JP4470147B2 - Thin film wiring layer - Google Patents
Thin film wiring layer Download PDFInfo
- Publication number
- JP4470147B2 JP4470147B2 JP2003322454A JP2003322454A JP4470147B2 JP 4470147 B2 JP4470147 B2 JP 4470147B2 JP 2003322454 A JP2003322454 A JP 2003322454A JP 2003322454 A JP2003322454 A JP 2003322454A JP 4470147 B2 JP4470147 B2 JP 4470147B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- wiring layer
- thin film
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010409 thin film Substances 0.000 title claims description 20
- 239000010410 layer Substances 0.000 claims description 59
- 239000000758 substrate Substances 0.000 claims description 26
- 239000004020 conductor Substances 0.000 claims description 18
- 239000011247 coating layer Substances 0.000 claims description 17
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000010408 film Substances 0.000 description 38
- 239000000654 additive Substances 0.000 description 21
- 230000000996 additive effect Effects 0.000 description 21
- 229910000990 Ni alloy Inorganic materials 0.000 description 10
- 229910052758 niobium Inorganic materials 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 229910001182 Mo alloy Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- 241000519995 Stachys sylvatica Species 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- 238000002438 flame photometric detection Methods 0.000 description 4
- 230000005389 magnetism Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000003870 refractory metal Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000013077 target material Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000016169 Fish-eye disease Diseases 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Liquid Crystal (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本発明は、基板上に薄膜を形成して製造される平面表示装置(Flat Panel Displey、以下、FPDという)等に用いられる薄膜配線層に関するものである。 The present invention relates to a thin film wiring layer used in a flat panel display (hereinafter referred to as FPD) manufactured by forming a thin film on a substrate.
例えば、ガラス基板またはSiウェハ−上に薄膜を積層して製造されるFPDには液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンスディスプレイ(以下、ELDという)、電子ペーパー等種々の新規製品が活発に研究、開発がされている。 For example, FPDs manufactured by laminating thin films on glass substrates or Si wafers include liquid crystal displays (hereinafter referred to as LCDs), plasma display panels (hereinafter referred to as PDPs), field emission displays (hereinafter referred to as FEDs), Various new products such as electroluminescence display (hereinafter referred to as ELD) and electronic paper are actively researched and developed.
FPDの導電膜には、透明導電膜である酸化物のITO(Indium-Tin-Oxide)や、より高精細な表示の必要な場合にはITOより低抵抗であり基板との密着性、耐熱性、優れる高融点金属であるCrやTaおよびその合金膜が用いられている。また、さらに低抵抗が要求される場合には、これらの高融点金属膜とAlやAl合金とを積層した薄膜配線層が用いられている。
この中で、Cr膜は耐食性、耐熱性に優れ、薬液を用いたウェットエッチングが可能であり、ガラス基板やSiウェハ−等の基板に対する密着性が高く、薄膜材料として特に有益な材料である。そのためCrは、Al、Ag、Cuやこれらに添加元素を加えた合金等の下地層や上覆層等の被覆層として用いることが可能である。しかし、近年では、Cr膜は平面表示素子を製造する際や廃棄、再生する場合に六価Crを含んだ廃液が発生する等の問題があり、地球規模の環境保全のために、使用を削減する必要がある。
FPD conductive films include oxide ITO (Indium-Tin-Oxide), which is a transparent conductive film, and lower resistance than ITO when higher definition display is required, adhesion to the substrate, and heat resistance. Cr, Ta, which are excellent refractory metals, and alloy films thereof are used. Further, when further low resistance is required, a thin film wiring layer in which these refractory metal films and Al or an Al alloy are laminated is used.
Among them, the Cr film is excellent in corrosion resistance and heat resistance, can be wet-etched using a chemical solution, has high adhesion to a substrate such as a glass substrate or Si wafer, and is a particularly useful material as a thin film material. Therefore, Cr can be used as a coating layer such as an underlayer such as Al, Ag, Cu, or an alloy obtained by adding an additive element to these, or an upper coating layer. However, in recent years, there has been a problem such as the generation of waste liquid containing hexavalent Cr when manufacturing flat display elements, discarding and recycling Cr films, and the use of Cr films has been reduced for global environmental conservation. There is a need to.
このため、Crに変わる信頼性の高い材料の開発が望まれている。Crを代替する材料として抵抗値が同等以下の材料としてMo合金が提案されている。
MoはCrと同様に高融点材料であるために耐熱性は高く、平面表示装置用のガラス基板やSiウェハ−等との密着性も良好である。さらに、ウェットエッチングが可能という利点も有する。なお、純Moではなく、Mo合金が提案されているのは、Moは腐食されやすい金属であるため、ウェットエッチング時のAl等の主配線層とのエッチング速度差を緩和することと、フッ素系ガス、及び塩素系ガスといったドライエッチングガスに対する耐性を改善するためであり、具体的な添加元素としては、Cr,Ti,Zr,Hf,Nb,Ta等が提案されている。(特許文献1、2、3等参照)
Since Mo is a high-melting point material like Cr, it has high heat resistance and good adhesion to a glass substrate for flat display devices, Si wafers, and the like. Furthermore, there is an advantage that wet etching is possible. In addition, Mo alloy is proposed instead of pure Mo. Since Mo is a metal that is easily corroded, the etching rate difference with the main wiring layer such as Al during wet etching is alleviated; This is for improving the resistance against dry etching gas such as gas and chlorine-based gas. As specific additive elements, Cr, Ti, Zr, Hf, Nb, Ta and the like have been proposed. (See Patent Documents 1, 2, 3, etc.)
上記のMo合金の適用は、Moによるウェットエッチング性と耐熱性の確保により、信頼性の高い配線層を得ることができ、平面表示装置の薄膜配線層として有効である。
ところで、液晶表示装置等の平面表示装置の製造においては、環境雰囲気、特に湿度に対する耐性も重要な特性となってきている。これは、湿度の影響で膜が変質すること、簡単に言えば酸化により錆びてしまうという現象により、電気的な接点として特性(コンタクト性)の劣化が起こるというものである。
本発明者は、Mo合金の耐湿性を検討したが、Moベースであるため、著しい耐湿性の改善には至らなかった。
Application of the Mo alloy described above is effective as a thin film wiring layer of a flat display device because a highly reliable wiring layer can be obtained by securing wet etching property and heat resistance by Mo.
Incidentally, in the manufacture of flat display devices such as liquid crystal display devices, resistance to environmental atmospheres, particularly humidity, has become an important characteristic. This is because the property (contact property) deteriorates as an electrical contact point due to the phenomenon that the film changes in quality due to the influence of humidity, that is, it rusts due to oxidation.
Although this inventor examined the moisture resistance of Mo alloy, since it was Mo base, it did not lead to the remarkable improvement in moisture resistance.
本発明の目的は、特に耐熱性の確保と、耐湿性を改善できる新規の薄膜配線層を提供することにある。 An object of the present invention is to provide a novel thin film wiring layer capable of ensuring heat resistance and improving moisture resistance.
本発明者は、検討の結果、Moをベースとするのではなく、Niをベースとして、特定の添加元素を使用することで、上記目的を達成することができることを見いだした。
すなわち本発明は、基板上に形成される薄膜配線層であって、Cuを主成分とする主導体層と該主導体層を覆う被覆層からなり、該被覆層は、Nbを1〜7原子%含有し、かつMoおよび/またはWをNbとの合計で3〜15原子%含有し、残部が実質的にNiからなる合金層である薄膜配線層である。
As a result of the study, the present inventor has found that the above object can be achieved by using a specific additive element based on Ni instead of using Mo as a base.
That is, the present invention is a thin film wiring layer formed on a substrate made of a coating layer that covers the main conductor layer and the main conductor layer mainly composed of C u, the coating layer, the Nb 1 to 7 This is a thin-film wiring layer that is an alloy layer that contains atomic percent and contains Mo and / or W in a total amount of 3 to 15 atomic percent with Nb, with the balance being substantially Ni.
本発明の配線層は、耐熱性を確保しつつ、耐湿性をも改善できるため、特に高速駆動が必要で薄膜の特性の変化を嫌う平面表示装置用のTFTの配線層として極めて有効なものとなる。 Since the wiring layer of the present invention can improve moisture resistance while ensuring heat resistance, it is extremely effective as a wiring layer for TFTs for flat display devices that require high-speed driving and dislike changes in thin film characteristics. Become.
本発明の重要な特徴は、主導体層と該主導体層を覆う被覆層からなる構造の配線層に従来適用されていたMo合金層に代えてNi合金層を適用したことにある。
以下本発明に適用するNi合金層について説明する。
An important feature of the present invention resides in that a Ni alloy layer is applied in place of the Mo alloy layer conventionally applied to a wiring layer having a structure composed of a main conductor layer and a covering layer covering the main conductor layer.
The Ni alloy layer applied to the present invention will be described below.
Niは、電極電位が高く酸化されにくいためMoに比べて著しく優れた耐湿性を確保することができる。この点が本発明の最も重要な特徴である。
また、Niは被覆層として、1400℃近辺の融点を持つため、Ag又はCuを主成分とする主導体層の耐熱性をある程度確保することができる。
Since Ni has a high electrode potential and is not easily oxidized, it can ensure remarkably superior moisture resistance compared to Mo. This is the most important feature of the present invention.
Further, since Ni has a melting point near 1400 ° C. as the coating layer, the heat resistance of the main conductor layer mainly composed of Ag or Cu can be ensured to some extent.
なお、純Niでは、耐熱性の点では高融点金属であるMoに劣るため、加熱時の膜の変質を抑えるための添加元素の使用が有効である。本発明では、耐熱性改善のために、Niに(Ti、Zr、Hf、V、Nb、Ta、Mo、W)から選択される1種または2種以上の添加元素を3〜15原子%含有させる。 Note that pure Ni is inferior to Mo, which is a refractory metal, in terms of heat resistance, and therefore it is effective to use an additive element to suppress film alteration during heating. In the present invention, in order to improve heat resistance, Ni contains 3 to 15 atomic% of one or more additive elements selected from (Ti, Zr, Hf, V, Nb, Ta, Mo, W). Let
本発明において、添加元素が3原子%未満では、耐熱性改善に対する効果が少なく、15原子%を超えると逆にエッチング加工出来なくなってしまうためである。
本発明において上記添加元素としては、好ましくは、5原子%〜10原子%、より好ましくは7原子%〜10原子%とする。
なお、配線層形成にスパッタリング法を使用する場合には、被覆層と同組成のターゲットが必要となるが、Niは磁性体であり、マグネトロンスパッタリングの効率が悪いという問題がある。本発明の添加元素は磁性を低減する効果もあり、磁性を低減もしくは消失することは、製造効率に対する利点にもなる。磁性を消失するという観点からは、添加元素としては7原子%以上が望ましい。
また、上記添加元素は、Niの抵抗値を上げてしまう元素であるが、本発明のように主導体層を有する構造を採用することは、基本的な導電性については主導体層により確保できるという利点がある。
In the present invention, if the additive element is less than 3 atomic%, the effect for improving the heat resistance is small, and if it exceeds 15 atomic%, the etching process cannot be performed.
In the present invention, the additive element is preferably 5 atom% to 10 atom%, more preferably 7 atom% to 10 atom%.
When a sputtering method is used for forming the wiring layer, a target having the same composition as that of the coating layer is required. However, Ni is a magnetic substance, and there is a problem that the efficiency of magnetron sputtering is poor. The additive element of the present invention also has an effect of reducing magnetism, and reducing or eliminating magnetism also has an advantage for production efficiency. From the viewpoint of eliminating magnetism, the additive element is preferably 7 atomic% or more.
Further, the additive element is an element that increases the resistance value of Ni, but adopting a structure having a main conductor layer as in the present invention can ensure basic conductivity by the main conductor layer. There is an advantage.
主導体層を、Agを主成分とする層とするとき、被覆層における添加元素を(Ti,Zr,Hf)から選択される1種または2種以上の添加元素とすることが望ましい。
これらの添加元素は、Agと化合物を生成し易く、主導体層と被覆層との密着性を向上できる。
When the main conductor layer is a layer containing Ag as a main component, it is desirable that the additive element in the coating layer be one or more additive elements selected from (Ti, Zr, Hf).
These additive elements can easily form Ag and a compound, and can improve the adhesion between the main conductor layer and the coating layer.
また、主導体層をCuを主成分とする層とするとき被覆層における添加元素を(Nb、Ta、Mo、W)から選択される1種または2種以上の添加元素とすることが望ましい。
これらの添加元素は、Cuに固溶しないか、表面化合物形成しやすい元素であり、主導体層と被覆層が過度に拡散してしまうのを防止する効果が高いものである。
In addition, when the main conductor layer is a layer containing Cu as a main component, it is desirable that the additive element in the coating layer be one or more additive elements selected from (Nb, Ta, Mo, W).
These additive elements are elements that do not dissolve in Cu or easily form a surface compound, and have a high effect of preventing the main conductor layer and the coating layer from being excessively diffused.
また、Niへの添加元素の中でV,Nb,Taは、Mo、Wの6A族元素に比べて添加による抵抗率の上昇が少なく、Ti等の4A族よりも、Niに対する固溶域が広く、耐熱性をより高めることができるためである。また、Vの添加では、酸化雰囲気で酸化の進行が止まらないため、V,Nb,Taの中では、Nb,Taが望ましく、コストの面からはNbが好ましい。
また、Mo、Wは、上述した添加元素のうち最も固溶域が広く、薄膜組織を微細にする効果が最も高い。そのため、添加元素として、少なくともNbを1〜7原子%含有し、かつMoおよび/またはWをNbとの合計で3〜10原子%含有することで、Nbのエッチング性を高める効果と、Moおよび/またはWによる膜微細化によるパターン精度向上効果を両立できる。
Further, among the additive elements to Ni, V, Nb, and Ta are less likely to increase in resistivity by addition than the 6A group elements of Mo and W, and have a more solid solution region with respect to Ni than the 4A group such as Ti. This is because the heat resistance can be increased more widely. Further, since the progress of oxidation does not stop in the oxidizing atmosphere when V is added, Nb and Ta are desirable among V, Nb and Ta, and Nb is preferred from the viewpoint of cost.
Moreover, Mo and W have the widest solid solution region among the additive elements described above, and have the highest effect of making the thin film structure fine. Therefore, as an additive element, at least Nb is contained in 1 to 7 atomic%, and Mo and / or W is contained in a total of 3 to 10 atomic% with Nb, thereby improving the Nb etching property, Mo and It is possible to achieve both the effect of improving the pattern accuracy by miniaturizing the film by W / or W.
本発明の薄膜配線層を形成する基板は、特に限定されるものではなく、シリコン基板、Al基板、ガラス基板、樹脂基板等に適用できる。特にガラス基板上に形成する配線層とする場合、密着性を高める効果により、特に好適である。 本発明の薄膜配線層における、主導電層および被覆層は、各層と実質同一の組成を有するタ−ゲット材を用いたスパッタリング法により成形することができる。 The board | substrate which forms the thin film wiring layer of this invention is not specifically limited, It can apply to a silicon substrate, Al substrate, a glass substrate, a resin substrate, etc. In particular, when a wiring layer is formed on a glass substrate, it is particularly suitable because of the effect of improving the adhesion. The main conductive layer and the coating layer in the thin film wiring layer of the present invention can be formed by sputtering using a target material having substantially the same composition as each layer.
また、本発明における被覆層としての典型的な形態は、図1に示すように基板1上に形成した被覆層としての下地層4と、下地層4上に形成した主導体層2と、さらに主導体層上に形成した被覆層としてのカバー層3でなるものである。なお、基板1と主導体層2の間に設ける下地層を省略しても良い。
しかし、本発明のNi合金膜は各種基板との密着性にも優れるため、主配線層の下地膜として使用することができるのである。AgやCuは従来のAlやCr等に比較して、ガラス基板、Siウェハ−との密着性の低い膜である。このため、Ni合金膜を下地膜とすることでAgやCu膜の密着性を改善することで、信頼性の向上を図ることが可能である。
In addition, a typical form as a coating layer in the present invention includes a base layer 4 as a coating layer formed on the substrate 1 as shown in FIG. 1, a main conductor layer 2 formed on the base layer 4, and The cover layer 3 is a cover layer formed on the main conductor layer. The underlayer provided between the substrate 1 and the main conductor layer 2 may be omitted.
However, since the Ni alloy film of the present invention is excellent in adhesion to various substrates, it can be used as a base film for the main wiring layer. Ag and Cu are films having lower adhesion to glass substrates and Si wafers than conventional Al and Cr. For this reason, it is possible to improve the reliability by improving the adhesion of the Ag or Cu film by using the Ni alloy film as a base film.
高純度電解Niに、高純度金属原料のNb、Wを所定の重量加えて、真空誘導溶解炉にて溶解して、厚み50mm、幅200mm、高さ300mmの金属製鋳型に鋳造して表1に示す組成のインゴットを作製した。その後1150℃で固溶体化処理を行った後、塑性加工により板状にし、さらに機械加工を施して所定のサイズとして、種々組成のターゲット材を作製した。そのタ−ゲット材をマグネトロンスパッタ装置に取り付けて、アルゴン圧力0.5Pa、投入電力は500Wで、0.7mm(t)×100mm×100mmのコーニング社製1737ガラス基板上に膜厚100nmのNi合金膜を形成した試料を作製した。
また、比較例として同様にして、Mo−8原子%Nb、Mo−10原子%Wのターゲットを作製して、同様の膜サンプルを得た。
Nb and W, which are high-purity metal raw materials, are added to high-purity electrolytic Ni by a predetermined weight, melted in a vacuum induction melting furnace, cast into a metal mold having a thickness of 50 mm, a width of 200 mm, and a height of 300 mm. An ingot having the composition shown in FIG. Thereafter, a solid solution treatment was performed at 1150 ° C., and then a plate was formed by plastic working and further machined to obtain predetermined sizes of target materials having various compositions. The target material is attached to a magnetron sputtering apparatus, the argon pressure is 0.5 Pa, the input power is 500 W, and the Ni alloy having a film thickness of 100 nm is placed on a 1737 glass substrate made by Corning, 0.7 mm (t) × 100 mm × 100 mm. A sample on which a film was formed was prepared.
Further, in the same manner as a comparative example, Mo-8 atomic% Nb and Mo-10 atomic% W targets were prepared, and similar film samples were obtained.
本発明の基本的な耐湿性試験は、温度85℃、相対湿度85%の環境下に240時間放置する試験により行なった。結果を表1に示す。
その結果Mo系の比較例は、いずれも紫色の明確な変色が確認されたが、Ni系合金は変色もなく、耐湿性にすぐれることを確認した。
The basic humidity resistance test of the present invention was conducted by a test that was allowed to stand for 240 hours in an environment of a temperature of 85 ° C. and a relative humidity of 85%. The results are shown in Table 1.
As a result, in all of the Mo-based comparative examples, a clear purple discoloration was confirmed, but it was confirmed that the Ni-based alloy had no discoloration and was excellent in moisture resistance.
以下、表2に示す合金組成の薄膜サンプルを実施例1と同様に作製し、膜サンプルを得た。なお、評価はマグネトロンスパッタ装置を使用したため、ターゲットとしての磁性が消える7原子%以上の添加元素合計量がターゲットの使用効率が良好なものとなることを確認している。
また、表2に示すサンプルにおいては、表1と同様の耐湿性試験を行ったが、純Niを含むすべてのサンプルにおいて、変色等は認められず、良好な耐湿性を有することが確認された。
Hereinafter, a thin film sample having an alloy composition shown in Table 2 was produced in the same manner as in Example 1 to obtain a film sample. In addition, since the magnetron sputtering apparatus was used for the evaluation, it has been confirmed that the total use amount of the additive element of 7 atomic% or more at which the magnetism as the target disappears makes the target use efficiency.
In addition, the samples shown in Table 2 were subjected to the same moisture resistance test as in Table 1. However, no discoloration was observed in all samples containing pure Ni, and it was confirmed that the samples had good moisture resistance. .
以下、抵抗特性、耐熱性を測定した結果を示す。
ここで、抵抗特性は、形成したNi合金膜の膜特性としては導電性に関与する比抵抗値(μΩcm)を、4端子薄膜抵抗率計(三菱油化製、MCP−T400)を用いて測定した。
耐熱性試験としては、各試料をクリーンオーブン中で温度300℃、1時間の大気加熱を行った。
The results of measuring resistance characteristics and heat resistance are shown below.
Here, the resistance characteristic is measured using a four-terminal thin film resistivity meter (MCP-T400, manufactured by Mitsubishi Yuka Co., Ltd.) as the film characteristic of the formed Ni alloy film. did.
As a heat resistance test, each sample was heated in a clean oven at a temperature of 300 ° C. for 1 hour.
表2に示すように、純Niでは比抵抗は低いが、耐熱性試験後膜表面に白点が生ずる。本発明のNi合金膜では添加量が増加すると比抵抗値は増加するが、膜表面の白点等の発生が抑制されることがわかる。しかし、各添加元素量が15原子%よる多くなると比抵抗値は100μΩcmを超えるため導電膜としては望ましくはない。なお、白点とは部分的な膜の粒成長や酸化等により膜表面の盛り上がった部分であり、白点が生じるとFPDの次工程での電気的や光学的な欠陥につながるため、発生しないことが望ましい。 As shown in Table 2, the specific resistance of pure Ni is low, but white spots occur on the film surface after the heat resistance test. In the Ni alloy film of the present invention, the specific resistance value increases as the addition amount increases, but it can be seen that the generation of white spots on the film surface is suppressed. However, when the amount of each additive element increases by 15 atomic%, the specific resistance exceeds 100 μΩcm, which is not desirable for a conductive film. The white spot is a raised part of the film surface due to partial film growth or oxidation of the film, and if a white spot occurs, it will cause an electrical or optical defect in the next process of the FPD, so it does not occur. It is desirable.
表3に示すAgまたはCuを主成分とする主導体層を200nmとし、Ni合金膜を被覆層(カバー層3、下地層4)として、図1の構成を持つ配線層を得た。
得られた配線層に対して、実施例1、実施例2と同様にして耐熱性、耐湿性の評価を行った。また、密着性の評価方法として、膜表面に2mm間隔で碁盤の目状に切れ目を入れた後、膜表面にメンディングテープ810(スコッチ製)を貼り、斜め45°に引き剥がし、膜の剥がれ状況を確認した。その結果を表3に示す。Ni合金下地膜の厚みは50nm、カバ−膜の膜厚は30nmとした。基板材質は上述のガラス基板、表面に熱酸化を施したSiウェハー、さらに樹脂基板としてポリカーボネイト基板を用いた。結果を表3に示す。
A wiring layer having the configuration shown in FIG. 1 was obtained with the main conductor layer mainly composed of Ag or Cu shown in Table 3 having a thickness of 200 nm and the Ni alloy film as the coating layer (cover layer 3 and base layer 4).
The obtained wiring layer was evaluated for heat resistance and moisture resistance in the same manner as in Example 1 and Example 2. In addition, as a method for evaluating adhesion, after cutting the surface of the film at intervals of 2 mm in a grid pattern, a mending tape 810 (manufactured by Scotch) is applied to the surface of the film, and the film is peeled off at an angle of 45 ° to peel off the film. Checked the situation. The results are shown in Table 3. The thickness of the Ni alloy base film was 50 nm, and the thickness of the cover film was 30 nm. The substrate material was the glass substrate described above, a Si wafer whose surface was thermally oxidized, and a polycarbonate substrate as the resin substrate. The results are shown in Table 3.
表3に示すように、AgやCuを主体とする層のみでは、抵抗値は低いが耐湿性評価で変質が生じたり、耐熱性評価で変色が起こるとともに、基板との密着性が劣り膜の剥離が起こることがわかる。それに対して本発明のNi合金膜を被覆層とすることで、抵抗値は上昇するが、耐湿性、耐熱性、あるいは基板との密着性を大きく改善することが可能となることがわかる。 As shown in Table 3, in the layer mainly composed of Ag and Cu, the resistance value is low, but the deterioration occurs in the moisture resistance evaluation, the discoloration occurs in the heat resistance evaluation, and the adhesion with the substrate is inferior. It can be seen that peeling occurs. In contrast, when the Ni alloy film of the present invention is used as the coating layer, the resistance value increases, but it is understood that the moisture resistance, heat resistance, or adhesion to the substrate can be greatly improved.
以上のように、本発明によれば、高い信頼性が要求される平面表示装置用の導電膜として最適である。また、特に樹脂を導電膜上に形成する有機ELディスプレイ用の薄膜配線層としても好適であるとともに、高い信頼性が要求される車載用等の移動機器用平面表示装置用の薄膜配線層として用いることが期待される。 As described above, according to the present invention, it is optimal as a conductive film for a flat display device that requires high reliability. In addition, it is particularly suitable as a thin film wiring layer for organic EL displays in which a resin is formed on a conductive film, and is used as a thin film wiring layer for a flat display device for mobile equipment such as a vehicle that requires high reliability. It is expected.
1:基板、2:主導体層、3:カバー層、4:下地層 1: substrate, 2: main conductor layer, 3: cover layer, 4: underlayer
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003322454A JP4470147B2 (en) | 2003-09-16 | 2003-09-16 | Thin film wiring layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003322454A JP4470147B2 (en) | 2003-09-16 | 2003-09-16 | Thin film wiring layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005091543A JP2005091543A (en) | 2005-04-07 |
JP4470147B2 true JP4470147B2 (en) | 2010-06-02 |
Family
ID=34453798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003322454A Expired - Lifetime JP4470147B2 (en) | 2003-09-16 | 2003-09-16 | Thin film wiring layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4470147B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104080951A (en) * | 2012-02-03 | 2014-10-01 | Jx日矿日石金属株式会社 | Copper foil for printed wiring board, as well as laminate, printed wiring board, and electronic component using same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013038393A (en) * | 2011-07-13 | 2013-02-21 | Hitachi Metals Ltd | Multilayer wiring film for electronic component |
JP6016083B2 (en) * | 2011-08-19 | 2016-10-26 | 日立金属株式会社 | Laminated wiring film for electronic parts and sputtering target material for coating layer formation |
JP6037208B2 (en) * | 2011-08-22 | 2016-12-07 | 日立金属株式会社 | Laminated wiring film for electronic parts and sputtering target material for coating layer formation |
JP6369750B2 (en) * | 2013-09-10 | 2018-08-08 | 日立金属株式会社 | LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL |
-
2003
- 2003-09-16 JP JP2003322454A patent/JP4470147B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104080951A (en) * | 2012-02-03 | 2014-10-01 | Jx日矿日石金属株式会社 | Copper foil for printed wiring board, as well as laminate, printed wiring board, and electronic component using same |
CN104080951B (en) * | 2012-02-03 | 2016-12-21 | Jx日矿日石金属株式会社 | Copper foil for printed circuit board and its duplexer of use, printed circuit board (PCB) and electronic unit |
Also Published As
Publication number | Publication date |
---|---|
JP2005091543A (en) | 2005-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6016083B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
TWI583801B (en) | A sputtering target for forming a wiring film for an electronic component and a coating layer material | |
JP4022891B2 (en) | Al alloy film for wiring film and sputtering target material for forming wiring film | |
JP6292471B2 (en) | Metal thin film for electronic parts and Mo alloy sputtering target material for metal thin film formation | |
TWI576454B (en) | Spraying target for forming wiring film and coating layer for electronic parts | |
JP4655281B2 (en) | Thin film wiring layer | |
JP6361957B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP4470147B2 (en) | Thin film wiring layer | |
TWI547575B (en) | Metal thin film and sputtering target material of molybdenum alloy for forming metal thin film | |
JP6037208B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
JP2005079130A (en) | Thin film wiring layer | |
JP2005093571A (en) | Thin film wiring layer | |
JP3778443B2 (en) | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film | |
JP2003293054A (en) | Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM | |
TWI482256B (en) | Laminated wiring film for electronic parts | |
JP2006196521A (en) | Multilayer wiring film | |
JP2004238648A (en) | Ag-ALLOY FILM FOR ELECTRONIC PART, FLAT PANEL DISPLAY DEVICE, AND SPUTTERING TARGET MATERIAL FOR DEPOSITING Ag-ALLOY FILM FOR ELECTRONIC PART | |
JP2013076126A (en) | Conductive film and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090407 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090911 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100205 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4470147 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130312 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140312 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |