[go: up one dir, main page]

JP4477185B2 - Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery - Google Patents

Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery Download PDF

Info

Publication number
JP4477185B2
JP4477185B2 JP2000050539A JP2000050539A JP4477185B2 JP 4477185 B2 JP4477185 B2 JP 4477185B2 JP 2000050539 A JP2000050539 A JP 2000050539A JP 2000050539 A JP2000050539 A JP 2000050539A JP 4477185 B2 JP4477185 B2 JP 4477185B2
Authority
JP
Japan
Prior art keywords
resistance value
storage battery
lead storage
value
rct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000050539A
Other languages
Japanese (ja)
Other versions
JP2001235525A (en
Inventor
敏幸 佐藤
道宏 島田
義雄 丸山
哲也 加納
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Battery Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2000050539A priority Critical patent/JP4477185B2/en
Publication of JP2001235525A publication Critical patent/JP2001235525A/en
Application granted granted Critical
Publication of JP4477185B2 publication Critical patent/JP4477185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池の特性評価方法およびその装置に関するものであり、特に、自動車などの車両に搭載する鉛蓄電池の残存容量ならびに劣化状態の実用的かつ効果的な特性評価方法(検査方法)とその装置に関する。
【0002】
【従来の技術】
自動車などの車両に二次電池として鉛蓄電池を搭載し、エンジン始動、自動車装備などの動力源として用いている。そのような場合、鉛蓄電池の残存容量および劣化状態を正確に評価することが、特に、必要になる。たとえば、自動車を停止する場合、次回にエンジンを始動するに十分なだけの残存容量が鉛蓄電池に残存していないと、停止後に、エンジンを始動させることができない。
もちろん、その他の場合においても、鉛蓄電池などの二次蓄電池の残存容量および劣化状態を正確に評価することが望まれている。
【0003】
そのような鉛蓄電池の残存容量ならびに劣化状態の検査方法に関しては、種々の方法が提案されている。
たとえば、鉛蓄電池を完全に放電させてその静電容量を測定し、測定した静電容量から劣化状態を判定する方法が提案されている。しかしながら、この方法は、鉛蓄電池を完全に放電することが必要なため、放電に起因する電力の無駄がある他、使用中の鉛蓄電池にその検査方法を適用することができないという問題がある。さらに、この検査方法は放電しきるまでに時間がかかり、結局、測定時間も長くなるので実用的な方法ではなかった。
そこで、短時間に、かつ、電力消費の浪費を防止して、鉛蓄電池の検査を行うことができる方法が種々開発されてきた。
【0004】
特開平4−95788号公報(特許第2536257号)は、鉛蓄電池の内部インピーダンスの測定結果を、鉛蓄電池のインダクタンス成分(L),電解液抵抗値(Rs),電荷移動抵抗値(θ),電気二重層容量値(Cd),ワークブルグインピーダンス(W),ワークブルグ係数(σ)からなる下記式(1−1)で表される等価回路に当てはめて最適解を求め、インダクタンス成分(L),電解液抵抗値(Rs),電荷移動抵抗値(θ),電気二重層容量値(Cd),ワークブルグインピーダンス(W),ワークブルグ係数(σ)の少なくとも一つを初期の値と比較することで、鉛蓄電池の寿命を判定する方法を開示している。
【0005】
【数1】

Figure 0004477185
【0006】
特開平4−141966号公報(特許第2546050号)は、鉛蓄電池の内部インピーダンスの測定のうち、位相が0になる周波数のインピーダンスと、周波数が0.1〜10Hzの間で、インピーダンスの虚数部の周波数に対する変化分をインピーダンスの実数部の周波数に対する変化分で除算した値が−1程度に最も近づく周波数でのインピーダンスから、鉛蓄電池の劣化状態を判定する方法を開示している。
【0007】
特開平5−135806号公報(特許第2792784号)は、(a)0.001〜1Hzの間の2〜3点の周波数で、鉛蓄電池の内部インピーダンスを測定し、インピーダンスの虚数部を測定周波数の−0.5乗(f-1/2)に対してプロットし、そのY切片の値から、鉛蓄電池の残存容量を判定し、(a)さらに、0.01〜0.05Hzの周波数で内部インピーダンスを測定し、その実部を虚数部に対してプロットし、その勾配の値から、鉛蓄電池の残存容量を判定する方法を開示している。
【0008】
【発明が解決しようとする課題】
上記した方法はそれぞれ、下記に述べる問題点があり、鉛蓄電池、特に自動車などの車両に搭載される鉛蓄電池の特性評価には実用上、有効に使用することができなかった。下記に詳述する。
【0009】
特開平4−95788号公報に記載された方法は、鉛蓄電池の内部インピーダンスの測定結果から、式(1−1)に示した、インダクタンス成分(L),電解液抵抗値(Rs),電荷移動抵抗値(θ),電気二重層容量値(Cd),ワークブルグインピーダンス(W),ワークブルグ係数(σ)の6つのパラメータを求める必要がある。そのため、内部インピーダンスの測定は少なくとも6つの周波数で行うことが必要であり、6つのパラメータの最適解を求めるための演算が非常に煩雑になるという問題点があった。
すなわち、特開平4−95788号公報に記載されている多数の周波数での測定、並びに煩雑な演算は、測定時間が長くなるだけでなく、測定装置の価格が高くなり、特に、車両に搭載した鉛蓄電池の評価には実用的でないという問題点があった。
【0010】
特開平4−141966号公報に記載された方法は、内部インピーダンスの位相が0になる周波数を探し出して測定を行う必要があり、さらに、周波数が0.1〜10Hzの間でインピーダンスの虚部の周波数に対する変化分をインピーダンスの実部の周波数に対する変化分で除算した値が−1程度になる周波数を探し出して測定を行う必要がある。
すなわち、特開平4−141966号公報の方法は、内部インピーダンスの値が特定の条件を満たすような周波数を探し出す必要がある。そのため、周波数を変化させて測定を可能とする装置が必要となる他、上述した特定の条件を満たすことの判定を行う装置も必要になる。このような処理のためには複雑な測定装置が必要になり、装置価格が高くなり、特に、車両に搭載した鉛蓄電池の特性評価には実用的でないという問題点があった。
【0011】
特開平5−135806号公報に記載された方法は、0.001〜1Hzでの内部インピーダンスの値を指標にしている。しかしながら、このような1Hz以下の低周波領域の測定は、1Hz以上の領域での測定と比較して、測定装置、特に周波数発振回路の構成が複雑化し、装置の価格が高騰する要因となり、また、測定時間が長くなるという問題点がある。
また、0.001〜1Hzでの内部インピーダンスは温度によって値が大きく変化する傾向にあるため、たとえば、車両に搭載した鉛蓄電池のように、温度が大きく変化する場所に設置された鉛蓄電池の測定にあっては、温度により補正が不可欠になるという問題点があった。
【0012】
【課題を解決するための手段】
上記した課題を解決するために、本願発明者が、鋭意検討を重ねた結果、本発明の鉛蓄電池の特性評価方法を発明するに至った。本発明の鉛蓄電池の特性評価方法の要旨を図1〜図3を参照して、下記に述べる。
なお、本発明において、鉛蓄電池の残存容量、劣化状態などの検査を総称して、鉛蓄電池の特性評価と言う。
【0013】
本発明の鉛蓄電池の特性評価方法は、まず、鉛蓄電池の等価回路を簡略化して、等価回路を、図1または図2に図解したように、少なくとも電荷移動抵抗値(Rct)と電気二重層容量値(Cd)との並列回路と電解液抵抗値(RΩ)との直列回路で構成し、インピーダンスが下記式で規定される等価回路として表す。等価回路の詳細について後述する。
【0014】
〔RΩ+(Rct/(1+jωCd))〕 ・・・(A−1)
ただし、ω=2πf
【0015】
本発明の鉛蓄電池の評価特性方法においては、図3に図解したように、(1)鉛蓄電池の内部インピーダンスの実部をX軸に虚部に−1を乗じた値をY軸にプロットして規定される二次元座標におけるインピーダンス円を規定する、1〜100Hzの周波数の範囲で選ばれた、3点以上の複数の周波数について、鉛蓄電池の内部インピーダンスを測定する。
【0016】
さらに本発明の鉛蓄電池の評価特性方法においては、図3に図解したように、(2)電荷移動抵抗値(Rct)と電気二重層容量値(Cd)との並列回路と、電解液抵抗値(RΩ)との直列回路で構成した等価回路から導出される電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と、複数の周波数において測定した複数の鉛蓄電池の内部インピーダンスとの関係式に、複数の周波数において測定した複数の内部インピーダンスの値を参照して前記電解液抵抗値(RΩ),前記電荷移動抵抗値(Rct),前記電気二重層容量値(Cd)を求める。
【0017】
最後に、本発明の鉛蓄電池の評価特性方法においては、図3に図解したように、(3)算出した電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の全てまたは少なくとも1つから供試した鉛蓄電池の残存容量および/または劣化状態を判定する。
【0018】
また、本発明の鉛蓄電池の評価装置は、上述した鉛蓄電池の評価方法を実施する装置であり、測定手段と、算出手段と、判定手段とを有する。
測定手段は上述した(1)の処理を行い、算出手段は上述した(2)の処理を行い、判定手段は上述した(3)の処理を行う。
【0019】
【発明の実施の形態】
以下、本発明の鉛蓄電池の特性評価方法および鉛蓄電池の特性評価装置の実施の形態を添付図面を参照して述べる。
【0020】
等価回路
図1および図2に本発明で適用した等価回路の回路例を示す。
図1は本発明で使用する第1の等価回路としての、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)からなる等価回路の構成図である。
図1の等価回路は、電荷移動抵抗値(Rct)と電気二重層容量値(Cd)とが並列に接続され、この並列回路に電解液抵抗値(RΩ)が直列に接続されている。したがって、その等価回路のインピーダンスは下記式で規定される。
【0021】
〔RΩ+(Rct/(1+jωCd))〕 ・・・(A−2)
ただし、ω=2πf
【0022】
図2は本発明で使用する第2の等価回路としての、電解液抵抗値(RΩ),電荷移動抵抗値(Rct’とRct’’),電気二重層容量値(Cd’とCd’’)からなる等価回路の構成図である。
図2の等価回路は、図1の電気二重層容量値(Cd)を第1の電気二重層容量値(Cd’)と第2の電気二重層容量値(Cd’’)に置き換え、図1の電荷移動抵抗値(Rct)を第1の電荷移動抵抗値(Rct’)と第2の電荷移動抵抗値(Rct’’)に置き換えたものである。
図2の等価回路のインピーダンスは下記式で規定される。
【0023】
Figure 0004477185
ただし、ω=2πf
【0024】
特開平4−95788号公報には、式1−1に示したように、6つのパラメータで構成される等価回路が示されている。鉛蓄電池の特性を正確に把握するには、特開平4−95788号公報の等価回路による解析が望ましいが、たとえば、車両の搭載した鉛蓄電池の評価などのような場合には、本発明で適用する図1または図2で表現される等価回路での解析で十分である。むしろ、本発明の図1または図2に示した等価回路を適用して求めるパラメータの数を少なくすることで、測定周波数を少なくし、演算に係わる時間,コストを低減する方が実用的価値が高い。特に、自動車に搭載する鉛蓄電池の残存容量の判定を行う場合、有効数字2桁で十分であり、特開平4−95788号公報の方法より、本発明の方法が実用的である。
【0025】
3点の測定結果と円の関係
図8に例示として、3点の測定結果と円の関係を図解した。
すなわち、式Aまたは式Bで規定したインピーダンスに対応させて、鉛蓄電池の内部インピーダンスの実部をX軸に虚部に−1を乗じた値をY軸にプロットして規定される二次元座標におけるインピーダンス円を規定する少なくとも3点以上の複数の周波数において、鉛蓄電池の内部インピーダンスを測定する。
【0026】
測定周波数
本発明では、1〜100Hzの周波数の範囲で選ばれた任意の3〜5点(多くても6点)の周波数で測定を行う。
【0027】
まず、1〜100Hzの周波数の範囲を選択した理由について述べる。上記した周波数の範囲が、鉛蓄電池の電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求める上で特に効果的な周波数の範囲であることによる。すなわち、1Hz以上であれば、測定上かつ装置上、容易に実施できるし、100Hz以内であるから、商用周波数の2倍程度の周波数であり、高周波ではないから、測定上かつ装置構成上から問題はない。
【0028】
特開平5−135806号公報の方法では、0.001〜1Hzでの間の2〜3点の周波数における鉛蓄電池の内部インピーダンスから、鉛蓄電池の残存容量を判定している。しかしながら、発明者らの検討によれば、上記したように、0.001〜1Hzでの測定データを用いるより、本発明の実施の形態による1〜100Hzの測定データを用いる方が、鉛蓄電池の残留静電容量を判定する上で効果的であり、容易であった。
【0029】
次いで、3〜5,6点の周波数で測定を行う理由について述べる。電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求める上でインピーダンス円(図8参照)を規定するには最低3点の周波数で測定する必要がある。
異なる周波数での測定は多いほど、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求める精度が高くなる。しかしながら、測定数が多くなると、測定時間がかかるし、可変周波数発振回路が複雑になり、測定後の演算が長くなる。したがって、実用的には、3〜5点の周波数、多くても6点の周波数で測定する。
【0030】
次に、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と、鉛蓄電池の残存容量および/または劣化状態との関係について考察する。
【0031】
鉛蓄電池の残存容量および/または劣化状態との関係について第1の実施の形態
図4は電気二重層容量値(Cd)と鉛蓄電池の残存容量との関係を例示するグラフである。
本発明の検査方法における鉛蓄電池の残存容量の判定においては予め,図4に図解したように、電気二重層容量値(Cd)と鉛蓄電池の残存容量の関係式を求めておき、内部インピーダンスの複数の測定結果から求めた電気二重層容量値(Cd)を、上記関係式に照合することで鉛蓄電池の残存容量の判定を行うことができる。
【0032】
なお、鉛蓄電池の残存容量は下記のごとく電気二重層容量値(Cd)との間に直線関係があることが判った。
【0033】
残存容量(%)=α×Cd+β …(C)
【0034】
なお、αおよびβは、鉛蓄電池の温度に依存して変化する。
【0035】
鉛蓄電池の残存容量および/または劣化状態との関係について第2の実施の形態
図5は電荷移動抵抗値(Rct)と鉛蓄電池の残存容量との関係を例示するグラフである。
本発明の検査方法における鉛蓄電池の残存容量の判定においては予め,図5に図解したように、電荷移動抵抗値(Rct)と鉛蓄電池の残存容量の関係式を求めておき、内部インピーダンスの複数の測定結果から求めた電荷移動抵抗値(Rct)を上記関係式に照合することで鉛蓄電池の残存容量の判定を行うことができる。
【0036】
なお、鉛蓄電池の残存容量は下記のごとく電荷移動抵抗値(Rct)との間に直線関係があることが判った。
【0037】
残存容量(%)=γ×Rct+δ …(D)
【0038】
なお、γおよびδは、鉛蓄電池の温度に依存して変化する。
【0039】
鉛蓄電池の残存容量および/または劣化状態との関係について第3の実施の形態
本発明の鉛蓄電池の評価方法における鉛蓄電池の劣化状態の判定においてはさらに、予め、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と、鉛蓄電池の劣化状態の関係式を求めておき、内部インピーダンスの測定結果から求めた電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を、上記関係式に照合することで鉛蓄電池の劣化状態の判定を行うことができる。
【0040】
鉛蓄電池の残存容量は、電池の劣化状態並びに温度に影響を受けることがある。そこで、上記のように求めた鉛蓄電池の残存容量の値を、電池の劣化状態並びに温度の値で補正(補間)する必要が生じる場合がある。その際、電気二重層容量値(Cd)から求めた鉛蓄電池の残存容量を、電解液抵抗値(RΩ),電荷移動抵抗値(Rct)から求めた電池の劣化状態の判定結果によって補正を行うことができる。
【0041】
残存容量に対する温度の影響
予め、鉛蓄電池の温度と、電解液抵抗値(RΩ),電荷移動抵抗値(Rct)の関係を求めておき、電解液抵抗値(RΩ),電荷移動抵抗値(Rct)の測定結果をその関係と照合することで、鉛蓄電池の温度を求めることが可能であるので、電解液抵抗値(RΩ),電荷移動抵抗値(Rct)から求めた鉛蓄電池の温度によって、残存容量に対する温度の影響を補正することも可能である。
【0042】
上記した鉛蓄電池の残存容量、劣化状態の判定にあたっては、温度を本発明の方法とは別に測定し、その測定値を用いて、残存容量、劣化状態に対する温度の影響を補正することも可能である。
【0043】
電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の算出方法
図1および図2の等価回路から導出される、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と、鉛蓄電池の内部インピーダンスの関係式に、上記複数の周波数において実測した複数の内部インピーダンスの値を参照することで、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求めるための具体的方法例としては、統計的な手法、たとえば、最小二乗法により最適解を求める方法が好ましい。
【0044】
しかしながら、車両に搭載した鉛蓄電池の特性評価に際しては、より簡便に最適解を求めることが望ましい。最小二乗法より簡便な方法として、以下に示す方法を挙げることができる。
【0045】
第1の方法M
上述した1〜100Hzのうち、5〜100Hzの周波数の範囲で選ばれた任意の3〜4点の第1の周波数(Fa)と、1〜5Hzの周波数の範囲で選ばれた任意の1点の第2の周波数(Fb)で、鉛蓄電池の内部インピーダンスの測定を複数回行い、その測定値から電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求める。
【0046】
第1の方法Mでは、第1の周波数(Fa)で測定された3〜4点の内部インピーダンスについて、図6に図解したように、内部インピーダンスの実数部をX軸に、内部インピーダンスの虚数部の値に−1を乗じた値をY軸にプロット(cole cole plot)した3〜4点を通過する円の軌道を求め、軌道のX軸切片Xa,Xb(Xa<Xb)を求め、Xaを電解液抵抗値(RΩ)とし、Xb−Xaを電荷移動抵抗値(Rct)とし、(Xa+Xb)×0.5をXm とし、さらに、内部インピーダンスの実数部をY軸に、周波数をX軸とした座標Cm に、第1の周波数Faの内の最も低い周波数Fa’と第2の周波数Fbでの測定値をプロットし、両プロット点を結んだ直線上の、上記したXm に相当する周波数をωm とし、電気二重層容量値Cdを(Rct×ωm -1とする。
【0047】
図1および図2に示した等価回路から導出される、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と内部インピーダンスの関係式のように、求めるべきパラメータが5点以下であっても、上記した関係式のパラメータを数学的に厳密に解くことは、演算が煩雑になり、演算装置の規模が増大し、価格が高騰することにつながる。そこで、本発明のように、簡単な演算で電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求めることの実用的価値は極めて高い。
【0048】
上述した簡便な第1の方法Mを行う場合にあっては、測定する周波数を、5〜10Hzの周波数の範囲で選ばれた任意の3〜4点の第1の周波数Faと、1〜5Hzの周波数の範囲で選ばれた任意の1点の第2の周波数Fbとすることが特に好ましい。その理由は、上記したcole cole plotにおける円の軌跡を求める上で、5〜100Hzの周波数の範囲の測定値を用いることが好ましいためである。また、円の軌跡を求めるために、測定点は3点以上であることが必要である。円の軌跡を求める上で、さらに好ましくは、第1の測定周波数Faの周波数が5〜10Hzの中の1点、10〜30Hzの中の1点、50〜100Hzの中の1点となることが挙げられる。
【0049】
本願発明者は、座標Cm において、内部インピーダンスの実部と周波数に直線関係が得られる周波数の範囲は、およそ1〜10Hzの範囲であることを見いだした。そこで、第1の周波数Fbの範囲は、およそ1〜5Hzであることが好ましく、さらに、第1の周波数Faの内、最も低い周波数Fa’は、5〜10Hzの中の1点が選ばれることが好ましい。
【0050】
特開平4−141966号公報の方法では、内部インピーダンスの値が特定の条件を満たすような周波数を探し出す必要があり、そのため、周波数を変化させた測定を可能とする装置が必要となり、特定の条件を満たすことの判定を行う装置が必要になる。そのため、測定装置が複雑になり、価格も高くなるという問題点があった。これに対して、本発明の方法では、測定する周波数を予め決めておくことが可能であるので、上記した問題点がなく、実用上好ましい。
【0051】
また本発明の上述した実施の形態の方法は、本発明の実施の形態の方法による鉛蓄電池の特性評価(検査)を、適切な時間間隔をもって行い、前回までの検査で求められた電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の値のうち少なくとも一つ以上の値を、当回の検査で求めた電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の値のうち少なくとも一つ以上の値と比較し、その比較結果を、鉛蓄電池の残存容量と劣化状態の判定の補正に用いるという方法を併用することが可能である。
【0052】
上記した方法を併用することにより、鉛蓄電池の残存容量と劣化状態の判定の精度を向上させること、および/または、判定のための演算をより簡便にすることが可能である。
【0053】
自動車などの車両に搭載された鉛蓄電池の判定にあたっては、数秒から数十秒までの適切な時間間隔で検査を繰り返すことにより、温度などの周囲環境の影響を、簡単に補正できるので、特に有効である。
【0054】
また、本発明の鉛蓄電池の評価方法を自動車などの車両に搭載された鉛蓄電池に対して用いる場合、運転者がエンジンを始動させる直前に本発明の検査方法を実施し、その検査結果をその検査以降の検査における判定の補正に用いることがさらに効果的である。その理由は、運転者が車両のエンジンを始動させる前の環境は、稼働している自動車の装置、機器が少ないため、それらの影響を受けず、本発明の検査の環境が良好なためである。
【0055】
また、本発明の鉛蓄電池の評価方法を、自動車に搭載された鉛蓄電池に対して用いる場合、自動車のエンジンの停止中に行うことが効果的である。その理由は、エンジンが停止中で、オルタネータが停止している状況では、本発明の方法で測定が必要な周波数の範囲に、大きなノイズが発生する可能性が低いからである。
【0056】
本発明の鉛蓄電池の評価方法を、自動車が停止した際のアイドリングストップの可否の判定に用いる場合には、上記した理由により、エンジンが停止した直後に、本発明の検査方法を実施することが好ましい。
【0057】
【実施例】
上述した本発明の鉛蓄電池の評価方法の実施の形態についての具体的な実施例(実験例)を、添付図面を参照して述べる。
【0058】
本発明の実施例において、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)によって構成される等価回路は、図1および図2に示したものである。
【0059】
図4は、あらかじめ、75Ahの鉛蓄電池の残存容量を調整して、鉛蓄電池の残存容量と電気二重層容量値(Cd)との関係を求めた結果を例示したグラフである。
電気二重層容量値(Cd)は、鉛蓄電池の内部インピーダンスの測定結果から後述する演算式から計算した。
鉛蓄電池の残存容量と電気二重層容量値(Cd)の関係は、温度依存性はあるが、ほぼ線形性(直線性)を示しており、電気二重層容量値(Cd)が判れば鉛蓄電池の残存容量を推定することが可能である。
劣化がない正常な鉛蓄電池の残存容量は、下記式(1)で規定される。
【0060】
【数2】
残存容量(%)=0.181×Cd+0.064 …(1)
【0061】
鉛蓄電池の測定条件および測定結果
(1)100%充電状態の鉛蓄電池に、(a)15Aの電流で1時間放電させた後、または、(b)30Aの電流で10分間放電させた後、鉛蓄電池の残存容量を判定した。
(2)電池の周囲温度を20°Cに設定しておいた。
(3)測定した内部インピーダンスを求めて計算した結果、電気二重層容量値(Cd)は3.6〔F〕となった。
(4)式(1)により残存容量を判定した結果、72%となった。実際の残存容量は73%であることから、本発明の鉛蓄電池の評価方法によりかなり精確に残量判定が可能であることが分かった。
【0062】
以上のように、あらかじめ電気二重層容量値(Cd)と鉛蓄電池の残存容量の関係を求めておき、内部インピーダンスの測定結果から求めた電気二重層容量値(Cd)の値を、上記関係に照合することで、鉛蓄電池の残存容量を判定することが可能である。
【0063】
また、式(1)は、周囲温度が20°Cのものであるが、図3に図解したように、鉛蓄電池の温度を20°C、40°C、60°Cと変化させた場合には、特性がシフトする傾向があり、鉛蓄電池の温度が分かれば残存容量を補間して算出することが可能である。従って、ある温度について特性を調べておき、任意の温度について鉛蓄電池に取り付けた温度センサー等によって検知し、その温度に応じて予め求めた特性(残存容量値)をシフトして(補間して)、その温度における特性(残存容量値)を算出することができる。
【0064】
鉛蓄電池が劣化した場合には、正常な鉛蓄電池に対して残存容量が減少するものの、その特性は正常な鉛蓄電池と同様に線形性が見られることから、劣化の程度が分かれば残存容量を補正することが可能である。
【0065】
判定の際の電池の劣化状態による補正と電池の温度のよる補正は、内部インピーダンスの測定結果から求めた電解液抵抗値(RΩ)を用いて行うこともできる。
【0066】
図6は正常な鉛蓄電池および劣化した鉛蓄電池の温度による電解液抵抗値(RΩ)と鉛蓄電池の残存容量(SOC)の関係を示すグラフである。
電解液抵抗値(RΩ)は残存容量(SOC)によっては変化せず、温度および劣化度合いにより変化する。従って、内部インピーダンスの測定結果から求めた電解液抵抗値(RΩ)を用いて残存容量を補正することが可能である。
【0067】
電荷移動抵抗値(Rct)と鉛蓄電池の残存容量との関係
なお、図5に図解した電荷移動抵抗値(Rct)と鉛蓄電池の残存容量との関係からも、上述した電気二重層容量値(Cd)と鉛蓄電池の残存容量との関係との関係から鉛蓄電池の残存容量を求めたように、鉛蓄電池の残存容量を求めることができた。
【0068】
電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の算出方法
次に、自動車用鉛蓄電池の残存容量を測定する際の電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の導出方法についての具体例を述べる。
内部インピーダンスの測定周波数は、100Hz、20Hz、6Hz、2Hzの4点とし、この4点の内部インピーダンスの測定結果から電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を演算した。
この4点の周波数を選んだ理由は下記による。
【0069】
図7に図解したように、周波数を変化させて内部インピーダンスを測定し、内部インピーダンスの実部をX軸に、虚部に−1を乗じたY軸をプロットした(cole cole plot)。
図7に図解したように、特性は、円弧の特性を示す部分と直線状のような特性の2つの部分で示すことができる。ここで、円弧の特性は、図1に示す等価回路によって表すことが可能であるため、円弧の軌道を把握することにより、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を導出することが可能である。
【0070】
例えば、3点を通過する円の軌道は一義的に決定されるため、非常に簡単に円の式を求めることができる。従って、3つの周波数100Hz、20Hz、6Hzにより円の軌跡を把握した。
図7に示すように2Hz付近のプロットは、円の軌跡から外れており、円の式を精度良く求めるためには、測定する周波数を5〜100Hzの周波数の範囲とするのが好ましい。
【0071】
測定周波数の数としては、円の式を求める上で、最低限3点の測定点が必要であり、測定点が増加することに伴う実用的価値の低下を考慮して、最大でも、5〜6点、できれば、3〜4点以下が望ましい。さらには、円の軌跡を求めるプロットが円周上に等間隔になっている場合が最も精度がよいため、第1の測定周波数Faの周波数は、5〜10Hzの中の1点、10〜30Hzの中の1点、50〜100Hzの中の1点を使用することが最も望ましい。
【0072】
図7は、後述する方法により求めた円の式から計算した円弧(破線)を示している。
円軌道のX軸切片をXa,Xb(Xa<Xb)とすると、Xaが電解液抵抗値(RΩ)に対応し、(Xb−Xa)が電荷移動抵抗値(Rct)に対応する。3点を通過する円の式において、虚部を0とすることによりXaとXb(Xa<Xb)を求められ、Xaが電解液抵抗値(RΩ)、(Xb−Xa)が電荷移動抵抗値(Rct)として計算される。
【0073】
ここで、(Xa+Xb)×0.5をXm として求めておく。Xm は、円の中心座標を示すインピーダンスの実部である。円の頂点を示す周波数をfmax とすると、電気二重層容量値(Cd)は、(Rct×2π×fmax -1で計算される。しかし、測定した周波数が必ずしも円周上の頂点とはならないため、近似的に次のような特性から円の頂点を示す周波数を求める。
【0074】
周波数を変化させて内部インピーダンスを測定し、周波数をX軸、内部インピーダンスの実部をY軸として、プロットした結果を図8に示す。
内部インピーダンスの実部と周波数に直接関係が得られる周波数の範囲は、およそ1〜10Hzの範囲であることが判る。
図8中には、6Hzと2Hzの2点の周波数で求めた結果もプロットしている。2点間を結ぶ直線の式を求めることにより、この直線の式にXm を代入して、円の頂点を近似的に示す周波数fm が求められる。電気二重層容量値(Cd)は、(Rct×2π×fm -1で計算される。
【0075】
周波数fm は、ほとんどの場合4〜5Hzになるため、上記した方法を行う場合は、1〜5Hzの周波数の範囲で選ばれた任意の1点の周波数と、5〜10Hzの中の1点から選ばれた周波数で測定することが好ましく、特に、円の軌跡を把握するために測定する周波数3〜4点の内、最も小さい周波数を使用するとより効率的である。
【0076】
3点の周波数で測定した場合の電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求める演算式について述べる。
4点の周波数で測定した場合は、任意の組合せの3点で電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求め、それぞれの組合せで求めた判定結果の平均をとることができる。また、測定の安全サイドからそれぞれの組み合わせて求めた判定結果の最小値を使用しても良い。
いずれにしても、4点の周波数で測定した場合についても、3点で測定した場合と同様の計算を行う。まず、3点の周波数で測定した内部インピーダンスの測定結果から、任意の円の方程式を計算する。
【0077】
図9は3点の周波数f1 ,f2 ,f3 で測定した内部インピーダンスをプロットした座標を示すグラフである。
下記のような3つの式が得られ、未知数が3つで、式が3つあることから、円の軌跡を定める係数a,b,rを求めることができる。
【0078】
【数3】
1 で測定: (X1 −a)2 +(Y1 −b)2 =r2 …(2)
2 で測定: (X2 −a)2 +(Y2 −b)2 =r2 …(3)
3 で測定: (X3 −a)2 +(Y3 −b)2 =r2 …(4)
【0079】
上記3つの式(2)〜(4)を解いた結果、係数a,b,rはそれぞれ下記のようになる。
【0080】
【数4】
Figure 0004477185
【0081】
ここで、係数(因子)A〜Fはそれぞれ下記で表される。
【0082】
【数5】
A=X1 −X2 …(8)
B=X2 −X3 …(9)
C=Y1 −Y2 …(10)
D=Y2 −Y3 …(11)
E=X1 2 −X2 2 +Y1 2 −Y2 2 …(12)
F=X2 2 −X3 2 +Y2 2 −Y3 2 …(13)
【0083】
図9において、RCTは実軸上の円の弦であることから、円の式からY=0となる2点のXを求め、この2点間の距離からRCTを計算する。
【0084】
【数6】
(X−a)2 =r2 …(14)
X=a±r …(15)
CT =2・r …(16)
RΩ =a−r …(17)
【0085】
図10は4点目の周波数で測定した内部インピーダンスをプロットした座標を示すグラフである。
円の頂点を示す周波数fm については、fm を挟む周波数範囲における内部インピーダンスの実数部と周波数の関係は、図8に示すように、ある範囲について、ほぼ線形性があることから、直線近似により求めることができる。
第1の周波数f1 で測定した時の実数成分をX1 、第4の周波数f4 で測定したときの実数成分をX4 とすると、fm は下式で表される。ここで、f1 >fm >f4 である。
【0086】
【数7】
Figure 0004477185
【0087】
よって、電気二重層容量値(Cd)は次式で表される。
【0088】
【数8】
Figure 0004477185
【0089】
自動車に搭載された鉛蓄電池の判定にあっては、数秒から数十秒までの適切な間隔で検査を繰り返すことにより、温度などの周囲環境の影響を簡単に補正できるので、本発明の鉛蓄電池の評価方法は特に有効である。
【0090】
残存容量判定はアイドリングストップ時に1分経過毎に測定し、過去の判定結果を参照する場合と、単独で判定した場合を比較した例を下記表1に示す。
【0091】
【表1】
Figure 0004477185
【0092】
過去の判定結果の参照方法は、同じアイドルストップ期間中の残存容量判定において、1分経過毎に測定した判定結果を順次用いて平均値を使用した。
単独の場合の残存容量は、アイドルストップ直後から2分経過まで低下し、3分経過後の判定では逆に増加傾向を示している。対して、過去参照の残存容量は、3分経過後までは低下し、それ以降はほぼ一定値を示している。
アイドルストップ期間中においては、蓄電池からの放電が小さくなることはあっても、蓄電池が充電されることはない。
残存容量が上昇する要因は、主に温度などの周囲環境の影響が大きい。従って、単独で容量判定を行う場合より、過去の判定結果を参照して判定した場合の方が、温度などの周囲環境の影響を簡単に補正できるので特に有効である。
【0093】
鉛蓄電池の評価装置
本発明の鉛蓄電池の特性評価装置は、上述した鉛蓄電池の評価方法を実施する装置である。
その鉛蓄電池の評価装置の構成を図11に例示する。
鉛蓄電池の評価装置10は、複数の周波数において鉛蓄電池の内部インピーダンスを測定する測定手段12と、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を算出する算出手段14と、算出した電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)から供試した鉛蓄電池の残存容量および/または劣化状態を判定する判定手段16とを有する。
【0094】
測定手段12は、たとえば、可変周波数発振回路と、インピーダンス測定装置と、記憶回路を有するコンピュータ装置とで構成され、特性を評価すべき鉛蓄電池に可変周波数発振回路とインピーダンス測定回路とを接続し、インピーダンス測定回路にコンピュータ装置を接続する。
可変周波数発振回路は、1〜100Hzの周波数の範囲で選ばれた、内部インピーダンスの実部をX軸に虚部に−1を乗じた値をY軸にプロットして規定される二次元座標におけるインピーダンス円を規定する少なくとも3点以上の複数の周波数の信号を発振して鉛蓄電池に印加し、インピーダンス測定装置がそれぞれの周波数における鉛蓄電池の内部インピーダンスを測定する。コンピュータ装置はインピーダンス測定装置が測定した内部インピーダンスの特定値を入力して記憶回路に記憶する。
【0095】
算出手段14は、たとえば、上記記憶回路を有するコンピュータ装置で構成され、このコンピュータ装置により、上述した式(A−1)または式(B−1)で規定される、少なくとも電荷移動抵抗値(Rct)と電気二重層容量値(Cd)との並列回路と電解液抵抗値(RΩ)との直列回路で構成した等価回路から導出される電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と複数の周波数において測定した複数の鉛蓄電池の内部インピーダンスとの関係式に、複数の周波数において測定した複数の内部インピーダンスの値を参照して電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を求める。
【0096】
判定手段16は、たとえば、上記コンピュータ装置で構成され、算出手段14で算出したした電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)から供試した鉛蓄電池の残存容量および/または劣化状態を判定する。
このような判定は、たとえば、上述した電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と残存容量および/または劣化状態との関係をグラフとしてコンピュータ装置から表示装置に表示して、人間が目視で判定してもよいし、コンピュータ装置の判断処理で自動的に行ってもよい。
【0097】
【発明の効果】
以上に述べたように、本発明によれば、1〜100Hzの周波数の範囲で選ばれた、任意の3〜5点の周波数で内部インピーダンスの測定を行い、測定結果を演算式に代入することにより鉛蓄電池の残存容量と劣化状態を判定できるため、短時間でしかも簡単に測定が可能である。また、測定周波数が3〜5点の固定周波数であるため、装置のコストを安くすることができる。
【0098】
本発明によれば、鉛蓄電池の残存容量を精確に判定できるため、自動車が停車した際のアイドリングストップの可否の判定に用いると、とても有効である。
【図面の簡単な説明】
【図1】図1は本発明で使用する第1の等価回路としての、電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)からなる等価回路の構成図である。
【図2】図2は本発明で使用する第2の等価回路としての、電解液抵抗値(RΩ),電荷移動抵抗値(Rct’とRct’’),電気二重層容量値(Cd’とCd’’)からなる等価回路の構成図である。
【図3】図3は本発明の鉛蓄電池の評価特性方法の処理を示すフローチャートである。
【図4】図4は電気二重層容量値(Cd)と鉛蓄電池の残存容量との関係を例示するグラフである。
【図5】図5は電荷移動抵抗値(Rct)と鉛蓄電池の残存容量との関係を例示するグラフである。
【図6】図6は正常な鉛蓄電池および劣化した鉛蓄電池の温度による電解液抵抗値(RΩ)と鉛蓄電池の残存容量(SOC)の関係を示すグラフである。
【図7】図7は電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)を算出する方法を図解したグラフである。
【図8】図8は周波数とインピーダンスの実数成分との関係を図解したグラフである。
【図9】図9は3点の周波数で測定した内部インピーダンスをプロットした座標を示すグラフである。
【図10】図10は4点目の周波数で測定した内部インピーダンスをプロットした座標を示すグラフである。
【図11】図11は本発明の鉛蓄電池の評価装置の構成図である。
【符号の説明】
10・・鉛蓄電池の評価装置
12・・測定手段
14・・算出手段
16・・判定手段[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method and apparatus for evaluating the characteristics of a lead storage battery, and in particular, a practical and effective characteristic evaluation method (inspection method) for a remaining capacity and a deteriorated state of a lead storage battery mounted on a vehicle such as an automobile, and its device. Relates to the device.
[0002]
[Prior art]
A lead-acid battery is mounted as a secondary battery in vehicles such as automobiles, and is used as a power source for engine starting and automobile equipment. In such a case, it is particularly necessary to accurately evaluate the remaining capacity and the deterioration state of the lead storage battery. For example, when stopping an automobile, the engine cannot be started after stopping if there is not enough remaining capacity in the lead-acid battery to start the engine next time.
Of course, in other cases, it is desired to accurately evaluate the remaining capacity and the deterioration state of a secondary storage battery such as a lead storage battery.
[0003]
Various methods have been proposed for inspecting the remaining capacity and deterioration state of such a lead storage battery.
For example, a method has been proposed in which a lead storage battery is completely discharged, its capacitance is measured, and a deterioration state is determined from the measured capacitance. However, since this method requires that the lead storage battery be completely discharged, there is a problem that the inspection method cannot be applied to the lead storage battery in use, in addition to waste of electric power due to the discharge. Furthermore, this inspection method is not a practical method because it takes time until the discharge is completed, and eventually the measurement time becomes long.
Accordingly, various methods have been developed that can inspect lead-acid batteries in a short time while preventing waste of power consumption.
[0004]
Japanese Laid-Open Patent Publication No. 4-95788 (Patent No. 2536257) describes the measurement results of the internal impedance of a lead storage battery, the inductance component (L) of the lead storage battery, the electrolyte resistance value (Rs), the charge transfer resistance value (θ), Applying to the equivalent circuit represented by the following formula (1-1) consisting of the electric double layer capacitance value (Cd), the workburg impedance (W), and the workburg coefficient (σ), the optimum solution is obtained, and the inductance component (L) , Electrolyte resistance value (Rs), charge transfer resistance value (θ), electric double layer capacitance value (Cd), workburg impedance (W), workburg coefficient (σ) are compared with the initial value Thus, a method for determining the life of a lead-acid battery is disclosed.
[0005]
[Expression 1]
Figure 0004477185
[0006]
JP-A-4-141966 (Patent No. 2546050) discloses an imaginary part of impedance between the impedance of the frequency at which the phase becomes 0 and the frequency of 0.1 to 10 Hz in the measurement of the internal impedance of the lead-acid battery. A method of determining the deterioration state of the lead-acid battery from the impedance at a frequency at which the value obtained by dividing the change with respect to the frequency of the current by the change with respect to the frequency of the real part of the impedance is about −1 is disclosed.
[0007]
JP-A-5-135806 (Patent No. 2792784) (a) measures the internal impedance of a lead-acid battery at a frequency of 2 to 3 points between 0.001 and 1 Hz, and measures the imaginary part of impedance. To the power of -0.5 (f-1/2), The remaining capacity of the lead storage battery is determined from the value of the Y intercept, and (a) the internal impedance is measured at a frequency of 0.01 to 0.05 Hz, and the real part is changed to the imaginary part. In contrast, a method is disclosed in which the remaining capacity of a lead storage battery is determined based on the value of the slope plotted.
[0008]
[Problems to be solved by the invention]
Each of the above-described methods has the following problems, and cannot be effectively used practically for evaluating the characteristics of lead-acid batteries, particularly lead-acid batteries mounted on vehicles such as automobiles. Details are described below.
[0009]
The method described in Japanese Patent Laid-Open No. 4-95788 is based on the measurement result of the internal impedance of a lead storage battery, and the inductance component (L), electrolyte resistance value (Rs), and charge transfer shown in the equation (1-1). It is necessary to obtain six parameters: a resistance value (θ), an electric double layer capacitance value (Cd), a workburg impedance (W), and a workburg coefficient (σ). Therefore, it is necessary to measure the internal impedance at at least six frequencies, and there is a problem that the calculation for obtaining the optimal solution of the six parameters becomes very complicated.
That is, the measurement at a large number of frequencies and complicated calculations described in Japanese Patent Laid-Open No. 4-95788 not only increase the measurement time, but also increase the price of the measuring device. There was a problem that it was not practical for evaluating lead-acid batteries.
[0010]
In the method described in Japanese Patent Laid-Open No. 4-141966, it is necessary to find and measure the frequency at which the phase of the internal impedance is 0, and further, the imaginary part of the impedance is between 0.1 and 10 Hz. It is necessary to perform measurement by finding a frequency where the value obtained by dividing the change with respect to the frequency by the change with respect to the frequency of the real part of the impedance is about -1.
That is, the method disclosed in Japanese Patent Laid-Open No. 4-141966 needs to find a frequency whose internal impedance value satisfies a specific condition. Therefore, in addition to a device that enables measurement by changing the frequency, a device that determines that the above-described specific condition is satisfied is also required. Such a process requires a complicated measuring device, which increases the price of the device, and is problematic in that it is not practical for evaluating the characteristics of a lead storage battery mounted on a vehicle.
[0011]
The method described in Japanese Patent Laid-Open No. 5-135806 uses an internal impedance value at 0.001 to 1 Hz as an index. However, such a measurement in the low frequency region of 1 Hz or less is a factor that increases the price of the device because the configuration of the measurement device, particularly the frequency oscillation circuit, is complicated compared to the measurement in the region of 1 Hz or more. There is a problem that the measurement time becomes long.
In addition, since the internal impedance at 0.001 to 1 Hz tends to change greatly depending on the temperature, for example, measurement of a lead storage battery installed in a place where the temperature changes greatly, such as a lead storage battery mounted on a vehicle. However, there is a problem that correction is indispensable depending on the temperature.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, the present inventors have intensively studied, and as a result, invented the method for evaluating the characteristics of the lead storage battery of the present invention. The summary of the method for evaluating the characteristics of the lead storage battery of the present invention will be described below with reference to FIGS.
In the present invention, the inspection of the remaining capacity and the deterioration state of the lead storage battery is collectively referred to as the characteristic evaluation of the lead storage battery.
[0013]
In the method for evaluating the characteristics of the lead storage battery of the present invention, first, the equivalent circuit of the lead storage battery is simplified, and as shown in FIG. 1 or FIG. 2, at least the charge transfer resistance value (Rct) and the electric double layer. It is constituted by a series circuit of a parallel circuit with a capacitance value (Cd) and an electrolyte resistance value (RΩ), and the impedance is represented as an equivalent circuit defined by the following equation. Details of the equivalent circuit will be described later.
[0014]
[RΩ + (Rct / (1 + jωCd))] (A-1)
However, ω = 2πf
[0015]
In the evaluation characteristic method of the lead storage battery of the present invention, as illustrated in FIG. 3, (1) the value obtained by multiplying the real part of the internal impedance of the lead storage battery by the X axis and the imaginary part by -1 is plotted on the Y axis. The internal impedance of the lead-acid battery is measured for a plurality of three or more frequencies selected in a frequency range of 1 to 100 Hz that defines an impedance circle in two-dimensional coordinates defined by
[0016]
Furthermore, in the evaluation characteristic method of the lead storage battery of the present invention, as illustrated in FIG. 3, (2) a parallel circuit of a charge transfer resistance value (Rct) and an electric double layer capacitance value (Cd), and an electrolyte resistance value The electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), the electric double layer capacitance value (Cd) derived from an equivalent circuit composed of a series circuit with (RΩ), and a plurality of measured values at a plurality of frequencies In relation to the internal impedance of the lead-acid battery, referring to the values of a plurality of internal impedances measured at a plurality of frequencies, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance A value (Cd) is obtained.
[0017]
Finally, in the evaluation characteristics method of the lead storage battery of the present invention, as illustrated in FIG. 3, (3) the calculated electrolyte resistance value (RΩ), charge transfer resistance value (Rct), electric double layer capacity value ( The remaining capacity and / or deterioration state of the lead storage battery tested from all or at least one of Cd) is determined.
[0018]
Moreover, the evaluation apparatus for a lead storage battery according to the present invention is an apparatus that implements the above-described evaluation method for a lead storage battery, and includes a measurement unit, a calculation unit, and a determination unit.
The measurement means performs the process (1) described above, the calculation means performs the process (2) described above, and the determination means performs the process (3) described above.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a lead storage battery characteristic evaluation method and a lead storage battery characteristic evaluation apparatus according to the present invention will be described below with reference to the accompanying drawings.
[0020]
Equivalent circuit
1 and 2 show circuit examples of equivalent circuits applied in the present invention.
FIG. 1 is a block diagram of an equivalent circuit comprising an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct), and an electric double layer capacitance value (Cd) as a first equivalent circuit used in the present invention.
In the equivalent circuit of FIG. 1, the charge transfer resistance value (Rct) and the electric double layer capacitance value (Cd) are connected in parallel, and the electrolyte resistance value (RΩ) is connected in series to this parallel circuit. Therefore, the impedance of the equivalent circuit is defined by the following equation.
[0021]
[RΩ + (Rct / (1 + jωCd))] (A-2)
However, ω = 2πf
[0022]
FIG. 2 shows an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct ′ and Rct ″), and an electric double layer capacitance value (Cd ′ and Cd ″) as a second equivalent circuit used in the present invention. It is a block diagram of the equivalent circuit which consists of.
The equivalent circuit of FIG. 2 replaces the electric double layer capacitance value (Cd) of FIG. 1 with a first electric double layer capacitance value (Cd ′) and a second electric double layer capacitance value (Cd ″). The charge transfer resistance value (Rct) is replaced with a first charge transfer resistance value (Rct ′) and a second charge transfer resistance value (Rct ″).
The impedance of the equivalent circuit in FIG. 2 is defined by the following equation.
[0023]
Figure 0004477185
However, ω = 2πf
[0024]
Japanese Patent Laid-Open No. 4-95788 discloses an equivalent circuit composed of six parameters as shown in Expression 1-1. In order to accurately grasp the characteristics of the lead storage battery, analysis using an equivalent circuit described in Japanese Patent Laid-Open No. 4-95788 is desirable. For example, in the case of evaluation of a lead storage battery mounted on a vehicle, the present invention is applied. The analysis with the equivalent circuit expressed in FIG. 1 or 2 is sufficient. Rather, it is more practical to reduce the number of parameters to be obtained by applying the equivalent circuit shown in FIG. 1 or FIG. 2 of the present invention, thereby reducing the measurement frequency and reducing the time and cost for calculation. high. In particular, when determining the remaining capacity of a lead storage battery mounted on an automobile, two significant figures are sufficient, and the method of the present invention is more practical than the method of Japanese Patent Laid-Open No. 4-95788.
[0025]
Relationship between 3 points measurement result and circle
As an example, FIG. 8 illustrates the relationship between the measurement results at three points and the circle.
That is, two-dimensional coordinates defined by plotting on the Y-axis the value obtained by multiplying the real part of the internal impedance of the lead-acid battery by the X-axis and the imaginary part by -1 corresponding to the impedance defined by the expression A or B The internal impedance of the lead-acid battery is measured at a plurality of frequencies of at least three points that define the impedance circle.
[0026]
Measurement frequency
In the present invention, measurement is performed at an arbitrary frequency of 3 to 5 points (at most 6 points) selected in a frequency range of 1 to 100 Hz.
[0027]
First, the reason for selecting the frequency range of 1 to 100 Hz will be described. This is because the above-described frequency range is a particularly effective frequency range for obtaining the electrolytic solution resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) of the lead storage battery. That is, if it is 1 Hz or more, it can be easily carried out on the measurement and on the apparatus, and since it is within 100 Hz, the frequency is about twice the commercial frequency and is not a high frequency. There is no.
[0028]
In the method disclosed in Japanese Patent Laid-Open No. 5-135806, the remaining capacity of the lead storage battery is determined from the internal impedance of the lead storage battery at two to three frequencies between 0.001 and 1 Hz. However, according to the study of the inventors, as described above, it is more preferable to use the measurement data of 1 to 100 Hz according to the embodiment of the present invention than to use the measurement data of 0.001 to 1 Hz. It was effective and easy to determine the residual capacitance.
[0029]
Next, the reason for measuring at 3 to 5 and 6 frequencies will be described. In order to define the impedance circle (see FIG. 8) in determining the electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd), it is necessary to measure at least three frequencies. is there.
The more measurements are made at different frequencies, the higher is the accuracy with which the electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd) are determined. However, as the number of measurements increases, the measurement time increases, the variable frequency oscillation circuit becomes complicated, and the computation after measurement becomes longer. Therefore, practically, the measurement is performed at 3 to 5 frequencies, and at most 6 frequencies.
[0030]
Next, the relationship between the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), the electric double layer capacity value (Cd), and the remaining capacity and / or deterioration state of the lead storage battery will be considered.
[0031]
First Embodiment Regarding Relationship between Remaining Capacity and / or Deterioration State of Lead Storage Battery
FIG. 4 is a graph illustrating the relationship between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery.
In the determination of the remaining capacity of the lead storage battery in the inspection method of the present invention, as illustrated in FIG. 4, a relational expression between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery is obtained in advance, and the internal impedance of The remaining capacity of the lead storage battery can be determined by comparing the electric double layer capacity value (Cd) obtained from a plurality of measurement results with the above relational expression.
[0032]
It has been found that the remaining capacity of the lead storage battery has a linear relationship with the electric double layer capacity value (Cd) as follows.
[0033]
Remaining capacity (%) = α × Cd + β (C)
[0034]
Α and β vary depending on the temperature of the lead storage battery.
[0035]
Second embodiment regarding relationship between remaining capacity and / or deterioration state of lead-acid battery
FIG. 5 is a graph illustrating the relationship between the charge transfer resistance value (Rct) and the remaining capacity of the lead storage battery.
In the determination of the remaining capacity of the lead storage battery in the inspection method of the present invention, as illustrated in FIG. 5, a relational expression between the charge transfer resistance value (Rct) and the remaining capacity of the lead storage battery is obtained in advance. The remaining capacity of the lead storage battery can be determined by comparing the charge transfer resistance value (Rct) obtained from the measurement results with the above relational expression.
[0036]
It has been found that the remaining capacity of the lead storage battery has a linear relationship with the charge transfer resistance value (Rct) as follows.
[0037]
Remaining capacity (%) = γ × Rct + δ (D)
[0038]
Note that γ and δ vary depending on the temperature of the lead storage battery.
[0039]
Third Embodiment Regarding Relationship between Remaining Capacity and / or Degradation State of Lead Acid Battery
In the determination of the deterioration state of the lead storage battery in the lead battery evaluation method of the present invention, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), the electric double layer capacity value (Cd), and the lead storage battery The relational expression of the deterioration state is obtained, and the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) obtained from the measurement result of the internal impedance are collated with the above relational expression. By doing so, the deterioration state of the lead storage battery can be determined.
[0040]
The remaining capacity of the lead storage battery may be affected by the deterioration state and temperature of the battery. Therefore, it may be necessary to correct (interpolate) the value of the remaining capacity of the lead storage battery obtained as described above with the deterioration state and temperature value of the battery. At that time, the remaining capacity of the lead storage battery obtained from the electric double layer capacity value (Cd) is corrected by the determination result of the deterioration state of the battery obtained from the electrolyte resistance value (RΩ) and the charge transfer resistance value (Rct). be able to.
[0041]
Effect of temperature on remaining capacity
The relationship between the temperature of the lead storage battery, the electrolyte resistance value (RΩ), and the charge transfer resistance value (Rct) is obtained in advance, and the measurement results of the electrolyte resistance value (RΩ) and the charge transfer resistance value (Rct) Since the temperature of the lead storage battery can be obtained by checking with the relationship, the influence of the temperature on the remaining capacity depends on the temperature of the lead storage battery obtained from the electrolyte resistance value (RΩ) and the charge transfer resistance value (Rct). It is also possible to correct.
[0042]
In determining the remaining capacity and deterioration state of the lead storage battery described above, it is also possible to measure the temperature separately from the method of the present invention and use the measured value to correct the influence of the temperature on the remaining capacity and deterioration state. is there.
[0043]
Method for calculating electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd)
The relationship between the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), the electric double layer capacity value (Cd), and the internal impedance of the lead storage battery, derived from the equivalent circuit of FIGS. Example of specific method for obtaining electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd) by referring to a plurality of internal impedance values measured at a plurality of frequencies Is preferably a statistical method, for example, a method for obtaining an optimal solution by a least square method.
[0044]
However, when evaluating the characteristics of a lead storage battery mounted on a vehicle, it is desirable to obtain an optimal solution more easily. As a simpler method than the least square method, the following methods can be exemplified.
[0045]
First method M
Among the above-mentioned 1 to 100 Hz, an arbitrary 3 to 4 point first frequency (Fa) selected within a frequency range of 5 to 100 Hz and an arbitrary one point selected within a frequency range of 1 to 5 Hz In the second frequency (Fb), the internal impedance of the lead-acid battery is measured several times, and from the measured values, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacity value (Cd) Ask for.
[0046]
In the first method M, as illustrated in FIG. 6, with respect to the internal impedances of 3 to 4 points measured at the first frequency (Fa), the real part of the internal impedance is set on the X axis, and the imaginary part of the internal impedance is obtained. A value obtained by multiplying the value of -1 by -1 is plotted on the Y axis (coll call plot), a trajectory of a circle passing through 3 to 4 points is obtained, and X-axis intercepts Xa and Xb (Xa <Xb) of the trajectory are obtained. Is the electrolyte resistance value (RΩ), Xb−Xa is the charge transfer resistance value (Rct), and (Xa + Xb) × 0.5 is XmFurthermore, the coordinate C with the real part of the internal impedance on the Y axis and the frequency on the X axismThe measured values at the lowest frequency Fa ′ and the second frequency Fb among the first frequencies Fa are plotted, and the above-mentioned X on the straight line connecting both plot points is plotted.mThe frequency corresponding tomAnd the electric double layer capacitance value Cd is (Rct × ωm)-1And
[0047]
As shown in the relational expression of the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), the electric double layer capacitance value (Cd), and the internal impedance, which is derived from the equivalent circuit shown in FIGS. Even if the power parameter is 5 points or less, mathematically rigorously solving the parameters of the relational expression described above makes the calculation complicated, increases the scale of the arithmetic device, and increases the price. Therefore, as in the present invention, the practical value of obtaining the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) by a simple calculation is extremely high.
[0048]
In the case where the simple first method M described above is performed, the frequency to be measured is set to an arbitrary 3 to 4 points of the first frequency Fa selected within a frequency range of 5 to 10 Hz, and 1 to 5 Hz. It is particularly preferable that the second frequency Fb is an arbitrary one point selected in the frequency range. The reason is that it is preferable to use a measured value in the frequency range of 5 to 100 Hz in obtaining the locus of the circle in the above-described coll coll plot. In addition, in order to obtain the locus of a circle, it is necessary that there are three or more measurement points. In obtaining the locus of the circle, more preferably, the frequency of the first measurement frequency Fa is one point in 5 to 10 Hz, one point in 10 to 30 Hz, and one point in 50 to 100 Hz. Is mentioned.
[0049]
The inventor of the present application uses coordinates CmThe frequency range in which a linear relationship between the real part of the internal impedance and the frequency is obtained is found to be approximately 1 to 10 Hz. Therefore, it is preferable that the range of the first frequency Fb is approximately 1 to 5 Hz, and furthermore, the lowest frequency Fa ′ among the first frequencies Fa is selected from one point of 5 to 10 Hz. Is preferred.
[0050]
In the method disclosed in Japanese Patent Laid-Open No. 4-141966, it is necessary to find a frequency at which the value of the internal impedance satisfies a specific condition. Therefore, an apparatus that enables measurement with the frequency changed is required. An apparatus for determining whether to satisfy the condition is required. As a result, the measuring apparatus becomes complicated and the price is high. On the other hand, in the method of the present invention, since the frequency to be measured can be determined in advance, there is no above-mentioned problem and it is practically preferable.
[0051]
Further, the method of the above-described embodiment of the present invention performs the characteristic evaluation (inspection) of the lead storage battery by the method of the embodiment of the present invention at an appropriate time interval, and the electrolytic solution resistance obtained by the previous inspection. At least one of the value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd), the electrolyte resistance value (RΩ) obtained by the current inspection, and the charge transfer A method of comparing at least one value of the resistance value (Rct) and the electric double layer capacity value (Cd) and using the comparison result to correct the determination of the remaining capacity and the deterioration state of the lead storage battery. It is possible to use together.
[0052]
By using the above-described method in combination, it is possible to improve the accuracy of determination of the remaining capacity and the deterioration state of the lead storage battery and / or to make the calculation for the determination easier.
[0053]
When determining lead-acid batteries mounted on vehicles such as automobiles, it is particularly effective because the effects of the surrounding environment such as temperature can be easily corrected by repeating the inspection at appropriate time intervals from several seconds to several tens of seconds. It is.
[0054]
Further, when the lead storage battery evaluation method of the present invention is used for a lead storage battery mounted on a vehicle such as an automobile, the inspection method of the present invention is performed immediately before the driver starts the engine, and the inspection result is It is more effective to use for correction of determination in the inspection after the inspection. The reason for this is that the environment before the driver starts the engine of the vehicle is not affected by the number of operating automobile devices and equipment, and the environment for inspection of the present invention is favorable. .
[0055]
Moreover, when using the evaluation method of the lead storage battery of this invention with respect to the lead storage battery mounted in the motor vehicle, it is effective to carry out while the engine of a motor vehicle is stopped. The reason is that in a situation where the engine is stopped and the alternator is stopped, there is a low possibility that large noise will be generated in the frequency range that requires measurement by the method of the present invention.
[0056]
When the lead storage battery evaluation method of the present invention is used to determine whether or not idling can be stopped when the vehicle is stopped, the inspection method of the present invention can be carried out immediately after the engine is stopped for the reason described above. preferable.
[0057]
【Example】
Specific examples (experimental examples) of the above-described embodiment of the method for evaluating a lead storage battery of the present invention will be described with reference to the accompanying drawings.
[0058]
In an embodiment of the present invention, an equivalent circuit constituted by an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct), and an electric double layer capacitance value (Cd) is as shown in FIGS. .
[0059]
FIG. 4 is a graph illustrating a result of adjusting the remaining capacity of a 75 Ah lead storage battery in advance and determining the relationship between the remaining capacity of the lead storage battery and the electric double layer capacity value (Cd).
The electric double layer capacity value (Cd) was calculated from an arithmetic expression described later from the measurement result of the internal impedance of the lead storage battery.
The relationship between the remaining capacity of the lead-acid battery and the electric double layer capacity value (Cd) is temperature-dependent, but shows almost linearity (linearity). If the electric double layer capacity value (Cd) is known, the lead-acid battery It is possible to estimate the remaining capacity.
The remaining capacity of a normal lead-acid battery without deterioration is defined by the following formula (1).
[0060]
[Expression 2]
Remaining capacity (%) = 0.181 × Cd + 0.064 (1)
[0061]
Measurement conditions and measurement results for lead-acid batteries
(1) A lead-acid battery in a 100% charged state was discharged for 1 hour at a current of (a) 15A, or (b) discharged for 10 minutes at a current of 30A, and then the remaining capacity of the lead-acid battery was determined. .
(2) The ambient temperature of the battery was set to 20 ° C.
(3) As a result of calculating | requiring and calculating the measured internal impedance, the electrical double layer capacitance value (Cd) was 3.6 [F].
(4) As a result of judging the remaining capacity by the equation (1), it was 72%. Since the actual remaining capacity is 73%, it has been found that the remaining amount can be determined fairly accurately by the evaluation method of the lead storage battery of the present invention.
[0062]
As described above, the relationship between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery is obtained in advance, and the value of the electric double layer capacity value (Cd) obtained from the measurement result of the internal impedance is expressed by the above relationship. By comparing, it is possible to determine the remaining capacity of the lead storage battery.
[0063]
In addition, although the equation (1) is for an ambient temperature of 20 ° C., as illustrated in FIG. 3, when the temperature of the lead storage battery is changed to 20 ° C., 40 ° C., and 60 ° C. The characteristic tends to shift, and if the temperature of the lead storage battery is known, the remaining capacity can be calculated by interpolation. Therefore, the characteristic is investigated for a certain temperature, and an arbitrary temperature is detected by a temperature sensor or the like attached to the lead storage battery, and the characteristic (remaining capacity value) obtained in advance is shifted (interpolated) according to the temperature. The characteristic (remaining capacity value) at that temperature can be calculated.
[0064]
When a lead acid battery deteriorates, the remaining capacity decreases compared to a normal lead acid battery, but its characteristics are linear as in a normal lead acid battery. It is possible to correct.
[0065]
The correction due to the deterioration state of the battery at the time of determination and the correction due to the temperature of the battery can also be performed using the electrolyte resistance value (RΩ) obtained from the measurement result of the internal impedance.
[0066]
FIG. 6 is a graph showing the relationship between the electrolyte resistance value (RΩ) and the remaining capacity (SOC) of the lead storage battery depending on the temperatures of the normal lead storage battery and the deteriorated lead storage battery.
The electrolyte resistance value (RΩ) does not change depending on the remaining capacity (SOC) but changes depending on the temperature and the degree of deterioration. Therefore, it is possible to correct the remaining capacity using the electrolyte resistance value (RΩ) obtained from the measurement result of the internal impedance.
[0067]
Relationship between charge transfer resistance (Rct) and lead-acid battery remaining capacity
In addition, from the relationship between the charge transfer resistance value (Rct) illustrated in FIG. 5 and the remaining capacity of the lead storage battery, the relationship between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery described above leads to Just as the remaining capacity of the storage battery was determined, the remaining capacity of the lead storage battery could be determined.
[0068]
Method for calculating electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd)
Next, a specific example of a method for deriving the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacity value (Cd) when measuring the remaining capacity of the lead acid battery for automobiles will be described.
The measurement frequency of internal impedance is 100 Hz, 20 Hz, 6 Hz, and 2 Hz. From the measurement results of internal impedance at these four points, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) was calculated.
The reason for selecting these four frequencies is as follows.
[0069]
As illustrated in FIG. 7, the internal impedance was measured by changing the frequency, and the real part of the internal impedance was plotted on the X-axis and the Y-axis obtained by multiplying the imaginary part by −1 (core call plot).
As illustrated in FIG. 7, the characteristic can be represented by two parts, a part indicating the characteristic of the arc and a characteristic like a straight line. Here, since the characteristics of the arc can be expressed by the equivalent circuit shown in FIG. 1, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), It is possible to derive the multilayer capacitance value (Cd).
[0070]
For example, since the trajectory of a circle passing through three points is uniquely determined, the formula of the circle can be obtained very easily. Therefore, the locus of the circle was grasped at three frequencies of 100 Hz, 20 Hz, and 6 Hz.
As shown in FIG. 7, the plot in the vicinity of 2 Hz is out of the locus of the circle, and in order to obtain the circle equation with high accuracy, it is preferable that the frequency to be measured is in the frequency range of 5 to 100 Hz.
[0071]
As the number of measurement frequencies, at least three measurement points are required to obtain the circle formula, and in consideration of a decrease in practical value accompanying an increase in measurement points, a maximum of 5 measurement points is required. 6 points, preferably 3 to 4 points or less are desirable. Furthermore, since the accuracy is best when the plot for obtaining the locus of the circle is equally spaced on the circumference, the frequency of the first measurement frequency Fa is one point in the range of 5 to 10 Hz, 10 to 30 Hz. It is most desirable to use one of the points, one of 50-100 Hz.
[0072]
FIG. 7 shows an arc (broken line) calculated from a circle formula obtained by a method described later.
Assuming that the X-axis intercept of the circular orbit is Xa, Xb (Xa <Xb), Xa corresponds to the electrolyte resistance value (RΩ), and (Xb−Xa) corresponds to the charge transfer resistance value (Rct). In a circle equation passing through three points, Xa and Xb (Xa <Xb) can be obtained by setting the imaginary part to 0, where Xa is the electrolyte resistance value (RΩ) and (Xb−Xa) is the charge transfer resistance value. Calculated as (Rct).
[0073]
Where (Xa + Xb) × 0.5 is XmI ask for it. XmIs the real part of the impedance indicating the center coordinates of the circle. The frequency indicating the top of the circle is fmaxThen, the electric double layer capacitance value (Cd) is (Rct × 2π × fmax)-1Calculated by However, since the measured frequency does not necessarily become the apex on the circumference, the frequency indicating the apex of the circle is approximately obtained from the following characteristics.
[0074]
FIG. 8 shows the results of plotting the internal impedance measured while changing the frequency, with the frequency as the X axis and the real part of the internal impedance as the Y axis.
It can be seen that the frequency range in which a direct relationship is obtained between the real part of the internal impedance and the frequency is approximately 1 to 10 Hz.
In FIG. 8, the results obtained at two frequencies of 6 Hz and 2 Hz are also plotted. By calculating the straight line connecting the two points, the straight linem, And the frequency f approximately representing the vertex of the circlemIs required. The electric double layer capacitance value (Cd) is (Rct × 2π × fm)-1Calculated by
[0075]
Frequency fmIs 4 to 5 Hz in most cases, so when performing the above method, it is selected from one arbitrary frequency selected in the frequency range of 1 to 5 Hz and one of 5 to 10 Hz. In particular, it is preferable to use the smallest frequency among 3 to 4 points to be measured for grasping the locus of the circle.
[0076]
An arithmetic expression for obtaining the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) when measured at three frequencies will be described.
When measured at the frequency of 4 points, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) were obtained at 3 points in any combination, and were obtained for each combination. An average of the determination results can be taken. Moreover, you may use the minimum value of the determination result calculated | required combining each from the safe side of a measurement.
In any case, even when measurement is performed at four frequencies, the same calculation as that performed when measurement is performed at three points is performed. First, an equation of an arbitrary circle is calculated from the measurement results of internal impedance measured at three frequencies.
[0077]
FIG. 9 shows three frequencies f.1, F2, FThreeIt is a graph which shows the coordinate which plotted the internal impedance measured by.
The following three equations are obtained, and since there are three unknowns and three equations, the coefficients a, b, and r that determine the locus of the circle can be obtained.
[0078]
[Equation 3]
f1Measured with: (X1-A)2+ (Y1-B)2= R2  ... (2)
f2Measured with: (X2-A)2+ (Y2-B)2= R2  ... (3)
fThreeMeasured with: (XThree-A)2+ (YThree-B)2= R2  (4)
[0079]
As a result of solving the above three formulas (2) to (4), the coefficients a, b and r are as follows.
[0080]
[Expression 4]
Figure 0004477185
[0081]
Here, the coefficients (factors) A to F are respectively expressed as follows.
[0082]
[Equation 5]
A = X1-X2                                        ... (8)
B = X2-XThree                                        ... (9)
C = Y1-Y2                                        (10)
D = Y2-YThree                                        ... (11)
E = X1 2-X2 2+ Y1 2-Y2 2                    (12)
F = X2 2-XThree 2+ Y2 2-YThree 2                    ... (13)
[0083]
In FIG. 9, RCTIs a circular chord on the real axis, and X of two points where Y = 0 is obtained from the equation of the circle, and R is calculated from the distance between the two points.CTCalculate
[0084]
[Formula 6]
(X-a)2= R2                                    ... (14)
X = a ± r (15)
RCT  = 2 · r (16)
RΩ = ar− (17)
[0085]
FIG. 10 is a graph showing coordinates in which the internal impedance measured at the fourth frequency is plotted.
Frequency f indicating the top of the circlemFor fmAs shown in FIG. 8, the relationship between the real part of the internal impedance and the frequency in the frequency range sandwiching the frequency range can be obtained by linear approximation since there is almost linearity in a certain range.
First frequency f1The real component when measured with X1, The fourth frequency fFourThe real component when measured with XFourThen fmIs represented by the following equation. Where f1> Fm> FFourIt is.
[0086]
[Expression 7]
Figure 0004477185
[0087]
Therefore, the electric double layer capacitance value (Cd) is expressed by the following equation.
[0088]
[Equation 8]
Figure 0004477185
[0089]
In the determination of a lead storage battery mounted on an automobile, the influence of the ambient environment such as temperature can be easily corrected by repeating the inspection at appropriate intervals from several seconds to several tens of seconds. This evaluation method is particularly effective.
[0090]
Table 1 below shows an example in which the remaining capacity determination is measured every 1 minute when idling is stopped, and the case where the past determination result is referred to the case where the determination is made independently is compared.
[0091]
[Table 1]
Figure 0004477185
[0092]
As a method for referring to past determination results, an average value was used by sequentially using determination results measured every 1 minute in remaining capacity determination during the same idle stop period.
The remaining capacity in the case of the single unit decreases until 2 minutes have elapsed immediately after the idle stop, and on the contrary, the determination after 3 minutes has shown an increasing tendency. On the other hand, the remaining capacity of the past reference decreases until after 3 minutes, and after that, shows a substantially constant value.
During the idle stop period, even if the discharge from the storage battery is reduced, the storage battery is not charged.
The cause of the increase in the remaining capacity is largely the influence of the surrounding environment such as temperature. Therefore, the case where the determination is made with reference to the past determination result is more effective than the case where the capacity determination is performed alone because the influence of the surrounding environment such as the temperature can be easily corrected.
[0093]
Lead storage battery evaluation system
The lead acid battery characteristic evaluation apparatus of the present invention is an apparatus that implements the lead acid battery evaluation method described above.
The structure of the evaluation apparatus for the lead storage battery is illustrated in FIG.
The lead-acid battery evaluation apparatus 10 includes a measuring means 12 for measuring the internal impedance of the lead-acid battery at a plurality of frequencies, an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct), and an electric double layer capacity value (Cd). The remaining capacity and / or the deterioration state of the tested lead storage battery are determined from the calculating means 14 for calculating, and the calculated electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacity value (Cd). Determination means 16.
[0094]
The measuring means 12 is composed of, for example, a variable frequency oscillation circuit, an impedance measurement device, and a computer device having a memory circuit, and connects the variable frequency oscillation circuit and the impedance measurement circuit to a lead storage battery whose characteristics are to be evaluated. A computer device is connected to the impedance measurement circuit.
The variable frequency oscillation circuit is selected in a frequency range of 1 to 100 Hz in a two-dimensional coordinate system defined by plotting a value obtained by multiplying the real part of the internal impedance by the X axis and the imaginary part by −1 on the Y axis. A signal having a plurality of frequencies of at least three points defining the impedance circle is oscillated and applied to the lead storage battery, and the impedance measuring device measures the internal impedance of the lead storage battery at each frequency. The computer device inputs a specific value of the internal impedance measured by the impedance measuring device and stores it in the storage circuit.
[0095]
The calculating means 14 is constituted by, for example, a computer device having the storage circuit, and at least the charge transfer resistance value (Rct) defined by the above formula (A-1) or (B-1) by the computer device. ) And electric double layer capacitance value (Cd) and an equivalent circuit composed of a series circuit of an electrolyte resistance value (RΩ), an electrolyte resistance value (RΩ), and a charge transfer resistance value (Rct) , The relation between the electric double layer capacity value (Cd) and the internal impedances of the lead acid batteries measured at a plurality of frequencies is referred to the values of a plurality of internal impedances measured at a plurality of frequencies, and the electrolyte resistance value ( RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd).
[0096]
The determination means 16 is composed of, for example, the above-described computer device, and the lead used in the test from the electrolytic solution resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd) calculated by the calculation means 14 The remaining capacity and / or deterioration state of the storage battery is determined.
Such a determination is made, for example, by using a graph representing the relationship between the above-described electrolyte resistance value (RΩ), charge transfer resistance value (Rct), electric double layer capacitance value (Cd) and the remaining capacity and / or the deterioration state. The image may be displayed on the display device, and may be determined visually by a human, or automatically by a determination process of a computer device.
[0097]
【The invention's effect】
As described above, according to the present invention, the internal impedance is measured at an arbitrary frequency of 3 to 5 points selected in the frequency range of 1 to 100 Hz, and the measurement result is substituted into the arithmetic expression. Can determine the remaining capacity and the deterioration state of the lead-acid battery, so that the measurement can be performed easily in a short time. Moreover, since the measurement frequency is a fixed frequency of 3 to 5 points, the cost of the apparatus can be reduced.
[0098]
According to the present invention, since the remaining capacity of the lead-acid battery can be accurately determined, it is very effective when used for determining whether or not an idling stop is possible when the automobile stops.
[Brief description of the drawings]
FIG. 1 shows the configuration of an equivalent circuit comprising an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct), and an electric double layer capacitance value (Cd) as a first equivalent circuit used in the present invention. FIG.
FIG. 2 shows an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct ′ and Rct ″), and an electric double layer capacitance value (Cd ′) as a second equivalent circuit used in the present invention. It is a block diagram of an equivalent circuit consisting of Cd ″).
FIG. 3 is a flowchart showing processing of the evaluation characteristic method for a lead storage battery of the present invention.
FIG. 4 is a graph illustrating the relationship between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery.
FIG. 5 is a graph illustrating the relationship between the charge transfer resistance value (Rct) and the remaining capacity of the lead storage battery.
FIG. 6 is a graph showing a relationship between an electrolyte resistance value (RΩ) and a remaining capacity (SOC) of a lead storage battery according to temperatures of a normal lead storage battery and a deteriorated lead storage battery.
FIG. 7 is a graph illustrating a method for calculating an electrolyte resistance value (RΩ), a charge transfer resistance value (Rct), and an electric double layer capacitance value (Cd).
FIG. 8 is a graph illustrating the relationship between the frequency and the real component of the impedance.
FIG. 9 is a graph showing coordinates in which internal impedances measured at three frequencies are plotted.
FIG. 10 is a graph showing coordinates in which internal impedance measured at a fourth frequency is plotted.
FIG. 11 is a block diagram of a lead-acid battery evaluation apparatus according to the present invention.
[Explanation of symbols]
10. ・ Evaluation device for lead acid battery
12. ・ Measuring means
14. Calculation means
16 .. Judgment means

Claims (13)

少なくとも電荷移動抵抗値(Rct)と電気二重層容量値(Cd)との並列回路と電解液抵抗値(RΩ)との直列回路で構成した、インピーダンスが下記式で規定される等価回路で表した鉛蓄電池の鉛蓄電池の評価特性方法であって、
〔RΩ+(Rct/(1+jωCd))〕 ・・・(A)
ただし、ω=2πf
前記鉛蓄電池の内部インピーダンスの実部をX軸に虚部に−1を乗じた値をY軸にプロットして規定される二次元座標におけるインピーダンス円を規定する、1〜100Hzの周波数の範囲で選ばれた、3点以上の複数の周波数について、鉛蓄電池の内部インピーダンスを測定し、
前記電荷移動抵抗値(Rct)と電気二重層容量値(Cd)との並列回路と、前記電解液抵抗値(RΩ)との直列回路で構成した等価回路から導出される電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と、前記複数の周波数において測定した複数の鉛蓄電池の内部インピーダンスとの関係式に、前記複数の周波数において測定した複数の内部インピーダンスの値を参照して前記電解液抵抗値(RΩ),前記電荷移動抵抗値(Rct),前記電気二重層容量値(Cd)を求め、
算出した電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の全てまたは少なくとも1つから供試した鉛蓄電池の残存容量および/または劣化状態を判定する
ことを特徴とする鉛蓄電池の評価特性方法。
The impedance is represented by an equivalent circuit defined by the following equation, which is composed of a series circuit of at least a parallel circuit of a charge transfer resistance value (Rct) and an electric double layer capacitance value (Cd) and an electrolyte resistance value (RΩ). An evaluation characteristic method of a lead storage battery of a lead storage battery,
[RΩ + (Rct / (1 + jωCd))] (A)
However, ω = 2πf
A frequency range of 1 to 100 Hz that defines an impedance circle in a two-dimensional coordinate defined by plotting a real part of the internal impedance of the lead-acid battery by multiplying an imaginary part by -1 on an X axis and a Y axis. Measure the internal impedance of the lead-acid battery for a plurality of selected three or more frequencies,
Electrolyte resistance value (RΩ) derived from an equivalent circuit composed of a parallel circuit of the charge transfer resistance value (Rct) and electric double layer capacitance value (Cd) and a series circuit of the electrolyte resistance value (RΩ) ), Charge transfer resistance value (Rct), electric double layer capacitance value (Cd) and internal impedances of the lead acid batteries measured at the plurality of frequencies, and a plurality of internals measured at the plurality of frequencies. With reference to the impedance value, the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) are obtained,
Determining the remaining capacity and / or deterioration state of the lead storage battery tested from all or at least one of the calculated electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacity value (Cd) A characteristic evaluation method for a lead-acid battery.
事前に前記電気二重層容量値(Cd)と前記鉛蓄電池の残存容量の関係式を求めておき、
前記内部インピーダンスについての複数の測定結果から求めた電気二重層容量値(Cd)の値を前記鉛蓄電池の残存容量の関係式に照合して鉛蓄電池の残存容量の判定を行い、
この判定の際の鉛蓄電池の劣化状態による補正と、鉛蓄電池の温度による補正を行うことを特徴とする、
請求項1記載の鉛蓄電池の評価方法。
Obtain a relational expression between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery in advance,
The value of the electric double layer capacity value (Cd) obtained from a plurality of measurement results for the internal impedance is compared with the relational expression of the remaining capacity of the lead storage battery to determine the remaining capacity of the lead storage battery,
The correction by the deterioration state of the lead storage battery at the time of this determination, and the correction by the temperature of the lead storage battery,
The evaluation method of the lead acid battery of Claim 1.
前記電気二重層容量値(Cd)と前記鉛蓄電池の残存容量とは、温度に依存した勾配を有した直線として規定される、
請求項2記載の鉛蓄電池の評価特性方法。
The electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery are defined as a straight line having a temperature-dependent gradient.
The evaluation characteristic method of the lead acid battery of Claim 2.
事前に所定の複数の温度について、前記電気二重層容量値(Cd)と前記鉛蓄電池の残存容量との関係式を複数作成しておき、
前記鉛蓄電池の温度を測定し、前記複数の関係式のうち、近似する2つの温度の関係式を用いて補間して、鉛蓄電池の温度に応じた鉛蓄電池の特性を評価する、
請求項3記載の鉛蓄電池の評価特性方法。
For a plurality of predetermined temperatures in advance, create a plurality of relational expressions between the electric double layer capacity value (Cd) and the remaining capacity of the lead storage battery,
Measuring the temperature of the lead storage battery, interpolating using a relational expression of two approximate temperatures among the plurality of relational expressions, and evaluating the characteristics of the lead storage battery according to the temperature of the lead storage battery;
The evaluation characteristic method of the lead acid battery of Claim 3.
前記判定の際の鉛蓄電池の劣化状態による補正と温度による補正を、前記内部インピーダンスの複数の測定結果から求めた前記電解液抵抗値(RΩ),前記電荷移動抵抗値(Rct),前記電気二重層容量値(Cd)を用いて行うことを特徴とする、
請求項2記載の鉛蓄電池の評価特性方法。
The electrolytic solution resistance value (RΩ), the charge transfer resistance value (Rct), and the electric two-dimensional correction obtained from a plurality of measurement results of the internal impedance are corrected by the deterioration state of the lead storage battery and the correction by temperature at the time of the determination. It is performed using the multilayer capacitance value (Cd),
The evaluation characteristic method of the lead acid battery of Claim 2.
事前に鉛蓄電池の電荷移動抵抗値(Rct)と鉛蓄電池の残存容量の関係式を求めておき、
前記内部インピーダンスの複数の測定結果から求めた電荷移動抵抗値(Rct)を、上記鉛蓄電池の残存容量の関係式に照合して鉛蓄電池の残存容量の判定を行い、
この判定の際の鉛蓄電池の劣化状態による補正と、鉛蓄電池の温度による補正を行うことを特徴とする
請求項1記載の鉛蓄電池の評価特性方法。
Obtain a relational expression between the charge transfer resistance value (Rct) of the lead storage battery and the remaining capacity of the lead storage battery in advance,
The charge transfer resistance value (Rct) obtained from a plurality of measurement results of the internal impedance is compared with the relational expression of the remaining capacity of the lead storage battery to determine the remaining capacity of the lead storage battery,
The evaluation characteristic method for a lead storage battery according to claim 1, wherein the correction based on the deterioration state of the lead storage battery in the determination and the correction based on the temperature of the lead storage battery are performed.
前記判定の際の電池の劣化状態のよる補正と、鉛蓄電池の温度による補正を、前記内部インピーダンスの複数の測定結果から求めた電解液抵抗値(RΩ)および電気二重層容量値(Cd)を用いて行うことを特徴とする
請求項6記載の鉛蓄電池の評価特性方法。
The electrolyte resistance value (RΩ) and the electric double layer capacity value (Cd) obtained from a plurality of measurement results of the internal impedance are corrected according to the deterioration state of the battery at the time of the determination and the correction based on the temperature of the lead storage battery. The evaluation characteristic method for a lead storage battery according to claim 6, wherein the evaluation characteristic method is used.
前記複数の測定周波数が、
5〜100Hzの周波数の範囲で選ばれた任意の3〜4点の第1の周波数(Fa)と、
1〜5Hzの周波数の範囲で選ばれた任意の1点の第2の周波数(Fb)であることを特徴とする
請求項1記載の鉛蓄電池の評価特性方法。
The plurality of measurement frequencies are
An arbitrary 3 to 4 first frequency (Fa) selected in the range of 5 to 100 Hz;
The evaluation characteristic method for a lead-acid battery according to claim 1, wherein the second frequency (Fb) is an arbitrary one point selected in a frequency range of 1 to 5 Hz.
前記電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の導出を、
(イ)測定された内部インピーダンスの実部をX軸に、虚部に−1を乗じた値をY軸にプロットし、
(ロ)このうち、第1の周波数(Fa)で測定された3〜4点のプロットを通過する円の軌道を求め、
(ハ)軌道のX軸切片Xa,Xb(ただし、Xa<Xb)を求め、
(ニ)切片Xaを前記電解液抵抗値(RΩ)とし、(Xb−Xa)を電荷移動抵抗値(Rct)とし、(Xa+Xb)×0.5をXm とし、
(ホ)内部インピーダンスの実部をY軸に周波数をX軸とした座標に、第1の周波数(Fa)のうち最も低い周波数(Fa’)と第2の周波数(Fb)における測定値をプロットし、両プロットを結んだ直線上の、上記したXm に相当する周波数をωm とし、
(ヘ)前記電気二重層容量値(Cd)を(Rct×ωm -1として求めることを特徴とする、
請求項1記載の鉛蓄電池の評価特性方法。
Derivation of the electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd),
(A) The real part of the measured internal impedance is plotted on the X axis, and the value obtained by multiplying the imaginary part by -1 is plotted on the Y axis.
(B) Among these, the trajectory of a circle passing through a 3-4 point plot measured at the first frequency (Fa) is obtained,
(C) Obtain X-axis intercepts Xa and Xb (where Xa <Xb) of the orbit,
(D) The intercept Xa is the electrolyte resistance value (RΩ), (Xb−Xa) is the charge transfer resistance value (Rct), (Xa + Xb) × 0.5 is X m ,
(E) The measured values at the lowest frequency (Fa ') and the second frequency (Fb) of the first frequency (Fa) are plotted on the coordinates where the real part of the internal impedance is the Y axis and the frequency is the X axis. And the frequency corresponding to the above X m on the straight line connecting both plots is ω m ,
(F) The electric double layer capacitance value (Cd) is calculated as (Rct × ω m ) −1 ,
The evaluation characteristic method of the lead acid battery according to claim 1.
前記第1の測定周波数(Fa)が、
5〜10Hzの中の1点、
10〜30Hzの中の1点、
50〜100Hzの中の1点を
含むことを特徴とする
請求項6記載の鉛蓄電池の評価方法。
The first measurement frequency (Fa) is
1 point in 5-10Hz,
1 point in 10-30Hz,
The method for evaluating a lead storage battery according to claim 6, comprising one point in the range of 50 to 100 Hz.
前記鉛蓄電池の特性評価を、所定の時間間隔で行い、
前回までの特性評価で求められた前記電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の値の少なくとも一つ以上の値を、当回の検査で求めた電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)の値の少なくとも一つ以上の値と比較し、
その比較結果を鉛蓄電池の残存容量と劣化状態の判定の補正に用いることを特徴とする
請求項1記載の鉛蓄電池の評価特性方法。
Characteristic evaluation of the lead storage battery is performed at predetermined time intervals,
At least one of the values of the electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd) obtained in the previous characteristic evaluation is determined in this inspection. Compared with at least one of the obtained electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacitance value (Cd),
2. The evaluation characteristic method for a lead storage battery according to claim 1, wherein the comparison result is used for correcting determination of the remaining capacity and the deterioration state of the lead storage battery.
車両に搭載された鉛蓄電池に対して、当該車両のエンジン停止期間に、上記処理を行うことを特徴とする
請求項1〜11記載のいずれか記載の鉛蓄電池の評価特性方法。
The lead storage battery evaluation characteristic method according to any one of claims 1 to 11, wherein the processing is performed on the lead storage battery mounted on the vehicle during an engine stop period of the vehicle.
少なくとも電荷移動抵抗値(Rct)と電気二重層容量値(Cd)との並列回路と電解液抵抗値(RΩ)との直列回路で構成した、インピーダンスが下記式で規定される等価回路で表した鉛蓄電池の鉛蓄電池の評価特性装置であって、
〔RΩ+(Rct/(1+jωCd))〕 ・・・(B)
ただし、ω=2πf
1〜100Hzの周波数の範囲で選ばれた、内部インピーダンスの実部をX軸に虚部に−1を乗じた値をY軸にプロットして規定される二次元座標におけるインピーダンス円を規定する少なくとも3点以上の複数の周波数において、鉛蓄電池の内部インピーダンスを測定する測定手段と、
前記電荷移動抵抗値(Rct)と電気二重層容量値(Cd)との並列回路と電解液抵抗値(RΩ)との直列回路で構成した等価回路、から導出される電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)と、前記複数の周波数において測定した複数の鉛蓄電池の内部インピーダンスとの関係式に前記複数の周波数において測定した複数の内部インピーダンスの値を参照して前記電解液抵抗値(RΩ),前記電荷移動抵抗値(Rct),前記電気二重層容量値(Cd)を求める算出手段と、
算出した電解液抵抗値(RΩ),電荷移動抵抗値(Rct),電気二重層容量値(Cd)から供試した鉛蓄電池の残存容量および/または劣化状態を判定する判定手段と
を有する鉛蓄電池の特性評価装置。
The impedance is represented by an equivalent circuit defined by the following equation, which is composed of a series circuit of at least a parallel circuit of a charge transfer resistance value (Rct) and an electric double layer capacitance value (Cd) and an electrolyte resistance value (RΩ). A lead-acid battery evaluation characteristic device for a lead-acid battery,
[RΩ + (Rct / (1 + jωCd))] (B)
However, ω = 2πf
At least the impedance circle in the two-dimensional coordinates defined by plotting the real part of the internal impedance selected from the frequency range of 1 to 100 Hz and the imaginary part multiplied by -1 on the Y axis is plotted on the Y axis Measuring means for measuring the internal impedance of the lead-acid battery at a plurality of three or more frequencies;
Electrolyte resistance value (RΩ) derived from an equivalent circuit composed of a parallel circuit of the charge transfer resistance value (Rct) and electric double layer capacitance value (Cd) and a series circuit of the electrolyte resistance value (RΩ) , Charge transfer resistance value (Rct), electric double layer capacitance value (Cd) and the internal impedance of the plurality of lead storage batteries measured at the plurality of frequencies, and a plurality of internal impedances measured at the plurality of frequencies. Calculating means for obtaining the electrolyte resistance value (RΩ), the charge transfer resistance value (Rct), and the electric double layer capacitance value (Cd) by referring to values;
Lead storage battery having a determination means for determining the remaining capacity and / or deterioration state of the lead storage battery tested from the calculated electrolyte resistance value (RΩ), charge transfer resistance value (Rct), and electric double layer capacity value (Cd) Characterization equipment.
JP2000050539A 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery Expired - Lifetime JP4477185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050539A JP4477185B2 (en) 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050539A JP4477185B2 (en) 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery

Publications (2)

Publication Number Publication Date
JP2001235525A JP2001235525A (en) 2001-08-31
JP4477185B2 true JP4477185B2 (en) 2010-06-09

Family

ID=18572306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050539A Expired - Lifetime JP4477185B2 (en) 2000-02-22 2000-02-22 Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery

Country Status (1)

Country Link
JP (1) JP4477185B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929338A (en) * 2016-05-30 2016-09-07 北京大学深圳研究生院 Method for measuring states of battery and application of method
US12085622B2 (en) 2018-11-30 2024-09-10 Lg Energy Solution, Ltd. Battery cell resistance measurement device and method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388314B1 (en) * 2001-09-03 2003-06-25 금호석유화학 주식회사 method to group single cells of power sources to build optimal packs using parameters obtained by analysis of impedance spectrum
KR100605123B1 (en) * 2003-02-21 2006-07-28 주식회사 맥사이언스 Method and device for evaluating deterioration characteristics of organic light emitting diode by measuring AC impedance
DE10345057B4 (en) * 2003-09-26 2005-09-15 Rheinisch-Westfälisch-Technische Hochschule Aachen Method and device for determining the state of charge of a battery
JP2007333494A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
JP4884945B2 (en) * 2006-11-30 2012-02-29 三菱重工業株式会社 Charging state prediction program, overhead line-less traffic system and charging method thereof
JP5343463B2 (en) * 2008-09-05 2013-11-13 東電設計株式会社 Stress measurement method for concrete structures
FR2942545B1 (en) * 2009-02-24 2012-08-03 Helion METHOD FOR DETERMINING A HEALTH STATUS OF AN ELECTROCHEMICAL DEVICE
FR2948771B1 (en) * 2009-07-28 2011-08-26 Commissariat Energie Atomique METHOD OF CHARACTERIZING AN ELECTRIC BATTERY
JP5586219B2 (en) 2009-12-25 2014-09-10 株式会社東芝 Diagnostic device, battery pack, and battery value index manufacturing method
US20130069660A1 (en) * 2010-02-17 2013-03-21 Julien Bernard Method for in situ battery diagnostic by electrochemical impedance spectroscopy
CN103415428B (en) * 2011-03-16 2016-03-16 丰田自动车株式会社 The deterioration diagnosis method of vehicle and electrical storage device
JP5549634B2 (en) * 2011-04-04 2014-07-16 トヨタ自動車株式会社 Secondary battery deterioration judgment method and apparatus
JP5653881B2 (en) * 2011-10-14 2015-01-14 古河電気工業株式会社 Secondary battery state detection device and secondary battery state detection method
US9459323B2 (en) * 2011-11-08 2016-10-04 Hitachi Chemical Company, Ltd. Battery-state monitoring system
DE102012014014B4 (en) * 2012-07-17 2018-09-20 Technische Universität Braunschweig Method and device for condition determination of batteries
JP6382663B2 (en) * 2014-09-25 2018-08-29 プライムアースEvエナジー株式会社 Battery state determination method and battery state determination device
JP7570970B2 (en) 2021-05-25 2024-10-22 日置電機株式会社 Acquisition processing device, processing method, processing program, and measurement system
CN113687253B (en) * 2021-08-23 2023-06-30 蜂巢能源科技有限公司 Method for analyzing impedance of internal components of battery cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929338A (en) * 2016-05-30 2016-09-07 北京大学深圳研究生院 Method for measuring states of battery and application of method
US12085622B2 (en) 2018-11-30 2024-09-10 Lg Energy Solution, Ltd. Battery cell resistance measurement device and method

Also Published As

Publication number Publication date
JP2001235525A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP4477185B2 (en) Characteristic evaluation method for lead acid battery and characteristic evaluation device for lead acid battery
CN108828461B (en) Power battery SOH value estimation method and system
US6313607B1 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
JP5269994B2 (en) Battery SOH estimation apparatus and method using battery voltage behavior
US7615967B2 (en) Method and apparatus of estimating state of health of battery
JP7069837B2 (en) Battery diagnostic equipment and method
JP5242997B2 (en) Battery state management method and battery state management apparatus
JP6044114B2 (en) State determination device, power storage device, and state determination method
JP6508729B2 (en) Battery state estimation device
EP3264120B1 (en) Cell deterioration diagnostic method and cell deterioration diagnostic device
US20080183408A1 (en) Battery Condition Monitor
JP4940889B2 (en) Battery characteristic detection method and battery characteristic detection apparatus
JP2002189066A (en) Battery level estimation method
CN113131012A (en) Method and device for determining SOC estimation precision and storage medium
JP5653881B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2016109565A (en) Secondary battery state detection device and secondary battery state detection method
JP2005221487A (en) Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system
CN113945302B (en) Method and device for determining internal temperature of battery
JP2010203885A (en) Device of estimating inputtable/outputtable power of secondary battery
JP6377644B2 (en) Method for determining the average value of a periodic or quasi-periodic voltage signal
JP3551767B2 (en) Battery discharge meter
JP6528598B2 (en) Diffusion resistance identification device for secondary battery
JP4488714B2 (en) Vehicle mounted state management device for vehicle lead storage battery and method for detecting deterioration state of vehicle lead storage battery
JP2010197354A (en) Capacity estimating device for secondary battery
US20220206079A1 (en) System-side battery health gauge and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100311

R151 Written notification of patent or utility model registration

Ref document number: 4477185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term