[go: up one dir, main page]

JP4480744B2 - アナログデジタル変換器 - Google Patents

アナログデジタル変換器 Download PDF

Info

Publication number
JP4480744B2
JP4480744B2 JP2007200086A JP2007200086A JP4480744B2 JP 4480744 B2 JP4480744 B2 JP 4480744B2 JP 2007200086 A JP2007200086 A JP 2007200086A JP 2007200086 A JP2007200086 A JP 2007200086A JP 4480744 B2 JP4480744 B2 JP 4480744B2
Authority
JP
Japan
Prior art keywords
circuit
conversion
signal
sub
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007200086A
Other languages
English (en)
Other versions
JP2009038535A (ja
Inventor
重人 小林
淳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007200086A priority Critical patent/JP4480744B2/ja
Priority to US12/183,615 priority patent/US7764214B2/en
Publication of JP2009038535A publication Critical patent/JP2009038535A/ja
Application granted granted Critical
Publication of JP4480744B2 publication Critical patent/JP4480744B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/0607Offset or drift compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/069Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
    • H03M1/0695Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/162Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in a single stage, i.e. recirculation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • H03M1/167Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages all stages comprising simultaneous converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • H03M1/362Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/802Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
    • H03M1/804Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

本発明は、アナログデジタル変換器に関し、とくに、入力アナログ信号を複数回の変換処理によりデジタル信号に変換するアナログデジタル変換器に関する。
デジタル信号処理技術の進展に伴い、デジタルスチルカメラ、デジタルムービーカメラ、携帯電話機など、様々な機器にアナログデジタル変換器(以下、AD変換器と表記する)が搭載されるようになってきている。AD変換器の種類の一つに、変換速度および変換精度の両方に優れたパイプライン型AD変換器がある。
パイプライン型AD変換器は、それぞれサブAD変換回路を備える複数のステージを備える。各ステージは、自己のステージへの入力信号から、サブAD変換回路で変換したデジタル成分を除いた残差信号を増幅するための増幅回路や、当該入力信号をサンプル・ホールドするためのサンプル・ホールド回路を搭載する。これら増幅回路やサンプル・ホールド回路はオペアンプを構成要素とすることが一般的であるため、オペアンプのオフセット電圧を考慮する必要がある。
特許文献1はつぎの手法により、SH.SBTに含まれる差動増幅器のオフセットの影響を除去する技術を開示する。すなわち、A/Dコンバータブロック1のSH.SBTは、第1フェーズでアナログ電圧をサンプリングするとともにオフセット電圧を出力し、第2フェーズではサンプリングしたアナログ電圧からA/Dコンバータの出力電圧を減算し減算結果を出力する。次段のA/Dコンバータブロック2のA/Dコンバータは、SH.SBTの出力電圧の第2フェーズの値から第1フェーズの値を減算し減算結果をデジタルコードD3に変換する。
特開平9−275342号公報
上述したオフセット電圧を補償するための回路や制御系を別に設けると、回路規模が増大してしまう。本発明はこうした状況に鑑みなされたものであり、その目的は、回路規模の増大を抑制しつつ、オフセット成分の影響を低減し、変換精度を向上させることが可能なAD変換器を提供することにある。
本発明のある態様のAD変換器は、入力アナログ信号を、上位ビットから下位ビットに向けて複数回の変換処理により、デジタル信号に変換するAD変換器であって、サンプリングしたアナログ信号を所定ビット数のデジタル信号に変換するサブAD変換回路と、つぎの変換処理の対象とすべき残差信号を生成するため、サブAD変換回路により変換されたデジタル信号をアナログ信号に変換し、サブAD変換回路による変換対象とされたアナログ信号から除去すべき信号を生成するDA変換回路と、を備え、DA変換回路は、容量アレイ型であり、その容量アレイの少なくとも一つの容量に、サブAD変換回路によりサンプリングされるアナログ信号に加わるオフセット電圧の少なくとも一部を補償するオフセット補償電圧が供給される。
本発明によれば、回路規模の増大を抑制しつつ、オフセット成分の影響を低減し、変換精度を向上させることができる。
以下、実施の形態では、入力アナログ信号を複数回に分けてデジタル値に変換するAD変換器として、パイプライン型AD変換器およびサイクリック型AD変換器を説明する。
まず、パイプライン型AD変換器について説明する。
図1は、実施の形態1に係るパイプライン型AD変換器100の全体構成を示す。パイプライン型AD変換器100は4つのステージを備え、第1ステージ10は4ビット変換し、第2ステージ20、第3ステージ30および第4ステージ40は、冗長1ビットを除き、2ビットずつ変換する。したがって、当該パイプライン型AD変換器100は合計10ビット変換する。なお、これらのステージ数やビット数は一例であり、これに限るものではない。
第1ステージ10は、第1サブAD変換回路12、第1DA変換回路14、第1減算回路16および第1増幅回路18を備える。第1サブAD変換回路12および第1増幅回路18は、実質的に同じタイミングで入力アナログ信号Vinをサンプリングする。第1サブAD変換回路12は、フラッシュ型で構成される。上述したようにその分解能は4ビットである。
第1サブAD変換回路12は、サンプリングした信号のうち、上位4ビットに相当する成分をデジタル値に変換し、第1DA変換回路14およびデジタル信号処理部50に出力する。第1DA変換回路14は、第1サブAD変換回路12により変換されたデジタル値をアナログ値に変換する。このアナログ信号は、第1サブAD変換回路12による変換対象とされたアナログ信号から除去すべき信号となる。ここで、第1サブAD変換回路12による変換対象とされたアナログ信号とは、本ステージ10に入力された信号に限らない。後述するサンプル増幅回路21などを第1サブAD変換回路12と並列に設けた場合、そのサンプル増幅回路21から出力された信号も含む。
第1減算回路16は、第1増幅回路18によりサンプリングされた入力アナログ信号Vinから、第1DA変換回路14により変換されたアナログ信号を減算する。第1増幅回路18は、前者から後者が除かれた残差信号を所定の増幅率で増幅し、第2ステージ20に出力する。ここでは、2倍に増幅する。その増幅された残差信号は、第2ステージ20の変換対象となる。
第2ステージ20は、第2サンプル増幅回路21、第2サブAD変換回路22、第2DA変換回路24、第2減算回路26および第2増幅回路28を備える。第2サブAD変換回路22および第2サンプル増幅回路21は、実質的に同じタイミングで第1ステージ10の残差信号をサンプリングする。第2サンプル増幅回路21は、サンプリングした残差信号を所定の増幅率で増幅する。図1では2倍に増幅する。
第2サブAD変換回路22は、フラッシュ型で構成される。上述したようにその分解能は冗長1ビットを含めると3ビットである。第2サブAD変換回路22に第1サブAD変換回路12と同じ参照電圧範囲を設定した場合、第2サブAD変換回路22の変換すべきビット数が2ビットであるため、第1ステージ10の出力信号が2倍に増幅されていなければならない。すなわち、4倍に増幅されていなければ、第1ステージ10から第2サブAD変換回路22に入力される残差信号の範囲と、第2サブAD変換回路22の参照電圧範囲とがずれてしまう。
この点、第1増幅回路18は残差信号を2倍しか増幅していない。そこで、第2サブAD変換回路22内に設けられる各コンパレータの参照電圧を、第1サブAD変換回路12の1/2に設定し、第2サブAD変換回路22の参照電圧範囲を第1サブAD変換回路12の1/2に設定する。これにより、第1ステージ10から第2サブAD変換回路22に入力される残差信号の範囲と、参照電圧範囲を合わせることができる。
第2サブAD変換回路22は、サンプリングした信号のうち、上位から5ビット目および6ビット目に相当する成分をデジタル値に変換し、冗長1ビットを加えて、第2DA変換回路24およびデジタル信号処理部50に出力する。第2DA変換回路24は、第2サブAD変換回路22の出力デジタル値をアナログ値に変換する。
第2減算回路26は、第2サンプル増幅回路21によりサンプリングされ、増幅された第1ステージ10の残差信号から、第2DA変換回路24により変換されたアナログ信号を減算する。第2増幅回路28は、前者から後者が除かれた残差信号を所定の増幅率で増幅し、第2ステージ20に出力する。ここでは、2倍に増幅する。
第3ステージ30は、第3サンプル増幅回路31、第3サブAD変換回路32、第3DA変換回路34、第3減算回路36および第3増幅回路38を備える。第3ステージ30は、上位から7ビット目および8ビット目に相当する成分をデジタル値に変換する。第3ステージ30は第2ステージ20と同じ構成であるため、説明を省略する。
第4ステージ40は、第4サブAD変換回路42を備える。第4サブAD変換回路42は、第3ステージ30から入力された残差信号をデジタル値に変換する。すなわち、上位から9ビット目および10ビット目に相当する成分をデジタル値に変換する。
デジタル信号処理部50は、全ステージ、すなわち第1ステージ10、第2ステージ20、第3ステージ30および第4ステージ40の出力デジタル値を受け、冗長ビットを分離して、10ビットのデジタル値に組み立てる。また、各ステージから出力されたグレイコードのデジタル値をバイナリコードのデジタル値に変換する。
図2は、実施の形態1に係るAD変換器100に含まれる第2ステージ20の詳細な構成を示す図である。図1における第2サブAD変換回路22は、第1抵抗R1〜第8抵抗R8、第1コンパレータCP1〜第7コンパレータCP7で構成される。第2DA変換回路24、第2減算回路26、および第2増幅回路28は、第1容量C1〜第8容量C8、第9容量C9、オペアンプOPおよびそれらを制御する各種スイッチSW1〜SW9で構成される。なお、図2ではシングルエンド構成であるが、もちろん、差動構成でもよい。
第1抵抗R1〜第8抵抗R8は抵抗ストリングスを構成し、その抵抗ストリングスの高電位側端子には高電位側基準電圧VRT(Reference Voltage Top Level)が印加され、その低電位側端子には低電位側基準電圧VBT(Reference Voltage Bottom Level)が印加される。第1抵抗R1〜第8抵抗R8でそれぞれ分圧された七種類の電圧レベルは、第1コンパレータCP1〜第7コンパレータCP7の参照電圧用端子にそれぞれ印加される。
第1コンパレータCP1〜第7コンパレータCP7の入力電圧用端子には、前ステージからの残差信号Vin1がそれぞれ印加される。第1コンパレータCP1〜第7コンパレータCP7は、当該残差信号Vin1と上記抵抗ストリングスから印加される参照信号とを比較し、その結果に応じて、ハイレベル信号またはローレベル信号をデジタル値として出力する。なお、第2ステージ20は冗長1ビットを含めて3ビット変換であり、八通りの電圧レベルを出力可能にするため、コンパレータを七個設けている。抵抗ストリングは、八通りの参照信号を生成するため、八個で構成される。なお、第2ステージ20が2ビット変換の場合、コンパレータを三個設ける必要がある。
第1容量C1〜第8容量C8は、容量アレイを構成する。それを構成する少なくとも一つの容量に、サブAD変換回路22によりサンプリングされるアナログ信号に加わるオフセット電圧の少なくとも一部を補償するオフセット補償電圧Vostを供給する。図2では、容量アレイは、コンパレータの数より、少なくとも一つ多い数の容量を含む。なお、容量アレイを構成する容量の数は、レイアウト上、2の倍数に設定されることが一般的である。当該容量アレイを構成する容量のうち、一つを除いた第1容量C1〜第7容量C7には、サブAD変換回路22で変換されたデジタル信号に対応した高電位側基準電圧または低電位側基準電圧が供給され、残り一つの第8容量C8には、上記オフセット補償電圧Vostが供給される。このオフセット補償電圧Vostの詳細は後述する。
以下、具体的に説明する。第1容量C1〜第8容量C8の出力側端子は、オペアンプOPの反転入力端子に接続される。第1容量C1〜第8容量C8の入力側端子は、それぞれ複数のスイッチに接続される。
第1容量C1の入力側端子は、第1信号スイッチSW1V、第1高電位側スイッチSW1T、および第1低電位側スイッチSW1Bに接続される。第1容量C1〜第7容量C7についても同様である。第8容量C8の入力側端子は、第8信号スイッチSW8VおよびオフセットスイッチSW8Oに接続される。
第1信号スイッチSW1V〜第8信号スイッチSW8Vは、オンされた状態で第1容量C1〜第8容量C8の入力側端子にそれぞれ第2サンプル増幅回路21の出力信号Vin2を印加する。第1高電位側スイッチSW1T〜第7高電位側スイッチSW7Tは、オンされた状態で第1容量C1〜第7容量C7の入力側端子に高電位側基準電圧VRTを印加する。第1低電位側スイッチSW1B〜第7低電位側スイッチSW7Bは、オンされた状態で第1容量C1〜第7容量C7の入力側端子に低電位側基準電圧VRBを印加する。
第1高電位側スイッチSW1Tおよび第1低電位側スイッチSW1Bは、第1コンパレータCP1の出力デジタル値により相補的にオンオフ制御される。たとえば、ハイレベル信号のとき、第1高電位側スイッチSW1Tがオン、第1低電位側スイッチSW1Bがオフされ、ローレベル信号のときその逆にオンオフ制御される。第2高電位側スイッチSW2T〜第7高電位側スイッチSW7Tおよび第2低電位側スイッチSW2B〜第7低電位側スイッチSW7Bについても同様である。オフセットスイッチSW8Oは、オンされた状態で第8容量C8の入力側端子に上記オフセット補償電圧Vostを印加する。
オペアンプOPの非反転入力端子には、所定の固定電位が印加される。図2では接地記号で描いているが、コモンモード電圧など、接地電位以外の参照電圧であってもよい。第9容量C9は、オペアンプOPの反転入力端子と出力端子とをつなぐ帰還経路上に設けられる。短絡スイッチSW9は、第9容量C9と並列に設けられ、オペアンプOPの反転入力端子と出力端子とを短絡し、第1ノードN1および第2ノードN2の電位を実質的に同じにする。
以下、図2に示す回路の動作について説明する。まず、第1信号スイッチSW1V〜第8信号スイッチSW8Vがオンされ、第1容量C1〜第8容量C8の入力側端子に接続される他のスイッチはオフされる。短絡スイッチSW9はオンされる。短絡スイッチSW9がオンであるため、オペアンプOPはユニティ・ゲイン・バッファ状態である。
この状態では、オペアンプOPの非反転入力端子に印加される参照電圧が第1容量C1〜第8容量C8の出力側端子に現れる。それら出力側端子の電位が固定した状態で、第1容量C1〜第8容量C8は、第2サンプル増幅回路21の出力信号Vin2を電荷として記憶する。
それと共に、第1コンパレータCP1〜第7コンパレータCP7は、当該残差信号Vin1と上記抵抗ストリングスから印加される参照信号とを比較し、その結果に応じて、ハイレベル信号またはローレベル信号をデジタル値として出力する。
つぎに、短絡スイッチSW9がオフされる。この状態では、第1ノードN1に蓄積された電荷が流出する経路がなくなる。
つぎに、第1信号スイッチSW1V〜第8信号スイッチSW8Vがオフされる。それ共に、第1高電位側スイッチSW1T〜第7高電位側スイッチSW7T、および第1低電位側スイッチSW1B〜第7低電位側スイッチSW7Bが、第1コンパレータCP1〜第7コンパレータCP7の判定結果により、オンオフ制御される。それと共に、オフセットスイッチSW8Oがオンされる。この状態で、第1ノードN1の電位がオペアンプOPの非反転入力端子の電位と実質的に同じ値になるよう、第1容量C1〜第8容量C8に蓄積された電荷が第1容量C1〜第9容量C9に再分配される。
以上の過程で、第1ノードN1に蓄積された電荷に対し、電荷保存則が成り立つため、第2サンプル増幅回路21の出力信号Vin2から、第1コンパレータCP1〜第7コンパレータCP7で変換された成分および上記オフセット補償電圧Vostが除かれた、本ステージの残差信号Voutが生成される。
図2の回路構成にて、第9容量C9の容量値を、第1容量C1〜第8容量C8の合成容量値の2倍に設定すれば、本ステージの残差信号Voutを2倍にすることができる。
図2では、第2ステージ20の構成について説明したが、第3ステージ30も基本的に同様の構成である。なお、変換ビット数が異なる場合、コンパレータや容量の数も異なる。
図3は、実施の形態1に係るパイプライン型AD変換器100の各ステージを通過する信号の電圧レンジを示す図である。各サブAD変換器の入力許容電圧レンジar1〜ar4は、正規レンジnrおよび冗長レンジrrで構成される。図3では、冗長レンジrrは、正規レンジnrの高電位側および低電位側の両方に確保されている。
パイプライン型AD変換器100の構成要素のうち、主に、第1増幅回路18、第2サンプル増幅回路21、第2増幅回路28、第3サンプル増幅回路31および第3増幅回路38でオフセット電圧が発生する。より具体的には、図2に示したオペアンプOPでオフセット電圧が発生する。なお、上述したオフセット補償電圧Vostで補償されるべきオフセット電圧は、補償対象の信号が過去に通過したオペアンプによるオフセット電圧、将来通過するオペアンプによるオフセット電圧、またはその両方によるオフセット電圧のいずれもでもよい。
図3では、第1増幅回路18、第2サンプル増幅回路21、第2増幅回路28、第3サンプル増幅回路31および第3増幅回路38に含まれるオペアンプOPで、高電位方向にオフセット電圧が加わる例を示している。第1サブAD変換回路12に入力される信号Vinの電圧レンジsrは、第1サブAD変換回路12の正規レンジnrに一致またはそのレンジ内に収まる。増幅回路のオフセット電圧の影響をまだ受けていないためである。
第2サブAD変換回路22に入力される第1ステージ10の残差信号の電圧レンジsrは、第2サブAD変換回路22の正規レンジnrに収まらない。第1ステージ10の残差信号に、第1増幅回路18のオフセット電圧が加わり、その残差信号の出力電圧レンジsrが高電位方向にシフトしたためである。しかしながら、高電位側の冗長レンジrr内には収まる。ただし、このままステージが進んでいくと、いずれかのステージのサブAD変換回路の冗長レンジrrを超えてしまう可能性がある。冗長レンジrr内に収まっていれば、デジタル処理による訂正が可能であるが、超えてしまうとビット誤りが発生する。
そこで、そのオフセット電圧を補償するための成分を第2DA変換回路24で加える。上述したオフセット補償電圧Vostはこの成分である。オフセット補償電圧Vostは、サブAD変換回路によりサンプリングされるアナログ信号に加わるオフセット成分をちょうど打ち消すものであってもよいし、そのオフセット成分より小さい成分であってもよいし、大きい成分であってもよい。
また、パイプライン型AD変換器100や後述するサイクリック型AD変換器200を用いた複数回のAD変換処理に対応した、複数回のDA変換処理のうち、少なくとも一回をオフセット補償電圧Vostを供給すべき処理対象とすることができる。たとえば、パイプライン型AD変換器100の全ステージのDA変換器のうち、少なくとも一つでオフセット補償電圧Vostを加えればよい。パイプライン型AD変換器100全体として、全ステージのサブAD変換回路で入力許容電圧レンジar1〜ar4内に、各サブAD変換回路に入力される信号の電圧レンジが収まっていればよい。正規レンジnrを超えても冗長レンジrr内に収まっていればよい。
図3の例では、第2ステージ20の第2DA変換回路24で、第2サブAD変換回路22で変換された出力デジタル値に対応するアナログ電圧にオフセット補償電圧Vostを加えている。具体的には、高電位方向にシフトされた第1ステージ10からの残差信号を低電位方向に補償するため、第2サブAD変換回路22で変換された出力デジタル値に対応するアナログ電圧に正のオフセット補償電圧Vostを加える。すなわち、当該残差信号から減算すべきアナログ信号の値を大きくして、上記オフセット電圧を補償する。
図3の例では、第3ステージ30の第3DA変換回路34ではオフセット補償をしない構成とするため、第2ステージ20の第2DA変換回路24で、第1増幅回路18で加わったオフセット電圧より大きい値を補償している。この結果、第3サブAD変換回路32に入力される残差信号の電圧レンジsrは、第3サブAD変換回路32の正規レンジnrより低電位方向にシフトされる。ただし、冗長レンジrrには収まっている。第3サンプル増幅回路31および第3増幅回路38でオフセット電圧が高電位方向に加わるため、第4サブAD変換回路42に入力される残差信号の電圧レンジsrは、第3サブAD変換回路32に入力される残差信号の電圧レンジsrより高電位方向にシフトされ、より正規レンジnrに近いレンジとなる。
上述したオフセット補償電圧Vostの値は、設計者が実験やシミュレーションにより求めた値に設定されることが可能である。オフセット補償電圧Vostを加えるべきDA変換回路のステージ位置、加えるべきDA変換回路の数、および目標とすべき精度を主なパラメータとしてオフセット補償電圧Vostの値を求めることができる。
また、最適なオフセット補償電圧Vostの値を求めるというアプローチではなく、オフセット補償電圧Vostには新たに生成する必要がない既存の電位を使用し、上述したパラメータのほうを調整してもよい。ここで、既存の電位として、電源電圧、接地電圧、高電位側基準電圧VRT、または低電位側基準電圧VRBを使用することが可能である。これよれば、回路構成をより単純化することができる。
図4は、オフセット補償電圧Vostを加えるべきDA変換回路のステージを決定するための構成の一例を示す。図4は、実施の形態1に係るパイプライン型AD変換器100の構成にオフセット調整部60を追加した構成である。オフセット調整部60は、各サブAD変換回路からデジタル信号処理部50に出力されたデジタル値、より具体的には冗長ビットを参照して、各ステージで加えられるオフセット電圧を推測する。その推測結果を基に、オフセット補償電圧Vostを供給すべきDA変換回路を決定する。
以下、オフセット補償電圧Vostを加えるべきDA変換回路の数は一つ、オフセット補償電圧Vostの値は所与のものとし、オフセット補償電圧Vostを加えるべきDA変換回路のステージ位置を決定する例を説明する。
まず、所定のテスト電圧、たとえば0Vをパイプライン型AD変換器100に入力し、どのステージのサブAD変換回路から入力許容電圧レンジを超えるかを特定する。そのステージの位置から、一つのステージで加えられるオフセット電圧を求め、どのステージのDA変換回路にオフセット補償電圧を加えるべきかを決定する。
図5は、図2に示した第2ステージ20の構成の変形例を示す図である。図2では、オペアンプOPの出力端子をそのまま第2ノードN2に接続したが、図5では、オペアンプOPの出力端子を定電流源CIの制御端子に接続する。定電流源CIは、たとえば、Pチャンネルトランジスタで構成することができる。その場合、ドレイン端子に電源電圧Vddを印加し、ゲート端子にオペアンプOPの出力端子を接続する。定電流源CIは、オペアンプOPの出力信号にしたがい、第2ノードN2に流すべき電流を制御する。
なお、オペアンプOPは、図2では積分回路の一部として機能したが、図5では帰還経路が設けられないため、コンパレータとして機能する。したがって、図4のオペアンプOPの出力信号はハイレベル信号またはローレベル信号となり、その信号により定電流源CIをオンオフ制御する。
コンパレータとして機能するオペアンプOPは、反転入力端子に入力される第1ノードN1の電位が、非反転入力端子に入力される所定の参照電圧を超えると、有意な信号を出力し、定電流源CIをオンする。したがって、第1ノードN1の電位が上記参照電圧を超えるタイミングにより、第2ノードN2に充電される電荷量が変化する。
図5の構成は図2の構成と比較し、高ゲインのオペアンプOPを使用する必要がないため、省面積化、低消費電力化、および低電源電圧化につながる。
図6は、図5に示した第2ステージ20の構成における第2ノードN2の電位を示す図である。第1ノードN1の電位が上記参照電圧を超え、オペアンプOPの出力信号が反転した後、一定の傾きで、第2ノードN2の電位が上昇する。つぎのサンプリングのため、第1ノードN1に充電された電荷が放出されると、オペアンプOPの出力信号が再び反転し、第2ノードN2への充電が停止する。
ここで、コンパレータとして機能するオペアンプOPの出力信号の反転が遅延すると、第2ノードN2にオフセット成分ostが発生する。図6中の点線レベルは、当該オペアンプOPが理想的に動作する場合の第2ノードN2の電位を示す。図6では、当該オペアンプOPの出力信号の反転が遅延した状態を示している。すなわち、第2ノードN2に電荷を充電しすぎた状態である。
このように、図5の構成は図2の構成と比較し、上述したメリットがあるが、オフセット成分が発生しやすいというデメリットがある。すなわち、素子バラツキや環境だけでなく、遅延などのタイミングずれによっても、オフセット成分が発生する。したがって、オフセット補償のための手段がより重要となる。
以上説明したように実施の形態1によれば、容量アレイに含まれる容量に、オフセット補償電圧を供給することにより、回路規模の増大を抑制しつつ、オフセット成分の影響を低減し、変換精度を向上させることができる。とくに、ステージ数が多く、増幅回路の数が多い場合や、各ステージを図5に示した回路構成とした場合、オフセット成分の影響が大きくなる。冗長ビットを利用したデジタル処理による誤り訂正では、オフセット成分を十分に補償できないことが多くなる。そこで、オフセット補償電圧を加えることが必要になるが、容量アレイに含まれる容量に供給することにより、既存の回路構成を有効活用することができる。
また、オフセット補償電圧として、電源電圧、接地電圧、高電位側基準電圧VRT、または低電位側基準電圧VRBを使用した場合、DC−DCコンバータなどを用いて別の電圧を生成する必要なく、回路規模の増大を抑制することができる。また、その電圧の安定性も高い。
つぎに、サイクリック型AD変換器について説明する。
図7は、実施の形態2に係るサイクリック型AD変換器200の全体構成を示す。
サイクリック型AD変換器200は2つのステージを備え、第1ステージ10は4ビット変換し、第2ステージ20は、冗長1ビットを除き2ビット変換する。第2ステージ20は、第1ステージ10からの残差信号を3回回転させて、6ビット変換する。したがって、当該サイクリック型AD変換器200は、第1ステージ10で4ビットおよび第2ステージ20で6ビット変換し、合計10ビット変換する。なお、これらのステージ数やビット数は一例であり、これに限るものではない。また、一ステージで複数回回転させる構成も可能である。
第1ステージ10の構成は、実施の形態1と同様であるため、説明を省略する。第2ステージ20の第2サンプル増幅回路21は、第1ステージ10からの残差信号または第2ステージ20から帰還される残差信号を、第2サブAD変換回路22と実質的に同じタイミングでサンプリングする。
第2サンプル増幅回路21は、サンプリングした残差信号を所定の増幅率で増幅する。図7では2倍に増幅する。なお、1倍に増幅する場合、サンプル・ホールド回路として機能する。第2減算回路26は、第2サンプル増幅回路21でサンプリングされ、増幅された残差信号から、第2DA変換回路24で変換されたアナログ信号を減算する。第2増幅回路28は、前者から後者が除かれた残差信号を所定の増幅率で増幅し、第2ステージ20の入力に帰還する。
実施の形態2に係るサイクリック型AD変換器200では、第1ステージ10と第2ステージ20との間に、第1入力切替スイッチSW10および第2入力切替スイッチSW20が設けられる。第1入力切替スイッチSW10および第2入力切替スイッチSW20は、相補的にオンオフする。
第1入力切替スイッチSW10がオン、第2入力切替スイッチSW20がオフ状態で、サンプル増幅回路21および第2サブAD変換回路22に、第1ステージ10からの残差信号が入力される。一方、第1入力切替スイッチSW10がオフ、第2入力切替スイッチSW20がオン状態で、第2サンプル増幅回路21および第2サブAD変換回路22に、第2ステージ20から帰還される残差信号が入力される。
上述した第2サンプル増幅回路21は、図2または図5に示した回路構成からサブAD変換回路の部分を除いた回路構成で設計することができる。第2サンプル増幅回路21では、基本的に、オペアンプOPの反転入力端子に接続される容量は一つでよいが、複数にすることも可能である。
複数にした場合、図2または図5に示した第2DA変換回路24、第2減算回路26および第2増幅回路28を構成する回路ブロックをそのまま転用することができる。当該容量が一つでも複数の場合でも、その入力側端子には入力信号および参照電圧が選択的に印加される構成であればよい。そして、複数の場合、その少なくとも一つに上述したオフセット補償電圧Vostを上記入力信号または上記参照電圧の代わりに印加することができる。よって、上述したDA変換回路の容量アレイを用いたオフセット電圧補償技術が、第2サンプル増幅回路21のサンプリング用の容量アレイでも同様に用いることができる。したがって、サイクリック型AD変換器200に含まれる、DA変換回路およびサンプル増幅回路のサンプリング用の容量アレイのうち、少なくとも一つをオフセット電圧補償に利用することができる。
図8は、実施の形態2に係るサイクリック型AD変換器200の各ステージを通過する信号の電圧レンジを示す図である。図8では、第1増幅回路18、第2サンプル増幅回路21、および第2増幅回路28に含まれるオペアンプOPで、高電位方向にオフセット電圧が加わる例を示している。第1サブAD変換回路12に入力される信号Vinの電圧レンジsrは、第1サブAD変換回路12の正規レンジnrに一致またはそのレンジ内に収まる。
第2サブAD変換回路22に入力される第1ステージ10の残差信号の電圧レンジsrは、第1増幅回路18のオフセット電圧が加わっているため、高電位方向にシフトされる。これに対して、一周目では第2サンプル増幅回路21の容量アレイの一つに上述したオフセット電圧補償Vostを加える。
これにより、第2サンプル増幅回路21および第2増幅回路28で加えられるオフセット電圧が補償されるため、第2ステージ20から第2サブAD変換回路22に入力される残差信号の電圧レンジsrは、正規レンジnrに一致する。二周目では第2サンプル増幅回路21の容量アレイではなく、第2DA変換回路24の容量アレイの一つに上述したオフセット電圧補償Vostを加える。これにより、第2ステージ20から第2サブAD変換回路22に再び入力される残差信号の電圧レンジsrは、正規レンジnrに一致する。
このように、サイクリック型AD変換器200のうち、信号が回転するステージでは、周回ごとにオフセット補償電圧Vostを加えるべき対象を変化させてもよい。上述したように、その対象にはDA変換回路およびサンプル増幅回路が含まれる。また、周回ごとにオフセット補償電圧Vostの値を変化させてもよい。
また、第2サンプル増幅回路21および第2DA変換回路24の両方でオフセット電圧補償Vostを加えてもよい。その際、周回ごとに第2サンプル増幅回路21および第2DA変換回路24で加えるべきオフセット電圧補償Vostを変更してもよい。たとえば、一周目で、第2サンプル増幅回路21で低電位方向にシフトさせるオフセット補償電圧Vostを加え、第2DA変換回路24で高電位方向にシフトさせるオフセット補償電圧Vostを加える。二周目で、第2サンプル増幅回路21で高電位方向にシフトさせるオフセット補償電圧Vostを加え、第2DA変換回路24で低電位方向にシフトさせるオフセット補償電圧Vostを加える。このような処理では、容量アレイに含まれる容量の素子バラツキや実装位置による環境の違いなどの影響を低減することができる。
以上説明したように実施の形態2によれば、容量アレイに含まれる容量に、オフセット補償電圧を供給することにより、回路規模の増大を抑制しつつ、オフセット成分の影響を低減し、変換精度を向上させることができる。すなわち、サイクリック型AD変換器でもパイプライン型AD変換器と同様の効果を奏する。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、その各構成要素や各処理プロセスの組合せにいろいろな変形例が可能である。また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。
図9は、変形例に係るサイクリック型AD変換器210の全体構成を示す。
このサイクリック型AD変換器210は2つのステージを備え、第1ステージ10は3ビット変換し、第2ステージ20は冗長1ビットを除き2ビット変換する。第2ステージの残差信号は、第2ステージ20ではなく、第1ステージ10に帰還される。第1ステージ10で再び、3ビット変換されて、合計10ビット変換される。このような回路にも、実施の形態2と同様なオフセット補償手段を組み込むことができる。
なお、各実施の形態に記載した各ステージに、適宜、サンプル増幅回路を設けてもよい。また、各AD変換回路の変換ビット数、増幅回路の増幅率のパラメータは一例に過ぎず、他の数値を採用してもよい。
実施の形態1に係るパイプライン型AD変換器の全体構成を示す図である。 実施の形態1に係るAD変換器に含まれる第2ステージの詳細な構成を示す図である。 実施の形態1に係るパイプライン型AD変換器の各ステージを通過する信号の電圧レンジを示す図である。 オフセット補償電圧Vostを加えるべきDA変換回路のステージを決定するための構成の一例を示す図である。 図2に示した第2ステージの構成の変形例を示す図である。 図5に示した第2ステージの構成における第2ノードの電位を示す図である。 実施の形態2に係るサイクリック型AD変換器の全体構成を示す図である。 実施の形態2に係るサイクリック型AD変換器の各ステージを通過する信号の電圧レンジを示す図である。 変形例に係るサイクリック型AD変換器の全体構成を示す図である。
符号の説明
CP1 第1コンパレータ、 CP2 第2コンパレータ、 CP3 第3コンパレータ、 CP4 第4コンパレータ、 CP5 第5コンパレータ、 CP6 第6コンパレータ、 CP7 第7コンパレータ、 C1 第1容量、 C2 第2容量、 C3 第3容量、 C4 第4容量、 C5 第5容量、 C6 第6容量、 C7 第7容量、 C8 第8容量、 C9 第9容量、 OP オペアンプ、 CI 定電流源、 SW9 短絡スイッチ、 10 第1ステージ、 12 第1サブAD変換回路、 14 第1DA変換回路、 16 第1減算回路、 18 第1増幅回路、 20 第2ステージ、 21 第2サンプル増幅回路、 22 第2サブAD変換回路、 24 第2DA変換回路、 26 第2減算回路、 28 第2増幅回路、 30 第3ステージ、 31 第3サンプル増幅回路、 32 第3サブAD変換回路、 34 第3DA変換回路、 36 第3減算回路、 38 第3増幅回路、 40 第4ステージ、 42 第4サブAD変換回路、 50 デジタル信号処理部、 SW10 第1入力切替スイッチ、 SW20 第2入力切替スイッチ、 60 オフセット調整部、 100 パイプライン型AD変換器、 200 サイクリック型AD変換器。

Claims (4)

  1. 複数の変換ステージが接続されたパイプライン型であり、入力アナログ信号を、上位ビットから下位ビットに向けて複数回の変換処理により、デジタル信号に変換するアナログデジタル変換器であって、
    サンプリングしたアナログ信号を所定ビット数のデジタル信号に変換するサブAD変換回路と、
    つぎの変換処理の対象とすべき残差信号を生成するため、前記サブAD変換回路により変換されたデジタル信号をアナログ信号に変換し、前記サブAD変換回路による変換対象とされたアナログ信号から除去すべき信号を生成するDA変換回路と、
    前記複数の変換ステージからそれぞれ出力されるデジタル信号に含まれる冗長ビットを参照して、各変換ステージで加えられるオフセット電圧を推測するオフセット調整部と、を備え、
    前記DA変換回路は、容量アレイ型であり、
    その容量アレイの少なくとも一つの容量に、前記サブAD変換回路によりサンプリングされるアナログ信号に加わるオフセット電圧の少なくとも一部を補償するオフセット補償電圧が供給され、
    前記オフセット調整部は、推測結果に基づいて、前記複数の変換ステージのうち少なくとも二つの変換ステージにそれぞれ搭載されるDA変換回路の中から、前記オフセット補償電圧を供給すべきDA変換回路を決定することを特徴とするアナログデジタル変換器。
  2. 前記容量アレイは、複数の容量を含み、
    前記複数の容量のうち一つを除いた容量には、前記サブAD変換回路で変換されたデジタル信号に対応した高電位側基準電圧または低電位側基準電圧が供給され、残り一つの容量には、前記オフセット補償電圧が供給されることを特徴とする請求項1に記載のアナログデジタル変換器。
  3. 前記複数回の変換処理に対応した、前記除去すべき信号を生成するための複数回のDA変換処理のうち、少なくとも一回を前記オフセット補償電圧を供給すべき処理対象とすることを特徴とする請求項1または2に記載のアナログデジタル変換器。
  4. 前記サブAD変換回路および前記DA変換回路を含む変換ステージが、サイクリック型の変換ステージを構成し、前記オフセット補償電圧の値が、周回ごとに異なる値に設定されることを特徴とする請求項1または2に記載のアナログデジタル変換器。
JP2007200086A 2007-07-31 2007-07-31 アナログデジタル変換器 Expired - Fee Related JP4480744B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007200086A JP4480744B2 (ja) 2007-07-31 2007-07-31 アナログデジタル変換器
US12/183,615 US7764214B2 (en) 2007-07-31 2008-07-31 Analog-to-digital converter for converting input analog signal into digital signal through multiple conversion processings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007200086A JP4480744B2 (ja) 2007-07-31 2007-07-31 アナログデジタル変換器

Publications (2)

Publication Number Publication Date
JP2009038535A JP2009038535A (ja) 2009-02-19
JP4480744B2 true JP4480744B2 (ja) 2010-06-16

Family

ID=40337601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200086A Expired - Fee Related JP4480744B2 (ja) 2007-07-31 2007-07-31 アナログデジタル変換器

Country Status (2)

Country Link
US (1) US7764214B2 (ja)
JP (1) JP4480744B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015056A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 容量アレイ回路、およびアナログデジタル変換器
JP5117451B2 (ja) * 2009-06-30 2013-01-16 オンセミコンダクター・トレーディング・リミテッド スイッチトキャパシタ回路、およびアナログデジタル変換器
KR101364987B1 (ko) 2012-06-22 2014-02-21 한국과학기술원 아날로그 입력신호 범위 확장을 통한 데이터 변환이 가능한 파이프라인 아날로그-디지털 변환기
WO2014141350A1 (ja) * 2013-03-12 2014-09-18 パナソニック株式会社 Ad変換器
US9590592B2 (en) * 2014-11-24 2017-03-07 Cypress Semiconductor Corporation Configurable capacitor arrays and switched capacitor circuits
US10868554B1 (en) * 2019-12-06 2020-12-15 Analog Devices International Unlimited Company Time-efficient offset cancellation for multi-stage converters
US20240275397A1 (en) * 2021-05-19 2024-08-15 Beijing Boe Optoelectronics Technology Co., Ltd. Analog-to-digital conversion circuit, integrated chip, display device, and analog-to-digital conversion method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983418A (ja) 1982-11-04 1984-05-14 Hitachi Ltd A/d変換器
JPS63110819A (ja) 1986-10-28 1988-05-16 Toshiba Corp A/dコンバ−タ回路
JPH03280719A (ja) 1990-03-29 1991-12-11 Sanyo Electric Co Ltd A/d変換器
JP3641523B2 (ja) 1996-04-05 2005-04-20 株式会社ルネサステクノロジ パイプライン型a/dコンバータ
CN1285174C (zh) * 2001-06-18 2006-11-15 三洋电机株式会社 模-数转换电路
DE10255354B3 (de) * 2002-11-27 2004-03-04 Infineon Technologies Ag A/D-Wandler mit minimiertem Umschaltfehler
US6914550B2 (en) * 2003-10-09 2005-07-05 Texas Instruments Incorporated Differential pipelined analog to digital converter with successive approximation register subconverter stages using thermometer coding
KR100673483B1 (ko) * 2004-11-25 2007-01-24 한국전자통신연구원 멀티플라잉 디지털-아날로그 변환기 및 이를 이용하는다중 경로 파이프 라인 아날로그-디지털 변환기
US7250880B2 (en) * 2005-03-21 2007-07-31 Analog Devices, Inc. Analog to digital converter

Also Published As

Publication number Publication date
US20090033534A1 (en) 2009-02-05
JP2009038535A (ja) 2009-02-19
US7764214B2 (en) 2010-07-27

Similar Documents

Publication Publication Date Title
EP2629429B1 (en) A/D converter and method for calibrating the same
JP4480744B2 (ja) アナログデジタル変換器
JP5117451B2 (ja) スイッチトキャパシタ回路、およびアナログデジタル変換器
US8797455B2 (en) Analog-to-digital converter, image sensor including the same, and apparatus including image sensor
US6229472B1 (en) A/D converter
US7248199B2 (en) Analog-to-digital converter
US7088277B2 (en) Analog-to-digital converter having cyclic configuration
US11159174B2 (en) Multiplying digital-to-analog converter with pre-sampling and associated pipelined analog-to-digital converter
US7224306B2 (en) Analog-to-digital converter in which settling time of amplifier circuit is reduced
US8203474B2 (en) Pipeline A/D converter
US20110193736A1 (en) Switched-capacitor pipeline stage
US9698815B1 (en) Pipelined ADC with constant charge demand
JPWO2010044444A1 (ja) 巡回型a/d変換器、イメージセンサデバイス、及びアナログ信号からディジタル信号を生成する方法
JP4681622B2 (ja) Ad変換器
US7414563B2 (en) Analog-to-digital converter with a plurality of conversions
US20070247347A1 (en) Electronic Circuit Device
JP2011229128A (ja) パイプライン型a/dコンバータ
JP4093976B2 (ja) アナログデジタル変換器
JP4166168B2 (ja) アナログデジタル変換器
JP2005086695A (ja) アナログ−デジタル変換回路
JP5458075B2 (ja) パイプライン型a/dコンバータ
CN119766243A (zh) 循环模数转换器及其信号处理方法、读出电路和图像传感器
JP4083101B2 (ja) アナログデジタル変換器
JP2011015056A (ja) 容量アレイ回路、およびアナログデジタル変換器
JP5154683B1 (ja) 増幅回路およびa/d変換器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees