconductor, it is deleted or made the same conductivity type as the substrate. In addition, the n-type layer 14 and the p-type layer 16 are two examples of the barrier layer and the contact layer. However, a layer containing Al is provided on the active layer 6 side from the viewpoint of the carrier confinement effect. However, only the GaN layer may be used. Moreover, these can also be formed with another nitride semiconductor layer, and another semiconductor layer may further intervene. Furthermore, in this example, the active layer 15 is sandwiched between the n-type layer 14 and the p-type layer 16, but a pn junction structure in which the n-type layer and the p-type layer are directly joined is also possible. Good. In addition, although the p-type AlGaN compound layer is grown directly on the active layer 15, a pit generation layer is formed below the active layer 15 by growing an undoped AlGaN compound layer of about several nanometers. Leakage due to contact between the p-type layer and the n-type layer can also be prevented while embedding the pits formed in 15.

半導体積層部17上には、たとえばZnOなどからなり、p形半導体層16とオーミックコンタクトをとることができる透光性導電層18が0.01〜0.5μm程度設けられている。この透光性導電層18は、ZnOに限定されるものではなく、ITOや、NiとAuとの2〜100nm程度の薄い合金層でも、光を透過させながら、電流をチップ全体に拡散することができる。そして、透光性導電層18上の一部に、TiとAuとの積層構造により、p側電極(上部電極)19aが形成され、半導体積層部17の一部がエッチングにより除去されて露出するn形層14にオーミックコンタクト用のn側電極(下部電極)19bが、Ti-Al合金などにより形成されている。   On the semiconductor laminated portion 17, a light-transmitting conductive layer 18 made of, for example, ZnO and capable of making ohmic contact with the p-type semiconductor layer 16 is provided in a thickness of about 0.01 to 0.5 μm. The translucent conductive layer 18 is not limited to ZnO, and even ITO or a thin alloy layer of about 2 to 100 nm of Ni and Au diffuses current throughout the chip while transmitting light. Can do. Then, a p-side electrode (upper electrode) 19a is formed on a part of the translucent conductive layer 18 by a laminated structure of Ti and Au, and a part of the semiconductor laminated part 17 is removed by etching and exposed. An n-side electrode (lower electrode) 19b for ohmic contact is formed on the n-type layer 14 from a Ti—Al alloy or the like.

このLEDチップ1を製造するには、たとえば有機金属化学気相成長法(MOCVD法)により、キャリアガスのH2 と共にトリメチリガリウム(TMG)、アンモニア(NH3)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMIn)などの反応ガスおよびn形にする場合のドーパントガスとしてのSiH4 、p形にする場合のドーパントガスとしてのシクロペンタジエニルマグネシウム(Cp2 Mg)またはジメチル亜鉛(DMZn)などの必要なガスを供給して、つぎのように半導体層を順次成長する。 In order to manufacture this LED chip 1, for example, by metal organic chemical vapor deposition (MOCVD), together with carrier gas H 2 , trimethyl gallium (TMG), ammonia (NH 3 ), trimethylaluminum (TMA), trimethyl Reactive gas such as indium (TMIn) and SiH 4 as dopant gas for n-type, cyclopentadienylmagnesium (Cp 2 Mg) or dimethyl zinc (DMZn) as dopant gas for p-type The necessary gas is supplied, and the semiconductor layers are sequentially grown as follows.

まず、たとえばサファイアからなる基板11上に、たとえば400〜600℃程度の低温で、GaN層からなる低温バッファ層12を0.005〜0.1μm程度成膜した後、温度を600〜1200℃程度の高温に上げて、アンドープのGaNからなる半絶縁性の高温バッファ層13を1〜3μm程度、Siをドープしたn形GaNおよびAlGaN系化合物半導体からなるn形層14を1〜5μm程度成膜する。   First, on the substrate 11 made of sapphire, for example, a low-temperature buffer layer 12 made of a GaN layer is formed at a low temperature of about 400 to 600 ° C., for example, about 0.005 to 0.1 μm, and then the temperature is about 600 to 1200 ° C. The semi-insulating high-temperature buffer layer 13 made of undoped GaN is formed to about 1 to 3 μm, and the n-type layer 14 made of Si-doped n-type GaN and AlGaN compound semiconductor is formed to about 1 to 5 μm. To do.

つぎに、成長温度を400〜600℃の低温に下げて、たとえば1〜3nmのIn0.13Ga0.87Nからなるウェル層と10〜20nmのGaNからなるバリア層とが3〜8ペア積層される多重量子井戸 (MQW)構造の活性層6を0.05〜0.3μm程度成膜する。ついで、成長装置内の温度を600〜1200℃程度に上げ、p形のAlGaN系化合物半導体層およびGaNからなるp形層16を合せて0.2〜1μm程度積層する。 Next, the growth temperature is lowered to a low temperature of 400 to 600 ° C., and, for example, 3 to 8 pairs of well layers made of In 0.13 Ga 0.87 N of 1 to 3 nm and barrier layers made of GaN of 10 to 20 nm are stacked. An active layer 6 having a quantum well (MQW) structure is formed to a thickness of about 0.05 to 0.3 μm. Next, the temperature in the growth apparatus is raised to about 600 to 1200 ° C., and the p-type AlGaN compound semiconductor layer and the p-type layer 16 made of GaN are combined and laminated to about 0.2 to 1 μm.

その後、表面にSi34などの保護膜を設けてp形ドーパントの活性化のため、400〜800℃程度で10〜60分程度のアニールを行い、たとえばZnO層をMBE、スパッタ、真空蒸着、PLD、イオンプレーティングなどの方法により0.01〜0.5μm程度成膜することにより透光性導電層18を形成する。ついで、n側電極19bを形成するため、n形層14が露出するように、積層された半導体積層部17の一部を塩素ガスなどによる反応性イオンエッチングによりエッチングする。 Thereafter, a protective film such as Si 3 N 4 is provided on the surface, and annealing is performed at about 400 to 800 ° C. for about 10 to 60 minutes to activate the p-type dopant. For example, a ZnO layer is subjected to MBE, sputtering, or vacuum deposition. The light-transmitting conductive layer 18 is formed by forming a film of about 0.01 to 0.5 μm by a method such as PLD or ion plating. Next, in order to form the n-side electrode 19b, a part of the stacked semiconductor stacked portion 17 is etched by reactive ion etching using chlorine gas or the like so that the n-type layer 14 is exposed.

つぎに、露出したn形層14の表面にTiとAlを、それぞれ0.1μm程度と、0.3μm程度、スパッタリングまたは真空蒸着により連続して付着し、RTA加熱により600℃程度で5秒間の熱処理をすることにより合金化して、n側電極19bを形成する。なお、n側電極はリフトオフ法により形成すれば、マスクを除去することにより所定の形状のn側電極を形成することができる。その後、p側電極19aのために透光性導電層18上にTiとAuをそれぞれ0.1μmと0.3μm程度づつ真空蒸着することにより、p側電極19aを形成する。その後、図示しないSiO2などの絶縁膜を全面に形成し、p側電極19aおよびn側電極19bの表面が露出させ、ダイシングなどによりチップ化することにより、図2に示される構造のLEDチップ1が得られる。 Next, Ti and Al are successively deposited on the exposed surface of the n-type layer 14 by about 0.1 μm and about 0.3 μm, respectively, by sputtering or vacuum deposition, and by RTA heating at about 600 ° C. for 5 seconds. The n-side electrode 19b is formed by alloying by heat treatment. Note that if the n-side electrode is formed by a lift-off method, the n-side electrode having a predetermined shape can be formed by removing the mask. Thereafter, Ti and Au are vacuum-deposited on the translucent conductive layer 18 by about 0.1 μm and 0.3 μm, respectively, for the p-side electrode 19a, thereby forming the p-side electrode 19a. Thereafter, an insulating film such as SiO 2 ( not shown) is formed on the entire surface, the surfaces of the p-side electrode 19a and the n-side electrode 19b are exposed, and formed into chips by dicing or the like, whereby the LED chip 1 having the structure shown in FIG. Is obtained.

被覆体2は、図1(b)に部分拡大説明図が示されるように、ガラス粉末を凝集させた多孔質ガラス体21の間隙部にシリコーン樹脂のような耐紫外光樹脂などの樹脂22が充填されたもので形成されている。図1に示される例では、多孔質ガラス体21が、YAGのような蛍光体粒子212の周囲にガラス被膜を形成したガラス粉末211を凝集させることにより形成されている。   As shown in a partially enlarged explanatory view in FIG. 1B, the covering 2 has a resin 22 such as an ultraviolet light resistant resin such as a silicone resin in a gap portion of a porous glass body 21 in which glass powder is aggregated. It is made of filled material. In the example shown in FIG. 1, the porous glass body 21 is formed by aggregating glass powder 211 having a glass coating formed around phosphor particles 212 such as YAG.

蛍光体粒子212は、紫外光や可視光を受けて異なる波長の光を放出する蛍光物質の粒子で、平均の粒径としては、3〜50μm程度、好ましくは5〜10μm程度の大きさに揃っている。蛍光物質としては、セリウムで付活されたイットリウム・アルミニウム・ガーネット(YAG)系、マンガンで付活された酸化マグネシウム・チタンなどの酸化物系蛍光物質や、ペリレン系誘導体や、銅、アルミニウムで付活された硫化亜鉛カドミウムなどの硫化物系蛍光物質、などを用いることができる。しかし、LEDチップ1の発光色を変換しない場合には、蛍光体粒子212はなく、ガラス粒子だけを粉末化したものでも構わない。   The phosphor particles 212 are particles of a fluorescent material that receives ultraviolet light or visible light and emits light of different wavelengths. The average particle size is about 3 to 50 μm, preferably about 5 to 10 μm. ing. Fluorescent materials include yttrium, aluminum, garnet (YAG) activated by cerium, oxide fluorescent materials such as magnesium oxide and titanium activated by manganese, perylene derivatives, copper and aluminum. An activated sulfide fluorescent material such as zinc cadmium sulfide can be used. However, when the emission color of the LED chip 1 is not converted, the phosphor particles 212 are not provided, and only glass particles may be powdered.

ガラス被膜は、PbOやBi23のように、軟化点の低いガラスの構成元素であるPbやBiなどの蛍光物質と反応しやすい元素を含まない(1wt%以下)ことが好ましく、ケイ酸ガラス(SiO2系ガラス)やホウケイ酸ガラス(B23-SiO2系ガラス)などを主成分とするものを用いることが好ましい。しかし、後述するように、このガラス粉末は軟化するまで温度を上げて焼結しないため、それ程蛍光物質との反応は起こらず、Pbなどを含まないことは、絶対的な条件ではない。このガラス粉末の大きさは、後述するようにゾルゲル反応で形成する際の反応時間、触媒濃度、基質濃度、溶媒濃度、蛍光体量などを調整することにより、制御することができる。 It is preferable that the glass coating does not contain an element that easily reacts with a fluorescent material such as Pb or Bi, which is a constituent element of glass having a low softening point, such as PbO or Bi 2 O 3 (1 wt% or less). It is preferable to use a glass (SiO 2 glass) or borosilicate glass (B 2 O 3 —SiO 2 glass) as a main component. However, as will be described later, since this glass powder is not sintered by raising the temperature until it softens, it does not react so much with the fluorescent substance and does not contain Pb or the like, which is not an absolute condition. The size of the glass powder can be controlled by adjusting the reaction time, the catalyst concentration, the substrate concentration, the solvent concentration, the phosphor amount, and the like when forming by a sol-gel reaction as will be described later.

このような蛍光体粒子212を含有するガラス粉末211粉末を製造するには、ゾル−ゲル法により製造することができる。たとえばケイ酸ガラス被膜を形成するには、テトラエトキシシラン(Si(OC254)などのケイ素のアルコキシド化合物をエタノールなどの有機溶剤に撹拌しながら混合し、少量のアンモニア水などの無機塩基または塩酸もしくは硫酸などの無機酸をさらに加えて撹拌し、20〜80℃に加熱する。そして、前述の蛍光体粒子212を混合してさらに撹拌することにより、蛍光体粒子212の周りに酸化ケイ素が付着して蛍光体粒子212の周りにガラス被膜が成長しながらゲル化する。このゲル化したものを所望の形状の容器内に入れて100〜200℃に加熱乾燥することにより、所望の形状にガラス粉末が凝集した多孔質ガラス体21を形成することができる。この蛍光体粒子212の量とガラス被膜211の量との割合を調整するには、反応時間を長くしたり、添加する蛍光体粒子212の量を少なくすることにより、蛍光体粒子212を含有しないガラス粉末21を形成したりすることにより調整することができる。また、蛍光体粒子を含有しないガラス粉末を別途形成して、蛍光体粒子を含有させたガラス粉末と混合することもできる。 In order to manufacture the glass powder 211 powder containing such phosphor particles 212, it can be manufactured by a sol-gel method. For example, in order to form a silicate glass film, a silicon alkoxide compound such as tetraethoxysilane (Si (OC 2 H 5 ) 4 ) is mixed with an organic solvent such as ethanol with stirring, and a small amount of ammonia water or the like is mixed. A base or an inorganic acid such as hydrochloric acid or sulfuric acid is further added and stirred, and heated to 20 to 80 ° C. Then, by mixing and stirring the phosphor particles 212 described above, silicon oxide adheres around the phosphor particles 212 and gels while growing a glass film around the phosphor particles 212. The gelled product is placed in a container having a desired shape and dried by heating at 100 to 200 ° C., whereby the porous glass body 21 in which the glass powder is aggregated in a desired shape can be formed. In order to adjust the ratio between the amount of the phosphor particles 212 and the amount of the glass coating 211, the phosphor particles 212 are not contained by increasing the reaction time or decreasing the amount of the phosphor particles 212 to be added. It can be adjusted by forming glass powder 21 or the like. Alternatively, glass powder not containing phosphor particles can be separately formed and mixed with glass powder containing phosphor particles.

他のガラス成分にする場合でも、同様に所望の金属のアルコキシド化合物を形成して、前述のエタノール、水およびアンモニアなどと混合した混合液を用い、その混合液に蛍光体粒子を混合して撹拌させることにより同様に製造することができる。たとえば、ホウケイ酸ガラス被膜やリンケイ酸ガラス被膜を形成するには、前述のテトラエトキシシラン(Si(OC254)にB(OCH(CH323、またはP(OCH(CH323などを混合することにより形成することができる。 Even in the case of using other glass components, similarly, a desired metal alkoxide compound is formed and mixed with the aforementioned ethanol, water, ammonia, etc., and the phosphor particles are mixed and stirred. Can be produced in the same manner. For example, in order to form a borosilicate glass coating or a phosphosilicate glass coating, B (OCH (CH 3 ) 2 ) 3 or P (OCH (CH) (CH (CH 3 ) 2 ) is added to the aforementioned tetraethoxysilane (Si (OC 2 H 5 ) 4 ). 3 ) It can be formed by mixing 2 ) 3 etc.

樹脂22としては、青色光や紫外光にも変色や変質などが起こりにくい紫外光に対して耐性の有る耐紫外光樹脂で、かつ、多孔質ガラス体21の間隙部に充填するため、流動性のあるものが好ましい。また、通常の樹脂であれば、ガラス被膜と屈折率が近いため問題ないが、ガラス被膜の屈折率と同じ屈折率の材料であることが光の乱反射を防止する観点から好ましい。このような観点から、たとえばシリコーン樹脂を用いることができるが、他にエポキシ系樹脂、アミド系樹脂などを用いることができる。この樹脂を多孔質ガラス体21の間隙部に充填するには、たとえば多孔質ガラス体21を真空引きしながら樹脂22を流し込むことにより充填することができる。   The resin 22 is an ultraviolet light-resistant resin that is resistant to ultraviolet light that is unlikely to be discolored or altered by blue light or ultraviolet light, and is filled in the gaps of the porous glass body 21, so that it has fluidity. Some are preferable. Moreover, if it is a normal resin, there is no problem because the refractive index is close to that of the glass coating, but a material having the same refractive index as the refractive index of the glass coating is preferable from the viewpoint of preventing irregular reflection of light. From such a viewpoint, for example, a silicone resin can be used, but an epoxy resin, an amide resin, or the like can also be used. In order to fill this gap in the gap between the porous glass bodies 21, for example, the resin 22 can be filled by pouring the resin 22 while evacuating the porous glass body 21.

つぎに、図1に示される半導体発光装置の製法について、図3を参照しながら説明する。まず図3(a)に示されるように、先端部に凹部31aが形成された第1のリード31および第2のリード32が形成されたリードフレーム34の凹部31a内に、前述の図2で形成されたLEDチップ1をマウントし、その一対の電極(図示せず)を第1および第2のリード31、32とそれぞれワイヤ33により電気的に接続することにより、リード組立体35を形成する。   Next, a method for manufacturing the semiconductor light emitting device shown in FIG. 1 will be described with reference to FIG. First, as shown in FIG. 3A, in the recess 31a of the lead frame 34 in which the first lead 31 and the second lead 32 in which the recess 31a is formed in the front end portion are formed in FIG. The formed LED chip 1 is mounted, and a pair of electrodes (not shown) is electrically connected to the first and second leads 31 and 32 by wires 33, thereby forming a lead assembly 35. .

つぎに、図3(b)に示されるように、たとえばドーム形状などの所望の被覆体形状に形成した多孔質ガラスの成形具37内に前述のガラス被膜の材料を混ぜ合せ、蛍光体粒子を混入した溶液36を入れ、その溶液36内に図3(a)で形成したリード組立体35の先端部側を突っ込んで150℃程度で、2時間ほど加熱しながら撹拌し、ゾルゲル反応を進行させる。ゾルゲル反応が終了すると、図3(c)に示されるように、蛍光体粒子を含有するガラス粉末211が凝集した多孔質ガラス体21が形成され、成形具37から離型する。   Next, as shown in FIG. 3B, for example, the glass coating material is mixed in a porous glass molding tool 37 formed in a desired covering shape such as a dome shape, and phosphor particles are mixed. The mixed solution 36 is put, and the leading end side of the lead assembly 35 formed in FIG. 3A is inserted into the solution 36 and stirred at about 150 ° C. while heating for about 2 hours to advance the sol-gel reaction. . When the sol-gel reaction is completed, as shown in FIG. 3C, the porous glass body 21 in which the glass powder 211 containing the phosphor particles is aggregated is formed and released from the molding tool 37.

その後、図3(d)に示されるように、成形具37の開口部を蓋体38で被覆し、成形具37の両端部に形成された貫通孔37a、37bの他方37bから真空吸引しながら、一方の貫通孔37aから、たとえばシリコーン樹脂22を流し込むことにより、多孔質ガラス体21の空隙内に樹脂22が充填され、100〜150℃程度で、数時間程度の加熱硬化処理をすることにより被覆体2が形成される。この被覆体2は、ガラス粉末21と樹脂22の屈折率が殆ど同じであるため、ガラス粉末21の粒形は殆ど見えなくなり、濁った白色ではなく、透明性のある被覆体2となる。この被覆体2が形成されたリード組立体35を成形具37から取り出し、貫通孔37a、37b内に残った樹脂22などを除去し成形することにより、図1(a)に示されるような半導体発光装置が得られる。   Thereafter, as shown in FIG. 3D, the opening of the molding tool 37 is covered with a lid 38, and vacuum suction is performed from the other side 37b of the through holes 37a and 37b formed at both ends of the molding tool 37. By pouring, for example, silicone resin 22 from one through-hole 37a, resin 22 is filled into the voids of porous glass body 21, and heat curing is performed at about 100 to 150 ° C. for several hours. A covering 2 is formed. In this covering 2, since the glass powder 21 and the resin 22 have almost the same refractive index, the particle shape of the glass powder 21 is almost invisible, and the covering 2 is not a cloudy white but transparent. The lead assembly 35 on which the covering body 2 is formed is taken out from the molding tool 37, and the resin 22 and the like remaining in the through holes 37a and 37b are removed and molded, whereby a semiconductor as shown in FIG. A light emitting device is obtained.

図4(a)は、本発明による半導体発光装置の他の実施形態を示す断面説明図である。すなわち、この例は両端部に一対の端子電極42a、42bが形成された絶縁性基板41上にLEDチップ1がマウントされ、その表面側に被覆体2が形成されるチップ型半導体発光装置の例である。絶縁性基板41は、セラミックスやガラスエポキシ樹脂などの一般的に用いられる絶縁性基板が用いられ、予め両端部に一対の端子電極42a、42bが形成されたものに、前述のLEDチップ1がダイボンディングされ、ワイヤ43により両電極が接続されている。   FIG. 4A is a cross-sectional explanatory view showing another embodiment of the semiconductor light emitting device according to the present invention. That is, this example is an example of a chip type semiconductor light emitting device in which the LED chip 1 is mounted on an insulating substrate 41 having a pair of terminal electrodes 42a and 42b formed at both ends, and the covering 2 is formed on the surface side thereof. It is. As the insulating substrate 41, a generally used insulating substrate such as ceramics or glass epoxy resin is used, and the LED chip 1 described above is formed on a substrate in which a pair of terminal electrodes 42a and 42b are formed in advance at both ends. Bonding is performed, and both electrodes are connected by a wire 43.

この構造で、多孔質ガラス体21の空隙部に樹脂22を充填した被覆体2を形成するには、図4(b)に一部の断面説明図が示されるように、大きな絶縁性基板41(この種のチップ型発光装置は、一般的に大きな基板の状態で碁盤の目状に各発光装置の電極膜およびLEDチップを設けておいて、被覆体2を形成してから碁盤の目に沿って切断する)の状態で、LEDチップ1のダイボンディングおよびワイヤ43のボンディングを行い、大きな基板の表面側全体を浸漬することができる大きな多孔質ガラス体の成形具(図示せず)内にLEDチップ1側を浸漬し、前述と同様の工程でゾルゲル反応を行なって多孔質ガラス体21を形成し、その多孔質ガラス体21内に前述と同様の方法で樹脂22を充填することにより、大きな絶縁性基板21の表面全体に被覆体2を形成する。その後、各発光装置の境界部Aでダイシングし、一対の端子電極42a、42bに続く絶縁性基板41の側面および裏面に金属膜を塗布して側面および裏面の電極を形成することにより、図4(a)に示されるチップ型半導体発光装置が得られる(裏面の電極は大きな基板の状態であらかじめ印刷などにより形成しておくことができる)。   In this structure, in order to form the covering body 2 in which the void portion of the porous glass body 21 is filled with the resin 22, as shown in a partial cross-sectional explanatory view in FIG. (This type of chip-type light-emitting device generally has a large substrate in which the electrode film and LED chip of each light-emitting device are provided in the shape of a grid, and after the covering 2 is formed, In the state of cutting along the die), the die bonding of the LED chip 1 and the bonding of the wire 43 are performed, and the whole surface side of the large substrate is immersed in a molding tool (not shown) of a large porous glass body. By immersing the LED chip 1 side, performing a sol-gel reaction in the same process as described above to form a porous glass body 21, and filling the resin 22 in the porous glass body 21 by the same method as described above, Large insulating group Forming a cover member 2 on the entire surface of 21. Thereafter, dicing is performed at the boundary portion A of each light emitting device, and a metal film is applied to the side surface and the back surface of the insulating substrate 41 following the pair of terminal electrodes 42a and 42b to form the electrodes on the side surface and the back surface. The chip type semiconductor light emitting device shown in (a) can be obtained (the electrode on the back surface can be formed in advance by printing or the like in the state of a large substrate).

前述の各例では、YAG蛍光体をガラス粉末内に包含させることにより、LEDチップで発光する青色発光を白色光に変換させたが、このようなYAG蛍光体ではなく、たとえば近紫外光を発光するLEDチップと、近紫外光によって励起されて赤色、青色、緑色にそれぞれ発光する蛍光体粒子を含有させたガラス粉末にすることもできるし、白色にしないで所望の発光色に変換するための蛍光体粒子を含有させることもできる。また、ガラス粉末に蛍光体粒子を含有させないで、前述のゾルゲル法によりガラス粉末を形成し、そのガラス粉末と蛍光体粒子とを凝集させることもできる。さらに、発光色を変換する必要はなく、LEDチップで発光する光をそのまま取り出す場合でも、ガラス粉末の凝集体により形成された多孔質ガラス体21とその隙間に充填された樹脂22とで非常に安定した堅固な被覆体2を形成することもできる。さらに、発光色を変化する場合でも、蛍光体粒子を含有させないガラス粉末と蛍光体粒子とを混ぜて多孔質ガラス体とすることもできる。   In each of the above examples, the YAG phosphor is included in the glass powder to convert the blue light emitted from the LED chip into white light. However, for example, near-UV light is emitted instead of such YAG phosphor. It can be made into a glass powder containing LED chips and phosphor particles that are excited by near-ultraviolet light to emit red, blue, and green, respectively, or can be converted into a desired emission color without becoming white Phosphor particles can also be included. Alternatively, the glass powder can be formed by the above-described sol-gel method without containing the phosphor particles in the glass powder, and the glass powder and the phosphor particles can be aggregated. Furthermore, there is no need to convert the emission color, and even when the light emitted from the LED chip is taken out as it is, the porous glass body 21 formed by the aggregate of the glass powder and the resin 22 filled in the gap are very much. A stable and firm covering 2 can also be formed. Furthermore, even when the emission color is changed, a glass powder that does not contain phosphor particles and phosphor particles can be mixed to form a porous glass body.

本発明によれば、多孔質ガラス体を骨格として強固なパッケージを形成しながら、高温での焼結をしていないため、半導体層が積層されたLEDチップや、LEDチップに電極が形成されたものでも、何らの悪影響を受けることなく採用することができる。しかも主成分がガラス体であるため、LEDチップからの光が紫外光や青色など、または非常に出力の大きい場合でも、その光や熱によって被覆体が変色したり、変質したりすることがない。その結果、発光色の経時変化が生じないと共に、発光装置を実装基板に実装する場合にハンダ付けなどでリードが熱せられて温度が上昇しても被覆体との間で剥れなどが生じることもなく、非常に安定した被覆体とすることができ、半導体発光装置の信頼性が大幅に向上する。   According to the present invention, since a strong package is formed using a porous glass body as a skeleton and is not sintered at a high temperature, an LED chip on which a semiconductor layer is laminated or an electrode is formed on the LED chip. Even things can be adopted without any negative effects. Moreover, since the main component is a glass body, even if the light from the LED chip is ultraviolet light, blue light, or the like, or the output is very large, the coating body will not be discolored or altered by the light or heat. . As a result, the luminescent color does not change with time, and when the light emitting device is mounted on a mounting board, the lead may be heated by soldering or the like, and even if the temperature rises, it may peel off from the covering. Therefore, a very stable covering can be obtained, and the reliability of the semiconductor light emitting device is greatly improved.

前述の各例では、いずれも半導体層の積層表面側を光発射面とする例であったが、LEDチップの基板が前述のサファイア基板のように、光を透過する材料の場合には、基板裏面側を光発射面とすることができることは言うまでもない。   In each of the above examples, the laminated surface side of the semiconductor layer is an example of a light emitting surface. However, when the substrate of the LED chip is a material that transmits light, such as the sapphire substrate, the substrate Needless to say, the back side can be a light emitting surface.

本発明による半導体発光装置の一実施形態の断面説明図である。It is a section explanatory view of one embodiment of a semiconductor light emitting device by the present invention. 図1のLEDチップの構成説明図である。It is a structure explanatory drawing of the LED chip of FIG. 図1の半導体発光装置の製造工程を説明する図である。It is a figure explaining the manufacturing process of the semiconductor light-emitting device of FIG. 本発明による半導体発光装置の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the semiconductor light-emitting device by this invention. 従来のガラスを用いた発光色変換部材の構成例を示す断面説明図である。It is sectional explanatory drawing which shows the structural example of the luminescent color conversion member using the conventional glass.

符号の説明Explanation of symbols

1 LEDチップ
2 被覆体
21 多孔質ガラス体
22 樹脂
211 ガラス粉末
212 蛍光体粒子
DESCRIPTION OF SYMBOLS 1 LED chip 2 Cover body 21 Porous glass body 22 Resin 211 Glass powder 212 Phosphor particle

Claims (4)

発光素子チップと、該発光素子チップの少なくとも光発射面側を被覆するように設けられる被覆体とからなり、前記被覆体が、発光色変換用の蛍光体粒子を内部に有し、前記発光素子チップで発光する光を所望の発光色に変換するように形成されたガラス粉末を所望の形状に凝集させた外囲器を構成する多孔質ガラス体と、該多孔質ガラス体と同じ屈折率を有し、該多孔質ガラス体の間隙部に充填される耐紫外光樹脂とにより形成されてなる半導体発光装置。 A light-emitting element chip and a covering provided so as to cover at least the light emitting surface side of the light-emitting element chip, and the covering includes phosphor particles for light emission color conversion inside, and the light-emitting element A porous glass body constituting an envelope in which glass powder formed so as to convert light emitted from the chip into a desired emission color is aggregated into a desired shape, and the same refractive index as that of the porous glass body And a semiconductor light emitting device formed by an ultraviolet light resistant resin filled in a gap portion of the porous glass body. 前記耐紫外光樹脂が、シリコーン樹脂からなる請求項1記載の半導体発光装置。 The 耐紫external light resin, the semiconductor light-emitting device according to claim 1, wherein ing a silicone resin. 前記発光素子チップが第1のリードの先端部に形成された凹部内にマウントされ、該発光素子チップの一対の電極が前記第1のリードおよび第2のリードとそれぞれ電気的に接続され、該第1および第2のリードの先端部側が前記被覆体によりドーム状に被覆されてなる請求項1または2記載の半導体発光装置。   The light emitting element chip is mounted in a recess formed at the tip of a first lead, and a pair of electrodes of the light emitting element chip are electrically connected to the first lead and the second lead, respectively, The semiconductor light-emitting device according to claim 1 or 2, wherein the tip end side of the first and second leads is covered in a dome shape by the covering body. 前記発光素子チップが、両端部に一対の端子電極を有する絶縁性基板上にマウントされ、前記発光素子チップの一対の電極が前記絶縁性基板の両端部に設けられる一対の端子電極とそれぞれ電気的に接続され、前記発光素子チップおよび前記一対の端子電極の接続部が前記被覆体により被覆されてなる請求項1または2記載の半導体発光装置。   The light emitting element chip is mounted on an insulating substrate having a pair of terminal electrodes at both ends, and the pair of electrodes of the light emitting element chip are electrically connected to a pair of terminal electrodes provided at both ends of the insulating substrate, respectively. The semiconductor light-emitting device according to claim 1, wherein a connection portion of the light-emitting element chip and the pair of terminal electrodes is covered with the covering body.
JP2004283236A 2004-09-29 2004-09-29 Semiconductor light emitting device Expired - Fee Related JP4485310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283236A JP4485310B2 (en) 2004-09-29 2004-09-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283236A JP4485310B2 (en) 2004-09-29 2004-09-29 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2006100472A JP2006100472A (en) 2006-04-13
JP4485310B2 true JP4485310B2 (en) 2010-06-23

Family

ID=36240008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283236A Expired - Fee Related JP4485310B2 (en) 2004-09-29 2004-09-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4485310B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786886B2 (en) * 2004-08-11 2011-10-05 ローム株式会社 Semiconductor light emitting device
JP4762841B2 (en) * 2006-09-25 2011-08-31 日東電工株式会社 Glass material composition for protecting optical semiconductor element and optical semiconductor device using the same
US9048400B2 (en) 2006-10-12 2015-06-02 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device with a wavelength converting layer and method for manufacturing the same
JP4962130B2 (en) * 2007-04-04 2012-06-27 三菱化学株式会社 GaN-based semiconductor light emitting diode manufacturing method
JP5163073B2 (en) * 2007-11-22 2013-03-13 旭硝子株式会社 Manufacturing method of glass-coated light emitting device
JP6920859B2 (en) * 2016-04-04 2021-08-18 スタンレー電気株式会社 Light emitting device and its manufacturing method
TWI645585B (en) * 2017-03-03 2018-12-21 光感動股份有限公司 Package of optical semiconductor device and optical semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665474A (en) * 1992-08-19 1994-03-08 Denki Kagaku Kogyo Kk Filler for optically functional element sealing resin and resin composition using the same
JP2003124530A (en) * 1996-12-12 2003-04-25 Nichia Chem Ind Ltd Light emitting diode and led display device using the same
JP2003243724A (en) * 2002-02-14 2003-08-29 Matsushita Electric Works Ltd Light emitting apparatus
JP2004088013A (en) * 2002-08-29 2004-03-18 Nichia Chem Ind Ltd Light-emitting device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433946A (en) * 1987-07-30 1989-02-03 Nec Corp Circuit board having low dielectric constant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665474A (en) * 1992-08-19 1994-03-08 Denki Kagaku Kogyo Kk Filler for optically functional element sealing resin and resin composition using the same
JP2003124530A (en) * 1996-12-12 2003-04-25 Nichia Chem Ind Ltd Light emitting diode and led display device using the same
JP2003243724A (en) * 2002-02-14 2003-08-29 Matsushita Electric Works Ltd Light emitting apparatus
JP2004088013A (en) * 2002-08-29 2004-03-18 Nichia Chem Ind Ltd Light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006100472A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
US8154047B2 (en) Solid element device and method for manufacturing the same
JP5233087B2 (en) LIGHT EMITTING DEVICE AND ITS MANUFACTURING METHOD, PACKAGE, LIGHT EMITTING DEVICE MOUNTING BOARD
CN103155184B (en) Wafer LED packaging part and manufacture method thereof
JP5251038B2 (en) Light emitting device
US7569989B2 (en) Light emitting device
CN104465940B (en) Light emitting device package
TW201106504A (en) Light emitting device package and method of fabricating thereof
JP4266234B2 (en) Manufacturing method of semiconductor light emitting device
WO2007102534A1 (en) Chip type semiconductor light emitting element
KR102006390B1 (en) Method of manufacturing Light Emitting diode package
JP2007103978A (en) Solid state element device
JP4773755B2 (en) Chip-type semiconductor light emitting device
JP4516378B2 (en) Semiconductor light emitting device
JP4637160B2 (en) Method for manufacturing solid element device
JP4485310B2 (en) Semiconductor light emitting device
JP4008943B2 (en) Method for manufacturing solid element device
JP2000299503A (en) Semiconductor light-emitting device and manufacture thereof
JP5125748B2 (en) Method for manufacturing light emitting device
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
JP2006086138A (en) Optical device
US12015111B2 (en) Light emitting device package and light source module
KR20120064838A (en) Light emitting diode package and method of manufacturing thereof
JP5338688B2 (en) Method for manufacturing light emitting device
JP2008198962A (en) Light emitting device and its manufacturing method
KR102504008B1 (en) A device having multiple stacked light emitting devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees