[go: up one dir, main page]

JP4478004B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4478004B2
JP4478004B2 JP2004355729A JP2004355729A JP4478004B2 JP 4478004 B2 JP4478004 B2 JP 4478004B2 JP 2004355729 A JP2004355729 A JP 2004355729A JP 2004355729 A JP2004355729 A JP 2004355729A JP 4478004 B2 JP4478004 B2 JP 4478004B2
Authority
JP
Japan
Prior art keywords
heat exchanger
front panel
air
indoor
panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004355729A
Other languages
Japanese (ja)
Other versions
JP2006162173A (en
Inventor
克浩 清水
要 仙道
広明 東地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Japan Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004355729A priority Critical patent/JP4478004B2/en
Publication of JP2006162173A publication Critical patent/JP2006162173A/en
Application granted granted Critical
Publication of JP4478004B2 publication Critical patent/JP4478004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、室内機に前面吸込み口を開閉する可動式の前面パネルを備えた空気調和機に係り、特に除湿運転における前面パネルの動作制御の改良に関する。   The present invention relates to an air conditioner including a movable front panel that opens and closes a front suction port in an indoor unit, and more particularly to improvement in operation control of the front panel in a dehumidifying operation.

空気調和機を構成する室内機においては、長期の使用に亘ると本体内の隙間などから侵入した塵埃が熱交換器に付着堆積し、あるいは送風機ファンや送風路、ドレンパンに付着してしまう。さらに、冷房運転の停止直後は、熱交換器で凝縮した凝縮水の一部が流下せずに留り易く、あるいはドレンパンに残って本体内の湿度が高くなる。そのため、塵埃に含まれる雑菌やカビの繁殖がより強まる結果となっている。   In an indoor unit that constitutes an air conditioner, dust that has entered from a gap in the main body adheres to and accumulates on a heat exchanger or adheres to a blower fan, an air passage, or a drain pan over a long period of use. Furthermore, immediately after the cooling operation is stopped, part of the condensed water condensed in the heat exchanger does not flow down easily, or remains in the drain pan and the humidity in the main body increases. For this reason, the propagation of germs and molds contained in the dust is enhanced.

そこで、本出願人においては、たとえば[特許文献1]の技術を提供するに至った。ここには、前面吸込み口に可動式の前面パネルを開閉自在に備えることを特徴としている。前面パネルは、通常の空気調和運転時および本体内乾燥運転時に突出駆動されて前面吸込み口を開放し、運転停止時および本体内殺菌運転時に後退駆動されて前面吸込み口を閉成する。   Therefore, the present applicant has provided, for example, the technique of [Patent Document 1]. Here, a movable front panel is provided at the front suction port so as to be freely opened and closed. The front panel is driven to protrude during normal air-conditioning operation and during drying in the main body to open the front suction port, and is driven backward during operation stop and during sterilization in the main body to close the front suction port.

すなわち、冷房運転終了後に除湿運転を行うとともに、吹出し口から吹出される乾燥空気を直接、前面吸込み口に吸込ませるようショートサーキットさせ、内部の構成機器を乾燥させて、雑菌やカビの繁殖を防止する。さらに、このショートサーキット運転時に、電気集塵機で発生するオゾンを本体内部全体に充満させ、雑菌やカビを確実に滅菌、殺菌する。
特開2003−74897号公報
In other words, after the cooling operation is completed, the dehumidifying operation is performed, and the dry air blown out from the blowout port is short-circuited directly into the front suction port, and the internal components are dried to prevent the propagation of germs and mold. To do. Furthermore, during this short circuit operation, ozone generated by the electrostatic precipitator is filled in the entire interior of the main body to reliably sterilize and sterilize germs and molds.
JP 2003-74897 A

ところで、上述の[特許文献1]の技術では、本体に設けられる前面吸込み口の下端と、吹出し口の上端とは所定の間隔を存している。そのため、循環風量が小さい場合は熱交換空気が前面パネルの外側表面に沿って上昇し有効な効果が得られるが、循環風量を大きく設定すると、一部の吹出し気流が前面パネルの外側表面から離間して室内(居住域)へ吹出される傾向にある。   By the way, in the technique of the above-mentioned [Patent Document 1], there is a predetermined interval between the lower end of the front suction port provided in the main body and the upper end of the blowout port. Therefore, when the circulating air volume is small, the heat exchange air rises along the outer surface of the front panel and an effective effect can be obtained.However, if the circulating air volume is set large, a part of the blown air flow is separated from the outer surface of the front panel. And tend to be blown into the room (residential area).

一方、従来より多用される再熱方式を採用した除湿運転では、固定の絞り機構を介して室内熱交換器を再熱部と除湿部に分けている。そのため、除湿部における冷媒の蒸発温度を空気露点温度以下にする必要があり、圧縮機の運転周波数(回転数)を大にすることで対応していた。   On the other hand, in a dehumidifying operation that employs a reheating method that has been used more often than before, the indoor heat exchanger is divided into a reheating part and a dehumidifying part through a fixed throttle mechanism. Therefore, it is necessary to set the evaporation temperature of the refrigerant in the dehumidifying section to be equal to or lower than the air dew point temperature, and this has been dealt with by increasing the operating frequency (rotation speed) of the compressor.

しかしながら、圧縮機の運転周波数を大にすると高圧側の圧力も上昇して、実際に除湿に必要な潜熱能力に対して無駄な顕熱能力(再熱量と冷却熱量)が大きくなる。たとえば、消費電力が2.8KWクラスの空気調和機において、冷房運転時の入力が500Wであるのに対して、除湿量800cc/hの除湿運転時の入力は400Wも要しており、省エネ性が悪化する。
また、上記した再熱方式では通過する空気との熱交換量を高めて省エネ性の向上化を図るために、室内へより多量の風量を吹出す。したがって、風速による肌寒さが問題となっている。
However, when the operating frequency of the compressor is increased, the pressure on the high pressure side also increases, and the sensible heat capacity (reheat amount and cooling heat amount) that is wasted relative to the latent heat capacity actually required for dehumidification increases. For example, in an air conditioner with power consumption of 2.8 KW class, the input during cooling operation is 500 W, while the input during dehumidification operation with a dehumidification amount of 800 cc / h requires 400 W, which is energy saving. Gets worse.
Further, in the above-described reheating method, a larger amount of air is blown into the room in order to increase the amount of heat exchange with the passing air and improve energy saving. Therefore, chilliness due to wind speed is a problem.

本発明は上記事情に着目してなされたものであり、その目的とするところは、前面吸込み口を開閉する可動式の前面パネルを備えたうえで、循環風量の大小に係らず、常に有効な循環流を形成して、居住域へ逃げる風量を抑制し、特に除湿運転時における送風効率および熱交換効率の向上化を得られる空気調和機を提供しようとするものである。   The present invention has been made paying attention to the above circumstances, and the purpose thereof is to provide a movable front panel that opens and closes the front suction port, and is always effective regardless of the amount of circulating air. An object of the present invention is to provide an air conditioner that forms a circulating flow and suppresses the amount of air that escapes to the living area, and that can improve the air blowing efficiency and the heat exchange efficiency particularly during the dehumidifying operation.

上記目的を達成するため本発明は、室内機および室外機を備えて冷媒管を介して冷凍サイクルを構成するように連通する空気調和機において、室内機の室内機本体は、前面と上面に吸込み口、前面下部に吹出し口が設けられる筐体であり、
内部に、補助絞り弁を介して連通され、上下方向における略中間部分より上半分の部分から構成される第1の熱交換器部および、下半分の部分より構成される第2の熱交換器部からなり除湿運転時に第1の熱交換器を再熱部とし、第2の熱交換器を蒸発部とする構成の室内熱交換器および、室内送風機を収容し、
可動式の前面パネルは室内機本体の前面吸込み口に開閉自在に設けられ、水平ルーバは吹出し口に設けられて熱交換空気の上下方向の風向を設定し、
制御手段は、前面パネル下部が吹出し口の上下方向中間部の上記水平ルーバの前面一部を覆う位置まで延出され前面吸込み口に当接してこの前面吸込み口を閉成する全閉モードと、前面パネルの下部が吹出し口より上側に位置され前面吸込み口より離間して対向する位置姿勢に制御されてこの前面吸込み口を開放する全開モードおよび、
前面パネルの下部が吹出し口の上部を覆うよう水平ルーバの前面に対向した位置に延出して保持され、上部が前面吸込み口と間隙を介して対向し、前面パネル上端が前面パネル下端より前方へ突出して全体に傾斜姿勢に制御され吹出し口の下部側から吹出される熱交換空気が前面パネルの外側表面に沿って流れ、上面吸込み口と前面吸込み口から室内機本体内に吸込まれて第1の熱交換部と熱交換するパネル外面循環気流と、吹出し口の上部側から吹出される熱交換空気が前面パネルの内側表面に沿って流れ、前面吸込み口から室内機本体内に吸込まれて第2の熱交換部と熱交換するパネル内面循環気流とを形成する半開モードとのいずれかに水平ルーバおよび前面パネルの位置姿勢を切換え制御する
To achieve the above object, the present invention provides an air conditioner that includes an indoor unit and an outdoor unit and communicates with a refrigerant pipe so as to form a refrigeration cycle. It is a housing with a blowout opening at the front and lower front.
Inside, communicates via an auxiliary throttle valve, a first heat exchanger unit that consists of the portion of the upper half than the substantially intermediate portion and in the vertical direction, the second heat exchanger composed of portions of the lower half made parts, the first heat exchanger and reheat section during dehumidification operation, the configuration of the indoor heat exchanger to the evaporation portion and the second heat exchanger and houses the indoor blower,
A movable front panel can be opened and closed freely at the front inlet of the indoor unit body, and a horizontal louver is installed at the outlet to set the vertical direction of heat exchange air.
Control means fully closed mode for closing the front suction port in contact with the bottom air outlet of the vertically intermediate portion extending to the front suction opening to a position covering a front portion of the horizontal louver on the front panel And a fully open mode in which the lower portion of the front panel is positioned above the blowout port and is controlled to a position and orientation opposed to the front suction port to open the front suction port, and
The lower part of the front panel is extended and held at the position facing the front of the horizontal louver so as to cover the upper part of the outlet, the upper part is opposed to the front inlet through the gap, and the upper end of the front panel is forward of the lower end of the front panel Heat-exchanging air that protrudes and is controlled to be entirely inclined and flows from the lower side of the outlet flows along the outer surface of the front panel, and is sucked into the indoor unit body from the upper surface inlet and the front inlet . and the panel outer surface circulating air flow and heat exchange 1 of the heat exchange unit, the heat exchange air discharged from the upper side of the air outlet to flow along the inner surface of the front panel, is sucked from the front suction port to the indoor unit body controls switching the position and orientation of the horizontal louver and the front panel to one of the half-open mode for forming a panel inner surface circulation stream you heat exchanger and the second heat exchanging portion.

本発明によれば、循環風量の大小に係らず常に有効な循環流を形成して居住域へ逃げる風量を抑制し、特に除湿運転時における送風効率および熱交換効率の向上化を得られる等の効果を奏する。   According to the present invention, regardless of the size of the circulating airflow, an effective circulation flow is always formed to suppress the airflow that escapes to the living area, and in particular, an improvement in air blowing efficiency and heat exchange efficiency during dehumidifying operation can be obtained. There is an effect.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
図1は空気調和機を構成する室内機の概略の断面図、図2は空気調和機の冷凍サイクル構成図、図3は除湿運転時における全開モード時の室内機の模式的な断面図、図4は除湿運転時における半開モード時の室内機の模式的な断面図である。
図中1は、前面板1Aと後板1Bとから構成される筐体からなる室内機本体である。この室内機本体1は、側面視で湾曲成される前面部を備え、上面部と下面部および左右両側部は、ほぼ平板状をなしている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of an indoor unit constituting an air conditioner, FIG. 2 is a configuration diagram of a refrigeration cycle of the air conditioner, and FIG. 3 is a schematic cross-sectional view of the indoor unit in a fully open mode during a dehumidifying operation. 4 is a schematic cross-sectional view of the indoor unit in the half-open mode during the dehumidifying operation.
In the figure, reference numeral 1 denotes an indoor unit body composed of a housing composed of a front plate 1A and a rear plate 1B. The indoor unit body 1 includes a front surface portion that is curved in a side view, and an upper surface portion, a lower surface portion, and both left and right side portions are substantially flat.

室内機本体1の上面部に上面吸込み口2が設けられ、前面部に前面吸込み口3が設けられる。前面吸込み口3の下部に沿って吹出し口4が設けられる。上面吸込み口2にはグリル5が嵌め込まれていて、常時、開口状態にあるが、前面吸込み口3には後述する可動式の前面パネル6がリンク式の開閉機構を介して開閉自在に取付けられる。   An upper surface inlet 2 is provided on the upper surface of the indoor unit body 1, and a front inlet 3 is provided on the front. A blowout port 4 is provided along the lower portion of the front suction port 3. A grille 5 is fitted in the upper surface suction port 2 and is always open, but a movable front panel 6 described later is attached to the front surface suction port 3 so as to be freely opened and closed via a link type opening / closing mechanism. .

上記吹出し口4には、上下部2枚の水平ルーバ7A,7Bが上下に平行に設けられる。下部水平ルーバ7Bは、水平長手方向とは直交する前後方向寸法が、上部水平ルーバ7Aの水平長手方向とは直交する前後方向寸法よりも大に形成される。
これら上下部水平ルーバ7A,7Bは、図示しない駆動機構に連結されていて、この駆動機構は制御部(制御手段)8と電気的に接続され、それぞれ別個に回動制御される。すなわち、吹出し口4から吹出される熱交換空気の上下方向の風向を設定する、もしくは吹出し口4を閉成するようになっている。
The blowout port 4 is provided with two horizontal louvers 7A and 7B in parallel in the vertical direction. The lower horizontal louver 7B is formed so that the longitudinal dimension perpendicular to the horizontal longitudinal direction is larger than the longitudinal dimension perpendicular to the horizontal longitudinal direction of the upper horizontal louver 7A.
These upper and lower horizontal louvers 7A and 7B are coupled to a drive mechanism (not shown), and this drive mechanism is electrically connected to a control unit (control means) 8 and is individually controlled to rotate. That is, the air direction in the vertical direction of the heat exchange air blown out from the blowout port 4 is set, or the blowout port 4 is closed.

室内機本体1内には、前側熱交換器部9Aと後側熱交換器部9Bとで略逆V字状に形成される冷凍サイクル機器である室内熱交換器9が配置される。上記前側熱交換器部9Aは、室内機本体1の前面から上面の一部に亘り所定間隙を存してほぼ平行に湾曲成される。後側熱交換器部9Bは、直状で斜めに傾斜して上面吸込み口2と対向する。   In the indoor unit body 1, an indoor heat exchanger 9, which is a refrigeration cycle device formed in a substantially inverted V shape by the front heat exchanger portion 9A and the rear heat exchanger portion 9B, is disposed. The front heat exchanger section 9A is curved substantially in parallel with a predetermined gap from the front surface of the indoor unit body 1 to a part of the upper surface. The rear heat exchanger section 9B is straight and obliquely inclined and faces the upper surface inlet 2.

なお、上記室内熱交換器9は、構造上は以上説明したように前側熱交換器部9Aと後側熱交換器部9Bとからなり略逆V字状に形成されるが、冷凍サイクル上は後述するように構成されている。
上記室内熱交換器9の前側熱交換器部9Aの前面側には、電気集塵機11が取付けられている。この電気集塵機11は、上記制御部8と電気的に接続され、本来の集塵動作をなすとともにオゾン発生装置として動作させることも可能である。
As described above, the indoor heat exchanger 9 is composed of the front heat exchanger portion 9A and the rear heat exchanger portion 9B and is formed in a substantially inverted V shape. This is configured as described later.
An electric dust collector 11 is attached to the front side of the front heat exchanger section 9 </ b> A of the indoor heat exchanger 9. The electrostatic precipitator 11 is electrically connected to the control unit 8 and can perform an original dust collecting operation and can also be operated as an ozone generator.

上記熱交換器9の前後側熱交換器部9A,9Bの相互間で、かつ上記吹出し口4と対向して、上記制御部8と電気的に接続される室内送風機12が配置される。この室内送風機12は、室内熱交換器9の幅方向寸法と略同一の軸方向寸法を備え、室内熱交換器9と対向して配置される横流ファンと、この横流ファンを回転駆動するファンモータとから構成される。   An indoor blower 12 that is electrically connected to the control unit 8 is disposed between the front and rear heat exchanger units 9A and 9B of the heat exchanger 9 and opposed to the outlet 4. The indoor blower 12 has an axial dimension substantially the same as the width dimension of the indoor heat exchanger 9, a cross-flow fan disposed facing the indoor heat exchanger 9, and a fan motor that rotationally drives the cross-flow fan. It consists of.

上記前側熱交換器部9Aの下端部は前ドレンパン13a上に載り、後側熱交換器部9Bの下端部は後板1Bと一体に形成される後ドレンパン13b上に載って、それぞれの熱交換器部9A,9Bから滴下するドレン水を受け、図示しない排水ホースを介して外部に排水できるようになっている。   The lower end portion of the front heat exchanger 9A is placed on the front drain pan 13a, and the lower end of the rear heat exchanger portion 9B is placed on the rear drain pan 13b formed integrally with the rear plate 1B. The drain water dripped from the vessel portions 9A and 9B can be received and drained to the outside via a drain hose (not shown).

前後ドレンパン13a,13bと近接した位置には、室内送風機12のファンに対するノーズを構成し、かつ吹出し口7に亘って隔壁部材14が設けられる。この隔壁部材14と上記後板1Bとで囲まれる空間が、ノーズと吹出し口4とを連通する送風路15の一部となる。   At a position close to the front and rear drain pans 13 a and 13 b, a nose for the fan of the indoor blower 12 is formed, and a partition wall member 14 is provided across the outlet 7. A space surrounded by the partition member 14 and the rear plate 1B becomes a part of the air passage 15 that communicates the nose and the outlet 4.

すなわち、室内機本体1内は上記送風機12の駆動にともなって、上面吸込み口2および前面吸込み口3と、上記吹出し口4とを連通する送風路15が形成される。上記室内熱交換器9および電気集塵機11は、この送風路15の中途部に配置されることになる。
一方、上面吸込み口2および前面吸込み口3と、前側熱交換器部9Aおよび上側熱交換器部9Bとの間にフィルタ17が取付けられる。このフィルタ17は、前面パネル6を開放した状態で、吹出し口4上端から挿着され、必要に応じて同部位から取外し自在である。
That is, in the indoor unit main body 1, an air passage 15 that connects the upper surface inlet 2, the front surface inlet 3, and the outlet 4 is formed as the fan 12 is driven. The indoor heat exchanger 9 and the electrostatic precipitator 11 are arranged in the middle of the air passage 15.
On the other hand, a filter 17 is attached between the upper surface suction port 2 and the front surface suction port 3, and the front heat exchanger portion 9A and the upper heat exchanger portion 9B. The filter 17 is inserted from the upper end of the outlet 4 with the front panel 6 opened, and can be removed from the same part as necessary.

つぎに、上記前面パネル6について詳述する。
上記前面パネル6は、前面吸込み口3を閉成する状態で、前面パネル6の上端と両側端が上記前面吸込み口3の上端と両側端に沿って当接するが、前面パネル6の下部6aは前面吸込み口3の下端からさらに下方の吹出し口4の上下方向中間部まで延出される。
Next, the front panel 6 will be described in detail.
In the state where the front suction port 3 is closed, the upper end and both side ends of the front panel 6 abut along the upper end and both side ends of the front suction port 3. It extends from the lower end of the front suction port 3 to the intermediate portion in the vertical direction of the blowout port 4 below.

そして、前面パネル6の下部6aは吹出し口4を閉成している上部水平ルーバ7Aの前面と狭小の間隙を存して重なり、前面パネル6の下端は下部水平ルーバ7B上端と近接した状態になるよう設計されている。すなわち、前面パネル6は前面吸込み口3を閉成するばかりでなく、前面パネル下部6aは吹出し口4の上部側を上部水平ルーバ7Aとともに略二重構造として閉成する。   The lower portion 6a of the front panel 6 overlaps with the front surface of the upper horizontal louver 7A that closes the outlet 4 with a narrow gap, and the lower end of the front panel 6 is close to the upper end of the lower horizontal louver 7B. Designed to be That is, the front panel 6 not only closes the front suction port 3, but the front panel lower portion 6a closes the upper side of the outlet 4 together with the upper horizontal louver 7A as a substantially double structure.

上記開閉駆動機構は、特に詳細に図示していないが、複数組のリンク部材と、リンク部材を連結する駆動軸と、駆動軸を駆動する駆動源とから構成される。上記駆動源は、上記制御部8と電気的に接続され、ここからの制御信号を駆動源が受けて駆動軸を駆動し、リンク部材が伸縮して前面パネル6を前後方向に移動できるようになっている。   Although not shown in detail, the opening / closing drive mechanism includes a plurality of sets of link members, a drive shaft that connects the link members, and a drive source that drives the drive shaft. The drive source is electrically connected to the control unit 8 and receives a control signal from the drive source to drive the drive shaft so that the link member can expand and contract to move the front panel 6 in the front-rear direction. It has become.

図1に示すように、前面パネル6が前面吸込み口3を閉成するとともに、前面パネル下部6aが吹出し口4の上部を覆うよう上部水平ルーバ7Aの前面に対向した位置まで延出している。このような前面パネル6の位置姿勢を「全閉モード」と呼ぶ。
図3に示すように、前面パネル6が前面吸込み口3に対する閉成位置から前上方へ離間し、前面吸込み口3を大きく開放してその位置姿勢を保持した状態で、前面パネル6の上端は前面吸込み口3の上端より高い位置になり、前面パネル6の下端が吹出し口4の上端よりも高い位置になる。このような前面パネル6の位置姿勢を「全開モード」と呼ぶ。
As shown in FIG. 1, the front panel 6 closes the front suction port 3, and the front panel lower portion 6 a extends to a position facing the front surface of the upper horizontal louver 7 </ b> A so as to cover the upper portion of the outlet 4. Such a position and orientation of the front panel 6 is referred to as a “fully closed mode”.
As shown in FIG. 3, in the state where the front panel 6 is separated from the closed position with respect to the front suction port 3 to the front upper side, the front suction port 3 is largely opened and the position is maintained, the upper end of the front panel 6 is The position is higher than the upper end of the front inlet 3, and the lower end of the front panel 6 is higher than the upper end of the outlet 4. Such a position and orientation of the front panel 6 is referred to as a “fully open mode”.

図4に示すように、前面パネル6が前面吸込み口3における閉成位置からわずかに前方へ離間し、前面吸込み口3を小さく開放してその位置姿勢を保持する。そして、前面パネル下部6aが吹出し口4の上部を覆うよう上部水平ルーバ7Aの前面に対向した位置まで延出した位置に保持される。前面パネル上端は前面パネル下端よりも前方へ突出し、前面パネル6全体として傾斜姿勢をなしている。このような前面パネル6の位置姿勢を「半開モード」と呼ぶ。   As shown in FIG. 4, the front panel 6 is slightly separated from the closed position in the front suction port 3 to the front, and the front suction port 3 is opened to a small size to maintain its position and orientation. And the front panel lower part 6a is hold | maintained in the position extended to the position facing the front surface of the upper horizontal louver 7A so that the upper part of the blower outlet 4 might be covered. The upper end of the front panel projects forward from the lower end of the front panel, and the front panel 6 as a whole is inclined. Such a position and orientation of the front panel 6 is referred to as a “half-open mode”.

図2に示すように、室内機とともに空気調和機を構成する室外機は、室外機本体20内に圧縮機21と、四方切換え弁22と、室外熱交換器23と、減圧装置である電子膨張弁24と、上記室外熱交換器23と対向して室外送風機25が収容配置される。
上記圧縮機21、四方切換え弁22、室外熱交換器23、電子膨張弁24および上記室内機本体1内の室内熱交換器9は、冷媒管Pを介してヒートポンプ式の冷凍サイクル回路を構成するよう連通される。
As shown in FIG. 2, an outdoor unit that constitutes an air conditioner together with an indoor unit includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, and an electronic expansion that is a decompression device in the outdoor unit main body 20. An outdoor fan 25 is accommodated and disposed so as to face the valve 24 and the outdoor heat exchanger 23.
The compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the electronic expansion valve 24, and the indoor heat exchanger 9 in the indoor unit body 1 constitute a heat pump type refrigeration cycle circuit through the refrigerant pipe P. Communicated.

そして、上記圧縮機21、四方切換え弁22、電子膨張弁24および室外送風機25は、上記制御部8と電気的に接続されていて、この制御部8から必要な制御信号を受けるようになっている。
上記室内熱交換器9は、前側熱交換器部9Aと後側熱交換器部9Bが直列に接続されて冷媒が導通するよう構成される。後述する冷房運転時および除湿運転時には、冷媒は後側熱交換器部9Bに導入されて前側熱交換器部9Aから導出され、暖房運転時には逆に、冷媒は前側熱交換器部9Aから導入されて後側熱交換器部9Bから導出される。
The compressor 21, the four-way switching valve 22, the electronic expansion valve 24, and the outdoor fan 25 are electrically connected to the control unit 8 and receive necessary control signals from the control unit 8. Yes.
The indoor heat exchanger 9 is configured such that the front heat exchanger section 9A and the rear heat exchanger section 9B are connected in series and the refrigerant is conducted. During cooling operation and dehumidifying operation, which will be described later, the refrigerant is introduced into the rear heat exchanger section 9B and led out from the front heat exchanger section 9A. Conversely, during the heating operation, the refrigerant is introduced from the front heat exchanger section 9A. And derived from the rear heat exchanger section 9B.

そして、室内熱交換器9は、冷媒導通路の中間部に補助絞り弁である除湿弁10が設けられていて、この除湿弁10を介して第1の熱交換器部Uと第2の熱交換器部Dとが接続されてなる。
上記第1の熱交換器部Uは、後側熱交換器部9Bの全部および前側熱交換器部9Aの上下方向における略中間部分より上半分の部分から構成される。上記第2の熱交換器部Dは、前側熱交換器部9Aの上下方向における略中間部分より下半分の部分から構成される。上記除湿弁10は、第1の熱交換器部Uと第2の熱交換器部Dとの間である、前側熱交換器部9Aの上下方向における略中間部分に設けられる。
And the indoor heat exchanger 9 is provided with the dehumidification valve 10 which is an auxiliary throttle valve in the intermediate part of a refrigerant | coolant conduction path, The 1st heat exchanger part U and 2nd heat are passed through this dehumidification valve 10. The exchange part D is connected.
The first heat exchanger unit U is composed of the whole of the rear heat exchanger unit 9B and the upper half of the substantially middle part in the vertical direction of the front heat exchanger unit 9A. The second heat exchanger part D is composed of a lower half part from a substantially middle part in the up-down direction of the front heat exchanger part 9A. The dehumidifying valve 10 is provided at a substantially intermediate portion in the vertical direction of the front heat exchanger portion 9A, which is between the first heat exchanger portion U and the second heat exchanger portion D.

このようにして構成される空気調和機であって、再び図1に示すように、運転停止時は前面パネル6が前面吸込み口3を閉成するとともに、前面パネル下部6aが上部水平ルーバ7Aの略前面にあって下部水平ルーバ7Bとともに吹出し口4を閉成する。
上下部水平ルーバ7A,7Bは吹出し口4を閉成しているので、前面吸込み口3および吹出し口4から室内機本体1内部への塵埃の侵入はない。そして、前面パネル下部6aが上部水平ルーバ7Aの前面にあり、上部水平ルーバ7Aの表面に対する塵埃の付着を防止するので、後述するように熱交換空気が循環気流を形成する場合に極めて有効である。
In the air conditioner configured as described above, as shown in FIG. 1 again, when the operation is stopped, the front panel 6 closes the front inlet 3 and the front panel lower portion 6a is the upper horizontal louver 7A. The blowout port 4 is closed together with the lower horizontal louver 7B on the substantially front surface.
Since the upper and lower horizontal louvers 7A and 7B close the air outlet 4, dust does not enter the interior of the indoor unit body 1 from the front air inlet 3 and the air outlet 4. Since the front panel lower portion 6a is located on the front surface of the upper horizontal louver 7A and prevents dust from adhering to the surface of the upper horizontal louver 7A, it is extremely effective when heat exchange air forms a circulating airflow as will be described later. .

冷房運転を設定すると、制御部8はコンプレッサ21を駆動制御して冷凍サイクル運転を開始する。この運転では、電子膨張弁24は絞り制御され、除湿弁10は完全開放される。さらに、室内送風機12を駆動して送風路15に沿って室内空気を導びく。同時に、開閉駆動機構および上下部水平ルーバ7A,7Bの駆動源を駆動する。前面パネル6は前面吸込み口3を完全開放し、上下部水平ルーバ7A,7Bは略水平姿勢に回動変位して、吹出し口4を完全開放する。   When the cooling operation is set, the controller 8 controls the compressor 21 to start the refrigeration cycle operation. In this operation, the electronic expansion valve 24 is throttled and the dehumidification valve 10 is fully opened. Furthermore, the indoor air blower 12 is driven to guide indoor air along the air flow path 15. At the same time, the open / close drive mechanism and the drive sources of the upper and lower horizontal louvers 7A and 7B are driven. The front panel 6 completely opens the front suction port 3, and the upper and lower horizontal louvers 7 </ b> A and 7 </ b> B are rotationally displaced in a substantially horizontal posture to completely open the outlet 4.

室内空気は上面吸込み口2および前面吸込み口3から室内機本体1内に吸込まれ、送風路15に沿って導かれる。その途中、電気集塵機11で集塵され、室内熱交換器9と熱交換して冷気に変り、吹出し口4から吹出される。冷気が室内へ吹出されることにより、室内の冷房作用を得られる。   The room air is sucked into the indoor unit main body 1 from the upper surface suction port 2 and the front surface suction port 3, and is guided along the air blowing path 15. On the way, the dust is collected by the electric dust collector 11, exchanges heat with the indoor heat exchanger 9, changes into cold air, and is blown out from the outlet 4. Cooling air is blown into the room, so that an indoor cooling action can be obtained.

なお、制御部8は、冷房立ち上がり時と、室温安定時および居住者の要求に応じた運転条件(たとえば、肌の乾燥を防止する人にやさしい気流運転)のそれぞれに応じて、前面パネル6と上下部水平ルーバ7A,7Bの位置および姿勢を、きめ細かく設定制御できるようになっている。   In addition, the control part 8 is the front panel 6 according to each of the cooling conditions, the room temperature stability, and the driving | running condition according to the request | requirement of a resident | resident (for example, airflow driving | operation easy for a person who prevents drying of skin). The positions and postures of the upper and lower horizontal louvers 7A and 7B can be finely set and controlled.

暖房運転が設定された場合は、四方切換え弁22が切換る以外、除湿弁10をはじめとする各構成部品は、基本的には冷房運転時と同様に制御される。室内熱交換器9で冷媒の凝縮作用がなされ、室内熱交換器9を流通する室内空気が暖気に変って室内へ吹出され暖房作用を得られる。   When the heating operation is set, the components such as the dehumidifying valve 10 are basically controlled in the same manner as in the cooling operation except that the four-way switching valve 22 is switched. The refrigerant is condensed in the indoor heat exchanger 9, and the indoor air flowing through the indoor heat exchanger 9 is turned into warm air and blown into the room to obtain a heating action.

このときも、暖房立ち上がり時と、室温安定時および居住者の要求に応じた運転条件(たとえば、肌の乾燥を防止する人にやさしい気流運転)のそれぞれに応じて、前面パネル6と上下部水平ルーバ7A,7Bの位置および姿勢を、きめ細かく設定制御できるようになっていることは、勿論である。   Also at this time, the front panel 6 and the upper and lower parts are horizontally aligned according to the heating start-up, the room temperature stability, and the operating conditions according to the occupant's requirements (for example, the airflow operation that is easy on the person to prevent skin drying). Of course, the position and posture of the louvers 7A and 7B can be finely set and controlled.

除湿運転が設定されると、図3に示すように、前面パネル6は全開モードに切換え制御され、上下部吹出しルーバ7A,7Bは互いに室内に向かって斜め下方に傾斜するよう姿勢が定められる。したがって、前面吸込み口3と吹出し口4が完全開放される。
そして、電子膨張弁24が全開状態となる一方で除湿弁10が絞り制御され、圧縮機21および室外送風機25と室内送風機12の運転が開始される。圧縮機21で圧縮された高温高圧の冷媒ガスは、四方切換え弁22を介して室外熱交換器23に導かれ、大部分の冷媒ガスが凝縮する。
When the dehumidifying operation is set, as shown in FIG. 3, the front panel 6 is controlled to be switched to the fully open mode, and the upper and lower blowout louvers 7A and 7B are set to be inclined obliquely downward toward each other. Therefore, the front inlet 3 and the outlet 4 are completely opened.
Then, while the electronic expansion valve 24 is fully opened, the dehumidification valve 10 is controlled to be throttled, and the operation of the compressor 21, the outdoor fan 25, and the indoor fan 12 is started. The high-temperature and high-pressure refrigerant gas compressed by the compressor 21 is guided to the outdoor heat exchanger 23 via the four-way switching valve 22 and most of the refrigerant gas is condensed.

そして、全開状態の電子膨張弁24を流通して室内熱交換器9に導入される。ここでは、はじめに第1の熱交換器部Uに導かれて、室外熱交換器23で凝縮しきれない残りの冷媒ガスが凝縮する。すなわち、第1の熱交換器部Uは再熱部として機能する。
第1の熱交換器部Uで全ての冷媒ガスが凝縮された状態で除湿弁10に導かれ、減圧膨張して第2の熱交換器部Dに導かれ蒸発する。したがって、第2の熱交換器部Dは除湿部(蒸発部)として機能する。
And it distribute | circulates the electronic expansion valve 24 of a full open state, and is introduce | transduced into the indoor heat exchanger 9. FIG. Here, the remaining refrigerant gas that is first guided to the first heat exchanger unit U and cannot be condensed in the outdoor heat exchanger 23 is condensed. That is, the first heat exchanger unit U functions as a reheat unit.
In the state where all the refrigerant gas is condensed in the first heat exchanger unit U, the refrigerant gas is led to the dehumidifying valve 10 and expanded under reduced pressure, and then led to the second heat exchanger unit D to be evaporated. Therefore, the 2nd heat exchanger part D functions as a dehumidification part (evaporation part).

結局、室内熱交換器9においては、図に破線ハッチングで示す第1の熱交換器部Uで冷媒を凝縮し、流通する室内空気に凝縮熱を放出する。室内空気は、図に破線矢印で示すように暖気になって送風路15に沿って導かれ、吹出し口4から吹出される。
さらに、室内熱交換器9においては、図に交差ハッチングで示す第2の熱交換器部Dで冷媒が蒸発し、流通する室内空気から蒸発潜熱を奪う。室内空気は、図に一点鎖線矢印に示すように除湿冷気になって送風路15を導かれ、吹出し口4から吹出される。
Eventually, in the indoor heat exchanger 9, the refrigerant is condensed in the first heat exchanger section U indicated by broken line hatching in the figure, and the condensed heat is released to the circulating indoor air. The room air is warmed as indicated by broken line arrows in the drawing, guided along the air blowing path 15, and blown out from the outlet 4.
Further, in the indoor heat exchanger 9, the refrigerant evaporates in the second heat exchanger portion D indicated by cross hatching in the figure, and takes latent heat of evaporation from the circulating indoor air. The room air is dehumidified and cold as shown by the one-dot chain line arrow in the figure, is guided through the air passage 15, and is blown out from the outlet 4.

吹出し口4においては暖気と除湿冷気とが混合して、再熱除湿された熱交換空気となる。上下部水平ルーバ7A,7Bが室内に向けて斜め下方に傾斜した姿勢となっているので、全ての熱交換空気が効率よく室内へ吹出される。
上述したように前面パネル6が前面吸込み口3を全開するうえに、上面吸込み口2からも室内空気を吸込むところから、吹出し口4から吹出される熱交換空気は充分な風量が確保され、室内は早急に除湿される。
At the outlet 4, warm air and dehumidified cold air are mixed to form heat exchange air that has been deheated and dehumidified. Since the upper and lower horizontal louvers 7A, 7B are inclined obliquely downward toward the room, all heat exchange air is efficiently blown into the room.
As described above, the front panel 6 fully opens the front air inlet 3 and also sucks room air from the upper air inlet 2, so that the heat exchange air blown from the outlet 4 has a sufficient air volume, Is quickly dehumidified.

室内の除湿環境が安定すると、制御部8は圧縮機21の運転周波数を所定値以下に保持して運転能力を低下するとともに、図4に示すように前面パネル6と上下部水平ルーバ7A,7Bの位置姿勢を切換え制御する。
すなわち、前面パネル6は半開モードに切換えられ、上下部水平ルーバ7A,7Bは、ともに前端が後端よりもわずかに上方へ向き、室内に向かって斜め上方へ傾く姿勢となる。そのため、吹出し口4では、上部水平ルーバ7Aと吹出し口4上部との間に熱交換空気が吹出されるとともに、上部水平ルーバ7Aと下部水平ルーバ7Bとの間に熱交換空気が吹出される。
When the indoor dehumidifying environment is stabilized, the control unit 8 keeps the operating frequency of the compressor 21 below a predetermined value to lower the operating capability, and as shown in FIG. 4, the front panel 6 and the upper and lower horizontal louvers 7A and 7B. Controls the position and orientation of the.
That is, the front panel 6 is switched to the half-open mode, and the upper and lower horizontal louvers 7A and 7B are both in a posture in which the front end is slightly upward from the rear end and is inclined obliquely upward toward the room. Therefore, at the blowout port 4, heat exchange air is blown between the upper horizontal louver 7A and the upper portion of the blowout port 4, and heat exchange air is blown between the upper horizontal louver 7A and the lower horizontal louver 7B.

室内送風機12の駆動にともない、図に一点鎖線矢印で示すように、上部水平ルーバ7Aの上部側から吹出される熱交換空気が、室内機本体1前面と前面パネル6内側表面との間を通過して上昇する。熱交換空気が前面吸込み口3に対向したところで室内送風機12の吸込み圧の影響を受け、前面吸込み口3の下部側を流通して室内機本体1内に導入される。   As the indoor blower 12 is driven, the heat exchange air blown from the upper side of the upper horizontal louver 7A passes between the front surface of the indoor unit body 1 and the inner surface of the front panel 6 as indicated by a one-dot chain line arrow in the figure. Then rise. When the heat exchange air faces the front suction port 3, it is influenced by the suction pressure of the indoor blower 12, flows through the lower side of the front suction port 3, and is introduced into the indoor unit body 1.

さらに、熱交換空気はフィルタ17を介して室内熱交換器9に導かれるが、室内熱交換器9を構成する前側熱交換器部9Aが前面吸込み口3と略対向して配置されるところから、ほとんどの熱交換空気は前側熱交換器部9A下部に形成される第2の熱交換器部Dを流通して熱交換する。   Further, the heat exchange air is guided to the indoor heat exchanger 9 through the filter 17, and the front heat exchanger portion 9 </ b> A constituting the indoor heat exchanger 9 is disposed substantially opposite to the front suction port 3. Most of the heat exchange air flows through the second heat exchanger part D formed in the lower part of the front heat exchanger part 9A to exchange heat.

そのあと、室内送風機12に吸込まれて送風路15に沿って送風される。この熱交換空気が吹出し口4から吹出される位置は、主に上部水平ルーバ7Aにより仕切られる吹出し口4の上部側であるので、再び上述の径路を循環する。
このように、吹出し口4から吹出され前面パネル6の内側表面に沿って導かれて第2の熱交換器部Dと熱交換する空気は、常に室内機本体1内部を循環することになり、室内機本体1側から出ないところから、この熱交換空気の流れ状態をパネル内面循環気流Qiと呼ぶ。
Thereafter, the air is sucked into the indoor blower 12 and blown along the blower passage 15. Since the position where this heat exchange air is blown out from the blowout port 4 is mainly on the upper side of the blowout port 4 partitioned by the upper horizontal louver 7A, it circulates again through the above-mentioned path.
Thus, the air blown out from the outlet 4 and guided along the inner surface of the front panel 6 to exchange heat with the second heat exchanger part D will always circulate inside the indoor unit body 1. Since it does not come out from the indoor unit main body 1 side, this heat exchange air flow state is referred to as a panel inner surface circulation air flow Qi.

これに対して、図に破線矢印で示すように、上部水平ルーバ7Aで仕切られる吹出し口4の下部である上部水平ルーバ7Aと下部水平ルーバ7Bとの間から吹出される熱交換空気は、前面パネル6の外側表面側に導かれる。そして、前面パネル6の外側表面に沿って上昇し、ついには上端に至る。   On the other hand, as shown by broken line arrows in the figure, the heat exchange air blown from between the upper horizontal louver 7A and the lower horizontal louver 7B, which is the lower part of the blowout port 4 partitioned by the upper horizontal louver 7A, It is led to the outer surface side of the panel 6. And it raises along the outer surface of the front panel 6, and finally reaches an upper end.

ここで室内送風機12の吸込み圧の影響を受け、そのほとんどは上面吸込み口2から室内機本体1内に導入され、一部は前面吸込み口3上端から室内機本体1内に導入され、フィルタ17を介して室内熱交換器9に導かれる。
室内熱交換器9を構成する前側熱交換器部9Aの上部および後側熱交換器部9Bが上面吸込み口2に略対向して配置されるところから、ほとんどの熱交換空気は前側熱交換器部9A上部と後側熱交換器部9Bにより形成される第1の熱交換器部Uを流通して熱交換する。
Here, under the influence of the suction pressure of the indoor blower 12, most of it is introduced into the indoor unit body 1 from the upper surface suction port 2, and a part is introduced into the indoor unit body 1 from the upper end of the front suction port 3, and the filter 17. To the indoor heat exchanger 9.
Since the upper part of the front heat exchanger part 9A constituting the indoor heat exchanger 9 and the rear heat exchanger part 9B are disposed substantially opposite to the upper surface suction port 2, most of the heat exchange air is transferred to the front heat exchanger. Heat is exchanged through the first heat exchanger U formed by the upper part 9A and the rear heat exchanger 9B.

そのあと、室内送風機12に吸込まれて送風路15に沿って送風される。この熱交換空気が吹出し口4から吹出される位置は、主に上部水平ルーバ7Aにより仕切られる吹出し口4の下部側であるので、再び上述の径路を循環する。
このように、吹出し口4から吹出され前面パネル6の外側表面に沿って導かれ第1の熱交換器部Uと熱交換する空気は、室内機本体1外面部を循環するので、この熱交換空気の流れ状態をパネル外面循環気流Qoと呼ぶ。
Thereafter, the air is sucked into the indoor blower 12 and blown along the blower passage 15. Since the position where this heat exchange air is blown out from the blowout port 4 is mainly on the lower side of the blowout port 4 partitioned by the upper horizontal louver 7A, it circulates again through the above-mentioned path.
Thus, the air that is blown out from the outlet 4 and is guided along the outer surface of the front panel 6 and exchanges heat with the first heat exchanger unit U circulates in the outer surface of the indoor unit body 1. The air flow state is referred to as a panel outer surface circulation air flow Qo.

結局、圧縮機21の運転周波数を低下制御したうえで、室内機においてはパネル内面循環気流Qiとパネル外面循環気流Qoが同時に形成されて循環する。これらパネル内面循環気流Qiとパネル外面循環気流Qoに導かれる熱交換空気は、いずれも上部水平ルーバ7Aに沿って導かれる。   Eventually, after the operation frequency of the compressor 21 is controlled to be lowered, the panel inner surface circulating air flow Qi and the panel outer surface circulating air flow Qo are simultaneously formed and circulated in the indoor unit. The heat exchange air guided to the panel inner surface circulating air flow Qi and the panel outer surface circulating air flow Qo is guided along the upper horizontal louver 7A.

上述したように、特に運転停止中における前面パネル6の全閉モード時では、上部水平ルーバ7Aが前面パネル下部6aによって遮蔽されており、塵埃が付着しない状態になっているので、循環気流の衛生度が保持される。
そして、上述したように除湿弁10が絞り制御されるので、第1の熱交換器部Uは室外熱交換器23で凝縮しきれない冷媒を凝縮して、パネル外面循環気流Qoを循環する空気を再熱する再熱部となる。第2の熱交換器部は冷媒を蒸発し、パネル内面循環気流Qiに循環する空気を冷却除湿する除湿部(蒸発部)となる。
As described above, particularly when the front panel 6 is in the fully closed mode during operation stop, the upper horizontal louver 7A is shielded by the front panel lower part 6a and is in a state in which dust does not adhere to it. The degree is retained.
Since the dehumidification valve 10 is controlled to be throttled as described above, the first heat exchanger unit U condenses the refrigerant that cannot be condensed by the outdoor heat exchanger 23 and circulates the panel outer surface circulation air flow Qo. It becomes the reheat part which reheats. The second heat exchanger part D becomes a dehumidifying part (evaporating part) that evaporates the refrigerant and cools and dehumidifies the air circulating in the panel inner surface circulation air flow Qi.

上記前面パネル6を半開モード位置にしたうえに、上下部水平ルーバ7A,7Bの位置姿勢を制御して再熱除湿運転をなすことにより、吹出し口4から吹出される全ての再熱除湿された熱交換空気は、パネル外面循環気流Qoとパネル内面循環気流Qiとして循環する。居住域には全く送風されることがないから、居住人にとっては体感温度が向上して快適な除湿環境が得られる。   All the reheat dehumidifications blown from the outlet 4 were performed by setting the front panel 6 to the half-open mode position and controlling the position and orientation of the upper and lower horizontal louvers 7A and 7B to perform the reheat dehumidification operation. The heat exchange air circulates as a panel outer surface circulation airflow Qo and a panel inner surface circulation airflow Qi. Since no air is blown into the living area, the sensible temperature is improved for the resident and a comfortable dehumidifying environment is obtained.

なお、除湿を行なうためには蒸発温度を空気露点温度以下まで下げる必要があるが、この発明では、吸込み温度が低い吹出された熱交換空気を吸込む運転と、圧縮機の運転周波数を低下させた低能力運転を行なうことにより、冷凍サイクル全体の圧力が低下し、第1の熱交換器部(再熱部・高圧)U温度と、第2の熱交換器部(蒸発部・低圧)D温度が低下する。   In order to perform dehumidification, it is necessary to lower the evaporation temperature to below the air dew point temperature. However, in the present invention, the operation for sucking the blown heat exchange air having a low suction temperature and the operation frequency of the compressor are reduced. By performing the low-capacity operation, the pressure of the entire refrigeration cycle decreases, and the first heat exchanger part (reheating part / high pressure) U temperature and the second heat exchanger part (evaporation part / low pressure) D temperature. Decreases.

通常の再熱除湿運転では、蒸発部温度を下げるため圧縮機の運転周波数を最大限上昇させることにより対処していたが、本発明では圧縮機21の運転周波数を上昇させることなく第2の熱交換器部Dの温度を低下でき、大幅な省エネ化を図れる。
さらに、第1の熱交換器部Uの温度が低くとも、吸込み温度が低いために、第1の熱交換器部Uでは放熱が行われて等温性を確保できるとともに、冷凍サイクル全体の圧力が低下するため高圧側も低くなり、室外熱交換器23と通過する冷媒の温度も低くなって熱交換が抑制され、室外側での放熱量を抑制できる。
In the normal reheat dehumidifying operation, the operation frequency of the compressor is increased to the maximum in order to lower the temperature of the evaporator, but in the present invention, the second heat is increased without increasing the operation frequency of the compressor 21. The temperature of the exchanger part D can be lowered, and significant energy saving can be achieved.
Furthermore, even if the temperature of the first heat exchanger unit U is low, the suction temperature is low, so that heat is radiated in the first heat exchanger unit U to ensure isothermal properties, and the pressure of the entire refrigeration cycle is reduced. Since the pressure decreases, the high-pressure side also becomes low, the temperature of the refrigerant passing through the outdoor heat exchanger 23 becomes low, heat exchange is suppressed, and the heat radiation amount on the outdoor side can be suppressed.

そのため、従来の再熱方式と比較して、低能力運転としても十分な潜熱能力(除湿能力)を得ると共に顕熱能力(部屋を冷やす能力)を低減できる。そして、上述構成の前面パネル6を用いることで、パネル外面循環気流Qoとともにパネル内面循環気流Qiの径路を安定して確保できる。
なお、除湿運転時において上記制御部8は、前面パネル6を全開モード位置にして通常気流を形成する運転開始時よりも、半開モード位置にしてパネル内面循環気流Qiを形成する安定時の方が、圧縮機21の最大運転周波数を小さくするよう切換え制御している。
Therefore, compared with the conventional reheating method, sufficient latent heat capability (dehumidification capability) can be obtained even in low-capacity operation, and sensible heat capability (ability to cool the room) can be reduced. And by using the front panel 6 having the above-described configuration, it is possible to stably secure the path of the panel inner surface circulating air flow Qi together with the panel outer surface circulating air flow Qo.
During the dehumidifying operation, the control unit 8 is more stable at the time when the panel inner surface circulating air flow Qi is formed in the half-open mode position than at the start of operation in which the front panel 6 is set in the fully open mode position to form the normal air flow. The switching control is performed so as to reduce the maximum operating frequency of the compressor 21.

すなわち、除湿運転安定時は、パネル内面循環気流Qiとともにパネル外面循環気流Qoを形成して再熱除湿をなすため、圧縮機21の運転周波数を低くしても除湿量を確保することができる。したがって、圧縮機21の最大運転周波数を抑制することができ、省エネ性および静音性の向上化を図れる。   That is, when the dehumidifying operation is stable, the panel outer surface circulation air flow Qi is formed together with the panel inner surface circulation air flow Qi to perform reheat dehumidification, so that the amount of dehumidification can be ensured even if the operation frequency of the compressor 21 is lowered. Therefore, the maximum operating frequency of the compressor 21 can be suppressed, and energy saving and quietness can be improved.

さらに、除湿運転時において上記制御部8は、通常気流を形成する運転開始時と、パネル内面循環気流Qiを形成する安定時において、圧縮機21の運転周波数を互いに同一とする前提で、上記室内送風機12のファン回転数を、運転開始時より安定時の方が大となるよう切換え制御する。   Further, during the dehumidifying operation, the control unit 8 assumes that the operation frequency of the compressor 21 is the same at the start of operation for forming the normal air flow and at the stable time of forming the panel inner surface circulation air flow Qi. The fan rotation speed of the blower 12 is switched and controlled so that the time at the time of stability becomes larger than that at the start of operation.

すなわち、安定時では圧縮機21の運転周波数を低くしても除湿量を確保できるが、吹出し温度がより低下して吹出し口4などにおいて結露等が発生する虞れがある。そこで、安定時の圧縮機21の運転周波数を運転開始時と同一に設定したうえで、室内送風機12のファン回転数を上昇させることにより、上記結露の発生を阻止できるとともに、除湿量の向上が図れる。   That is, at the stable time, the dehumidification amount can be secured even if the operation frequency of the compressor 21 is lowered, but there is a possibility that the blowout temperature is further lowered and condensation or the like occurs at the blowout port 4 or the like. Therefore, by setting the operating frequency of the compressor 21 at the time of stability to be the same as that at the start of operation and increasing the fan rotation speed of the indoor blower 12, it is possible to prevent the occurrence of the dew condensation and improve the dehumidification amount. I can plan.

さらに、除湿運転時において上記制御部8は、通常気流を形成する運転開始時と、パネル内面循環気流Qiを形成する安定時において、圧縮機21の運転周波数を互いに同一とすると、上記室外送風機25のファン回転数を、運転開始時より安定時の方が大であるよう切換え制御する。   Further, during the dehumidifying operation, the control unit 8 sets the outdoor blower 25 to be the same when the operation frequency of the compressor 21 is the same at the start of operation for forming the normal air flow and at the stable time of forming the panel inner surface circulation air flow Qi. The fan speed is switched and controlled so that it is greater at the stable time than at the start of operation.

すなわち、室内機本体1でパネル内面循環気流Qiとパネル外面循環気流Qoを形成すると、室外熱交換器23での放熱量が減少する反面、室内の等温性が向上する。同じ等温性を確保するには、室外熱交換器23での放熱量を上昇させる必要があり、室外送風機25のファン回転数を通常気流形成時より上げることで、等温性を同一にできる。そして、室外熱交換器23において放熱量が増加することにより、冷凍サイクル内圧力が下がって省エネ化が図れる。   That is, when the panel inner surface circulating air flow Qi and the panel outer surface circulating air flow Qo are formed in the indoor unit main body 1, the amount of heat radiation in the outdoor heat exchanger 23 is reduced, but the isothermal property in the room is improved. In order to ensure the same isothermal property, it is necessary to increase the heat radiation amount in the outdoor heat exchanger 23, and the isothermal property can be made the same by increasing the fan rotation speed of the outdoor blower 25 from the time of normal air flow formation. And the amount of heat radiation increases in the outdoor heat exchanger 23, whereby the internal pressure of the refrigeration cycle is lowered and energy saving can be achieved.

図5(A)は除湿運転における運転開始時(以下、通常気流方式と呼ぶ)の各部の温度を説明する図、図5(B)は除湿運転安定時(以下、パネル内面循環気流方式と呼ぶ)における各部の温度を説明する図、図6は通常気流方式とパネル内面循環気流方式の除湿量に対する消費電力の特性を表す図である。[表1]および[表2]は、通常気流方式とパネル内面循環気流方式のサイクル温度や各種のデータを合わせて示す。   FIG. 5A is a diagram for explaining the temperature of each part at the start of operation in the dehumidifying operation (hereinafter referred to as a normal airflow method), and FIG. 5B is a diagram illustrating when the dehumidifying operation is stable (hereinafter referred to as a panel inner surface circulating airflow method). FIG. 6 is a diagram illustrating the characteristics of power consumption with respect to the dehumidification amount of the normal airflow method and the panel inner surface circulation airflow method. [Table 1] and [Table 2] show the cycle temperature and various data of the normal airflow method and the panel internal circulation airflow method together.

Figure 0004478004
Figure 0004478004

Figure 0004478004
Figure 0004478004

はじめに、図5(A)と(B)から通常気流方式とパネル内面循環気流方式とを比較すると、パネル内面循環気流方式の方が通常気流方式よりも、高低の温度差が小さくてすみ、圧縮機21の運転周波数(コンプ回転数)を低く保持して省エネ化を得られ、除湿部(第2の熱交換器部D)がより低い温度となって除湿量を確保できる。 First, comparing the normal airflow method and the panel internal circulation airflow method from FIGS. 5 (A) and 5 (B), the panel internal circulation airflow method requires a smaller temperature difference than the normal airflow method, and compression. Energy saving can be obtained by keeping the operating frequency (comp rotation speed) of the machine 21 low, and the dehumidifying part (second heat exchanger part D) can be kept at a lower temperature to ensure the dehumidifying amount.

以上は、表1のデータからも証明される。すなわち、通常気流方式とパネル内面循環気流方式で同一の除湿量(400cc/h)を得る結果にも関わらず、圧縮機21の運転周波数(コンプ回転数)が低減化(20rps−12rps)されて省エネ化を得られるとともに、3dB(30dB−27dB)であるが室内騒音の静音化を図れる。   The above is also proved from the data in Table 1. That is, despite the result of obtaining the same dehumidification amount (400 cc / h) in the normal air flow method and the panel internal circulation air flow method, the operating frequency (compression speed) of the compressor 21 is reduced (20 rps-12 rps). In addition to energy savings, the room noise can be reduced by 3 dB (30 dB-27 dB).

図6において、図の丸印を結ぶ線Nはパネル内面循環気流方式、三角印を結ぶ線Tは通常気流方式の特性を示している。パネル内面循環気流方式Nを採用すれば、いずれの除湿量においても、通常気流方式Tと比較して消費電力が約1/2になり、省エネ化が図られていることが分かる。   In FIG. 6, the line N connecting the circles in the figure indicates the characteristics of the panel inner surface circulation airflow method, and the line T connecting the triangles indicates the characteristics of the normal airflow method. If the panel inner surface circulation air flow method N is adopted, it can be seen that, in any dehumidification amount, the power consumption is about ½ compared to the normal air flow method T, and energy saving is achieved.

また、パネル内面循環気流方式は、空気中の水分の濃度拡散速度が速いために、直接居住域へ送る風量が減っても十分な除湿量を確保できる。なお説明すると、除湿運転は、早く湿度を低下させるために運転開始時に多くの湿気を取るパワフルさが必要であるととともに、他の運転に比べて長時間使用するため安定時に少ない消費電力で運転する省エネ性の両立が必要となる。   Further, since the panel internal circulation air flow method has a high concentration diffusion rate of moisture in the air, a sufficient dehumidification amount can be secured even if the amount of air sent directly to the living area is reduced. Explaining that dehumidifying operation requires powerful power to take up a lot of moisture at the start of operation in order to quickly reduce the humidity, and also uses less power when stable because it is used for a longer time than other operations. It is necessary to balance energy saving.

現在、多用される再熱除湿方式では、室内熱交換器の除湿部の温度を下げて除湿量を確保するためパワフルさの要求には応えているが、除湿部温度の低下を圧縮機の運転周波数を上げて対応しているため、省エネ性が十分ではなく、冷房運転時と同じ体感温度で比較した場合、冷房の2〜3倍の消費電力が必要となる。   Currently, the reheat dehumidification method that is frequently used meets the demand for power to reduce the temperature of the dehumidifying part of the indoor heat exchanger to ensure the amount of dehumidification. Since it corresponds by raising the frequency, energy saving is not sufficient, and when compared at the same sensible temperature as in cooling operation, power consumption of 2 to 3 times that of cooling is required.

そこで、本発明においては、除湿運転の開始時に前面パネル6を完全開放して大風量を確保するとともに、冷媒循環量を上げて、除湿量を最大限保持する。運転安定時には、前面パネル6を半開モードにして、一度除湿した空気を再度、前面パネル6の内側表面に沿って導く低温のパネル内面循環気流Qiを形成し、除湿部温度を下げている。その結果、従来の再熱除湿方式と比較して、約2倍の効率で除湿でき、省エネ性が向上することは、先に説明した通りである。   Therefore, in the present invention, at the start of the dehumidifying operation, the front panel 6 is completely opened to ensure a large air flow, and the refrigerant circulation rate is increased to keep the dehumidifying amount to the maximum. When the operation is stable, the front panel 6 is set to the half-open mode, and the low-temperature panel inner surface circulation air flow Qi that guides the dehumidified air along the inner surface of the front panel 6 again is formed, and the dehumidifying section temperature is lowered. As a result, as described above, the dehumidification can be performed at twice the efficiency compared to the conventional reheat dehumidification method, and the energy saving performance is improved.

なお、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明の実施の形態に係る、空気調和機の室内機を模式的に示す断面図。Sectional drawing which shows typically the indoor unit of the air conditioner based on Embodiment of this invention. 同実施の形態に係る、空気調和機の構成と冷凍サイクルおよび制御を説明する図。The figure explaining the structure of an air conditioner, a refrigerating cycle, and control based on the embodiment. 同実施の形態に係る、除湿運転開始時の室内機を模式的に示す断面図。Sectional drawing which shows typically the indoor unit at the time of the dehumidification driving | operation start based on the embodiment. 同実施の形態に係る、除湿運転安定時の室内機を模式的に示す断面図。Sectional drawing which shows typically the indoor unit at the time of dehumidification driving | operation stable based on the embodiment. 除湿運転時における、従来方式と本発明方式との各部温度を示す図。The figure which shows each part temperature of the conventional system and this invention system at the time of a dehumidification driving | operation. 除湿運転時における、除湿量の消費電力特性図。The power consumption characteristic figure of the dehumidification amount at the time of dehumidification driving | operation.

符号の説明Explanation of symbols

3…前面吸込み口、2…上面吸込み口、4…吹出し口、10…除湿弁(補助絞り弁)、U…第1の熱交換器部、D…第2の熱交換器部、9…室内熱交換器、12…室内送風機、1…室内機本体、6…前面パネル、7A…上部水平ルーバ、7B…下部水平ルーバ、Qo…パネル外面循環気流、Qi…パネル内面循環気流、8…制御部(制御手段)、21…圧縮機、25…室外送風機。 DESCRIPTION OF SYMBOLS 3 ... Front suction port, 2 ... Upper surface suction port, 4 ... Outlet port, 10 ... Dehumidification valve ( auxiliary throttle valve ), U ... 1st heat exchanger part, D ... 2nd heat exchanger part, 9 ... Indoor Heat exchanger, 12 ... indoor blower, 1 ... indoor unit main body, 6 ... front panel, 7A ... upper horizontal louver, 7B ... lower horizontal louver, Qo ... panel external circulation airflow, Qi ... panel internal circulation airflow, 8 ... control unit (Control means), 21 ... compressor, 25 ... outdoor blower.

Claims (1)

室内機および室外機を備え、これら室内機と室外機が冷媒管を介して冷凍サイクルを構成するように連通される空気調和機において、
上記室内機は、
前面と上面に吸込み口が設けられ、前面下部に吹出し口が設けられる筐体であり、内部に、補助絞り弁を介して連通され、上下方向における略中間部分より上半分の部分から構成される第1の熱交換器部および、下半分の部分より構成される第2の熱交換器部からなり除湿運転時に第1の熱交換器を再熱部とし、第2の熱交換器を蒸発部とする構成の室内熱交換器および、室内送風機を収容する室内機本体と、
この室内機本体の上記前面吸込み口に開閉自在に設けられる可動式の前面パネルと、
上記吹出し口に設けられ、吹出される熱交換空気の上下方向の風向を設定する水平ルーバと、
上記前面パネルの下部が上記吹出し口の上下方向中間部の上記水平ルーバの前面一部を覆う位置まで延出され前面吸込み口に当接してこの前面吸込み口を閉成する全閉モードと、
上記前面パネル下部が吹出し口より上側に位置され前面吸込み口より離間して対向する位置姿勢に制御されてこの前面吸込み口を開放する全開モードおよび、
上記前面パネルの下部が吹出し口の上部を覆うよう水平ルーバの前面に対向した位置に延出して保持され、上部が前面吸込み口と間隙を介して対向し、前面パネル上端が前面パネル下端より前方へ突出して全体に傾斜姿勢に制御され
吹出し口の下部側から吹出される熱交換空気が前面パネルの外側表面に沿って流れ、上面吸込み口と前面吸込み口から室内機本体内に吸込まれて上記室内熱交換器を構成する第1の熱交換部と熱交換するパネル外面循環気流と、
吹出し口の上部側から吹出される熱交換空気が前面パネルの内側表面に沿って流れ、前面吸込み口から室内機本体内に吸込まれて上記室内熱交換器を構成する第2の熱交換部と熱交換するパネル内面循環気流とを形成する半開モードと、
これら全閉モードと全開モードもしくは半閉モードとのいずれかに、水平ルーバおよび前面パネルの位置姿勢を切換え制御する制御手段と
を具備することを特徴とする空気調和機。
In an air conditioner including an indoor unit and an outdoor unit, and the indoor unit and the outdoor unit communicate with each other so as to constitute a refrigeration cycle via a refrigerant pipe.
The indoor unit is
Mouth suction on the front and top are provided a housing blowout bottom front is provided, inside, communicates via an auxiliary throttle valve, Ru is constituted from portions of the upper half than the substantially middle portion in the vertical direction first heat exchanger part and made from the second heat exchanger unit constituted by the portion of the lower half, the first heat exchanger and reheat section during dehumidification operation, the evaporation of the second heat exchanger An indoor heat exchanger configured as a part, an indoor unit main body that houses the indoor blower, and
A movable front panel that can be freely opened and closed at the front suction port of the indoor unit body;
A horizontal louver which is provided at the outlet and sets the vertical air direction of the heat exchange air to be blown;
Lower part of the front panel is extended to a position covering a front portion of the horizontal louver vertically intermediate portion of the air outlet, and a fully closed mode for closing the front suction port in contact with the front surface intake port,
Is located above the bottom blowing port of the front panel, full-open mode is controlled by the position and orientation facing away from the front surface intake port opening the front suction port and,
The lower part of the front panel is extended and held at the position facing the front of the horizontal louver so as to cover the upper part of the outlet , the upper part is opposed to the front inlet through the gap, and the upper end of the front panel is forward of the lower end of the front panel Projecting to the whole and controlled to an inclined posture ,
The heat exchange air blown out from the lower side of the blowout port flows along the outer surface of the front panel, and is sucked into the indoor unit main body from the upper surface suction port and the front suction port to constitute the indoor heat exchanger. A panel outer surface circulating airflow to exchange heat with the heat exchange unit ,
Heat exchange air blown from the upper side of the blowout port flows along the inner surface of the front panel, and is sucked into the indoor unit main body from the front suction port to constitute the indoor heat exchanger; a half-open mode for forming a panel inner surface circulation stream you heat exchanger,
An air conditioner comprising control means for switching and controlling the position and orientation of the horizontal louver and the front panel in any of the fully closed mode and the fully open mode or the semi-closed mode .
JP2004355729A 2004-12-08 2004-12-08 Air conditioner Expired - Lifetime JP4478004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355729A JP4478004B2 (en) 2004-12-08 2004-12-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355729A JP4478004B2 (en) 2004-12-08 2004-12-08 Air conditioner

Publications (2)

Publication Number Publication Date
JP2006162173A JP2006162173A (en) 2006-06-22
JP4478004B2 true JP4478004B2 (en) 2010-06-09

Family

ID=36664381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355729A Expired - Lifetime JP4478004B2 (en) 2004-12-08 2004-12-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP4478004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190059565A (en) * 2017-11-23 2019-05-31 엘지전자 주식회사 An air conditioner and a method for controlling the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923794B2 (en) 2006-07-06 2012-04-25 ダイキン工業株式会社 Air conditioner
JP2008121997A (en) * 2006-11-13 2008-05-29 Fujitsu General Ltd Air conditioner
AU2013234392B2 (en) * 2009-11-04 2015-08-20 Daikin Industries, Ltd. Air conditioner
JP4924695B2 (en) * 2009-11-04 2012-04-25 ダイキン工業株式会社 Air conditioner
CN102597644B (en) * 2009-11-04 2014-12-31 大金工业株式会社 Air conditioner
WO2017029741A1 (en) * 2015-08-20 2017-02-23 三菱電機株式会社 Air-conditioning system
CN113970175B (en) * 2020-07-24 2023-05-02 广东美的制冷设备有限公司 Air conditioner, radiation control method and device thereof and computer readable storage medium
CN113028606B (en) * 2021-03-17 2022-03-22 广东美的暖通设备有限公司 Dehumidification control method and device for air conditioning equipment, air conditioning equipment and storage medium
CN113124489B (en) * 2021-05-25 2024-12-03 珠海格力电器股份有限公司 Air Conditioner
CN114294724A (en) * 2021-12-31 2022-04-08 海信(广东)空调有限公司 Window machine and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420923U (en) * 1990-06-13 1992-02-21
JP4495370B2 (en) * 2001-08-28 2010-07-07 東芝キヤリア株式会社 Air conditioner
JP2003074962A (en) * 2001-08-28 2003-03-12 Toshiba Kyaria Kk Air conditioner
JP3960812B2 (en) * 2002-02-06 2007-08-15 シャープ株式会社 Air conditioner
JP3885063B2 (en) * 2004-04-05 2007-02-21 日立アプライアンス株式会社 Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190059565A (en) * 2017-11-23 2019-05-31 엘지전자 주식회사 An air conditioner and a method for controlling the same
KR102037253B1 (en) 2017-11-23 2019-10-28 엘지전자 주식회사 An air conditioner and a method for controlling the same

Also Published As

Publication number Publication date
JP2006162173A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR100519309B1 (en) air conditioning system with fresh air supplying device
KR20210040888A (en) Multipurpose Heat Exchanger for reducing relative humidity by dehumidification and Method for Controlling Thereof
JP4478004B2 (en) Air conditioner
CN109425063B (en) Air conditioner
JP2003322359A (en) Air conditioner
JP6075088B2 (en) Air conditioner
JP6675057B2 (en) Heat exchange ventilator
JP4641249B2 (en) Air conditioner indoor unit
KR100590330B1 (en) Combined air conditioner
JP5228344B2 (en) Ventilation air conditioner
JPH0336433A (en) Air conditioner
JP4053834B2 (en) Air conditioner
KR100569548B1 (en) Air conditioner
KR20010026764A (en) Humidifier and an air conditioner having the humidifier
TW201104185A (en) Ventilation and air conditioning device for bathroom
KR20230054798A (en) Air conditioner
JP3855393B2 (en) Air conditioner
KR20060075197A (en) Air conditioner
JP3818379B2 (en) Recessed floor air conditioner
CN113939695A (en) Heat exchange type ventilator with dehumidification function
JP3726797B2 (en) Integrated air conditioner for ceiling installation
KR100546658B1 (en) Air Conditioning System
KR20110087894A (en) Heat exchange ventilator
JP3726796B2 (en) Integrated air conditioner for wall installation
JP4560915B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

R150 Certificate of patent or registration of utility model

Ref document number: 4478004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term